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Abstract

Sequential motif discovery, the ability to identify conserved patterns in ordered datasets
without a priori knowledge of exactly what those patterns will be, is a frequently
encountered and difficult problem in computational biology and biochemical engi-
neering. The most prevalent example of such a problem is finding conserved DNA
sequences in the upstream regions of genes that are believed to be coregulated. Other
examples are as diverse as identifying conserved secondary structure in proteins and
interpreting time-series data. This thesis creates a unified, generic approach to ad-
dressing these (and other) problems in sequential motif discovery and demonstrates
the utility of that approach on a number of applications.

A generic motif discovery algorithm was created for the purpose of finding con-
served patterns in arbitrary data types. This approach and implementation, name
Gemoda, decouples three key steps in the motif discovery process: comparison, clus-
tering, and convolution. Since it decouples these steps, Gemoda is a modular al-
gorithm; that is, any comparison metric can be used with any clustering algorithm
and any convolution scheme. The comparison metric is a data-specific function that
transforms the motif discovery problem into a solvable graph-theoretic problem that
still adequately represents the important similarities in the data.

This thesis presents the development of Gemoda as well as applications of this
approach in a number of different contexts. One application is an exhaustive solution
of an abstraction of the transcription factor binding site discovery problem in DNA.
A similar application is to the analysis of upstream regions of regulons in microbial
DNA. Another application is the identification of protein sequence homologies in a set
of related proteins in the presence of significant noise. A quite different application is
the discovery of extended local secondary structure homology between a protein and
a protein complex known to be in the same structural family. The final application is
to the analysis of metabolomic datasets. The diversity of these sample applications,
which range from the analysis of strings (like DNA and amino acid sequences) to real-
valued data (like protein structures and metabolomic datasets) demonstrates that our
generic approach is successful and useful for solving established and novel problems
alike.



The last application, of analyzing metabolomic datasets, is of particular interest.
Using Gemoda, an appropriate comparison function, and appropriate data handling,
a novel and useful approach to the interpretation of metabolite profiling datasets ob-
tained from gas chromatography coupled to mass spectrometry is developed. The use
of a motif discovery approach allows for the expansion of the scope of metabolites that
can be tracked and analyzed in an untargeted metabolite profiling (or metabolomic)
experiment. This new approach, named SpectConnect, is presented herein along
with examples that verify its efficacy and utility in some validation experiments. The
beginning of a broader application of SpectConnect's potential is presented as well.

The success of SpectConnect, a novel application of Gemoda, validates the utility
of a truly generic approach to motif discovery. By not getting bogged down in the
specifics of a type of data and a problem unique to that type of data, a broader class
of problems can be addressed that otherwise would have been extremely difficult to
handle.

Thesis Supervisor: Gregory Stephanopoulos
Title: Herbert H. Dow Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Motivation

With the significant advances in high-throughput experimental techniques that have

developed in biology within the past ten years, there has been rapid development

in a relatively new field: bioinformatics. Broadly speaking, bioinformatics may be

construed as any type of computational approach to biological systems. Some defini-

tions may go so far as to include approaches that are more commonly associated with

"computational systems biology", including differential equation-based modeling of

systems and metabolic flux analysis. A more precise definition of bioinformatics might

focus more on the data-driven aspects of the field. As such, the most obvious exam-

ples of bioinformatics are in sequence analysis, e.g. DNA and amino acid sequences.

Other prominent examples of bioinformatics include the statistical analysis of DNA

microarrays, gene network inference from microarray and other data, and literature

mining for associations and correlations between different biological entities. One can

note the consistent theme among these more "classical" examples of bioinformatics:

a data-driven approach to analyze and interpret the biology underlying experimental

results.

One interesting aspect of bioinformatics as a discipline is the continuing strug-

gle between experimental and computational power as a driving force for further

developments. As noted above, before the development of many high-throughput ex-



perimental techniques, there was not a strong drive for the development of algorithms

and routines for biological data analysis. As this need arose, it first prompted ad hoc,

heuristic approaches that were computationally feasible but not always completely

accurate in their predictions. Of course, computing power is continually increasing,

such that problems that could at first only be solved heuristically soon have a prov-

ably exhaustive and accurate solution at a reasonable computational cost. Algorithms

must then adapt to reflect these possibilities. Frequently, though, even better experi-

mental methods are being simultaneously developed, providing better, more detailed,

or just a lot more data than previous high-throughput methods, thus preventing

newly-developed accurate methods from being brought to bear on this newer, more

complex dataset. This prompts the development of new computational analysis algo-

rithms, and the cycle continues. Such seems to be the nature of bioinformatics in its

infancy, and with the continuing development of both experimental techniques and

computational power, it seems likely that this pattern may continue for some time.

Contextually, this thesis lies squarely in the middle of such a cycle. There are

several well-established methods for some of the types of analyses pursued in this

work. However, the potential for exhaustive, extremely powerful searches of certain

problems has not yet been exploited. This thesis looks to harness this unexploited

potential while unifying several diverse problems into one consistent, coherent, generic

definition of motif discovery. The software produced as a result of this goal was

ultimately used to perform novel, useful analysis of datasets that just a few years

ago were not even being created. This then provides the potential to help bring

an otherwise nascent field, metabolomics, closer to the level of acceptance of other

"-omics" fields like proteomics and transcriptomics.

1.2 Thesis Objectives

The objectives of this thesis are the following:

1. To develop a motif discovery algorithm that is both as exhaustive and generic

(or "data-agnostic") as possible. Exploiting recent advances in computational



capabilities, it is possible to develop a bioinformatic approach that can avoid

heuristic shortcuts in many cases. This approach should not be specific to

certain kinds of data, but rather should be generic enough that with minor

modifications it can be applied to arbitrary problems with arbitrary data types.

2. To apply this approach to existing problems in bioinformatics. There are many

outstanding problems in bioinformatics that have not yet been solved exhaus-

tively or optimally. This approach should be capable of solving such problems

such that end users (i.e., biologists) could use it to solve relevant problems in

their research.

3. To apply this approach to novel problems in bioinformatics. While the many

extant problems in bioinformatics are sufficient fodder for an enormous amount

of work, this approach should ideally also be applied to problems that are not

otherwise known about or prominently analyzed.

1.3 Thesis Organization

This document will address the different aims in turn. After a broad overview of

background material (focusing on motif discovery and metabolomics) in Chapter 2,

Chapter 3 will focus on the creation and development of a truly generic approach

to motif discovery in sequential biological data. A few examples of its potential will

be briefly addressed in this chapter as well. Chapter 4 will present a more in-depth

example of how our generic approach can be applied to a relevant DNA sequence

motif discovery problem. This chapter will also expand upon this sample problem to

make it even more biologically relevant and faithful to the intricacies and deficiencies

of the experimental data that would be used in the analysis. Chapter 5 moves into

another example of how this approach can be applied, this time in the context of

real-valued data obtained from metabolomic GC-MS analysis. Chapter 6 discusses

the initial work towards a project looking to use these motif discovery approaches for

the purpose of tracking as many metabolites as possible in numerous experimental



conditions. Chapter 7 presents some side projects that were done in the process of

completing the primary thesis objectives. These projects focus on broader, higher-

level aspects of amino acid sequence analysis. Chapter 8 presents some conclusions

and provides suggestions for future work that can be done to improve the algorithms

developed in this thesis as well as some work that can exploit the progress made by

this thesis.



Chapter 2

Background

2.1 Motif discovery in sequential data

As has been widely noted, the availability of vast amounts of biological data has

prompted great interest in the development of tools for the analysis and mining of

this data.

For instance, the advent of advanced genome-sequencing techniques, from shot-

gun sequencing [112, 12, 168] to the most recent developments in approaches such

as 454 sequencing [110], has been supplying a steady stream of whole--genome se-

quences available to the public. In fact, the technology has become so commonplace

that genome sequencing sometimes becomes "just another step" in the pursuit of

understanding certain organisms [151].

Protein structure determination is also continuing along, though perhaps at a

slower pace. While standard methods for elucidating protein crystal structure (NMR

and X-ray crystallography) have not advanced unusually rapidly in the past five

years, there has still been significant growth in the number of protein structures that

are available online via the Protein Data Bank (PDB) [25, 24). With well over 42, 000

structures available as of the time of publication of this thesis, there is a significant

amount of data available in the PDB.

However, the mere presence of all this data is not nearly sufficient for the ad-

vancement of science. While a quick glance at a bacterial growth curve or a reactant



concentration curve can give an idea of what state an organism is in or what the

kinetic constant of an enzyme is, the vast amounts of data acquired through "-omic"

techniques require much more in-depth analysis in order to be useful. The most

promising route to understanding this data is by identifying repeated elements that

most likely have significant meaning. Just as a string of letters may seem meaning-

less to someone who has never seen the words that constitute a given language, a

large portion of why our genomic and proteomic datasets are so confusing is because

we just do not know what important repeated elements we should be looking for to

understand the underlying structure of the data.

Merely knowing the sequence of hundreds of organisms, while in itself interesting,

is not sufficient for understanding how genetic, metabolic, and cell-cycle regulation

work in those organisms. While we may know very well where genes will start and

stop, and we may have a very good idea of how promoter sequences work and how

exons in genes will splice together, there are still many unknown aspects of genome

sequences that remain to be elucidated. On a very fundamental level, even transcrip-

tion factor binding sites (places where proteins called "transcription factors" bind to

DNA and cause a cascade of events that results in the gene being transcribed) have

insufficient understanding for engineering applications. Certainly, we understand how

these binding sites work and that certain residues have more plasticity than others in

allowing for binding; however, we do not yet have the capability to identify binding

sites a priori in a sea of genomic data, nor do we have the ability to rationally engineer

these binding sites to suit the whims of metabolic engineers and synthetic biologists.

We also have relatively little understanding of how complex sequence elements found

in higher eukaryotes, like enhancers and insulators, work to effect transcriptional reg-

ulation. It is the understanding of all of these elements that will bring us much closer

to an understanding of genetic data.

Similarly, knowing only the structures of proteins is not nearly sufficient for the

scientific and engineering purposes towards which we currently strive. Being able to

qualitatively describe certain substructures as alpha helices or beta sheets is helpful

for classifying proteins into families, but has relatively little utility outside of that



application. Ideally, we would like to be able to correlate overall structure or specific

substructures to protein functions; we would also like to be able to predict protein

structure strictly from the amino acid sequence of the protein. While there will

certainly be the opportunity to employ thermodynamic and computational chemistry

methods to advance these goals, the discovery and tracking of conserved substructures

within amino acid sequences and protein structures will be a key step in unraveling

the mysteries of protein folding and function.

Thus, the discovery of repeated patterns in sequential data is an extremely im-

portant problem in biology, biological engineering, and biochemical engineering. The

potential applications of such knowledge are innumerable and include a variety of

industrially useful applications like the engineering of microbes for more effective

biosynthesis of valuable chemical feedstocks.

Before moving on, it is also worthwhile to clarify some terminology used in this

document. The words "motif' and "pattern" can be used more or less interchange-

ally: they both refer to a repeated element in data that is believed to have some

correlative or functional role. This thesis will frequently refer to its goals in the con-

text of "mnotif discovery": I use this in place of an alternative phraseology, that of

")pattern recognition", to underscore one key aspect of this work. Generally s)peak-

ing, "pattern recognition" can be construed as referring to any sort of classification

problem. There are many algorithms and tools that have been developed to identify

occurrences of known motifs based on the motif representations that will be discussed

below, which some may refer to narrowly as "pattern recognition". Depending upon

the motif model. this is often a difficult problem in and of itself. However, the "'motif

d(iscovery" problems addressed here go one step beyond those problems: in motif dis-

covery, one does not know what the motif is while trying to find it in the data. The

only assnumption made is that the set of sequences that one is searching are somehow

related and thus likely to have some substructure or subsequence that characterizes

the data. Using only the data, one attempts to enumerate the important repeating

elements that give the data some sort of underlying structure. Thus, motif discovery

is munch more difficult than what some nmay narrowly refer to as pattern recognition;



one could say that specific kind of pattern recognition is to motif discovery what

using the "Find" function in a word processor is to deducing the words that make up

a foreign language based only on the letters in that document.

2.1.1 Types of data

Ordered vs. unordered data

In its most general sense, motif discovery can be performed on any arbitrary type of

data. A common and intuitive type of data to be mined is "unordered" data, where

the data points have no sequential nature. A mathematical example of unordered

data would be taking a string of numbers from a pseudo-random number generator

and trying to deduce from those numbers the underlying prior distribution of the

generator. In this case, though the individual values drawn will be of use in deducing

the prior distribution, the order in which they are drawn has no use in the inference.

Some examples of unordered data are illustrated in Figure 2-1.

A

B

C

Figure 2-1: Some examples of unordered data analysis. Unordered data can be cast
into arbitrary coordinate systems; in certain coordinate systems, some motifs may
become obvious. The first schematic demonstrates how one might use a clustering
algorithm to break the data into smaller groups. The second schematic shows how
one might define a linear discrimination approach to predict the classes or clusters
of future data points. Unordered data points can also be cast as either undirected
or directed graphs (as in the third schematic) or displayed clustered together in a
hierarchical manner (as in the fourth schematic). The unifying theme here is that
while there may be motifs somewhere in the data, they are not necessarily likely
to occur in the data's native coordinate system it is in casting the data into
an alternate coordinate system that one is most often successful at unordered data
classification or motif discovery.



A more real-world example of unordered data can be found in online commerce:

the "market basket" problem. A customer of an online vendor of books that pur-

chases two novels is frequently presented by that online vendor with suggestions for

other books that might be of interest. This is actually a motif discovery problem.

The vendor takes the two books being purchased by the customer and looks in all of

its previous transactions to identify other customers who purchased one or both of

the books that the current customer is purchasing. Based on those previous trans-

actions, the vendor attempts to guess the most likely other books that the current

customer would consider purchasing. The vendor is thus finding "motifs" that help

to describe purchasing habits and hopes that these motifs may give the customer

ideas about other books to purchase. Of course, it is extremely difficult to search

all prior transactions effectively and efficiently. As such, heuristic shortcuts are often

necessary to make the problem computationally tractable. These heuristic shortcuts,

while computationally useful, frequently cause the suggestions to be less helpful than

they otherwise might be, leading to the occasional odd suggestions that one might

encounter from online vendors.

This last aspect of the market basket problem speaks to a larger issue in motif dis-

covery in unordered datasets: computational tractability. Since there is no sequential

nature to the data, there is no reason to expect that data points that are "near" each

other (whether in sampling order or some other natural coordinate system) are part

of a motif. With such delocalized similarities, the search space grows combinatorially

with the size of the dataset. For large datasets, this is obviously intractable to search

exhaustively, necessitating (as in the market basket example) heuristic shortcuts that

sacrifice accuracy in making the problem feasible.

Ordered datasets, on the other hand, lend themselves much more easily to ex-

haustive searches. In these datasets, the data points have a sequential nature such

that the order in which they occur is relevant. By virtue of this fact, one expects to

find more localized similarities within the data; that is, one expects that important

motifs are likely to span a small region of the sequence rather than draw uniformly

from the sequence. While this approximation is not valid in all cases (one of the



most prominent being RNA sequences where rather distal portions of the sequence

physically touch to form secondary structure), it is useful for quite a few relevant

biological problems that will be discussed shortly.

Since similarities are more localized, search algorithms can restrict their search

to motifs that are composed of approximately continuous regions on the sequence.

This restriction then allows for a drastic reduction in the size of the search space;

what would otherwise be a search space that is combinatorially growing in the size

of the dataset is instead much closer to linear growth in the size of the dataset.

For example, if one were to search an unordered dataset consisting of ten items for

all possible motifs that were composed of five of those items, there would be 252

possible motifs to analyze. In contrast, an ordered dataset of the same size where

only consecutive runs of five items were interesting would have exactly 6 possible

motifs. This reduction is almost two orders of magnitude; in larger datasets, the

reduction would be amplified even further. It is then clear that ordered datasets are

much more easy to search exhaustively than are unordered datasets. However, that

is not to say that ordered datasets are always easy to search exhaustively; as the

size of these sequences climbs into the hundreds, thousands, and higher, they quickly

become difficult (and sometimes intractable) to search thoroughly. The ordered,

or sequential, motif discovery problem thus represents a difficult, but reasonable,

problem to address.

String- vs. real-valued data

Another distinction worth noting is that between string-valued and real-valued data.

Each letter in a DNA sequence can only take one of four values for each of the four

possible bases: A for adenine, G for guanine, C for cytosine, and T for thymine.

Each letter in a protein sequence can take one of twenty values for each of the twenty

common amino acids (there are some uncommon amino acids, but we will ignore

those for the purposes of this discussion). In this sense, DNA and protein sequences

can be described as a string (using the computer science sense of the term) because

each letter is chosen from a predetermined, finite set of possibilities. There exist



many types of sequential data, though, that are not restricted to a finite subset of

possibilities: for instance, a series of integers could have any of the infinite set of

integers at any given data point. The same can be said for decimal-valued numbers,

as well. These two types of datasets are illustrated in Figure 2-2. In this work, I will

refer to the set of sequences composed from an infinite set of possibilities at each data

point as a "real--valued" dataset.

The importance of this distinction lies in the feasible approaches that one can use

to uncover motifs in the data. Given a finite number of choices for each letter in DNA

or protein sequences, one can exhaustively enumerate all of the similarities between

the physical entities that each letter represents and come up with a similarity metric

based on those properties that best define how similar one letter is to another. For

real valued data, the creation of such a simple, finite comparison metric is not nearly

as straightforward. In addition to this fact, and perhaps as a consequence of it, there

are a large number of sequence analysis tools (that will be discussed below) geared

towards string -valued data and relatively few tools geared towards real-valued data.

Given this circumstance, it is not an uncommon or unreasonable approach to attempt

to recast the real-valued data problem as a string-valued problem so that existing

string-valued sequence analysis tools can be brought to bear on the real-valued data.

However, in performing this transformation -- moving from an infinite set of possible

values for each data point to a finite set of possible values --- one necessarily loses

quite a bit of information. While in some cases this approximation may be successful,

it is certainly not ideal, as will be discussed later in this chapter.

2.1.2 Motif representations

As noted above, the working definition of a "motif" for the purposes of this thesis is

a repeated element believed to have some correlative or functional role. For a motif

to be functional, though, it does not need to be identical in all of its occurrences.

One obvious example of this plasticity in motifs is in stock trends. If one were to

find that multiple stock prices followed very similar, but not identical, prices over

the course of a year, one could easily (by eye) identify a motif that describes their
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Figure 2-2: Two different "classes" of ordered data. The ordered data on the top
is real-valued; that is, any given point in the sequence can have essentially any of
an infinite number of possible values. The ordered data on the bottom is string-
valued; that is, any given point in the sequence can only take one of a finite number
of possible values (in this case, letters representing the different natural amino acids).
While there are obvious (even visual) differences between the two types of data, there
is still an underlying similarity, hinted at by the same treatment of arbitrary shaded
boxes searching for motifs.
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behavior. It is not necessary for us to see that their prices were exactly the same

over the course of the year; we understand that there is noise inherent to stock prices

and the overall financial system that causes slight deviation, so we can see through

this noise to identify the underlying motif. In much the same way, noise is tolerated

within biological systems such that a sequence of nucleotides or amino acids has some

degree of plasticity; that is, a certain amount of change from the "real" motif does

not prevent it from having its appropriate function and being identified as an instance

of the motif.

Since there is some noise and uncertainty inherent in motifs, it is desirable to

attempt to capture this uncertainty in a comprehensible representation of the motif.

Different motif representations have different levels of approximations and thus vary-

ing levels of precision in their representations. A few representations will be explored

briefly below, as these terms will be used frequently throughout this thesis.

Consensus sequence

The simplest way to represent a set of patterns is that of the consensus sequence.

Constructing an arbitrary consensus sequence is a rather straightforward endeavor.

Figure 2-3 presents an example from the literature that illustrates this point [134].

The six sequences on the top represent promoters that behave similarly. No single

pattern of non-wildcard characters can be used to represent all six sequences. A

consensus sequence is an attempt to represent all six sequences with only one sequence.

The first candidate consensus sequence is TATAAT. When one uses the term "consensus

sequence", this is the type of representation that is most commonly implied: where

each letter in the sequence represents the most dominant possibility amongst all motif

instances. However, if one were to search the genome (in this case, that of E. coli)

allowing no mismatches with the consensus sequence, one would only find two of these

sites. If one mismatch were allowed, three of the sites would be identified. Only if two

mismatches were allowed would all six sites be identified. However, in that case one

would also find a "match" about every 30 base pairs of random genomic sequence.

Thus, many non-promoter regions would be identified as promoters. Even though the



sensitivity (ability to find known true positives) of such a sequence would be 100% if

two mismatches were allowed, the specificity (ability to avoid false positives) would

be quite low, making that a very poor representation of the site. Nonetheless, for

stronger motifs this kind of consensus sequence is still commonly used.

An alternative consensus sequence using wildcard characters is also presented:

TATRNT, where R stands for G or A and N stands for A, C, G, or T. Such a sequence with

no mismatches identifies four of the sites with a reasonable specificity. Allowing one

mismatch identifies all six sites, but again at a loss of specificity. Thus, one can clearly

see that while creating an arbitrary consensus sequence is simple, finding the sequence

and cutoff value that is optimal for identifying the existence of new (undiscovered)

sites is very difficult [156]. Other literature sources [38] have already compared quite

a few methods for constructing sequences and cutoff values to reach that optimality.

Regular expressions

Regular expressions - also known as regular grammars or type-I grammars - are

simple rules specifying allowed arrangements of characters within a sequence [37, 88].

The most important aspect of regular expressions is that they permit wildcards, sets,

and repeats which allow for (respectively) any character to match at a position, a set

of characters to match at a position, or multiple instances of a character (or set) to

match at a position.

Regular expressions can be seen as a more complicated version of consensus se-

quences. The possible wildcard values in the consensus sequence above are an impor-

tant aspect of regular expressions. Instead of using a new letter to denote a subset

of letters, though, regular expressions use brackets to delineate which letters may

possibly exist at a given location. So, using the consensus sequence example above,

the regular expression representation of the consensus sequence TATRNT would be

TAT [AG] [ACGT] T. Alternatively, since [ACGT] really means that any possible letter

(from the predefined finite set) is acceptable, one can use the wildcard character "."

to represent complete indifference to what is present at that position. One could

then use TAT [AG]. T to represent the above regular expression. Finally, repeats can



TATAAT
(0 mismatches)

TACGAT
TATAAT
TATAAT
GATACT
TATGAT
TATGTT

TATAAT
(1 mismatch)

TACGAT
TATAAT
TATAAT
GATACT
TATGAT
TATGTT

TATRNT
(0 mismatches)

TACGAT
TATAAT
TATAAT
GATACT
TATGAT
TATGTT

Figure 2-3: Six promoter regions [134] can be represented with either of these two
consensus sequences. In the latter sequence, R means {A or G}, while N means {any
nucleotide}. Allowing more mismatches with a consensus sequence lets more target
sequences be found but ultimately causes a loss of statistical significance, as many
more non-target sequences will also be found.



be represented in regular expressions. If the letter T can occur anywhere from four to

nine times in a sequence, it would be represented as T{4, 9}. If it could occur some

undetermined number of times, from zero to infinity, it would be represented as T*.

By using these operators, regular expressions are more powerful than consensus

sequences. Regular expressions can describe more complex motifs whose size and

internal repetitiveness may vary significantly, which is not possible with consensus

sequences. Also, regular expressions can more easily describe the multiple possible

elements that can exist at any given location in a motif. However, it is worth noting

(as will be discussed below) that many motif discovery approaches that use regular ex-

pressions will only consider a subset of these operators, thus limiting their capabilities

in describing motifs.

Position weight matrices

Though consensus sequences and regular expressions have their merits in representing

motifs (primarily their simplicity), they have significant shortcomings. Their biggest

flaw is in the assumption that the matching of each sequence position contributes

equally to the validity of the motif instance. That is, both of these methods assume

that there is not a continuous distribution of "preferences" for letters at any given po-

sition. The consensus sequence acknowledges the fact that one letter may be preferred

at a given position for a subsequence to be a motif instance. Regular expressions ac-

knowledge that multiple different letters may be viable at any given position. Neither

approach, though, addresses the fact that while there may be a first preference for

a letter at a given position in a motif, there may be a quantifiable second, third, or

higher preference at the same position. Biologically, this makes some sense; I will

use DNA-binding proteins as an illustrative example. If a protein binds to a specific

DNA sequence, there may be some leeway in what the binding site sequence may

be. The binding capability is defined by the kinetics and thermodynamics of the

protein-DNA interaction. Changing one specific base from, say, A to T may change

the binding kinetics less than changing it from A to C. This in turn means that the

binding site is more likely to have A in that position than any other nucleotide, but it



is also more likely to have T than C. These differences can then be quantified, based

on (ideally) the thermodynamics of the system or (realistically) the frequency with

which one sees each letter at each position in the binding site.

Position weight matrices (PWMs) help to express the unequal contribution of

different sequence positions in the site to the binding energy of the transcription

factor. For each location in a potential binding site, there is a corresponding column

in the PWM. There are four rows in the PWM corresponding to the four bases (or

twenty rows if one is dealing with proteins). In order to find the PWM score for a

given sequence, one selects the element in each column of the matrix corresponding

to the base pair at the respective position. These elements are then summed for the

final score. The site is deemed a binding site if it is below (or above, depending upon

the sign convention used) a threshold value usually determined such that the results

meet some level of statistical significance. An example is given in Figure 2-4, where

the PWM score for the sequence is found by adding the circled matrix elements.

Defining the PWM weights is a relatively simple task, though it requires a sub-

stantial amount of experimental data. PWMs are currently available in multiple

databases, most notably TRANSFAC [178]. One can also create a new PWM based

on new data or subsets of data. One tool to do so is a Perceptron, which is a simple

neural network [157]. The method commonly used today is similar to that presented

by Staden [153], which is to assign a weight equal to the negative logarithm of the

frequency of the base at each position in a set of binding sites.

Other representations

Other representations have also been explored, though they are much less common

than the previously delineated representations. One such approach is a natural ex-

tension of PWMs to Markov chains rearranged so that statistically interdependent

positions are placed next to each other in the chain [51]. Hidden Markov Models

(HMMs) are also another useful type of motif representation; prominent examples of

such an approach include models of transmembrane helices [99] and exon/intron splice

signals [35]. Neural networks and Bayesian networks can also be used to represent



Figure 2-4: A position weight matrix (PWM) based solely on the six promoter se-
quences in Figure 2-3. This PWM uses a simple method of weight determination
where the weight is equal to the negative logarithm of the frequency of a base's
appearance at a given position (plus pseudocounts), times ten. Pseudocounts are
additional "occurrences" added to the frequency of each letter so that no letter's fre-
quency is zero. This is done because although a letter may be extremely rare in a
certain position in the motif, it is likely that there may be some promoter sequence
with that letter in that position and that we just haven't "sampled" enough promoter
sequences to have seen it happened. It thus prevents an "improbable" event from be-
ing deemed as "impossible" merely due to a finite training sample. In the limit of
extremely large training samples, the change in weights caused by these pseudocounts
is negligible. The circled bases represent (potential) consensus sequences.
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motifs. The main difficulty in using most of these representations is in the relatively

large body of experimental evidence and motif examples that must be used in order

to create accurate representations of motifs using these highly descriptive models.

In the above HMM examples, a large amount of data is likely not a limiting factor,

but for transcription factor binding sites one does not expect to have hundreds to

thousands of example motif instances that will help train these models appropriately.

2.1.3 Standard tools for sequence analysis

Given the maturity of sequence analysis and the relative sophistication of our un-

derstanding of different sequence elements in both protein and DNA data, it is not

surprising that there exist a few commonly-used and well-developed tools for analysis

of string data. These tools range from workhorses for identifying homologies between

a query string and a large database to programs that can be used by any biologist

to attempt to find recurring motifs in DNA and protein sequences. While each tool

has a significant contribution to the discipline, there still remains a significant gap in

capabilities that motivates the research in this thesis. A few tools will be described

herein, followed by an analysis of some of the shortcomings common to most or all of

those tools.

Alignments and homology detection

This class of sequence analysis tools focuses on finding similarities between sequences.

One approach is to find a "global" alignment between two sequences - that is, an

alignment that spans the entire length of both sequences (with some blank spaces,

or "gaps", inserted) and provides the best overall similarity. This approach is most

effective for sequences of very similar length and that are not very evolutionarily

diverged. For more diverged and diverse sequences, one frequently uses "local" align-

ment methods. These local methods focus on the small regions of similarity that may

exist within larger stretches of dissimilarity and evolutionary divergence. Frequently,

these short regions of homology can provide significant insight and characterization



of the sequences under study. Local alignments can then be used to search databases

for homology.

In multiple sequence alignment, one seeks to align a set of sequences together in

such a way that homologous patterns occur at the same place. This is done (as in

pairwise alignments) by changing the start position of a sequence with respect to

another and (perhaps) allowing for insertions of gaps in some sequences to facilitate

alignment. A number of tools are available for multiple sequence alignment, including

ClustalW [163] and T-COFFEE [124]. Various other tools usually used for other

problems can also be used for multiple sequence alignment, including TEIRESIAS [140],

MEME [17], and others.

Below I will go into greater detail about some of the more prominent algorithms

and tools for alignment and homology detection within the field of bioinformatics.

Most, if not all, of these tools were used over the course of this thesis, whether for

benchmarking studies or because they were the most appropriate tools for the task

at hand.

Smith-Waterman alignment The Smith-Waterman [152] algorithm is an ap-

proach to local sequence alignment. It is based on the concept of "dynamic pro-

gramming", an inductive algorithm that aims to find optimal solutions by solving

the problem as several smaller, stepwise problems. Implementations frequently en-

tail the creation of a matrix that allows the tracking of all possible solutions of a

problem. Within the context of pairwise sequence alignment, the matrix has a row

for each letter in one sequence and a column for each letter in the other sequence.

The two sequences will be aligned by inserting short gaps to help similar parts of

the two sequences coincide. Each gap that is inserted in a sequence has a specific

scoring penalty associated with it. Each "alignment" of two letters has a score as-

sociated with it as well; this is defined by a "substitution matrix", a set of values

that reflect the relative a priori likelihood that a certain letter would appear in one

sequence given the corresponding letter in the other sequence. (For proteins, these

substitution matrices indicate the likelihood that one amino acid residue will change



to another over the course of evolution.)

The Smith-Waterman algorithm is based on the Needleman-Wunsch algorithm [119]

for global alignment, which will now be described. To align the sequences, one moves

stepwise through them in a "greedy algorithm" approach. Based on the gap penalties,

it is clear what the score would be for an initial gap compared to a letter in either

sequence, as well as for multiple initial gaps in one sequence compared to the other.

It is also known what the score would be for a direct alignment of the first letter of

each sequence (by the scoring, or substitution, matrices discussed above). Using this

knowledge, the algorithm then attempts to compute the best possible score for the

alignment of the first two letters in the first sequence with the first letter in the second

sequence. This alignment can come from either an initial gap in the second sequence

followed by alignment of two letters, two initial gaps in the second sequence followed

by a gap in the first sequence, or the alignment of both sequence's first letters followed

by a gap in the second sequence. Since the scores from all of those first-step scenarios

are known, it is possible to deduce which would give the best possible alignment score

at the current step, and that score is recorded as the appropriate matrix entry. Next,

the same computations are done for the alignment of the first three letters of the

first sequence with the first letter of the second sequence. These computations are

based on the three possible prior (shorter) alignments that could possibly lead to that

alignment. This process is then repeated for each possible sub-alignment (based on

the three prior sub-alignment scores), until the entire matrix of values is filled out.

The major difference between the Needleman-Wunsch algorithm just described

and the Smith-Waterman algorithm is that if at any point during the Smith-Waterman

algorithm the penalty or score of a certain step would push the cumulative score below

0, then that score is just defined as 0. The optimal local alignment is then selected as

the highest-scoring entry in the matrix, and the alignment can be recovered by tracing

backward through the matrix using the known gap penalties and substitution/scoring

matrix.

While this approach provides a guaranteed optimal local alignment, it does so at

great computational expense. The computational complexity of a straight-forward



implementation of this algorithm is O(mn), where m is the length of the first sequence

and n is the length of the second sequence. The space requirements are also O(mn).

While these costs are trivial for the pairwise comparison of most gene or protein

sequences, the approach does not scale well to straight-forward database searches

since they require O(p) pairwise comparisons, where p is the number of sequences

in the database. For searches in large databases, a much more efficient approach is

required for search time and space to be tractable.

BLAST BLAST [10], which stands for "basic local alignment search tool", was

developed as a heuristic approach to finding homologies between two strings. It is

a computationally tractable alternative to more exhaustive approaches like Smith-

Waterman and dynamic programming algorithms for the purposes of searching large

databases for local homologies.

Briefly stated, BLAST uses small clusters of similarity identified by comparisons

to a pre-hashed database to identify the potential beginnings of homologies. That is,

for a specific data type (whether DNA or protein sequences), a minimal "word" size

is defined. For proteins, this size is frequently 3, while for DNA sequences, this size

is often 11. For the database of sequences that is to be searched, all possible words

are enumerated and stored. Each possible word in the query sequence (supplied by

the user) is then compared to all of the words that exist in the database. Using

some appropriate scoring metric or "substitution matrix", any word in the data that

is sufficiently similar to a word in the database is noted and called a high-scoring

pair, or HSP. These HSPs are then further analyzed and extended to discover longer

regions of homology that are of greater biological relevance.

The central idea behind this approach is that if there is some long stretch of

homology between the user's query and some sequence in the database, there is likely

to exist in that stretch some extremely high-scoring pair of words. Frequently, there

will exist more than one such pair. If a set of such pairs, or at least one pair, can

be identified, then it can be extended to enumerate most (or all) of the homology

between the query sequence and the database sequence.



Owing to the nature of its approach (which essentially amounts to multiple hash

lookups in a stored database), BLAST is an extremely efficient algorithm. It is

still used today with relatively few substantive modifications from its initial core

searching algorithm. It can search multiple genomes for homologies to one's query

within seconds. The only limitation that prevents it from being used natively on

home computers is the physical memory required for storing the entire hash lookup

table. This problem has long been obviated by the availability of central servers for

performing BLAST searches on entire multi-genome databases.

BLAST has been further developed and optimized for many specific applications.

Direct comparisons of two sequences (though truthfully unnecessary since Smith-

Waterman searches can easily handle such alignments) are readily available on BLAST

servers. Optimal parameters have been developed for searches looking for small, ex-

tremely well-conserved stretches of sequence. An iterative version of BLAST, known

as PSI-BLAST (position specific iterative BLAST) [11], has been developed for the

identification and extension of protein families using position-weight matrices. All

of these versions and extensions of BLAST find frequent use in both the literature

and the laboratory, making it the pinnacle example of a successful, well-integrated

bioinformatics tool.

Motif discovery tools

This class of tools focuses on identifying conserved subsequences, or patterns, within

sets of sequences. In a sense, these are more directly related to multiple sequence

alignment tools than to pairwise sequence alignment or homology searching tools be-

cause they look to characterize many sequences simultaneously. The key difference

between these tools and multiple sequence alignment tools are the noise and evolu-

tionary relationship in the data being analyzed. The most common application for

multiple sequence alignment tools is to better identify the similarities and differences

between sequences (say, proteins) that are believed to be evolutionarily related. In

the case of proteins that are rather closely related, multiple sequence alignment aims

to insert small gaps to make the obviously similar parts of each sequence line up. For



more distantly related proteins, multiple sequence alignment helps to identify larger

gaps between related portions of the proteins under study. The tools discussed in

this section, however, are not necessarily expected to be closely related. The prob-

lem is not to find the best placement of gaps to make the sequences line up well

with each other; rather, it is almost the inverse, where one needs to identify only

those small regions within the sequences that actually are similar while disregarding

the vast regions of dissimilarity in the rest of the sequences. In a sense, these tools

are looking for multiple-sequence local homologies - essentially the most difficult

respective aspects of multiple sequence alignment and homology detection.

The problems these tools look to solve are very difficult. As such, the approaches

that these tools use are frequently very complex - both computationally and con-

ceptually. The results, though, can frequently convey much more insight into the

dataset than a basic alignment or homology search can. Below I will review the basic

underpinnings of some of the motif discovery tools that are most relevant to this

research or most prominent in the field.

TEIRESIAS TEIRESIAS is a tool created by Rigoutsos and Floratos [140] to exhaus-

tively search the entire space of sequences for patterns meeting certain user-specified

criteria. Our research group has used TEIRESIAS for a variety of bioinformatic pur-

poses including peptide design, binding site discovery, and substitution matrix con-

struction. A cursory overview of the tool is given below; a more thorough and rigorous

explanation can be found in the literature [140]. In general, TEIRESIAS works on any

character sequences, whether amino acids, nucleotides, or discrete numbers. Given a

set of character sequences and a set of integer parameters L, W, and K, TEIRESIAS

will find all patterns having at least L non-wildcard characters over a span of any

W characters and occurring at least K times. In essence, L/W reflects a minimum

"density" of non-wildcard characters in the pattern, while L reflects the minimum

pattern length. Any pattern longer than L must meet the LIW criterion for any

given window of W consecutive characters. TEIRESIAS returns a list of patterns,

the number of occurrences of those patterns, the number of different sequences in



which the patterns occur, and (optionally) "offset lists" indicating the location of

each occurrence of each pattern.

The noteworthy aspect of TEIRESIAS is the way by which it obtains these results.

Rather than enumerating and searching for every single possible pattern, it only

initially enumerates "elementary" patterns; that is, only those patterns satisfying the

L/W constraint and with exactly L non-wildcard characters are enumerated. Longer

patterns are then created by "convolution", which allows for elementary patterns to

be combined provided that there is sufficient support and overlap between them. This

strategy eliminates a great deal of computation time when compared to other brute

force methods. Ultimately, the method leads to the following three properties:

1. All maximal patterns are reported.

2. Only the maximal patterns are reported.

3. Running time is quasi-linearly dependent upon the output (the number of pat-

terns present in the data).

The impact of the first and second properties is that a complete, non-redundant

set of patterns is returned for a given set of parameters. Such a pattern-space search

is thus exhaustive, and one can be assured that given the parameters supplied to

TEIRESIAS, all patterns have been discovered. The impact of the third property is

that patterns of any length can be discovered. Since computation time is only output-

dependent, no restrictions are placed on the maximum pattern length as is done in

some other routines to make problems tractable.

Of course, the algorithm does have distinct disadvantages which must be worked

around or tolerated. For instance, some a priori user knowledge is required in the

form of input parameters. If the general character of the pattern being sought is

known, this requirement for a priori knowledge may be tolerable; in general, though,

this creates some degree of bias in the results. Such bias can be minimized by choosing

parameters conservatively or searching through pattern space with multiple sets of

parameters. Also, since computation time is output-based, it increases greatly when



simple pattern repeats (e.g., poly-A blocks) are present. A problem that is otherwise

tractable can quickly become intractable if numerous simple repeat sequences must

be analyzed for patterns. This issue can be circumvented by using a filtering program

that "masks" (eliminates) regions of low complexity or information content. These

steps are rather ad hoc, though, leading to a potential loss of generality in the results.

Despite some disadvantages, TEIRESIAS provides a novel, feasible way to exhaus-

tively discover patterns of assigned density, length, and support across an arbitrarily

large set of sequences.

Expectation maximization Several works are available that discuss expectation

maximization in different contexts and with different implementation specifics, in-

cluding a stochastic dictionary model of Gupta and Liu [62], the expectation maxi-

mization algorithm used in MEME by Bailey and Elkan [17], and others [105] . The

explanation contained herein will focus mainly on the guiding principles behind these

works. As already stated, the goal is to find an arbitrary motif contained across a set

of sequences. To perform expectation maximization for motif discovery, one begins

with an initial guess of PWM weights, either from preexisting physical knowledge

or from an arbitrary guess. Each sequence is then searched to find the motif start-

ing position that maximizes the score given the current weights. Given those new

starting positions, new weights are calculated such that they create the maximum

likelihood of producing the patterns represented by the current binding site starting

locations. Given these new PWM weights, the process repeats itself by changing the

site starting positions so as to maximize the PWM score again. The process iterates

until convergence, thus simultaneously yielding both the binding site locations and

the PWM weights corresponding to the maximum likelihood of producing the bind-

ing sites found by the algorithm. Within the step of obtaining maximum likelihood

parameters, manipulations involving Bayesian estimation and associated priors may

be utilized.

Efforts at finding cooperative binding sites, where two proteins might bind and

interact to have an unusually strong regulatory effect, are also a novel application of



the expectation maximization method [61]. In this case, the goal is to identify two

weak patterns below some fixed cutoff distance from each other as one strong pattern.

Each of the aforementioned implementations of expectation maximization is a vast

improvement over needing extensive pre-existing knowledge about the binding site

being sought. Obviously, these methods are much more computationally intensive

than simpler string-based methods; there are also a few other disadvantages from

which they suffer. For instance, the results are initialization-dependent, demanding

multiple initializations in order to gain confidence that one has obtained the correct

site pattern and locations. These methods are also gradient-based, so they are highly

susceptible to local minima [114]. This can be overcome with some difficulty by

implementing other search methods within the algorithm (e.g., simulated annealing).

Finally, one loses quite a bit of information about the data in these methods. One

cannot, for example, provide confidence intervals along with the results. It then seems

that it may be better to attempt to work with the entire probability distribution

associated with the binding sites rather than just a point estimate as one uses in

expectation maximization.

Gibbs sampling Gibbs motif sampling has been widely used to discover binding

sites for transcription factors [1, 175]. Tools implementing this strategy range from

AlignACE [79] to BioProspector [104] with only slight variations. The method is

derived from a more general Gibbs sampler philosophy that was altered to work for

motif discovery [100, 103]. The most important aspect of Gibbs sampling is that it

works with the entire probability distribution, not just a point estimate, by describing

a complex probability distribution in terms of a Markov chain built with the simpler

marginals of the distribution [114]. Thus, it gives more accurate results at the cost

of increased computational complexity.

The general Gibbs sampler philosophy is described in the following example in

three variables [114]. We suppose that these three variables are described by the

probability distribution P(x, X2, X3). Gibbs sampling consists of sampling xz(i + 1)

according to P(Xzll 2(i),x 3(i)), then sampling x 2(i + 1) according to P(x 2 1xl(i +



1), x 3(i)), and finally sampling x3(i + 1) according to P(x3Ixl(i + 1), x2(i + 1)). This

process is then repeated indefinitely until convergence. At convergence, this Markov

chain becomes the joint distribution, denoted by the chain operator:

P (xx, X2, X3) = P(X1 23) O P(x 2 ,1, x3) O P(x3 ,x 2) (2.1)

These variables can then be grouped or collapsed so as to allow faster convergence.

Liu proved [102] that for the case of the gene regulatory problem, which meets the

conditions of reasonably fast Markov chain convergence and simplicity of drawing

from the conditioned components, a collapsed Gibbs sampler

P(x 1 ,X2,X 3) = P(x 31x1,x 2) [P(x1ix 2) o P(x 2 x2I)] (2.2)

converges faster than either the grouped or basic Gibbs sampler. This is then directly

applicable to the motif discovery problem, as xl represents the motif probability

matrix and background model, and X2 , X3 , and many subsequent variables would

represent the alignment positions of the sought patterns, all found conditional upon

the sequences initially given. Again, much Bayesian estimation and manipulation of

priors is contained within the steps of the algorithm; for more details, consult the

papers by Lawrence et al. [100] and Liu et al. [103].

(The tools mentioned at the beginning of this section only alter the collapsed

Gibbs sampling strategy slightly. AlignACE uses a fixed single nucleotide background

model and retrieves only one motif at a time, while BioProspector uses a higher order

Markov model.)

The overall process can be visualized in a way very similar to the explanation used

for expectation maximization described above. One key difference is that in Gibbs

sampling, the likelihood of choosing a specific site to be the motif location in a specific

sequence is merely a probabilistic function of the score of that site given the current

PWM model. Thus, the Gibbs sampler is non-deterministic in terms of the results

that it returns. This is particularly relevant for the initial stages of MEME/Gibbs

sampling, when the motif is not well-characterized. Given the same initialization



guess, MEME will consistently identify the same motif locations in each sequence for

the next step in the process, while the Gibbs sampling algorithm will choose motif

locations for the next step randomly. If the first guess is relatively uninformed, one

expects little variation in the scores of the potential motif sites, and thus the Gibbs

sampler will choose sites with an approximately uniform random distribution. If these

next sites are truly random, one expects a similarly uninformed PWM to result, and

this process will continue until a few highly related motif sites are selected. This

increase in similarity will help to drive the sampler to convergence. This converged

answer will also hopefully be more robust with respect to initial guesses.

Phylogenetic footprinting The actual implementation of phylogenetic footprint-

ing is rather simple: given a number of sequences, use multiple sequence alignment

with existing tools to find unusually conserved regions. Algorithms may be based

on either local alignments (as in BLAST [11] and PIPMaker [148]) or global align-

ments (as in AVID [29] and VISTA [45, 111]); both methods have proven effective in

detecting unusually conserved regions. The Bayes Block Aligner, which focuses on

aligning highly conserved and ungapped blocks, has also proven useful in phylogenetic

footprinting [175].

The key behind phylogenetic footprinting is its underlying evolutionary hypothe-

ses. Orthologous regions are DNA sequences from different species that arose from a

common ancestral gene during speciation and are likely to be involved in similar bio-

logical function [106]. One seeks to identify the best-conserved motifs in orthologous

regulatory regions from multiple species with the belief that evolutionary selective

pressure causes functional elements to evolve at a slower rate than that of nonfunc-

tional sequences. This then gives a distinct advantage over the multiple sequence

alignment strategy using sequences only from the same genome: one can identify

regulatory elements specific even to a single gene, and it does not require a method

such as clustering to assemble a collection of coregulated genes [28].

This method seems to be relatively robust with respect to errors in the phylogeny.

It can also be applied as a filtering step in a larger algorithm that uses other site



discovery techniques (e.g. using PWMs to discover sites and then restricting analy-

sis to those sites which are well-conserved through phylogenetic footprinting [106]).

However, there are some requirements that must be met in order for the method to

be fruitful. Assuming that the foundational hypothesis (that regulatory elements are

unusually conserved across evolution) is true, it is also necessary that the surrounding

elements have changed significantly. That is, if the genomes being aligned are too

closely related, then the regulatory element does not stand out in the alignment, and

the alignment is not informative [28]. The general problem with alignments men-

tioned above also applies here: if the regulatory regions are short and the regions

being aligned are long, then the regulatory elements may be lost in sequence noise,

thus making the method uninformative.

Summary and analysis

Clearly, there is a large number of sequential data analysis tools available for use,

ranging from simple alignment and homology detection to motif discovery based on

sequences believed to be related. The above description of relevant and important

sequence analysis tools is not intended to be exhaustive; it does, however, give a

sense for the variety of sequence analysis problems that exist and the further variety

of algorithms and tools to handle those problems. Of most relevance to this thesis

are the motif discovery tools, as the goals of this thesis lie in that area of research.

There are three shortcomings in existing motif discovery tools that are relevant

to this thesis: lack of exhaustiveness, parameter requirements, and lack of versatility

for adaptation to new problems. Each of these will be addressed in turn.

The exhaustiveness/representation balance Looking at the variety of motif

discovery algorithms available, one can broadly categorize them by the search strate-

gies and motif representations they employ. Search strategies range from probabilis-

tic searches (e.g., Gibbs sampling) and deterministic non-exhaustive searches (e.g.,

MEME) to exhaustive searches (e.g., TEIRESIAS). The choice of search strategy is

closely linked to the choice of motif representation, e.g. regular expression or position



weight matrix.

In general, there is a trade-off: more descriptive motif representations frequently

make exhaustive searches computationally infeasible. For example, TEIRESIAS is one

example of an exhaustive motif discovery approach. To achieve this goal, TEIRESIAS

uses regular expressions to represent its motifs. In fact, TEIRESIAS and other similar

tools (e.g., Pratt [85]), actually limit their scope to only a subset of the regular

expression language that can be enumerated exhaustively. For example, TEIRESIAS

uses bracketed expressions - such as [KRF], which says that K, R, and F are acceptable

characters - but does not use the "Kleene star", *, which means "zero or more" of

a particular character. Thus, even though regular expressions are more informative

than simple consensus sequences, some approaches are still not even able to capture all

of the details that a full-featured regular expression implementation would contain.

Position weight matrices are more desirable than regular expressions (especially

when compared to the limited implementations of regular expressions as in TEIRESIAS),

as they capture the variability at a given position quantitatively rather than only

qualitatively. As a result, PWMs tend to be a frequently used representation as they

capture more of the "information" in the motif without over-fitting or requiring large

amounts of training data. The parameters in a PWM are sampled from a continuous

distribution, which in turn makes it impossible to enumerate the effectively infinite

number of all possible PWMs that could describe a motif. Generally, tools that em-

ploy PWM representations tend to return only one "optimal" PWM or just a handful

of such matrices; the methods used to find these optimal matrices are heuristic or

probabilistic rather than exhaustive.

In this sense, the existing motif discovery tools for sequence analysis can be placed

on a spectrum that ranges from exhaustive tools using simple motif representations to

non-exhaustive tools using more complex representations. The majority of tools can

be found at the extreme ends of the spectrum, with tools that exhaustively enumer-

ate regular expressions (or single consensus sequences) at one end and probabilistic,

PWM-based tools at the other. Table 2.1 gives a more detailed view of the differ-

ent kinds of motif representation, their relative benefits and pitfalls, and potentially



appropriate applications and tools using those representations.

Given these competing demands of descriptiveness and exhaustiveness, it is cer-

tainly understandable that many tools do not attempt to be exhaustive. For ex-

tremely large datasets, motifs that are nearly indistinguishable from random noise

(the "twilight zone" of motifs [94]), and other extremely complex problems, a prov-

ably exhaustive approach may not be computationally tractable. For example, a

Smith-Waterman search of all known and deposited protein sequences is still beyond

the current computational capabilities of an average researcher. However, given re-

cent technological advances, there are certainly a large class of problems that are well

within the reach of provably exhaustive search methods and that are not currently

being addressed as such. One can imagine quite a few problems that are uniquely

amenable to solution by an exhaustive approach (one will be presented in Chapter 4

of this thesis).

At the same time, we would like to increase our potential for complex motif

representations in these exhaustive searches. While the regular expression approach

of tools like TEIRESIAS is suitable for quite a few problems, it would be more desirable

to uncover PWMs or other more descriptive representations that are better suited for

certain classes of problems. As seen in Figure 2-5, one can imagine that by uncovering

the motif instances, one can represent the motif in an arbitrary fashion. This then

appears to be one aspect of motif discovery that has significant room for improvement:

finding motifs instances in such a way that one is not restricted to certain motif

representations.

Parameter requirements Another common shortcoming of motif discovery al-

gorithms is the requirement for accurate parameter values. Again, this is in many

senses a reasonable requirement - one cannot expect to find the relevant motifs in a

dataset if one has absolutely no idea what those motifs may look like. A search that

is exhaustive in parameter space, even if not exhaustive in sequence search space,

is computationally intractable. In order to make motif discovery feasible, one needs

to have some idea of the characteristics of the sought motif. However, the degree of



Table 2.1: Common motif representations.

description

exact "words"

IUPAC notation

Regular expressions

Position weight matrices

Complex grammars

Markov models

Bayesian networks

Simply a string of nucleotides or amino acids. There
is no allowance for more than one letter at a particular
position in the motif.
A string of nucleotides or amino acids along with letters
that represent more than one nucleotide or amino acid.
This representation is a subset of regular expressions.
A representation that allows multiple characters at each
position and variable length motifs. Typically, motif
discovery tools use a limited subset of the operations
available in regular expressions.
A matrix where each row-column pair represents the
probability of finding a particular letter at a particular
position in the matrix. PWMs can more accurately cap-
ture the "biology" behind cis-regulatory elements and
are, as a generalization, more specific than regular ex-
pressions.
A representation similar to regular expressions, but al-
lowing for dependencies between the positions in a motif.
Complex grammars, such as context-free grammars, are
commonly used to represent RNA folding motifs.
Allows probabilistic dependencies between arbitrary po-
sitions in a motif. These models have many more param-
eters to train than PWMs and therefore require much
more data.
A representation in which positions can depend on many
other positions in a probabilistic manner. Like Markov
models, Bayesian models require many instances of a
motif for accurate training.

model



ACGTCGCTAGCTCCTC_ eCAM ATCGA
GTACCGGCATQGAGrGACTCATACGTAG

P "rCGACACACGAGCA
CTATGTTCATGCTAGCT

'ACCGCGCATGCTGCTAG

ACGATTGACGTAC GCTAGTOGAT C
TAGCrCGTACGTTTTGGA CrACG
TCGATCGTCGTACGATCGA CT .G
CGACATCGTACTAG CT CTAGCTCAGA
TCAGCTAGCTAGC 3CTGCAGTACCGCG
ATCT TCAC CGACTATCAGCTACGA

[AT]C[AT][GC].A

Or

k 5.1 23 5.1 23 6.9 3.6
C 23 3.6 23 9.2 16 23
G 23 23 23 9.2 23 23
T 16 23 16 23 16 23

Figure 2-5: Pattern discovery in genomic sequences. The occurrences that are found
are pairwise similar, but they are not identical. TEIRESIAS would represent this pat-
tern with the regular expression in the top right, whereas one may instead represent
those same motif instances by the position weight matrix in the bottom right. If one
can uncover the motif instances directly, they could be arbitrarily expressed by either
method, or any other motif representation.

(



specificity that is required by many motif discovery algorithms is sometimes burden-

some or unrealistic. Even the most widely used tools require the user to provide an

estimated length of the motif being sought, or at least a narrow range of possible

lengths. In some cases, such as the search for binding sites of a transcription factor

with a well-characterized structure and that binds to well-known lengths of DNA,

this request may be reasonable. But if the transcription factor is not well-known, or

if the length of its binding region is not well-characterized, then the input param-

eter given by the user will at best be an educated guess. Since many tools depend

strongly upon these input parameters, this is an undesirable situation. While the

development of an effective and efficient parameter-free motif discovery algorithm

would be an overwhelming task, it is desirable to develop a tool that requires less

specific information that a user is more likely to be able to provide without extensive

a priori knowledge of the motif's origins.

Lack of versatility One final shortcoming of motif discovery algorithms is their

distinct lack of versatility. In looking at the different tools, algorithms, problems, and

data types discussed above, it is clear that there are hundreds of different tools used

for the analysis of sequential data. Notably, though, most tools are useful for only

a very small number of data types (and frequently just one data type) and a small

number of problems. Sifting through the numerous available tools for the appropriate

algorithm for a particular problem is an onerous task, and one that may not even be

fruitful: since many tools are well-tuned to detect one kind of motif or solve one kind

of problem, if one does not know enough about the dataset under study, it is difficult

to know a priori what the most effective tool would be.

It would be of great use to have a versatile motif discovery tool that is capable

of handling a variety of data types and a variety of different problems within those

data types. The obvious disadvantage to this approach is that a more versatile or

generic approach will necessarily give up exploiting specifics of a problem that can

lead to decreased computational cost. While this is certainly a consideration, it is

important to consider the many potential benefits of a generic approach. One obvious



benefit is the unification of various computational techniques under the umbrella of

one algorithm. For instance, numerous clustering methods have been developed and

applied to solving diverse motif discovery problems. If one could easily access multiple

such methods in a versatile tool, it would be easier to determine the best approach for

a specific problem. Additionally, a versatile approach would greatly help the process

of solving new problems or addressing new types of data. When an algorithm is so

finely tuned to solving a specific problems, it is often difficult to recast a new problem

in such a way that an existing method can handle it. One such example has already

been presented: the translation of real-valued data into string-valued data so that

existing string analysis tools can be used. Some data types are even less amenable

to such recasting, meaning that an entirely new tool may need to be developed to

handle these data. A truly versatile tool would at least give an easy first attempt

at handling these new problems, and may even be sufficient to handle most of the

necessary analysis for these problems.

2.2 Metabolomics

Changing gears significantly from motif discovery, it is also important to under-

stand the background of another field relevant to the work presented in this thesis:

metabolomics.

Metabolites play an important role in numerous areas of academic, industrial, and

medical interest. The definition of a "metabolite" that will be used in this work is a

small-molecule cellular intermediate, typically of molecular weight less than 600, and

in the polar phase of a cellular extract (which excludes lipids, typically considered to

be a different field of study known as "lipidomics".) Industrially, metabolite accu-

mulation is used as a route for chemical synthesis [36]; the ability to predict or refine

an organism's production of a metabolite will have a significant impact on process

cost and feasibility. Academically, metabolites are known to be of great relevance. A

few well-known examples of metabolite regulatory interactions, including the effects

of lactose and glucose [83] in the bacterium Escherichia coli and galactose [167] in



Saccharomyces cerevisiae, are used to teach basic regulatory principles in introduc-

tory biology courses. At the same time, though, much remains unknown about the

functions of most metabolites as anything but intermediate products in the cell. Fi-

nally, metabolites are also known to be potential indicators of diseases and disorders

in humans [155]; the ability to understand what these metabolites indicate and how

best to assay for them may play a huge role in future medical diagnostics. For these

reasons, it has become evident that a study of all metabolites, or metabolomics, has

the potential for significant scientific impact.

Existing knowledge about metabolism varies by system and is typically useful

but incomplete. One way of viewing metabolism (see Figure 2-6) is as a complex

reaction network, similar to (for a chemical engineer) a convoluted reaction scheme

in a chemical reactor or the network of combustion reactions that occur in a flame.

There are many different intermediates that exist, some of which are in detectable

pools while others are transient. Reactions may go almost to completion or may

be equilibrium reactions. A great deal of information is known about the central

reactions and pathways in the network (see Figure 2-7). In these cases, enzymes are

known and kinetics are often known. In central carbon metabolism, it is even well-

known which carbon atoms will end up in which products for reactions that break

the sugar down. These well-studied examples of metabolism constitute extremely

usefull a priori knowledge for metabolomic studies. However, there are also portions

of metabolism that are not as well characterized. Individual reactions may seem to

be "'missing" due to proteins that have not been characterized as performing those

functions. Occasionally, a metabolic flux measurement can reveal that there is some

unknown pathway or reaction that contributes to a known reaction flux. In these

cases, metabolomnics using existing techniques is more difficult; these difficulties will

be addressed in Chapter 5.

Metabolomics focuses on large-scale analysis of small molecule products (metabo-

lites) in cells and organisms, an extremely difficult experimental task. The most ob-

vious reason for this difficulty is the chemical diversity of metabolites. DNA and

proteins involve subunit-based chemistries; that is, they are copolymers of four or



Figure 2-6: A metabolic network overlaid on a cell. Dots represent metabolites (sub-
strates/products), while lines connecting those dots represent reactions. Different
pathways or modules within the network are different colors. Reactions or metabo-
lites where pathways intersect are may be of great significance.

56
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twenty (respectively) unique monomers. Assaying and manipulating these polymers,

compared to metabolites, is relatively straightforward. Even though a staggering

number of DNA molecules or proteins can be formed from those subunits, a single

experimental method can frequently exploit properties common to all of the subunits

so as to act on millions of different polymers simultaneously. For metabolites, there

is no common basis for such assays. Metabolites are diverse in their structure, size,

hydrophobicity/hydrophilicity, charge/polarity, and potential for chemical reactions.

As such, assays in mnetabolomics must typically strike a balance between how sensi-

tive they are, how informative they are, and how diverse the metabolites analyzed

can be [125]. No single analytical technique is optimal for measuring all metabolites.

In many senses, metabolomics is an excellent complement to the well-established

"omics" fields, proteomics and transcriptomics (see Figure 2-8). All three can fea-

sibly be performed on the same sample to get a more accurate snapshot of cellular

state. As noted already, these analyses are somewhat more difficult for metabolomics

given the current state of technologies, but it is well worth the effort for the potential

insight that it may provide.

The current hurdles in the field notwithstanding, it should be noted that metabolomics

is a field that has incredible potential for both engineering applications and more

fundamental science [138, 55]. Knowledge of metabolite interactions within cells and

within larger systems will undoubtedly elucidate pathways and phenomena that were

previously incompletely understood or even inaccessible. These advances will then

further the growing field of systems biology. By expanding our knowledge of metabo-

lites, and thus our knowledge of mnetabolism, regulation, and interactions, we will be

better able to create systems--level models of biological systems that provide us with

macroscopic knowledge and the ability to predict some phenomena. Applications of

these models to industrially relevant organisms like Escherichia coli or Saccharomyces

cerevisiae will no doubt have a substantive impact on society.
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Chapter 3

Gemoda, a generic motif discovery

algorithm

3.1 Overview

As noted in Chapter 2, motif discovery in sequential data is a problem of great interest

and with many applications. However, previous methods have been unable to combine

exhaustive search with complex motif representations.

This chapter presents a GEneric MOtif DIscovery Algorithm (Gemoda) for se-

quential data. Gemoda can be applied to any dataset with a sequential character,

including string-valued (or "categorical") data and real-valued data. The algorithm

proceeds in three steps: comparison, clustering, and convolution. Gemoda determin-

istically discovers motifs that are maximal in composition and length. As well, the

algorithm allows any choice of similarity metric for finding motifs. Finally, Gemoda's

output motifs are representation-agnostic: they can be represented using regular ex-

pressions, position weight matrices, or any number of other models. This chapter will

also demonstrate a number of possible applications in a variety of settings, includ-

ing the discovery of motifs in amino acids sequences and the discovery of conserved

protein sub-structures.

Much of the research and discussion in this chapter is drawn from the publication

that describes our generic motif discovery algorithm:



* Jensen KL, Styczynski MP, Rigoutsos I, and Stephanopoulos GN. "A generic

motif discovery algorithm for sequential data." Bioinformatics 22 : 21 - 28

(2006).

This chapter will frequently use "we" to refer to the collective authors of the

manuscript and their contributions to the work.

3.2 Introduction

Chapter 2 discussed in great detail the wide variety of motif discovery methods used

to find recurrent trends in data. In bioinformatics, the two predominant applications

of motif discovery are sequence analysis and microarray data analysis. Less common

applications include discovering structural motifs in proteins and RNA [75, 116].

Motif discovery in sequence analysis typically involves the discovery of binding sites,

conserved domains, or otherwise discriminatory subsequences, while motif discovery

in microarray data typically involves the discovery of gene expression motifs that are

predictive of important phenotypes like cancer [63, 139].

Behind sequence alignments and homology detection methods, motif discovery is

arguably the second most common form of sequence analysis. But, in contrast to

sequence searching methods - which are dominated by a few, widely-accepted tools

such as Blast [11] and FastA [131] - the landscape of motif discovery tools is much

more fragmented, with dozens of specialized tools for as many different purposes.

From a computational standpoint sequence searching is distinct from motif discov-

ery; indeed, the latter is an NP-hard problem whereas the former can be solved in

polynomial time [59].

There are many publicly available tools that are each quite adept at addressing a

specific subclass of motif discovery problems. Some of the more commonly-used tools

for motif discovery in nucleotide and amino acid sequences include MEME [17], Gibbs

sampling [100], Consensus [72], Block Maker [70], Pratt [85], and TEIRESIAS [140].

More recently introduced, but less-widely used tools include Projection [34], Mul-

tiProfiler [94], MITRA [52], and ProfileBranching [135]. This list of tools is not



intended to be exhaustive; however, it is indicative of the wealth of options available

for solving such problems.

All of the existing motif discovery tools for nucleotide and amino acid sequences

can be classified on a spectrum that ranges from exhaustive tools using simple motif

representations to non-exhaustive tools using more complex representations. The

majority of the tools can be found at the extreme ends of the spectrum, with tools

that exhaustively enumerate regular expressions (or single consensus sequences) at one

end and probabilistic tools, based on position weight matrices (PWMs), at the other.

This partitioning of tools is due to a computational trade-off: more descriptive motif

representations such as PWMs frequently make exhaustive searches computationally

infeasible.

Depending on the task at hand, a specific type of motif discovery tool may be

more useful than others. For example, the PWM-based tools excel at finding cis-

regulatory binding elements [166], whereas the regular expression-based tools are

well-suited to finding conserved domains in large protein families [141]. Generally, it

can be difficult to know a priori which motif discovery tool will be right.

3.3 Algorithm

3.3.1 Overview

Gemoda was designed to meet the demand for complex motif representations, like

PWMs, while still being exhaustive. The philosophical underpinnings of the Gemoda

algorithm can be traced back to TEIRESIAS [140]; Winnower [132]; the algorithm

by [108]; and a variety of algorithms for association mining [183, 182]. In particular,

Gemoda shares some of its logical steps with the TEIRESIAS algorithm while incor-

porating a more flexible definition of "similarity" and allowing motif representations

other than regular expressions.

Gemoda's design goals can be summarized as follows: exhaustive discovery of all

maximal motifs in a way that allows flexibility in motif representation, incorporation



of a variety of similarity metrics, and the ability to handle diverse sequential data

types. Each point of emphasis can be explained as follows:

* Exhaustive discovery: Gemoda's combinatorial nature provides an algorith-

mic guarantee that all motifs meeting certain criteria are deterministically dis-

covered.

* Maximal motifs: Gemoda returns only motifs that are maximal in both length

and composition with respect to the similarity and clustering functions.

* Motif representation: The motifs discovered by Gemoda are reported as

short multiple sequence alignments (in the case of motif discovery in nucleotide

and amino acid sequences) and can be modeled using regular expressions, PWMs/PSSMs,

Markov models, or any other representation.

* Similarity metrics: Any criterion, ranging from sequence alignment scores to

geometric functions, may be used to compare sequences.

* Sequential data types: The nature of Gemoda's computations is not unique

to any specific type of data, and thus can be used on any data with a sequential

character - that is, data in which there is a natural left-to-right order, such

as a sequence of nucleotides or amino acids. In the most general sense (and the

one adopted in this work), sequential data also include real-valued series data,

such as a stock price or the ordered (x, y, z) triplets of an alpha-carbon trace

in a protein structure.

The algorithm has three distinct logical phases: comparison, clustering, and con-

volution. During the comparison phase, short overlapping windows in the data set

are compared. During clustering, these windows are grouped together to form ele-

mentary motifs. Finally, during convolution, these motifs are "stitched" together to

form maximal motifs (see Figure 3-1). In the following sections, we give some brief

definitions and nomenclature, then describe each of the algorithm's three phases in

detail. Finally, we illustrate a few applications of Gemoda.
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3.3.2 Preliminary definitions and nomenclature

The input to Gemoda is a set of sequences of data points S = {sl, s2, ,... , s,}, where

sequence si has length Wi. So, for example, the jth member of the it h sequence

is denoted by sij. Each s~..j is a primitive, or atomic unit, for the data. that is

being analyzed. For time-series data, si,j may be a. point sampled from RK (with K

arbitrary), whereas for a DNA sequence it would be one of the characters {A,T, G, C}.

Typically, one seeks motifs of a minimal, domain-dependent length. We denote

this minimum length by L and we define a matrix A of size N x N, where N =

=1 (W -L+ 1). That is, A is a matrix with one row and one column for each window

of size L in our entire sequence set. For example, the 10 th window of size L in the 5 th

sequence would be expressed as 8 s,10:10+L-1, where "10 : 10 + L - 1" denotes "position

10 through position 10+L-1, inclusive." To keep track of which window corresponds

to which index in A, we define the one-to- one function ,ý/(Si,j:j+L-1) i q E [1, N].

(For simplicity, we define (si,j + 1) to be sii+l, unless sij+l does not exist, in which

case (s,j + 1) is undefined.) Similarly, .11-'(q) '-, (si,j:j+L-) such that i E [1, n] and

j E [1, Wi, - L + 1].

We also define a similarity fmnction 9 (Si,j:j+L- , Sq,z:z+L-1), that takes as argu-

ments two arbitrary windows and returns a real--valued number indicating the level of

similarity between the two windows. In the most simple case, Y may use the identity

matrix to count how many DNA bases two windows have in common; for real-valued

data, the function may return the sum -of -squares error between two windows or any

other measure of similarity.

We define a motif p as a data structure with two features: a width V'(p) and a list

of locations in the data where the motif occurs, Y(p). A motif has the property that

the locations in _Y(p) meet some predefined clustering requirements (discussed below)

based on the similarity function Y for each window of length L within the motif. The

support of a motif is equal to the number of its occurrences (or "embeddings"), Y (p) .

We say a maximal motif is a motif which has the following properties:

e The motif's width cannot be extended in either direction (left or right) without



producing a motif with fewer embeddings (i.e., without f2 (p)I decreasing); and

* The motif is not missing any instances, i.e. .(p) includes the locations of all

instances of the motif.

These two criteria can be summarized qualitatively by stating that a maximal motif

is not "missing" any locations and is as wide as possible, and thus it is as specific and

sensitive as possible.

Given these explanations and definitions, we can now detail the computations

involved in each phase of the Gemoda algorithm.

3.3.3 Phases in Gemoda

Comparison phase

In the comparison phase of the Gemoda algorithm, the sequences are divided into

overlapping windows of size L which are then compared to each other in a pairwise

manner to produce a similarity matrix, A (see Figure 3-1). Formally, Ai, is equal to

(d-l'(i), -'(j)) = Y(si,j:j+L-_1, Sq,z:z+L-1)-

A is then, quite simply, a similarity matrix for all N windows based on the simi-

larity function 9. In most cases, Y is commutative (and the A matrix is symmetric);

however, this is not a requirement.

Clustering phase

The purpose of the clustering phase is to use the similarity matrix A to group similar

windows in clusters. These clusters will become "elementary motifs" from which the

final, maximal motifs will be constructed.

We define a clustering function WY(A) = cL = {cf,cL,...,c L } where each ce

is a set of indices in A and ci[q] is the qth member of cL. Note that W can be

any function; common clustering functions include hierarchical clustering, k-nearest-

neighbors clustering, and many others. We call each cf an "elementary motif" of

length L. We note that a clustering function may assign each node (window) to one



or more groups. In the latter case, each cL may have a non-null intersection with any

Convolution phase

The purpose of this phase is to "stitch together" the elementary motifs to generate

the final, maximal motifs [140]. For the purposes of Gemoda (and consistent with

the above concept of convolution), we say that a motif h of width Y~i(h) > L meets

the similarity criterion if for each window of length L completely within the motif,

all instances participate in a cluster together based on Y and V. In this manner,

we can piece together longer continuous motifs from smaller motifs that all meet the

similarity criterion over windows of length L.

Next we define the "directed intersection" of two elementary motifs, c rV cL =

cL+, where cL+1 is the set of those indices q in cL such that AK(k&-1(cL[q]) + 1) is

in Cj. That is, cLl 1 is the set of indices in cL that are located, in the sequences S,

one position earlier than the indices in cj. c•r+ is then a motif of length L + 1.

We define the operation "c" as follows: cL -, cL E cL+ 1 is true if the set of

indices cL r cL is a subset or a superset of the indices in any member of cL+l. This

operation compares a convolved motif of length L + 1 to all previously-convolved

motifs of length L + 1 to identify significant overlap: if the list of locations in the

proposed motif is a superset or subset of the list for any other motif, the result of this

operation is true. With this step, Gemoda can identify and eliminate redundant and

non-maximal motifs.

If cL r-- cj Ec cL+, then all super- or sub-sets of the proposed convolved motifs

are removed from cL+1; these windows are then taken together with the proposed

motif, and the union of those sets of windows is returned to cL+1

Our objective is to find all the maximal motifs in the sequence set using the

elementary patterns. We do this by performing cý rn c for all i and j at each

length k > L until ck is empty (Jckl = 0). We then define the set of maximal motifs

comprising ck for all k as P, the final set of motifs that are returned to the user. This

simple induction scheme guarantees that all (and only) the maximal motifs are in P



given appropriate clustering functions (see Section 3.3.4).

3.3.4 Implementation

Choice of clustering function

Gemoda can use any clustering function; however, as the size of the input sequence

set increases, storing the matrix A can become practically difficult. In these cases,

it can be easier to store true/false, or "similar"/ "not-similar", values in A, where

the value is true if the similarity score between two windows is better than a user-

defined threshold g. The matrix A can then be viewed as an unweighted, undirected

graph with a vertex for each window and edges between those nodes with pairwise

similarity scores better than g (see Figures 3-1 and 3-2). When constructed as such,

we have found that clustering functions based on finding either cliques' (see Figure 3-

3 or connected components (maximal disjoint subgraphs) can be effective for motif

discovery in diverse applications.

In the case where the clustering function W(A) is chosen such that each cL is

a clique in the g-thresholded A matrix, the Gemoda algorithm has a guarantee of

compositional and length maximality, relative to the threshold g. (This is due to

the nature of the clusters that are created: the result of convolving any two cliques

will always be a clique because all members are pairwise similar, so the convolution

process will necessarily produce maximal cliques.) That is, Gemoda will discover all

motifs where each pair of instances has a similarity score better than g over every

window of size L, there are no "missing" instances having this property, and the motif

cannot be extended either to the left or right (see Section 3.3.4).

Clique enumeration is NP-complete [59, 165]; however, in practice this complexity

is usually not an issue because the density (the ratio of the number of edges to the

number of vertices) of graphs is usually low for datasets of nucleotide or amino acid

sequences (with reasonable choice of g).

1We define a clique as a maximal, fully-connected subgraph. It may be alternatively defined
without the requirement for maximality, thus making the clusters we discuss "maximal cliques".
We use the former definition for the sake of brevity and clarity when discussing the maximality of
extending motifs.
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The breakout shows a clique of size eight, which represents a set of windows that
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is lowered, the number of edges in the graph increases, making the clustering stage
more computationally intensive. When using clique-based clustering with too small
of a threshold, computational expense may make the problem infeasible. At these
thresholds the "signal" cannot be distinguished from the "noise." However, with the
parameters used in this example, the clustering phase is quite easy, which is intuitive
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Figure 3-3: Representation of some clique and non-clique subgraphs. Filled ovals

represent nodes, while lines between them represent edges. The fainter subgraphs are

not cliques because each node is not pairwise connected to every other node in the

subgraph. The bolder graphs have every node pairwise connected, forming cliques of

different sizes.



Of course, as mentioned earlier, any clustering algorithm can be used for W.

In the case where the clustering function W(A) is chosen such that each cL is a

maximal disjoint subgraph in the g--thresholded A matrix (i.e., cL represents the

connected components of A), the computational complexity for the clustering phase is

significantly less than for clique-based clustering. As well, in the case where Gemoda

is applied to nucleotide and amino acid sequences, the motifs from this "connected

components" method may be more intuitive than motifs found using clique-based

clustering.

The space and time usage of this implementation is not unreasonable. In most

cases, memory usage is not a limiting factor. For instance, the peak memory usage

for a large sequence set containing 65, 000 characters is 1 GB, well within the reach of

many personal computers. Furthermore, the examples given in this work can all be

done in reasonable execution times. The amino acid sequence example and protein

structure example take at most tens of seconds on 1.5 GHz Pentium PCs, while the

DNA sequence example takes about two hours on a 2.0 GHz Xeon processor. These

times are more than reasonable given the exhaustive guarantees provided by the algo-

rithm. While larger input sets and lower similarity thresholds may extend execution

time, we believe that typical problems are in the range of reasonable computation

time.

Inductive proof of exhaustive maximality

When using clique-finding as the clustering function, each elementary pattern of

length L is a clique in our similarity graph. That is, the elementary pattern is a set

of windows that are all similar on a pairwise basis and there is no other window that

can be added to the set.

When the algorithm enters the convolution stage, it starts by convolving each

length L elementary motif with all of the others. An elementary motif that is non-

maximal can be convolved with another elementary motif to yield a motif at level

L + 1 that has the same cardinality. All such motifs are marked as non-maximal.

Those elementary motifs that remain unnmarked cannot be extended on either side



without losing support; since they are cliques we know they cannot be made greater

in cardinality. Thus, all such unmarked cliques of length L can be labeled as maximal

motifs and saved for output. In this way, we know that only maximal motifs will be

returned to the user, and all such motifs will be returned.

When the "C" operation is performed on two elementary motifs of length L that

are being convolved, it ensures that no identical motifs of length L+1 exist and that no

motif of length L + 1 is a subset of any other. Additionally, since we have exhaustively

compared a complete list of elementary motifs, and all such motifs are cliques with

maximum cardinality, we are certain that all possible comparisons between motifs are

being made. That is, no unique motifs of length L + 1 could be created that are not

subsets of motifs created by our exhaustive comparison. Finally, it is important to

note that the result of convolving any two cliques will always be a clique. We know

this because we take the set of all instances that can be extended (so the subgraph

is maximal) and because all instances that are extended were pairwise similar in

both windows being convolved (thus meeting our definition of similarity over multiple

windows).

Thus, since Gemoda exhaustively generates all possible cliques of length L+ 1, and

every added motif of length L +1 is maximal in support, we then know with certainty

that cL+1 is an exhaustive list of motifs, or cliques, of length L + 1. The induction

step is then trivial, as setting L equal to L + 1 at each step gives an exhaustive list

of cliques just as when we started with cL . This allows for a continual guarantee of

exhaustiveness and maximality in output. The obvious termination condition for the

algorithm is when Jcil = 0. The following pseudocode sketch faithfully encapsulates

the inductive algorithm described above.



begin

n := 0

while Icn" # 0 do

for i := 0 to Icn" step 1 do

ismaximal := true

for j := 0 to Icn step 1 do

f : = c cjn

if Ifl r 0

if f E cn+ 1 = false

cnfl := c" + 1 U f

else

choosemaximal(f, c"+1 )

fi

if If = 1c2

ismaximal:= false

fi

fi

od

if ismaximal = true

P := PU cn

fi

od

n := n + 1

od

end

Estimation of motif significance

The absolute significance of motifs depends strongly on the choice of the similarity

metric and clustering function and is difficult to derive a priori. However, for a specific

pair of similarity metric and clustering function, the relative significance can be easy



to calculate. For the clique-based clustering function described above, the relative

significance can be estimated solely from the matrix A using a bootstrapping method.

Such significance calculations are equally valid for many different motif discovery

problems (e.g., nucleotide sequences or protein structures) because the calculation

method uses only the matrix A: it is data-type agnostic.

Each pair of nodes in a similarity graph can be described with two different quan-

tities: qr,j , the number of neighboring nodes (including each other) that the two nodes

have in common, and Xij, the number of consecutive windows starting from each of

those nodes that are connected to each other. For instance, if window 1 is similar to

windows 1, 10, 25, and 36, and window 10 is similar to windows 1, 10, 25, and 37,

then these two nodes have three neighbor nodes in common and r/l,10 = 3. If window

1 is similar to 10, 2 is similar to 11, and 3 is not similar to 12, then there are two

consecutive similar windows and X1,io = 2.

By analyzing each node as above, we can accumulate a matrix of graph statistics,

(D, such that

i,j = I{(x, y) : qx,y = i, Xx,y = j, 0 < x, y N }I (3.1)

(where the vertical bars indicate the cardinality of the set, or the number of ordered

pairs) and
00 00

,j = ab (3.2)
a=i b=j

These statistics can then be used in the following calculation for pel(q, r), the relative

likelihood of an output motif of length q and support r given the calculated similarity

matrix:
matrix:r-2 ri1 ,l (3.3)

In this equation, the combinatorial factor represents the number of different ways

that windows can be sampled in groups of r, the cumulative product represents the

necessary conditions for the formation of a clique of length L, and the last factor

represents the likelihood of extending a clique of support r to be length q. In this

way, the relative likelihood measure attempts to represent the expected number of



motifs of length q and support r that would occur at random given the calculated

similarity matrix. Notably, this significance is based solely on the similarity matrix

A, and so it can be used for either categorical or real-valued sequence data clustered

with the clique-finding method.

Summary of user-supplied parameters

The input to Gemoda is a set of sequences (categorical or real-valued), a window

length, a similarity function, and a clustering function. Various clustering functions

may require other parameters. For example, the clique-finding and connected com-

ponents clustering algorithms discussed above require both a threshold parameter g

and, optionally, a minimal support parameter k. g is as defined earlier, and k is the

minimum number of times that a motif must occur for it to be returned to the user.

Other parameters can be easily incorporated into various clustering functions, such

as a "unique support" parameter p that limits returned motifs to those that occur in

at least p different sequences.

Availability

We have written open source programs implementing the Gemoda algorithm that are

publicly available at the following URL: http://web.mit. edu/bamel/gemoda. The

software includes a number of "helper" applications for interoperability with common

bioinformatics tools. For example, applications are included that allow users to model

Gemoda's output motifs (in the case of nucleotide or amino acid sequences) as PSSMs

- using the pftools package available via the Prosite database [74] - or as hidden

Markov models, using the popular HMMer software [48].

The implementation is distributed in two variants, each with a different compar-

ison stage of the algorithm. The gemoda-s variant is for motif discovery in FastA-

formatted text strings, typically nucleotide or amino acid sequences. The gemoda-r

variant is used for motif discovery in sets of multi-dimensional, real-valued sequences.

The gemoda-s variant is distributed with a number of similarity functions based on

various nucleotide and amino acid substitution matrices. The gemoda-r variant is



distributed with similarity functions based on the root mean square deviation, with

options for optimal translation and rotation.

3.4 Simple examples of Gemoda's motif discovery

process

To better understand the entire process necessary to use Gemoda for motif discovery,

I will present two brief examples. The first will go into great detail about the specific

steps a user would have to take on her computer. The second example will expand

beyond the simplicity of the first to investigate the effects of different comparison and

clustering methods.

3.4.1 A trivial alphabetic example

We first imagine that we would like to find the motif(s) present in two given sequences,

ABCDEFG and ABCEFDG. These would be represented with by following Fasta-formatted

file:

> Sample 1

ABCDEFG

> Sample 2

ABCEDFG

We will use a window of length 3, a minimum similarity of 1, a clique-finding clus-

tering method, and the similarity function defined as the identity matrix, where only

exact matches are considered to be similar; that is, in comparing two sequences, if

the first letters are both A, then we add a one to the cumulative similarity score; if

the first letter of one sequence were A and of the other were B, then we would add

nothing to the cumulative similarity score for the two sequences. The hypothetical

command-line argument for the software implementation of Gemoda provided by the

authors would look something like this:



$ gemoda-s -i testSeqs -1 3 -g 1 -k 2 -m identity_aa

Given this command, Gemoda finds the maximal motif ABC.. FG (using a simple

regular expression representation). How this happens is illustrated in Figure 3-4.

Windows 1 and 6 are identical, while windows 2 and 7 are 66% identical. Win-

dows 3 and 8 have their first letter in common, allowing them to meet the similarity

threshold. Windows 4 and 9 have their last letter in common, allowing them to meet

the similarity threshold. In the case of a 2-clique as in this problem, convolution

reduces graphically to following diagonal "streaks" of similarity that are not on the

main diagonal. This streak is evident in part b of the figure.

Giving the above-mentioned input data and parameters to Gemoda, we get back

not only the motif that can be represented as ABC**FG, but also two other motifs that

may not have been readily obvious. The complete output of Gemoda is as follows:

pattern 0: len=7 sup=2 signif=1.000000e+00

0 0 ABCDEFG

1 0 ABCEDFG

pattern 1: len=5 sup=2 signif=5.000000e+00

0 1 BCDEF

1 2 CEDFG

pattern 2: len=5 sup=2 signif=5.000000e+00

0 2 CDEFG

1 1 BCEDF

These additional motifs are due to the low similarity threshold; one letter of

similarity is sufficient to make three consecutive windows all meet the threshold.
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Figure 3-4: An extremely simple example demonstrating how Gemoda will find motifs
in string-valued sequences. All possible windows are enumerated in (a) and pairwise
compared; all pairs that have at least one letter at the same position have a dot placed
in the appropriate entry in (b). This similarity matrix can also be represented as an
unweighted, undirected graph.
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3.4.2 A natural-language example

To demonstrate exactly how various steps in the algorithm work, we now provide a

simple, natural-language example along with a description of the actions Gemoda

would take at each step. Suppose we have a set of three words,

MOTIF

MOTOR

POTION

and we would like to find the motifs that some of these words share in common.

Further, suppose that we are only interested in motifs that are at least four letters

long and for which at least three of the four letters are "similar" between the windows.

In this example, each word is a sequence, and the parameter L is 4. Thus, there

are 7 possible windows that are taken sequentially from the three input sequences,

numbered as shown in figure 3-5.

If we choose a similarity function based on the identity matrix with a threshold of

three - that is, for two windows to be similar, at least three letters must be the same

- then we find that only the following pairs of windows are similar: (1, 3), (1, 5), and

(2, 6). Importantly, we note that though window 1 is similar to both windows 3 and

5, windows 3 and 5 are not similar to each other.

If, on the other hand, we choose a similarity function based on a matrix that

distinguishes only between vowels and consonants - that is, any vowel is considered

similar to any other vowel, and the same goes for any consonant - we would see

different results for the same threshold value. In this case, we would find the following

set of similarities: (1, 3), (1, 5), (3, 5), (2, 4), (2, 6), and (4, 6).

Given these similarity matrices for the different similarity functions, we can now

cluster the graphs. Using the similarity matrix from the identity function, a clique-

finding algorithm would find no cliques larger than size 2; that is, the only cliques

that exist are the pairs of similar nodes. Since window 3 (MOTO) is not similar to

window 5 (POTI), they cannot be in the same cluster.
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Figure 3-5: A natural language example illustrating the steps that Gemoda takes
to discover motifs. In a), we see the three words, or sequences, being broken into
overlapping windows of four letters each. Gemoda would then compare each of these
windows to each other using either of the similarity metrics described in the text. In
b), we see the resulting similarity matrix and how it looks when drawn as a graph.
In the matrix, two nodes are similar by the identity metric if there is an "X" at
their intersection, while they are similar by the vowel/consonant metric if there is an
"O" at their intersection. Making each window a vertex and connecting vertices with
an edge if the windows are similar, we obtain the graph on the right. Dotted lines
indicate similarity by the identity metric, while solid lines indicate similarity by the
vowel/consonant metric. In this representation, it is clear what the results of both
clique-finding and commutative clustering methods will be.



However, if we use the similarity matrix produced by the weaker vowel/consonant

function, we will find exactly two cliques of size 3: {1, 3, 5} and {2, 4, 6}. Though

there exist pairs of nodes that are similar, none of them is a clique because they

are not maximal - that is, each individual pair of nodes that is similar (e.g., (1, 3))

can have another node added to its set (5) without violating the pairwise similarity

constraint, so only the larger set is a clique.

We also note that applying a connected components clustering function to the

matrix created by the identity function would give still different results. In the con-

nected components clustering function, the fact that windows 3 and 5 are not similar

would not prevent them from being in the same motif; the function finds all dis-

joint subgraphs and defines them as the motifs. The motifs for such a case would be

{1, 3, 5} and {2, 6}, which we will call motifs cL and cL, respectively.

Finally, we perform the convolution step. Using the last set of motifs described

(with connected components clustering and the identity similarity function), we per-

form the convolution operation on each ordered pair of motifs; in this case, it means

performing coL r cL , cL  r c-L , cL r* cL , and cL r cL . For the first operation, we find

the windows immediately after each of the windows in cL, which is the set {2, 4, 6}.

The intersection of this set with motif cL is the convolved motif of length L +1, which

is {2,6}; we can call this cjL+ . In performing cL r- cL and cL rc cL , we note that

no windows exist "after" windows 2 and 6, because their respective sequences end.

In this case, the first set to be intersected is null, so the intersection is null. The

final self-convolution operation also yields a null set. We now have only one motif

for the new round of convolution, cL+'. Performing c0L+1 r cjL+  results in a null set,

meaning that there are no more motifs. At this point, we terminate convolution. It

is worth noting that cL is returned as a maximal motif because window 4 cannot be

extended, but cL is not because all of its instances were convolved in one direction.

Thus, we get different sets of motifs for different similarity and clustering func-

tions. For identity similarity and clique-finding clustering, the final list of motifs

is {{MOTIF, POTIO}, {MOTI,MOTO}}. For identity similarity and connected compo-

nents clustering, the final list of motifs is {{MOTIF, POTIO}, {MOTI, MOTO, POTI}}. For



vowel/consonant similarity and either clustering method, the final list of motifs is

{ {MOTIF, MOTOR, POTIO}}.

3.5 Applications

In this section, we demonstrate Gemoda's capability by presenting several sample

applications. Specifically, we address motif discovery in amino acid sequences, in

nucleotide sequences, and in protein structures.

As discussed previously, the clustering and convolution stages of the Gemoda al-

gorithm are generic - they are independent of the nature of the input data. However,

the comparison stage is data-specific. In what follows, we discuss how the compari-

son stage is changed for each kind of data and outline the types of results Gemoda is

capable of finding.

3.5.1 Motif discovery in amino acid sequences

To use Gemoda to find motifs in amino acid sequences, the comparison stage needs

to reflect the notion of "similarity" for amino acid sequences. Specifically, we choose

a window comparison function Y that returns a sequence alignment score, such

as the bit-score from an amino acid scoring matrix (e.g., the popular BLOSUM

matrices [66]).

The bit-score is a measure of similarity of two aligned sequences: higher scores

indicate greater similarity. For example, the alignment

AKTF

APKF

has a bit-score of 4 - 1 - 1 + 6 = 8 with the BLOSUM-62 matrix, where the AA

pair contributes 4 units, the KP pair contributes -1 unit, and so on. There are many

different amino acid scoring matrices, each of which measures the similarity between



residues differently [69].

Here, we demonstrate how Gemoda can be used for motif discovery in amino

acid sequences by "discovering" known protein domains in the (ppGpp)ase fam-

ily of enzymes. These eight enzymes catalyze the hydrolysis of guanosine 3',5'-

bis(diphosphate) to guanosine 5'-diphosphate (GDP) and are classified by the En-

zyme Commission (EC) number 3.1.7.2 [19].

We used Gemoda to identify motifs in these eight (ppGpp)ase enzymes using the

BLOSUM-62 scoring matrix as the basis of our similarity function Y' and the clique-

based clustering function described previously. Specifically, we sought motifs that

occurred in all eight sequences, were at least 50 residues long, and had a pairwise

bit-score of at least 50 bits over a window of 50 residues.

With these parameters, Gemoda discovers four motifs in this set of eight sequences;

the longest motif, with a length of 103 amino acids, is shown in Figure 3-6 as an

alignment of the regions that correspond to instances of this motif (see also Figure 3-

2).

A comparison with the known protein domains in the NCBI Conserved Domain

Database (version 2.02) [1091 reveals that this motif captures the RelA_SpoT domain

(CDD PSSM-id 15904). The RelA_SpoT domain has an unknown function, but is

found in both SpoT proteins (the 3.1.7.2 family) and RelA proteins (EC 2.7.6.5). The

RelA enzymes catalyze the synthesis of guanosine 3',5'-bis(diphosphate) from ATP

and GTP (or GDP), suggesting that the RelA-SpoT domain is important in both the

synthesis and degradation of guanosine 3',5'-bis(diphosphate).

The remaining three motifs are not present in the CDD database. However,

further inspection using the tools available from the PFAM database [23] revealed

that they composed the left, middle, and right regions of the HD domain [14]. The

HD domain is typical of enzymes with phosphohydrolase activity, particularly those

enzymes involved in nucleic acid metabolism and signal transduction. In the SpoT

enzymes, this domain has a number of insertions and deletions that give rise to gaps

such that Gemoda identified and reported individually the left, middle, and right

regions of conservation of the HD domain.



In this example, the BLOSUM-62 matrix was chosen as the similarity metric

because it is optimized for detecting distant homologs. The Gemoda input parameters

L = 50 and g = 50 were chosen to enforce a one-bit-per-amino-acid score, which

should rise above random "noise" since, by design, the expected bit-score for two

aligned amino acids is negative for the BLOSUM set of scoring matrices. We found

from subsequent experiments that similarities at this threshold do not occur frequently

at random (e.g., such similarity in a default BLAST search would have an E-value of

about 10-5). Use of more stringent parameters would lead Gemoda to return fewer

motifs that are better conserved, and lowering the pairwise similarity threshold or

decreasing the minimum length would change the number of motifs returned as well.

As with any motif discovery tool, the optimal choice of parameters depends on the

problem at hand and may affect the computational difficulty of the problem, in this

case via the characteristics of the similarity matrix A. Gemoda's dependence on

parameter selection is acceptable, as a slight change in the parameters used for this

search does not drastically alter the results that are obtained.

In order to test the sensitivity of these results to noise, we conducted an experiment

to determine the degree to which these (ppGpp)ase motifs could be found if obscured

by noise caused by adding random spurious sequences to the 8 enzyme sequences.

We randomly selected a single sequence from Swiss-Prot (Release 45.0) [20] and

included the sequence with the (ppGpp)ase sequences when applying Gemoda with

the same choice of parameters. If no "noise" motifs were found (i.e. motifs not from

the (ppGpp)ase enzymes), then another random sequence was added to the set of

sequences; this step was iterated until at least one "noise" motif was found. We

repeated this process ten times and found that motif detection remained unhindered

until at least 62 random sequences were added to the initial set of 8 enzymes, a

notable detection performance. That is, the target motifs could be detected in an

8-fold majority of spurious sequences given the chosen input parameters.



3.5.2 Identifying co-regulated genes

The discovery of motifs in nucleotide sequences is most commonly used in the search

for cis-regulatory elements. Previous work in this area is voluminous, encompassing

methods ranging from statistical calculations on small enumerated "words" to the

use of various pattern discovery tools to locate potential regulatory elements.

An abstraction of the binding site discovery problem has been made and is dis-

cussed in greater detail in Chapter 4. Here we present a brief summary of Gemoda's

ability to find transcription factor binding sites (cis-regulatory elements) in experi-

mentally generated data.

For some regulons in E. coli with mild to strong consensus sequences, Gemoda

returns results that are similar to or improve upon the results from commonly-used

motif discovery tools. For instance, using the set of upstream regions (400 base

pairs upstream and 50 base pairs downstream of the translation start site) for the 9

operons believed to be regulated by LexA [145], Gemoda's top-scoring motif was used

to generate the sequence logo found in Figure 3-7. This motif closely matches the

literature PWM for the LexA binding site and represents 80% of the literature-found

binding sites with no false positives. problems.

The parameters used for this search, based on simple heuristics, were L = 20,

g = 10, and k = 6. The length was selected based on the knowledge that the DNA-

binding domain of LexA is a helix-turn-helix variant, and so it was likely to be a

relatively long motif. The similarity threshold was chosen as one-half of L, which we

know from the (1, d)-motif problem (Chapter 4 ought to be approximately sufficient to

prevent the graph from being too dense (and thus expensive to cluster). The support

threshold was chosen to be about two-thirds the total number of sequences, allowing

for some noise in the data. Of course, the judicious selection of parameters is an

outstanding problem in binding site discovery. It is worth noting that most of these

selections were simple and intuitive, with the least intuitive selection (L) happening

to be a parameter for which Gemoda was fairly tolerant of slight perturbations.

It should be noted that the above example is not intended to be indicative of every
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motif discovery problem in DNA, as noise, dataset quality, and other factors all affect

these problems. Parameter selection has always been and remains an important con-

sideration for this kind of discovery problem; generally, the identification of optimal

values may depend on a fundamental understanding of the problem domain. Prob-

lems that plague all motif discovery tools also have an impact on Gemoda, including

the lack of a good "gold standard" for accuracy and the difficulty in finding motifs

that a "gold standard" defines as being extremely weak. Despite these problems, our

preliminary examples have shown a great deal of promise.

3.5.3 Motif discovery in protein structures

The detection of 3--dimensional motifs in sets of protein structures is another problem

type that Gemoda can address. Often, homologs that are related through a distant

lineage show little to no sequence similarity, particularly at the nucleotide level [50].

However, these homologs frequently show conserved tertiary structures [42], making

motif discovery in protein structures often revealing in situations where there appears

to be no similarity at a sequence level.

There are a number of well--developed tools for the pair-wise comparison of protein

structures or the comparison of a single protein structure to precomputed structural

motifs; these have been reviewed elsewhere [50]. Some of the more popular tools

include SSAP [127], VAST [107], Dali [76], Mammoth [128], and FoldMiner [149].

The Gemoda algorithm, when used for structural motif discovery, is most similar

to the Sarf algorithm [2, 4, 3] and, to a lesser degree, algorithms by [80] and [86].

Conceptually, Gemoda could be thought of as a hybrid of the Sarf and TEIRESIAS

algorithms, combining 3-D elementary motif discovery with convolution. To the best

of our knowledge, Gemoda is the only tool that can compare an arbitrary number of

protein structures simultaneously and produce an exhaustive set of maximal motifs.

To discover motifs in protein structures, Gemoda compares L-residue windows

of the proteins' alpha-carbon trace using the minimized RMSD similarity metric

(one of many possible metrics for comparing protein sub-structures [97]). Here we

use "minimized" to indicate that the protein structures are optimally super-imposed



via rigid-body rotation and translation [78, 15]; occasionally this term is implicit.

(When using the Gemoda algorithm for analyzing other types of real- valued data,

this super-imposition is occasionally not desired.) Other possible metrics include

the unit-RMSD, which is used both by Mammoth and by Krasnogor's "universal

similarity metric" [98].

To facilitate the use of the software, Protein Data Bank (PDB) [25] can be used

as the initial data input file for using Gemoda. Scripts are supplied to transform

these structures into a series of (x, y, z) coordinates representing the positions of the

alpha-carbons along the backbone of the structure: the alpha-carbon trace.

Using the clique-finding clustering algorithm, Gemoda finds motifs that are sets

of alpha-carbon traces (in a set of protein structures) that can be super-imposed

with an RMSD less than g A over each window of L residues on a pair-wise basis.

Similar to the amino acid and nucleotide applications of Gemoda, these structural

motifs are maximal in both length and support.

As an example, we demonstrate how the Gemoda algorithm can be used for struc-

tural motif discovery by "discovering" known 3-dimensional motifs that are conserved

between distant homologs. We attempted to detect the structural homology between

the human galactose-1-phosphate uridylyltransferase (PDB id 1HXQ) [177] and frag-

ile histidine triad proteins (PDB id 3FIT) [101], originally reported elsewhere [77].

Using Gemoda, we looked for motifs of at least 30 residues, occurring in at least three

chains, that had a pairwise RMSD of 1.5 A or less (based on superposition of the

alpha--carbon backbone) over each window of 30 residues.

This search returns 4 motifs, the longest of which is 66 residues (see Figure 3-8).

This motif has one embedding in the 3FIT protein and two, in different chains, in the

1HXQ protein. As shown in the figure, the motif is an alpha helix followed by a beta

sheet.

Thus, we see that Gemoda is generic in that it can even be applied to real-valued

data. Other examples of pattern discovery in such real-valued data include time--

series stock price data and gas chromatography-mass spectrometry (GC-MS) data.

Each of these data sets needs only to be expressed as a series of arbitrary-dimensional
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Figure 3-8: A motif showing structural conservation between the human galactose-1-
phosphate uridylyltransferase and fragile histidine triad proteins originally reported
by [77]. All subunits are treated as individual proteins, and the resulting protein
chains are then compared one window at a time to identify conserved secondary
structure. The motif, as shown here, was discovered using the Gemoda algorithm
along with three other, smaller, structural motifs that are highly conserved between
the two proteins. Notably, the proteins show little sequence similarity over the region
displayed in the structural motif above. Graphics created using PyMol (DeLano
Scientific, San Carlos, CA, USA).
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points to be suitable for analysis by Gemoda. In addition, one must use (or define) an

appropriate similarity function; for instance, while a translational (but not rotational)

RMSD may be appropriate for stock data, a more appropriate similarity metric must

be used for GC-MS data.

3.6 Discussion

Gemoda makes four contributions. First, the algorithm is generic in that it is equally

applicable to any variety of sequential data. Second, Gemoda allows arbitrary similar-

ity metrics. In the examples shown here, we chose relatively simple metrics (scoring

matrices and RMSD-base metrics); however, similarity metrics can be easily changed

or added. For example, in the case of amino acid sequences, one can easily define hy-

brid metrics incorporating primary, secondary, and tertiary structure features. In the

case of nucleotide sequences, the metric may be changed to incorporate methylation

information. The third contribution is that Gemoda returns motifs that are not tied

to any particular motif representation. In the case of amino acid sequence motifs, it

is easy to model Gemoda's motifs using regular expressions, hidden Markov models,

or position-specific scoring matrices. Finally, when used with the clique-finding clus-

tering algorithm, Gemoda returns an exhaustive set of maximal motifs. To the best

of our knowledge, Gemoda is the only motif discovery algorithm incorporating the

above features.

As mentioned in the introduction, Gemoda integrates the best characteristics

from a number of previously published motif and association discovery algorithms.

For specific problems, Gemoda's performance can be improved further, though at the

expense of generality. For example, a window sampling approach such as that used

by Blast [11] would be useful in applications where speed is more important than

completeness of results. For protein structure comparisons Gemoda could also be

altered to use contact maps like those used by Dali [76]. The convolution stage could

also be made faster by using heuristic, non-exhaustive convolution methods.

Furthermore, the core Gemoda algorithm could be modified to produce gapped



motifs. As currently formulated, Gemoda is not able to automatically identify motifs

with large or variable-size gaps; if a gap causes a motif to fail to meet the similarity

threshold when it is extended, then it is not extended. One may note that this is the

case for many motif discovery algorithms, particularly ones that are not specialized

to solve the gapped motif problem. One alternative may be to alter the convolution

step to allow for gapped motifs. Another option is to analyze the current output of

Gemoda for such motifs: they may occur as multiple distinct maximal motifs. In this

case, post hoc analysis by the user will still allow the discovery of gapped motifs, either

by visualizing and identifying their occurrences or by post-processing the motifs in a

process analogous to Gemoda's convolution.

Thus, we see that Gemoda's generic nature makes it readily applicable for many

problems. In the protein sequence application, Gemoda's exhaustive search using a

scoring matrix as a similarity metric identified multiple motifs. It provided an accu-

rate representation of these domains in as much as an eight-fold excess of spurious

sequences. In the DNA motif discovery application, Gemoda identified an otherwise

unintentional result in a synthetic dataset and satisfactorily described a motif embed-

ded in a genomic dataset. In the protein structure application, Gemoda demonstrated

that it can compare multiple arbitrary-dimensional structures simultaneously and re-

turn results previously shown in the literature. Gemoda can also be directly applied

to other diverse types of sequential datasets, or it can be extended to address problems

not yet considered.



Chapter 4

Gemoda for DNA sequences:

solving the (1,d)-motif discovery

problem

4.1 Overview

As discussed in Chapter 3, Gemoda is capable of finding cis-regulatory sites in DNA

where transcription factors may bind given a set of sequences upstream of genes

believed to be coregulated. The example given in Chapter 3 used freely available ex-

perimental data. While the utility of this algorithm on such realistic data is certainly

useful, it is also desirable to know whether Gemoda is conceptually able to handle a

well-curated gold-standard dataset and find all known motifs. While gold-standard

experimental data would be an ideal test for this goal, the reality of the situation is

that even the available well-curated data available may not necessarily be viewed as

"gold-standard". To that end, a useful test of Gemoda would be with completely

synthetic data where all binding sites are known because they have been manually

inserted.

The (1,d)-motif challenge problem, as introduced by Pevzner and Sze [132], looks

to provide such a test as a mathematical abstraction of the DNA functional site dis-



covery task. In this chapter I will explain what the (1,d)-motif problem is, solve

it using Gemoda, and then expand it to more accurately model the experimental

difficulties that confound the creation of sets of coregulated genes. According to

the theory explained earlier and based on the problem statement of the (1,d)-motif

problem, Gemoda is guaranteed to find all (1,d)-motifs in a set of input sequences

with unbounded support and length. We demonstrate the performance of the algo-

rithm on publicly available datasets and show that Gemoda indeed deterministically

enumerates the optimal motifs.

Much of the research and discussion in this chapter is drawn from the publication

that describes the application of Gemoda to the (, d)-motif discovery problem:

* Styczynski MP, Jensen KL, Rigoutsos I, and Stephanopoulos GN. "An extension

and novel solution to the (1,d)-motif challenge problem." Genome Informatics

2004: 21 - 28 (2006).

Again, this chapter will frequently use "we" to refer to the collective authors of

the manuscript and their contributions to the work.

4.2 Introduction

In 2000, Pevzner and Sze [132] noted that despite significant advances in pattern dis-

covery, there were still gaping holes in our ability to identify and enumerate frequent

patterns in biological sequences. Experimental noise and error were not the only sig-

nificant issues, as the community was still incapable of solving certain problems with

purely synthetic data and no worry of experimental or gross error. One such problem,

defined below, was the (1,d)-motif challenge problem; it exposed the fact that cer-

tain motifs, despite having a strong consensus and being rather unlikely to occur at

random in independent and identically distributed (i.i.d.) sequences, are extremely

hard for most motif discovery algorithms to locate. The reason that these motifs

are hard to locate is that even though they may deviate very little from a consensus

sequence, their pairwise deviation tends to be rather large. Other false pairwise sim-

ilarities are thus extremely likely to occur at random elsewhere in the dataset, and



this random noise obscures the true motif's signal. Pevzner and Sze [132] presented

two algorithms that looked towards solving this problem; Buhler and Tompa [34] fol-

lowed suit by presenting a more effective algorithm. However, the problem is still not

completely solved per se; difficulties exist in obtaining the correctly refined motifs

and instances even for this simplified model of biology. In addition, though exist-

ing algorithms move towards solving this simplified problem, they are not nearly as

helpful in addressing the biological realities that computational biologists face.

The (l,d)-motif problem was designed to model a biological phenomenon that

could not be addressed by previous computational methods. To that end, the ab-

straction served its purpose well; however, there is a fundamental disconnect between

the system that the challenge problem models and the biological realities scientists

face on a daily basis. It is this disconnect that has kept the motif challenge problem

merely a theoretical, academic exercise up until now. It is important to create a

connection between the abstracted problems we strive to solve and the systems to

which those solution algorithms could ultimately be applied. While the (l,d)-motif

problem described below is justifiably inspired by biology, it deviates from research

conditions in a few key ways that ought to be modified to more accurately reflect

experimental conditions and prompt the creation of truly useful search tools. This

paper aims to point out those differences and reframe the problem in a manner more

accurately reflecting the biological system being modeled.

Our objective, then, is to discover DNA sequence motifs in a way that requires

as little a priori knowledge as possible. The challenge problem presented in previous

works is a simplified model of this more general problem. We contend that Gemoda

is of significant use in solving the open (1,d)-motif problem in a deterministic but

computationally tractable nature.

In what follows, we will give a formal statement of the motif discovery problem

as it applies to our algorithm. We will then detail our application to the (l,d)-motif

problem and explain how our approach can make it a more biologically meaningful

abstraction of the binding site discovery problem.



4.3 The expanded (1,d)-motif challenge problem

The original (1,d)-motif problem [132] can be paraphrased as follows:

Within a set of random DNA sequences with i.i.d nucleotides, a parent

motif of length I is embedded in each sequence in a random location. Each

time the motif is embedded, it is mutated in d locations. The (1,d)-motif

problem is to recover the locations of the embeddings, knowing only the

parameters 1 and d and that each sequence contains exactly one instance

of the motif.

At first, this seems to be a reasonable simplification of the phenomenon of binding

sites and other functional sites in DNA. It is not uncommon to have some ancestral

sequence from which each motif occurrence is some short evolutionary distance away.

This model accurately captures the difference between instance-instance similarity

and instance-ancestor similarity. That is, even though a motif instance may be a very

short distance from its ancestor (say, four mutations out of fifteen bases), any two

instances of the motif may be significantly different from each other (eight mutations

out of fifteen bases). This low degree of instance-instance similarity can occur rather

frequently in random i.i.d. nucleotide sequences, thus obscuring the true evolutionary

relationship of the motif instances (the signal) with purely random relationships of

background nucleotides (the noise) [34, 33].

As discussed by Buhler and Tompa [34], local search methods (such as the com-

mon ones mentioned before) using typical initialization strategies encounter an insur-

mountable amount of noise when searching for some sparse motifs described by the

(1,d)-motif problem. We would ideally like to be able to recover such motifs, since

they are expected to occur by chance in every sequence with rather low probability

(approximately 10-7 ) [34, 33].

In a more realistic scenario, a researcher may not know the size 1 of the motif a

priori. Instead, it is more likely that she would know the evolutionary distance be-

tween motif instances, i.e. the rate of mutation d/1l. It is also unrealistic to mutate the

embedded motif exactly d times; rather, the researcher is more likely to be interested



in motifs that are d or fewer mutations away from each other. That is, in a real-world

scenario, we would more likely have a reasonable estimate of the upper limit d/l of the

mutation distance between embedded motifs. There may also be multiple, different

motifs in the dataset. Finally, as experimental data are commonly rife with noise, it

is likely that some of the sequences may be false-positive candidates for the motif;

that is, some sequences may contain no motifs at all.

With these issues in mind, we define an extended (l,d)-motif problem as follows:

Within a set of random DNA sequences with i.i.d. nucleotides, a parent

motif of length > L is embedded zero or more times in each sequence

in a random location, such that the motif has been embedded a total

of k times in the data set. Also, each time the motif is embedded it is

mutated such that there are no more than d mutations over any window of

1 nucleotides (that is, the rate of mutation is d/l). This process is repeated

for any number of parent motifs, each with the same 1 and d, but possibly

different L. The extended (1,d)-motif problem is to recover the locations

of the embeddings for every parent motif without any a priori knowledge

of where they might be, but only knowing the parameters 1 and d.

We will refer to this formulation as the "extended" (1,d)-motif problem and the

previous formulation as the "restricted" (1,d)-motif problem. In what follows, we

detail an algorithm for solving both the extended and restricted (1,d)-motif problems.

4.4 Preliminary definitions and nomenclature

All of the same nomenclature from Chapter 3 will be utilized in this chapter. In

addition, we will call the Hamming distance function J, where A' takes two windows

of size 1 from our sequence set, and returns a real-valued number equal to the number

of characters that differ between the two windows.

Using these definitions, we note that the extended (1,d)-motif problem can be

solved another way. Given a sequence set and the function NJ, finding all maximal



(1, d)-motifs in the sequence set will identify all possible planted motifs and enumerate

the locations of all instances of those motifs.

4.5 Applying Gemoda to the extended (1,d)-motif

problem

The input to Gemoda is a set of nucleotide sequences S = {sl,s2,... , Sn}, where

sequence i has length Wi. So, for example, the jth member of the ith sequence is

denoted by si,j and is one of the characters A, T, G, C.

The comparison phase proceeds as defined previously; we will briefly review what

that entails for this problem. Typically, a user is interested in motifs that have a

minimal length (i.e., motifs of length 1 are not interesting, whereas motifs of length

10 might be depending on the context). We denote this user-supplied length as L

and we define a symmetric matrix A of size N = En1 (Wi - L + 1). That is, A is

a matrix with one index for each window of size L in our entire sequence set. The

1 0 th window of size L in the 5th sequence would be expressed as s5,10:10+L-1, where

"10 : 10 + L - 1" denotes "position 10 through position 10 + L - 1, inclusive". To

keep track of which window corresponds to each index in A, we define the function

1Wf(Si,j:j+L-1) H q E [1, N]. (For the sake of simplicity in later use, we define (s,j + 1)

to be si,j+l, unless si,j+l does not exist, in which case (sij + 1) is undefined.) Similarly,

1- (q) _-* (si,j:j+L-1) such that i E [1, n] and j E [1, Wi - L + 1].

Thus, As,j is equal to '(#-1(i), -/1(j)).

At this point we have a matrix A that contains the pairwise distances between

each window in the dataset. One could also say that that A is simply a distance

matrix that could be used to plot the windows in some high-dimensional space. In

that sense, we are interested in clustering these windows together to form "elementary

motifs".

The clustering and convolution phases proceed as defined previously.



4.6 Solving the restricted (1,d)-motif problem

The input set for the (1, d)-motif problem is any arbitrary set of n sequences, each

with length Wi nucleotides. Most bioinformatics literature treatments use Wi = 600

and n = 20. Different versions of this problem have been discussed at length; the

most commonly discussed is the (15,4) problem, while the (14,4) and other associated,

more difficult problems are also addressed in the literature.

It has been shown before that the most commonly used motif discovery algorithms,

including CONSENSUS [72], Gibbs sampling [100], and MEME [17], are unable to

solve the restricted (15,4) problem. Algorithms that are capable of solving the re-

stricted (15,4) problem have been presented in the literature. While some of these,

including Winnower and SP-STAR [132], are unable to solve the more complicated

(14,4) problems, others are able to address this and other, more difficult, problems

with some degree of accuracy. These latter algorithms usually leave the deterministic

realm, though, and rely on probabilistic methods to find the planted motifs.

On the other hand, Gemoda allows for exhaustive, deterministic solution of these

problems. The (, d)-motif problem solved by the above-mentioned tools is a degen-

erate case of the extended problem that our algorithm was designed to solve. Thus,

Gemoda is not optimally tuned for solving the restricted (1,d)-motif problem in the

least amount of time. Nonetheless, solving a range of the restricted (1,d)-motif prob-

lems is still a valuable check on the utility of our tool to make sure it can solve at

least some of them in a reasonable amount of time. In addition, our exhaustive search

allows for one to see how many other false signals are in the data. This can facilitate

the assessment of statistical significance of results, certainly an important step in

analyzing any proposed signal.

4.6.1 Solution Method

Our approach requires three user input parameters: 1, g, and k. 1 is the minimum

motif size and the size of the sliding window used for judging similarity between two

sequences. g is the similarity threshold for any two windows to be deemed instances



of the same motif; in this case, if two windows of length 10 are a Hamming distance

of 2 away from each other, g would need to be 8 or less for the windows to be in

the same motif. Finally, k is the support, or minimum number of motif occurrences

required to report the motif to the user.

It is obvious that any two motifs of length 1 each being mutated d times from an

ancestral sequence can differ at most at 2d locations. Thus, at least (1 - 2d) locations

must be preserved in the motif. This observation lays the foundation for discovery of

the hidden motifs. Gemoda is run with parameters 1 = 15, g = 7, and k = 20 for the

(15,4) problem. The discovery of the motif is then a straightforward combinatorial

problem with deterministic discovery of the solution.

It is important to note, however, that our method will solve and return a superset

of the restricted (1, d)-motif problem. That is, any group of d-mutants from a common

ancestor can be described as having (1 - 2d) identical bases, but not all groups of

sequences with (1 - 2d) identical bases can be used to synthesize an ancestor from

which all group members deviate < d bases. When there are a large number of

"signal" motif members, there is usually sufficient overall deviation to prevent a > d-

mutant from joining a motif group. However, at smaller support k, it is more likely

to find motif instances that violate the d-mutant constraint. It is not desirable to

immediately remove motifs with such members from the output, as they do still meet

the constraints imposed by our parameter values; rather, we can use a simple post-

processing method to note which motifs have readily obvious ancestors and thus are

the most likely candidate signals.

4.6.2 Discussion

A few interesting observations can be made regarding the complexity of the algorithm

and the quality of its solutions. First of all, the time to solution is not affected

directly by the length of the motif to be discovered as in many other exhaustive

methods. Rather, it is the sparseness or subtlety of the motif (or more accurately,

the probability of the pairwise motif similarity occurring randomly) that has the

most profound impact on the complexity of the algorithm. The most computationally
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expensive step is the clique-finding function, which increases in computation time with

the number of edges (NP-complexity at worst, though on average much better). For

varying 1 and d, as two 1-mers sampled randomly from the background are more likely

to meet the threshold of similarity defined by 1 and d, there will be more false edges

(similarities) in the graph, and thus the clustering algorithm will take longer. Motifs

of widely different length may be (approximately) equally likely in the background

distribution if d is set to a certain value for each. In this case, it would take almost

exactly the same amount of time to find both motifs in the same input set. Of

course, the size of the data set also has a significant impact on computation time,

as for any algorithm; a larger input set causes more false occurrences of a potential

motif, and the resulting distance matrix needs more time to be explored by our clique-

finding algorithm. Figure 4-2 indicates the order of complexity of computational time

for this problem; since the pairwise similarities that Gemoda is searching for occur

at random so frequently within the sequence datasets, the graph is rather dense,

making the increase in computation time approximately exponential, especially for

the more difficult parameter values plotted. This is as one may expect from an NP-

complete problem. Thus, as indicated earlier, there are certainly limits as to what

size datasets Gemoda can handle - but the size of datasets that are of interest to

at least some biologists and bioinformaticians may lie within the realm of those that

are computationally tractable for our exhaustive approach.

Also, our method does not preclude discovery of more than one instance of a

motif in any given sequence. Much like the re-framing of the (1,d)-motif problem

presented above, this is more reflective of what one expects may happen in a real

biological system: motifs of biological significance may occur more than once in a

biosequence, and it behooves us to be able to discover all occurrences. In fact, in the

original dataset for the (15,4)-motif problem used by Pevzner and Sze [132], there

is actually an additional instance of the original motif that occurred completely by

chance; this instance was discovered in our solution of the problem (see Figure 4-1).

In addition, by virtue of its exhaustiveness, Gemoda is capable of finding multiple

unique motifs that may exist in one dataset; other approaches are limited to finding
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only the strongest motifs.

Finally, it is important to note the absolute accuracy of our results. In previous

papers presenting algorithms to solve the (1,d)-motif problem, a metric called the

performance coefficient is used to gauge the accuracy of the algorithms. This is defined

asKn where K is the set of 1 * s nucleotides representing the s motif instances each

of length 1 and P is the set of I * s nucleotides representing the s proposed motif

instances of length 1. Coefficients above .75 are usually deemed acceptable for these

algorithms. Improved algorithms return results with coefficients of about 0.9 or 0.95.

Examples of the performance of other algorithms are presented in Table 4.1. Clearly,

Gemoda returns all coefficients of 1; that is, it will return the exact location of all motif

occurrences. This is a notable improvement over other algorithms that may return

approximate motif locations that then need to be verified and slightly adjusted or

optimized by hand. In fact, in any given run of PROJECTION (the most accurate of

the algorithms in Table 4.1), one will usually find that one or two (or even more) of

the returned motif instances are not just imperfectly located, but are false positives.

Table 4.1: Performance on a range of (l,d)-motif problems with synthetic data. Data
from other algorithms are from Buhler and Tompa [33]. GibbsDNA, WINNOWER,
and SP-STAR are averaged over eight random instances, while PROJECTION is
averaged over 100 random instances. Computation times for Gemoda are averaged
over three random instances.

I d GibbsDNA WINNOWER SP-STAR PROJECTION Gemoda Time
10 2 0.20 0.78 0.56 0.80 1.00 8 min
11 2 0.68 0.90 0.84 0.94 1.00 < 1 min
12 3 0.03 0.75 0.33 0.77 1.00 10.5 h
13 3 0.60 0.92 0.92 0.94 1.00 10 min
14 4 0.02 0.02 0.20 0.71 1.00 > 3 months
15 4 0.19 0.92 0.73 0.93 1.00 6 h
17 5 0.28 0.03 0.69 0.93 1.00 3 weeks

The computation time of our tool becomes unacceptable as the motifs become

degraded beyond the (15,4) problem. This is to be expected for a deterministic

algorithm as the probability of the signal reaches a level that causes many pairwise
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[markstytmstyc -~]$ cat resultslS-4jnotif

Aligned! Now filtering...
Graph filtered! Now finding cliques...
Cliques found! Now filtering cliques (if option set)...
p = 20

Now convolving...
p = 20

Figure 4-1: A screenshot indicating Gemoda's output for the (15,4)-motif problem.
Note that all occurrences of the motif are returned to the user, and all have the same
common ancestor. Also note that while there are only twenty sequences (numbered
starting from zero), twenty-one occurrences of the motif have actually been found.
This is not an intentional implantation of the (15,4)-motif, but it is indeed only four
mutations from the parent motif. This is an interesting example of the potential of a
provably exhaustive search of the sequence space.
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similarities to occur by chance. Since our strategy is generalized and exhaustive, we

expect the computation times to be suboptimal. Beyond this table, one would benefit

from other probabilistic or heuristic algorithms in order to solve the more difficult

(1,d)-motif problems in an acceptable period of time. Fortunately, it seems to not

be a too frequent occurrence to search for a (18,6)-motif in each of 20 biological

sequences, so Gemoda should be of significant utility for common applications.

We also note that the complexity of the restricted problem seems to be NP. Using

the (15,4) problem and the (11,2) problem for analysis, we analyzed the impact of

increasing the dataset size on the computational time required to solve the problem.

As Figure 4-2 demonstrates, the (15,4) problem clearly shows a log dependence of

computation time on sequence size, as one would expect from an NP-complete prob-

lem. The (11,2) problem seems to escalate more slowly in computational time (even

on a log scale), but it is still likely NP in complexity.

4.7 Solving the extended problem

Of course, in a real biological problem, one does not have nearly the same certainty

in the contents of each biosequence as is allowed by the (, d)-motif problem. This be-

comes evident upon analyzing the situations that the (1,d)-motif problem is meant to

analyze, the most salient of which being the discovery of transcription factor binding

sites. In order to come up with the candidate coregulated sequences, the results of

laboratory experiments are analyzed to find which genes are sufficiently coexpressed.

However, much of this data is prone to noise. Some genes may not be coexpressed,

though they may seem to be due to some experimental aberration. Of those that are

actually coexpressed, they may or may not be coregulated by the same transcription

factor; it is a distinct possibility (and quite frequently a reality) that genes appearing

to be coexpressed are not bound by any common factor. The same analysis follows

for other situations for which the (1,d)-motif problem is an otherwise reasonable ap-

proximation: experimental noise prevents certainty that all input sequences are truly.

Other methods meant to be robust enough to solve the restricted (1,d)-motif prob-
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Figure 4-2: Computational complexity of the (l,d)-motif problem. Two different

motifs were used: one (15,4) and one (11,2). The size of each of the 20 input sequences
was varied to see the effect of dataset size on computational cost. Both problems

exhibited the behavior one would expect from an NP-complete problem, indicating

that the density of graphs caused by these problem definitions makes our clique-

finding step's computational complexity NP.
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lem will lose significant advantage in this more realistic, extended set of circumstances.

Gemoda was designed specifically to deal with the issues addressed by the extended

challenge problem. It discovers, in a provably exhaustive and deterministic fashion,

all motifs described in the extended problem definition. Other algorithms discussed

previously in this paper are just not constructed to deal with such uncertainty in mo-

tif characteristics; as such, there is little way to accurately compare the performance

of ours and other algorithms on the fully extended problem. Thus, it seems intuitive

to simplify the extended problem to something more complicated than the restricted

(1,d)-motif problem, but for which there is still a useful metric for comparison be-

tween ours and other algorithms. What follows are two cases, one qualitative and

the other quantitative, which demonstrate the specific benefits of our tool for pattern

discovery on (15,4) problems beyond the restricted version. PROJECTION will be

used as the primary benchmark, as when these experiments were performed it had

been shown to return the best performance coefficients in virtually every problem to

which the authors applied it.

4.7.1 Case 1: An underestimated number of motif instances

One source of difficulty in the extended problem may be the uncertainty as to the

exact number of motif instances. For this case, we still restrict ourselves to windows of

size 1 with d mutations from a consensus sequence. However, we allow for uncertainty

in the number of motif instances. For this case study, we instruct algorithms to find

motifs with instances in at least 15 sequences when in fact there is an instance in every

sequence. If an algorithm such as WINNOWER were to search for cliques across 15

sequences when in fact all 20 sequences had a motif instance (as in this test), it

would have a final graph with much more than the single signal that it usually hopes

to obtain. PROJECTION's attempts to find 15 instances when 20 actually occur are

similarly problem-ridden, returning different candidate motifs on different runs.

In empirical testing using the original data of Pevzner and Sze [132], our tool

found that there are 379 different maximal motifs with support of at least 15, one

of which was the optimal motif of support 21 and was returned as the most signifi-
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cant motif. As one expects from a probabilistic algorithm, PROJECTION returned

different candidate motifs on different runs. These results would sometimes have sig-

nificant overlap with one of the 379 motifs, though at other times would have very

little overlap. Most disturbingly, all of these proposed motifs would have approxi-

mately the same score, thus making it difficult to discern a truly useful motif from

an artifact of background noise.

One workaround for the problem presented by this case study is to run the existing

algorithms across a range of potential support values, with the most significant mo-

tif at the highest support being the motif returned overall. Obviously, this begins to

erode away at the sole advantage that these other algorithms have over our algorithm:

computation time. Multiple runs of PROJECTION begin to approach the computa-

tion time we use, and without any of our computational guarantees. Furthermore,

the results of such an iterative approach would be difficult to analyze; the scores of

motifs returned by PROJECTION, for example, are frequently quite similar, so it

may be rather difficult to discern which motif is truly the "best".

Thus, it seems that in the case of underestimating the number of motif instances,

a cursory qualitative analysis demonstrates our tool's potential utility. A further

simplification of the problem will facilitate a quantitative study and demonstrate that

our algorithm is truly the only one currently able to address the extended problem

well.

4.7.2 Case 2: Zero-or-one motif instances

In this next case, we analyze the impact of there being zero or one motif instances in

each sequence. To implement this simplification, we instruct each algorithm to find

the exactly 15 motif instances that are implanted across 20 sequences. This makes

the problem astonishingly similar to the (1, d)-motif problem, with the exception that

not every sequence contains a motif instance. This problem setup is thus significantly

more realistic, as one does not expect every sequence to have a motif occurrence in

every pattern discovery problem. Of course, this is still a simplification of reality, as

one would not expect to know the exact number of motif instances. However, not
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even this gross simplification can salvage the efficacy of existing algorithms for the

discovery of such subtle motifs.

Three different instantiation examples were used to assess the effectiveness of

different algorithms. In one, fifteen sequences from the original Pevzner and Sze

dataset [132] were supplemented with five sequences of background distribution (all

bases equally probable). We ran our algorithm to analyze the contents of this new

input set, and PROJECTION was run 100 times to find the average performance

coefficient for this specific example. Similar analysis was performed for a new syn-

thetic dataset in the second example. For the final example, PROJECTION was run

100 times with 100 unique input sets, and its average performance coefficient was

returned. Note that our performance coefficient will be 1, so there is little need to

run our tool on each of these 100 datasets except to gauge its computational expense.

In each of five sample datasets, our algorithm took approximately 13 hours to return

its solution set. Each set of 100 runs of PROJECTION took approximately 17 hours.

Table 4.2: Performance on an extended challenge problem, case 2. (15,4) motif in-
stances were planted in 15 of 20 sequences. PROJECTION was used with a minimum
bucket size of two, which returns more accurate results at the cost of computation
time.

Example Performance Coefficients
PROJECTION average PROJECTION max Proposed algorithm

1 .06 .43 1
2 .004 .03 1
3 .08 .76 n/a

In the first instantiation example, our tool found that there were 18 unique motifs

that met its g = 7 constraint over a 15-base window. However, only one had an

obvious common ancestor from which all could be obtained by only four mutations.

(Since we did not exhaustively search to construct ancestors, it is technically possible,

though unlikely, that a motif had a non-obvious ancestor. For this reason we only

"rule in" as more likely motifs with obvious common ancestors rather than "rule out"

others.) This single motif corresponded with the motif that was originally implanted

108



in the data, plus two additional instances that occurred purely by chance and were

only four mutations from the common ancestor. Perhaps even more interesting is that

there was a non-implanted, purely random motif that occurred with a support of 16.

Though each pair of instances had similarity of > 7, there was no obvious ancestor.

In the second example, our tool found that there was exactly one motif that occurred

at least 15 times in the input set; this was the exact motif implanted synthetically.

The results of PROJECTION can be seen in Table 4.2. Clearly, PROJECTION is

poorly suited to solving this more realistic version of the challenge problem, while our

algorithm returns accurate results, as promised. Even when run 100 times on the same

datasets in examples 1 and 2, PROJECTION never had a reasonable performance

coefficient, yet took 4 hours longer than our tool.

4.8 Conclusions

The benefit of using Gemoda for this problem is then obvious: deterministic and

provably complete output even in the face of uncertainty in motif characteristics.

The motifs could have been longer than 15 bases, could have had fewer mutations, or

could have occurred in a variable number of sequences, and our tool would have found

them. Its only obvious negative aspect is its computational expense. The restricted

(15,4) problem took 6 hours, while the extended problem took 13 hours. Compared to

the runtimes of algorithms like PROJECTION, which can be as low as five minutes

for the restricted problem, these runtimes may seem extremely large. In practice,

however, this computation time is far from unacceptable; one would not expect to

often encounter the need to run motif discovery many times sequentially, particularly

if the results being returned to the user are deterministically correct.

Perhaps even more importantly, we have reframed the challenge problem state-

ment in a way that is more biologically meaningful; hopefully this new challenge will

inspire other methods that outperform ours in some way. While a deterministic and

exhaustive method is always welcome, for some problems it seems that a heuristic

approach may provide a good balance between time and accuracy; we look forward
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to seeing new tools that address our amended problem with sufficient accuracy.
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Chapter 5

Applying Gemoda to GC-MS data

5.1 Overview

In Chapter 3, I described a generic approach to motif discovery and presented some

brief examples of how it is successful at finding motifs both in string-valued and real-

valued data. The more in-depth example of Chapter 4 showed how a string-valued

problem could be solved, even if all of the potential of Gemoda wasn't harnessed

(i.e., for the restricted (1,d)-motif problem, convolution isn't necessary to find the

desired motifs). The important aspect of this example is that an existing problem,

for which Gemoda was not specifically being designed to solve, was easily handled

with our generic approach. This chapter will present another example where all

of Gemoda's capabilities may not be harnessed to their fullest, but a problem that

previously had little software available to handle it can be addressed by Gemoda

very easily. By merely taking an external data format, formatting it for input to

Gemoda, and running Gemoda iteratively, we were able to discover relevant motifs

in gas chromatography-mass spectrometry (GC-MS) data. Again, this speaks to the

potential of a truly generic approach that is not dependent upon specific data types,

models, or problem nuances.

Analysis of metabolomic profiling data from GC-MS measurements usually relies

upon reference libraries of metabolite mass spectra to structurally identify and track

metabolites. In general, techniques to enumerate and track unidentified metabo-
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lites are non-systematic and require manual curation. This chapter will describe a

method and software implementation that can systematically detect components that

are conserved across metabolomic samples without the need for a reference library

or manual curation. We validate this approach by correctly identifying the compo-

nents in a known mixture and the discriminating components in a spiked mixture.

Finally, we demonstrate an application of this approach with a brief analysis of the Es-

cherichia coli metabolome. By systematically cataloging conserved metabolite peaks

prior to data analysis methods, our approach broadens the scope of metabolomics

and facilitates biomarker discovery.

Much of the research and discussion in this chapter is drawn from the publication

that describes the application of Gemoda to analyzing gas chromatography-mass

spectrometry metabolomic data:

* Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, and Stephanopou-

los GN. "Systematic identification of conserved metabolites in GC/MS data for

metabolomics and biomarker discovery." Anal Chem 79: 966 - 973 (2007).

Again, this chapter will frequently use "we" to refer to the collective authors of

this manuscript and their contributions to the work.

5.2 Introduction

The goal of metabolomics - the metabolite analog of genomics and proteomics -

is the measurement of concentrations (or "metabolite profiles") of as many cellular

metabolites as possible, usually with applications to functional genomics [160, 53].

Certain aspects of metabolomics suggest that exhaustive metabolite profiling may be

possible: the number of known metabolites present in many organisms (e.g., yeast)

is tenfold to hundredfold fewer than the number of genes or proteins [57, 90, 113],

and the cost of measuring these metabolites is by comparison significantly lower.

To date, the coupling of metabolomic data with other cell-wide data has yielded

valuable insight into underlying biochemical processes and has contributed to nu-

merous advances in the area of functional genomics [138, 176, 73, 64]. However,
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obstacles to exhaustive metabolite profiling persist, one of the most significant being

the chemical diversity of metabolites. Unlike DNA or proteins, metabolites do not

adhere to a subunit-based chemistry, so assaying for many metabolites (with many

chemistries [89]) simultaneously is difficult. Gas chromatography -mass spectrometry

(GC -MS) is one method frequently used to assay for a variety of metabolites, and

the aim of this work is to improve the downstream analysis of this GC--MS data

independent of upstream experimental protocols (see Figure 5-1). While we describe

our approach in the context of GC-MS, there is no reason why this approach could

not similarly be applied to other similar types of metabolomic data like liquid chro-

matography coupled to mass spectrometry (LC-MS). The role of our approach in the

context of generic metabolomic analysis is illustrated

5.2.1 Common data processing methods

First, current methods for analyzing metabolomic GC-MS data must be understood.

In targeted GC-MS analysis, when only the concentrations of a few specific com-

pounds are desired, only certain regions of the chromatogram or certain m/z values

of mass spectra may be considered relevant. For non-targeted metabolomic analy-

ses, on the other hand, the entire chromatogram (for all m/z values) is important,

prompting efforts to select experimental parameters that maximize metabolite peak

accessibility [125]. However, accurate analysis of all of this data presents some chal-

lenges. Some "real" chromatographic peaks may be hard to distinguish from noise.

Other peaks may contain mixtures of metabolites that are coeluting, so the individual

MS scans of their peaks are not pure spectra of either component. Thus, the immne-

diate processing steps after the storage of raw GC--MS data typically include peak

enumeration (distinguishing "true" peaks from noise in a chromatogram) and, with

increasing frequency in recent literature, spectral deconvolution (obtaining putative

pure spectra from two overlapping peaks). These steps may be performed either with

proprietary software for a specific manufacturer's apparatus or with publicly available

software like AMDIS [154]. Whether or not spectral deconvolution is applied, the user

is left with a set of chromatographic peaks that putatively represent individual com-
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Figure 5-1: A typical metabolomic workflow. Generic steps are indicated in bold

font, while italicized gray font gives specific examples of those steps. The goal of

SpectConnect is to impact upstream experimental measurements as little as possible.

Typically, a cell or some sort of biomixture is prepared through a number of steps

to eventually yield a number of putative components as judged by the resulting data

(whether GC-MS or otherwise). It is at the interpretation of these components that

we aim to apply our approach, requiring only that upstream steps use replicate sam-

ples (whether biological or sample replicates). Instead of tracking and interpreting

components by matching them to known standard data, SpectConnect uses an essen-

tially self-matching approach to find conserved components that are unlikely to occur

purely by chance as artifacts of noise. This approach then easily fits into standard

downstream methods of visualization and statistical analysis that are typically only

practiced on the known, matched-from-standards components.
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ponents in the sample mixture. Often, multiple experimental conditions have been

assayed and all of the results need to be analyzed and compared.

It is in the following steps that methods for metabolomic experimental data anal-

ysis are rather scattered. Few tools are available for easy comparisons of multiple

experimental conditions; ChromaTOF (LECO, St. Joseph, MI, USA) is a representa-

tive example of some of the better proprietary software for performing this analysis.

However, ChromaTOF can only be used with LECO mass spectrometers, so such a

program is not useful for many scientists. Similar problems arise with other man-

ufacturers' software packages; many are inadequate for whole-dataset analysis, and

analysts typically do not have the luxury of buying new equipment strictly for its supe-

rior software. Alternatively, there are other proprietary programs available that work

for a variety of manufacturers' hardware, such as MetAlign (Plant Research Interna-

tional, Wageningen, Netherlands). However, such programs are typically expensive

and (as yet) have not seen wide use in scientific literature. There are a few freely-

available packages that can perform some of this data analysis, such as mzMine [92]

and SpecAlign [180], though these newer tools also have yet to see widespread testing

in scientific literature. Rather, a much more common approach is to compare the

spectra from a given run to a reference library of spectra so that metabolite peaks

may be tracked by names.

In metabolomic experiments using this approach, the scope of most automated

data analysis techniques is limited to those compounds which have been isolated, been

purified, and had their spectra stored in a reference library. However, even the largest

publicly available libraries [54, 122, 16] are often incomplete, leaving many metabolite

peaks unidentifiable without additional experimental work [56]. To avoid such issues,

one may create a customized reference library using standard reagents; however, this

is prohibitively labor-intensive and the resulting library will necessarily be incomplete

because many compounds of interest are not commercially available (e.g., only 200 of

the 600 known yeast metabolites can be purchased [46]). Alternatively, supplementing

a pre-existing library by adding every spectrum from every experimental run is an

equally undesirable option: subsequent matches to this "complete" library have less
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value, as spectra generated by noise and other biologically irrelevant factors would

overtake the true set of cellular components.

5.2.2 Tracking of unidentified metabolite peaks

When a chromatographic peak's spectrum cannot be matched to any reference library

entry, the analyst must then decide the disposition of this unidentifiable spectrum.

It is not uncommon for such spectra to be discarded. In cases where some of these

spectra are retained, this is usually the result of a labor-intensive, somewhat ad

hoc process of comparing multiple chromatograms to a reference chromatogram. Ta-

ble 5.1 enumerates recent GC-MS metabolite profiling studies, some of which relied

on non-systematic, manually-driven curation of unidentified metabolite peaks. While

previously mentioned tools such as ChromaTOF, Metalign, and mzMine are capable

of allowing some tracking of unknowns, this process still requires significant interven-

tion on behalf of the user and may not allow for completely consistent, automated

tracking of unknown metabolite peaks. Perhaps more importantly, these methods

typically entail comparison to one single reference spectrum. However, if a spectrum

may contain significant noise (see discussion below and Figure 5-2), the use of any one

given spectrum as a reference for all others may be undesirable, as the "true" low-

concentration metabolites may be difficult to parse out from the data. Thus, while

unidentifiable peaks are sometimes retained in GC-MS data analysis, an automated,

systematic method for including these peaks in subsequent analysis and appropriately

accounting for noisy spectra is as desirable a goal for GC-MS metabolomic analysis

as it was for NMR analysis [138, 176, 73].

Another goal of metabolomics research is to enumerate metabolites known as

biomarkers that discriminate classes of samples obtained from different cellular con-

ditions by being absent, present, or differentially present. As noted above, there are

presently few methods for comparing many sets of spectra in order to identify com-

ponents characteristic of a sample or group of samples. A commonly used method is

principal component analysis (PCA) [172, 47, 87]; however, the results of PCA (the

loadings) are often not intuitive, and the optimized function (capturing variance) is
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not necessarily ideal for biomarker discovery. As previously mentioned, Metalign and

other software can perform pairwise spectrum comparison in place of PCA, and other

methods also exist [92, 123, 93, 150] to these ends, though most either focus on a

small subset of data or are not generally applicable. The method most relevant to

this work [81, 82] avoids dependence on libraries of standards, but still depends on

complex multivariate analysis; it focuses solely on biomarkers rather than identifi-

cation and tracking of all possible metabolites in the samples. As such, biomarker

discovery remains an open problem, with numerous potential applications in diagnosis

and prognosis that reach beyond the scope of a simple classification [121].

5.2.3 The SpectConnect approach

Here, we present a method and freely available implementation, SpectConnect, to

automatically cataloger and track otherwise unidentifiable conserved metabolite peaks

across sample replicates and different sample condition groups without use of reference

spectra. SpectConnect compares every spectrum in each sample to the spectra in

every other sample. By doing so, it is capable of determining which components are

conserved (according to some criteria) across replicate samples. SpectConnect also

determines which of these components differentiate one sample condition (e.g., time

or treatment) from another, whether by changes in concentrations or merely by their

presence/absence. The only requirement of the experimental measurements is that

each sample condition must have replicates. In a sense, SpectConnect relies on an

increase in signal relative to noise that is created by this requirement of replicates.

While injection ("technical") replicates are the easiest way to provide the required

replicates, it is also desirable to include biological replicates in a group of samples.

This is due to systematic error in peak detection and deconvolution software that

may consistently find a noise peak in technical replicates. Though this approach adds

more biological variability to a group in terms of metabolite concentrations, it should

have significantly less impact on the presence/absence of a metabolite. Ultimately,

we hypothesize that these "true", important spectra will be conserved across most or

all replicates of a sample, while spectra that are artifacts of noise will not.

119



For the core of the necessary computations, SpectConnect uses Gemoda, our freely

available generic motif discovery algorithm for sequential data [84]. Gemoda efficiently

compares candidate spectra and identifies conserved spectra across samples using

various clustering methods. If a chromatographic peak is true signal and not noise,

we expect that the mass spectrum of each of its occurrences in the different samples

will be pairwise similar to each other. Projected onto a graph consisting of nodes for

each spectrum and edges between each pair of spectra that are similar, this pairwise

similarity defines a cluster known as a "clique". By limiting our clusters to cliques,

we exclude potential artifacts of noise and focus on what we believe are the true

metabolites in the sample. We exploit Gemoda's ability to efficiently find cliques

in order to locate these clusters of spectra that represent the true metabolites. An

illustration of this process can be seen in 5-2.

With SpectConnect, we can find three distinct types of information. First, we

identify all of the components that are conserved across a single group of samples or

replicates. Second, for each metabolite peak conserved in at least one group, we can

determine all other groups in which it occurs. Finally, for any given pair of groups, we

can find the likelihood, to some degree of statistical significance, that each metabolite

peak is present in unequal amounts in the groups.

5.3 Methods

5.3.1 Experimental methods

Standard mixtures were prepared using commercially-available stock chemicals. E.

coli strains obtained from previous work [5] were fermented and sampled over 30

hours. The samples were quenched and frozen; after thawing, the metabolites were

separated from the rest of the mixture and concentrated. MCF derivatization [171]

was performed prior to GC/MS analysis using an HP 5890 GC coupled to an HP

5971 quadrupole mass selective detector (EI). Additional details on all experimental

and statistical protocols used can be found in AppendixA.
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5.3.2 Peak identification and deconvolution

AMDIS [154] was used to perform component peak identification and spectral decon-

volution. Our purpose in using AMDIS is to distill the raw GC- MS data. into a more

easily digestible set of deconvolved peaks for analysis. This is represented in Figure 5-

3. AMDIS performs two important tasks as an upstream part of SpectConnect-based

analysis. First, AMDIS enumerates all of the peaks that it believes to be "true" and

not just noise or baseline. Second, it uses a deconvolution algorithm to determine

whether there are multiple pure components coeluting to create one broad peak; if

there are, it enumerates both peaks and determines their appropriate spectra. De-

convolution is a well-studied problem in other fields like signal processing and image

processing; it essentially means attempting to tease apart the effects of two overlap-

ping signals, or functions, in the presence of noise. The application here is obvious:

with two peaks eluting off of the column, their respective signals are defined by the

mass fragments they create. Two sets of mass fragments occurring at the same time

can look like one set of fragments, and thus look like only one signal, so deconvolution

approaches attempt to identify when there is only one set of ion fragments and when

there are two.

The following parameters were used: medium shape requirement, low sensitivity,

and medium resolution. Each GC-MS sample's results were processed, and the .ELU

files created as output of AMDIS (and containing data for all of the enumerated

peaks in each sample) were saved for use with SpectConnect. Though in principle

any program could be used for component peak enumeration, we designed this im-

plementation of SpectConnect to work with AMDIS output since AMDIS is freely

available and accepts a wide variety of manufacturers' raw data formats. However,

AMDIS's tendency towards false positives in an effort to be sensitive [154] makes

subsequent clustering steps much more difficult and is one reason that SpectConnect

performs "pre-processing" steps, as mentioned below. However, even if peak enumer-

ation and deconvolution were ideal, the resulting data would still greatly benefit from

a systematic search for conserved metabolite peaks and biomarker candidates.
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Figure 5-3: The important function of AMDIS as an upstream processing step for
SpectConnect analysis. AMDIS takes the raw GC-MS data (top of figure) and distills
it into only a few well-defined peaks with known mass spectra (bottom of figure).
Pure spectra even in the case of coeluting metabolites (overlapping chromatograms)
is obtained by deconvolution on the GC-MS signal. The resulting peaks and their
ion spectra are then used as the starting point for replicate analysis in SpectConnect.
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5.3.3 SpectConnect

SpectConnect is implemented in Python (http://www.python.org) and uses Gemoda [84]

for the majority of its computations. A user may choose how well two spectra must

match to be deemed "similar", how much error should be allowed in retention time

for occurrences of the same metabolite peak, and how many times a peak must occur

to be considered "conserved" (also known as its support). This study used the default

values for these parameters, which are as follows: spectra must be 80% similar based

on a weighted dot product [154] to be considered similar, they must be within one

minute in retention time to be considered similar, and they must occur in at least

75% of sample replicates to be considered conserved. The weighted dot product for

our spectrum-to-spectrum comparison is defined as:

(EM mn2 VI,m2,m) 2

(Em m2 11,mn) (Em m2 2,m)

where m takes on all valid m/z values in either mass spectrum and II,m and I2,m

are the ion intensities at m/z = m for the first and second spectra being compared,

respectively. Additional (optional) restrictions can also be placed on the data analysis,

including minimum relative abundances for peaks. Further analysis of parameter

selection and resulting limitations is given in the Discussion section.

Given a set of .ELU files representing replicates from the same sample condition,

SpectConnect first parses each file to extract all pertinent information, including the

retention time and mass spectrum of each peak. It then uses Gemoda to identify and

eliminate all internal matches from each sample: any spectra within a single sample

that are within the elution threshold and meet the weighted dot product similarity

criterion are combined into a single group, and one single spectrum is chosen as

the representative peak for further comparisons and clustering. This is due to the

aforementioned oversensitivity of AMDIS; it may return multiple peaks with highly

similar retention times and spectra that are really the same metabolite. As such, we

look to find all of the peaks in a small window that are extremely similar and reduce

them to just one representative peak (see Figure 5-4).
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Figure 5-4: The pruning preprocessing step implemented in SpectConnect. As noted
in the main text, AMDIS frequently is oversensitive (even when its own parameter
values are adjusted appropriately) in identifying "unique" peaks. AMDIS often iden-
tifies multiple peaks with extremely similar retention times and mass spectra as being
unique even though we suspect from analyzing the data that they only come from
one metabolite. As such, we implemented a preprocessing step that looks to distill
all of these "false positive" extremely similar peaks into one representative peak by
identifying all of the false peaks within some window of time on the chromatogram.
All peaks that are sufficiently pairwise similar to each other are then removed, except
for the one with the largest relative abundance. Due to its high peak area in the
chromatograph, we expect this to be the main peak and expect that its spectrum is
the least sensitive to noise, so we use it as the representative peak.
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After all replicate input files have been parsed and pre-processed, the resulting

information is used to find conserved metabolite peaks. Each sample's reduced set of

spectra (which now includes unique spectra that are not internally similar) is supplied

to Gemoda for clustering (see Figure 5-5). Here, the appropriate elution, similarity,

and support thresholds are enforced. As stated earlier, we require that true metabo-

lite peaks have spectra that are well-conserved across replicate samples. We use

Gemoda's maximal clique-finding algorithm to find sets of pairwise similar spectra.

However, our requirements can lead to complications because clique-based clustering

does not require that each item participate in just one cluster. Since a given metabo-

lite peak may be involved in multiple clusters, it is important to minimize overlapping

similarities and similarities that are not believed to be as significant. This desire to

ensure a library of non-similar metabolite peaks, combined with AMDIS's high-

sensitivity and low-specificity approach to peak identification, makes the previously

explained pre-processing steps necessary.

For each clique returned by Gemoda, the most representative spectrum is chosen,

as judged by a weighted dot product of spectra. Since the cliques may be overlap-

ping, representative spectra may be self-similar, and so this set of spectra is further

processed to eliminate internal matches in the same way as described above. After

this step, SpectConnect creates a final "library" of metabolite peaks conserved for

this sample condition; this library is returned to the user as output and is used in

additional calculations.

The identification of conserved peaks is repeated for each "sample condition" or set

of injection or biological replicates, resulting in a set of peak libraries. These sample

libraries can then be further condensed into one cumulative library by using Gemoda

to determine in how many conditions each metabolite peak occurs. The resulting

library is essentially the union of all previous libraries, and it is also returned to the

user as output.
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5.3.4 Statistical Methods

Principal Components Analysis

Principal components analysis was performed to assess the ability of proposed metabo-

lites to capture the variance in metabolic data across multiple time points in two

strains of E. coli. First, a cumulative library of components was identified from the

results of all samples of all strains at all time points. Biological replicates at the

same time points were included in the same condition, yielding 15 conditions (three

strains at five sample times). The set of all components that were conserved in at

least one strain for at least one time point was obtained using SpectConnect. Then, a

wild--type strain and strain 2 were analyzed using two different libraries: a previously

available library of MCF-derivatized standards (the "known library"), and the library

of conserved metabolites provided by SpectConnect. The metabolite-normalized (or

column-normalized) relative abundances for each sample were then used to compute

principal components for each dataset in Matlab (Mathworks, Natick, MA, USA).

Statistical Analysis

Necessary statistical tests are performed for each identified metabolite to determine

if it is differentially present to a significant degree. For each metabolite, each set of

conditions is compared pairwise using a two-tailed t-test of the relative abundance

(a percentage of total sample signal) as reported by AMDIS. If the metabolite is

identified in both conditions in a given t-test, then the t-test is straightforward;

if not, then we make a conservative adjustment. We note that metabolites near the

threshold of detection may not be consistently identified using AMDIS. Consequently,

we approximate a metabolite's relative abundance for a sample condition in which

it was not identified by a normally distributed sample of numbers whose mean and

standard deviation are equal to the relative abundance of the smallest peak in the

input .ELU files. This allows some conservative quantification of the uncertainty

involved in "not detecting" a metabolite in one sample by approximating it with

a distribution whose resulting abundances would not be expected to be detectable
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using AMDIS and SpectConnect. The result of a t-test is considered significant if

it meets an overall p = 0.01 confidence level. In order to avoid overestimating the

importance of our tests, we applied a Bonferroni correction for the total number

of t-tests performed. Metabolite condition-pairs that meet the t-test of statistical

significance are noted in the cumulative library output. It is important to note that

relative abundance is not equivalent to abundance, and our p-values reflect confidence

in differential relative abundance. If desired, a more rigorous approach to determining

absolute abundance can be taken using internal standards. For the purposes of this

work, we believe such an approach is unnecessary when screening for differential

metabolites.

5.4 Results

5.4.1 Mixtures of known components

To verify SpectConnect's ability to enumerate individual components of a mixture,

we analyzed a known standard mixture of amino acids with MCF derivatization in

replicate GC-MS runs; the results of this experiment can be found in Table 5.2.

Of the standard mixture components, 16 should have been detectable using MCF

derivatization; using SpectConnect, we identified 15 of them. Isoleucine and leucine

could not be simultaneously identified due to the resolution of our pre-processing

technique (see Methods): though they are properly deconvolved by AMDIS, their

spectra are too similar to be classified as distinct by SpectConnect. 32 additional

peaks were also detected as conserved across replicates, of which some were identified

as byproducts of the derivatization reagents. We believe that the remainder of these

peaks, which are tenfold to hundredfold smaller in size than the median of the known

components' peaks, reflect impurities in the stock mixture.

We next analyzed the same mixture spiked with additional compounds. Using

the same amino acid standard as above, we spiked eight stock chemical compounds

into the standard (see Table 5.2) and used MCF derivatization to analyze the re-
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sulting sample in replicate GC-MS runs. Each of these compounds was identified

by SpectConnect as occurring exclusively in the supplemented mixture. In addition,

approximately 100 other peaks were identified as conserved in the supplemented mix-

ture and not present in the control mixture. Based on analysis of single-compound

GC-MS runs and the fact that these peaks are also tenfold to hundredfold smaller

than the median peak of the known components, we are confident that these extra

peaks largely represent impurities introduced with the addition of multiple doping

compounds. Some of these peaks were even identified from our library of standards:

for instance, in the spiked sample we found conserved peaks for cis-aconitate, a de-

hydration product of citric acid and thus a reasonable "contaminant". It should also

be noted that aspartic acid (from the standard mixture) and citric acid (added to the

standard mixture) coelute, yet we still identified both as unique mixture components

and only citric acid as discriminatory between sample groups.

By perturbing each SpectConnect parameter from its default, we evaluated the

impact of parameter selections on our results (see Table 5.3). This impact was fairly

small for this example; the primary impact was on the number of other, unexpected

conserved peaks that were found. All parameter choices but one were able to detect

the conserved and differential metabolites in the two samples.

5.4.2 Biological samples

To demonstrate the capabilities of SpectConnect on biological samples, we analyzed

GC-MS time-course data from fermentation runs conducted with three different

strains of E. coli (see Appendix A). The strains came from previous work in en-

gineering the overproduction of lycopene [5]. We found that across five time points

over 30 hours, there were a total of 544 metabolite peaks (chromatogram peaks) that

occurred in at least one of the strains in at least one time point (but not in a blank

derivatization control), while 184 of those occurred in all of the strains in at least

one time point. (Parameter sensitivity for the number of conserved peaks found is

addressed in Discussion.) Qualitatively, this indicates that the genetic differences of

these strains have caused significant differences in their respective metabolisms. This
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result is to be expected for mutants with deletions of metabolic enzymes: some sub-

sets of metabolites are rendered inaccessible, so a significant metabolic adjustment is

necessary to compensate for such changes.

Using this cumulative library of 544 metabolite peaks, we then analyzed the

metabolomic profile of one mutant strain relative to that of the reference strain in

the course of the fed-batch cultivation. Figure 5-6 shows, for the time sample with

the greatest metabolic deviation from the reference strain as measured by lycopene

production (strain 1 at 24 hours [5]), the increase in the number of metabolite peaks

that are detected as biomarkers when using the SpectConnect library relative to those

detected when using a pre-existing library of reference spectra for MCF-derivatized

metabolites. The p-values plotted are the results of t-tests comparing relative abun-

dances (abundances normalized by total ion count) of each metabolite peak between

the two sample conditions. (These tests are performed automatically by SpectCon-

nect to identify biomarker candidates.) Only molecules that can be detected in at

least one replicate of each sample are included in Figure 5-6. While a few com-

pounds are identified using the known library, significantly more spectral signatures

are detected with SpectConnect.

Figure 5-7 demonstrates that principal components analysis using the SpectCon-

nect library for the data qualitatively captures the differences between strains and

time points better than the previously known MCF reference library. The Spect-

Connect library allows better resolution between the two strains and even suggests

more distinct "trajectories" along sample times than is possible using the MCF ref-

erence library, including a divergence of trajectories before a difference in lycopene

production is detectable. Since PCA is unsupervised, these results support the notion

that the metabolite peaks returned by SpectConnect capture biological aspects of the

system rather than just noise. As noted above, PCA is not the ideal method for

identifying potential biomarkers; rather, Figure 5-6 indicates our putative biomarkers

as defined by pairwise t-tests. Figure 5-7 serves to support the notion that the addi-

tional metabolite peaks detected by SpectConnect help to better capture the variance

in the data.
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5.5 Discussion

The method and program that we present here allows for systematic, automated

analysis of GC-MS metabolite profiling data sets, including metabolites that may not

be structurally identified by a reference library. In the E. coli metabolome dataset, we

see almost an order of magnitude increase in the number of metabolite peaks that can

be tracked with GC-MS measurements without manual curation of unidentified peaks.

Accordingly, the enriched metabolite peak set allowed for a more fruitful downstream

data analysis: differential relative abundances identified more biomarker candidates

than would be possible using strictly library-based approaches without unidentified

peaks, and PCA projections offered better characterization and separation of different

sample classes. In addition, we note that all SpectConnect computations performed

in this work took reasonable computation times, ranging from minutes to a few hours.

Since our approach relies on adjustable thresholds at which two components are

considered similar and thus conserved, some caveats related to our assumptions should

be explicitly addressed. Using set thresholds for spectral similarity or similarity in re-

tention time necessarily implies distinguishing sharply between similar cases on either

side of a threshold. This distinction is obviously not ideal, and for these reasons an au-

tomated system can never fully replace an experienced and knowledgeable researcher.

Overall, the ability of our algorithm to systematically track conserved components

relies upon intelligently-chosen assumptions, the choices of which inherently create

finite resolution limitations to the exhaustiveness of the conserved component search.

For instance, using the E. coli data set with 554 total metabolite peaks, changing

the elution threshold will yield 549 to 569 metabolite peaks (at 2 and 0.5 minutes),

changing the similarity threshold will yield 440 to 602 metabolite peaks (at 90% and

70% similarity), and changing the support threshold will yield 308 to 1659 metabo-

lite peaks (at 100% and 50% required conservation within replicates). These data

are presented in Figure 5-8. Overall, these variations seem reasonable or expected,

especially considering the large magnitude of change in threshold parameters and the

fact that some of the parameters (i.e., 50% required conservation within replicates)
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will intuitively yield a significant number of false positives. The more detailed pa-

rameter perturbation experiments detailed in Table 5.3 support the fact that, at least

in vitro, SpectConnect is robust with respect to identifying the known conserved and

differential metabolites in a sample. In general, though, it is clear that the exact

values chosen for thresholds have some effect on the method's results. Nonetheless,

for the purposes of trying to track as many metabolite peaks as possible in as simple

a fashion as possible, we believe that such a cost is marginal compared to the benefit

of a broadened scope of analysis.

The selection of these thresholds is based upon experimental protocols and simple

heuristics. The default similarity threshold of 80% is chosen to conform with the

commonly-implemented assumption that 80% similarity for comparison of a spectrum

to a library represents a likely match. The default support threshold was chosen as

75% of samples, allowing for some experimental noise from the theoretical value of

100% but attempting to avoid inclusion of artifactual spectra that may occur at

random. Since we used no internal retention index standards, we allowed for elution

similarity thresholds of one minute to account for column drift and other noise in

retention time data. The use of internal retention index standards would allow the

reduction of elution time similarity thresholds, likely resulting in even finer resolution

and less noise in SpectConnect's results. Finally, one may note that our preprocessing

method for AMDIS data decreases the resolution of our approach. For instance,

SpectConnect cannot distinguish between isomers with very similar elution times.

Improved peak enumeration and deconvolution methods will help remove the need

for this preprocessing and thus restore finer resolution to our method. As such, this

shortcoming is representative of the current implementation and is not inherent to

the general approach.

Despite these limitations, SpectConnect shows a great deal of promise for future

applications. Removing the need for a library of reference spectra not only allows

superior data analysis but also gives more flexibility in metabolomic sample prepara-

tions. Because SpectConnect works without adjustment on GC-MS data produced

using any derivatization chemistry (including the most popular TMS-based tech-
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niques), the adoption of newer, potentially simpler derivatization methods [173] is

made more practical, as the need for a comprehensive reference spectrum library is

not as pressing. Just as chromatographic and mass spectrometry instrument param-

eters are explored and optimized [125], variants of a derivatization chemistry may be

tested to increase the range of measurable compounds.

When interesting metabolite peaks are identified using SpectConnect, established

methods can be used to ascertain the molecular identities of components that cannot

be matched to a library reference spectrum. Specifically, exact mass measurements

from high resolution mass spectrometers can be used to find molecular composition

and structure; additional context clues like relative elution time and isotope ratios

can further help pinpoint molecular identity. These methods have been adopted

since the early stages of metabolomics research [56]; revision and refinement of these

methods is still an active research area, as seen by recent efforts to enhance our ability

to structurally identify high molecular weight metabolites [96]. Sharing these newly

characterized spectra in recently-created public mass spectrum databases [147] would

enable even faster exploration of previously unidentified cellular metabolites. While

we do not address such issues in this manuscript, pursuit of structural identification

for unknown metabolites that we classified as highly discriminatory is certainly the

next step in better characterizing the metabolic perturbations in our E. coli strains.

Such identifications and characterizations may play a significant role in advancing the

capabilities of the field of metabolomics.

SpectConnect also allows for the potential to thoroughly explore the differences be-

tween metabolomes of different species. By comparing many diverse species we may be

able to determine the extent to which genetic similarity correlates with metabolomic

similarity. That is, we can perform a more accurate assessment of the phylogenetic

uniformity of the metabolome than is otherwise currently possible, as we will not be

limited to those metabolites that are currently well-known and well---characterized.

In total, SpectConnect's direct contributions are significant: it helps broaden the

scope of the systematic search for biomarkers, and it provides a unique, powerful,

automated, and simple tool for interpreting complex, high-dimensional metabolomnic
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Chapter 6

Future directions in metabolomics:

Exploring an organism's

metabolome

6.1 Overview

This chapter will address future directions in metabolomics as relevant to this work.

This discussion will be dedicated to a project that was inspired by the potential

applications of SpectConnect (as presented in Chapter 5) to large-scale metabolomic

experimentation. The results of preliminary explorations in these directions will be

presented in this chapter. I will discuss potential future directions for this specific

project, including deficiencies in the current experimental approach that have been

identified and must be fixed in order to continue with the project.

6.2 Introduction

So much of the explanation regarding SpectConnect referred to "metabolomics" as

the ultimate goal of the work. One purpose of metabolomics is, obviously, to simul-

taneously analyze as many metabolites as possible, in the hopes that one can capture

all of them in one assay. SpectConnect looks to move towards this by allowing the
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tracking of metabolites by mass spectrum rather than by name, thus eliminating

a previous limitation on metabolomic data analysis. In biological systems, though,

some metabolite intermediates are present in so small quantities that they may be

well below the detection limits of one's instrumentation. In this case, the abilities of

our data analysis techniques are not the limiting aspect of the process. The fact that

some of these metabolites are just not always present in detectable quantities will be

the analysis-limiting aspect of this process.

One can easily imagine a situation where a pool of a certain metabolite usually

has a concentration just below the detection limits of the analytical instrumentation.

Due to biological variation, one may expect that occasionally this metabolite may be

present in high enough concentrations that the instrument can detect it. However, if

we do not have a reference standard for this metabolite (as would seem to be likely

for such intermediates), then we would have no way to identify those times when the

metabolite was detectable. SpectConnect would also be ineffective, as one isolated

metabolite peak amongst multiple biological replicates does not provide sufficient

confidence in the metabolite's authenticity to include it in SpectConnect analysis.

It is in addressing these issues that we were inspired to see if we could character-

ize an organism's entire metabolome. On one level, it is an intrinsically interesting

scientific problem that no one has truly been able to solve to date (with the pos-

sible exception of the Human Metabolome Project [179], though many have doubts

about the completeness of that database). On another level, and more related to the

above discussion, if we can characterize the organism's entire metabolome, we can

utilize both data analysis approaches - SpectConnect and library-based matching

- for arbitrary samples. This would allow us to track both conserved and sporadic

metabolites, perhaps giving even more potential for biomarker discovery and sam-

ple characterization than SpectConnect alone can give. Of course, one can imagine

that if one had a truly complete reference library that the need for SpectConnect

would no longer exist; this is only partly true. While knowing the reference spectra

for all metabolites under one set of derivatization conditions would be sufficient for

tracking of metabolites under those conditions, there are numerous different sets of
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derivatization conditions that people may be interested in using. Also, the addition

of foreign nutrients or chemicals to a medium or biological system (for example, a

person taking a prescription drug) will cause non-native metabolites to appear that

would not otherwise be included in our characterization of the metabolome. Thus,

it seems there would always be some function for SpectConnect, even if the creation

of a truly complete reference library would serve to make it unnecessary in many

situations.

6.3 Truly "metabolomic"?

Of course, this idea begs the question, "Can we really perform a truly metabolomic

analysis at all?" More specifically, one may wonder if, given our hyphenated separation-

characterization approach (GC-MS, LC-MS, etc.), it is possible to detect all of the

metabolites in a sample in just one assay. It seems that the answer to this ques-

tion is almost certainly "no". For GC-MS, the reason is obvious: in order for the

metabolites to elute on the gas chromatograph, they must be sufficiently volatile. As

most metabolites are not very volatile, the first step in metabolomic GC-MS analysis

is to derivatize the sample, which changes certain functional groups on molecules to

other functional groups that drastically increase the vapor pressure of the individual

compounds. This "volatilization" is limited only to the classes of compounds con-

taining specific functional groups that one's given derivatization agent of choice can

transform, whether they are hydroxyl groups, amine groups, or some other groups.

Thus, in each assay, we are limited to only analyzing the subset of the metabolome

that has at least one of the functional groups that we can derivatize. In LC-MS,

analysis is restricted based on the phase of the sample: one will take either the polar

or the nonpolar portion of the sample and use the appropriate column for an assay

(the two do not typically use the same column). Thus, in this case, we are limited

to only polar or nonpolar metabolites in any given assay. Similar arguments can be

made for most hyphenated metabolomics approaches.

To this end, we acknowledge that given current technologies, a truly metabolomic
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single assay is just not feasible. We then turn our focus towards at least trying to

capture as much as we can with one technique - when discussing GC-MS, one could

go so far as to refer to it as a "derivatizome", though that will likely be the word's

only usage in this document. Specifically, we will try to characterize all of the polar

phase metabolites that could possibly be detected using TMS derivatization and a

GC-MS.

6.4 Our model system and approach

We chose to use Saccharomyces cerevisiae, or baker's yeast, for our investigations.

We chose yeast for a number of reasons. First of all, it is one of the most well-

studied systems, so experimental protocols are well-defined and its physiology and

metabolism are also both relatively well-defined. Second, as a unicellular organism,

it is a relatively simple system to study (compared to multicellular organisms with

different cell types that may have different typical metabolomic profiles). Third, as

a eukaryote, knowledge gleaned from our work is more likely able to be applied to

more complex and interesting systems than one might expect from a prokaryotic cell.

Fourth, S. cerevisiae is an industrially relevant organism, such that as engineers we

may able to leverage our findings into a practical application with substantive impact.

One last reason for using yeast is the relative robustness of S. cerevisiae to culture

conditions compared to some other common systems (e.g., Escherichia coli). This

last reason is just a bit of practicality: given so many different possibilities for our

model system, we may as well choose one that is easier to grow.

Our approach, then, is to perturb these yeast cells in as many ways as we can

think of (and as is practical) and use SpectConnect to analyze the results. By doing

this, we believe we will be able to characterize all of the metabolites that can be

detected by GC-MS given our derivatization chemistry.

First of all, the use of SpectConnect is a necessity in this project. We will be look-

ing at hundreds of relatively small peaks in tens to hundreds of different experimental

conditions (and thus tens to hundreds of different samples' chromatograms). As noted
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earlier, we expect that many low-concentration metabolites will not have easily ac-

cessible reference spectra. In Chapter 5, it was pointed out that of the estimated 600

metabolites in S. cerevisiae, only about 200 of them can actually be purchased [46].

Tracking only metabolites with known standards, then, is unacceptable. In order to

distinguish the legitimate metabolite peaks from the noise peaks across these numer-

ous metabolomic analyses, it will be necessary to use SpectConnect to track peaks by

retention time and mass spectrum rather than by name. Thus, we will need to have

multiple sample or injection replicates of our cultures. Finally, it is worth noting that

even if we did have all of the desired metabolite standards for known metabolites,

it would still be worthwhile to use SpectConnect in case there are some relatively

unknown metabolites in obscure pathways. Given the host of hypothetical and unan-

notated genes in the S. cerevisiae genome, it is reasonable to expect that not every

possible metabolic reaction has been discovered; our approach is one reasonable way

of finding those potentially unknown metabolites and reactions.

Perturbing the yeast cells serves to change metabolism such that we expect to

detect metabolites that would otherwise slip under the detection limits of the in-

strumentation. We will need to use both genetic and environmental perturbations

for these experiments. As we perform more perturbations, SpectConnect will have

detected more unique metabolites across the different samples; this will enable bet-

ter tracking of low-concentration metabolites in samples where they may only be

detectable in a small number of sample replicates.

Environmental perturbations help to test metabolic response to a variety of feed-

stocks, additional chemicals, or external conditions (like heat or salt). Some metabolic

pathways may only be active in certain conditions; others may have some basal level

of activity so low that most of the metabolites in the pathway are not usually de-

tectable. By forcing these pathways to become active, we are more likely to detect

these otherwise low-concentration metabolites.

Genetic perturbations will provide a broader spectrum of information than can be

obtained by environmental perturbations alone. Appropriate genetic perturbations

include gene knockouts, gene overexpressions, and potentially even gene knockdowns
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(for critical metabolic enzymes). If, for example, a gene towards the end of a pathway

is knocked out, we expect some degree of buildup of the immediately upstream sub-

strate metabolites that can now no longer be converted to their ultimate target. Such

cases will provide the ability to characterize and track those metabolites even if they

are normally at extremely low concentrations in wild-type strains. Other knockouts

may prompt a sort of metabolic "rewiring" to circumnavigate the eliminated gene

and highlight pathways that otherwise might not be easily seen. In total, then, ge-

netic perturbations of our cultures represent a powerful tool to explore as much of

the metabolomic space as possible.

Of course, the power of genetic perturbations does not obsolete the utility of envi-

ronmental perturbations. We expect that some metabolic changes may only (or best)

be effected by environmental perturbations. Environmental perturbations can easily

affect multiple enzymes or transcription factors simultaneously, so in this sense they

offer an almost uniquely multifaceted approach to perturbations. In addition, envi-

ronmental perturbations are extremely easy to create; genetic perturbations are much

more time-consuming. In this way, it makes sense to pursue as many environmentally

perturbations as possible since they are the simpler, cheaper, less time-consuming al-

ternative.

Perturbations will be selected based on knowledge of yeast metabolic pathways.

Initial perturbations will be relatively simple in an effort to start accumulating most

of the "obvious" metabolites. We will then survey the metabolites that SpectCon-

nect has characterized to see how many of them have known reference standards.

These now completely "known" metabolites can be used as a reference point on the

metabolic map: if we have already detected all of the metabolites in a given path-

way, then a knockout in that pathway may not be useful since we don't expect the

accumulation of metabolites that we have not yet detected. Conversely, pathways

that seem to have little coverage in the current dataset are more promising targets

for gene knockout experiments and other genetic perturbations.

We expect that eventually the number of unique metabolites will asymptotically

level off. In theory, each new perturbation is meant to detect new metabolites. Even-
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tually, we will have found most of the metabolites that are in the cell, and it will

be increasingly harder to detect new ones. Since SpectConnect is not prone to accu-

mulating many noise peaks (since each peak must be well-conserved within sample

replicates), we then expect that eventually we will perform multiple perturbations

that do not identify any previously unseen or uncharacterized metabolites. This

would then be the practical stopping point for our experiments. Since we would

never know if the library of metabolite spectra was totally complete, we would never

be certain that another experiment would not allow us to detect a previously unseen

metabolite. However, if our total number of metabolites as a function of the number

of perturbations seems to reach an asymptote, we can reasonably expect that we have

found most of the metabolites.

6.5 Preliminary analysis

Before beginning experiments, we performed some preliminary analysis with Spect-

Connect to identify the minimum number of sample replicates desired and to get a

sense for the sensitivity of the results with respect to this number. To do this, we

analyzed a dataset previously provided by Dr. Henri Brunengraber [32]. This dataset

was derived from 10 replicates of ethanol-perfused rat liver. We applied SpectCon-

nect to each possible subset of replicates with cardinality of at least 2; by doing this,

we were able to identify essentially a "distribution" of possible conserved metabolite

profiles that could be obtained by any random subset of any given size. These more or

less amount to bootstrap distributions for each possible number of samples analyzed,

thus characterizing the inherent uncertainty in our data based on the finite size of

our sample set.

The results of this analysis are seen in Figure 6-1. From this figure, it seems that

using only three or four replicates provides an overestimate of the number of well-

conserved metabolites (which we assume to be defined by the metabolites found in the

complete dataset, with 10 replicates). The non-monotonous nature of the curve is not

surprising when one considers the threshold values that SpectConnect uses. These
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samples were analyzed with all default values, meaning that the "support" threshold

(minimum number of samples in which a metabolite peak must be present in order

to be tracked) was 75%. Fractional values are rounded to the nearest whole number,

such that sometimes when one replicate is added to the analysis the required support

does not increase. For example, if we have six sample replicates and added a seventh,

the required support at the 75% threshold would increase from 4.5 to 5.25. Rounded

to the nearest whole number, both of those values is 5. Thus, due to the discretization

in the small number of sample replicates, the amount of permissible noise in the data

increases. We would then expect to find more conserved metabolites: some of these

are legitimate metabolite peaks that were right at the threshold of detection and thus

were sometimes just below that threshold, while other peaks may be artifacts of noise.

Generally speaking, one would expect relatively few noise peaks at such high numbers

of replicates - it ought to be difficult for a "noise" peak to occur in five replicates

when there are only seven total - so we presume that most of the metabolite peaks

added are just low-lying peaks.

Additionally, we see that SpectConnect is only somewhat sensitive to the number

of replicate samples that are analyzed. As we increase from five to ten replicates,

we see that the total number of metabolites found does not change drastically; the

total variation is less than 15%. When we factor in the confidence intervals, we see

that there is almost no statistically significant change as the number of samples is

increased. Those confidence intervals are significantly (and monotonically) decreased,

though, by adding additional sample replicates. This means that for any possible

subset of replicates, the largest and smallest possible number of metabolite peaks that

would be found is much closer to the true expected value when more sample replicates

are used; we can then have more confidence in those values. Additionally, we see that

there is a relatively consistent decrease in the number of metabolites that are identified

as sample replicates are added (except at the previously mentioned discontinuity).

This means that we can have more confidence in the metabolite peaks found when

there are more sample replicates as the number of noise peaks is decreased; however,

this also likely means that we are slowly losing the ability to track low-concentration
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Figure 6-1: A bootstrapping attempt to characterize the inherent error in SpectCon-
nect due to a finite dataset sample size. For the total dataset obtained from ten
sample replicate GC-MS injections of ethanol-perfused rat liver obtained from Dr.
Brunengraber[32], we performed SpectConnect analysis for each possible subset of
replicates with cardinality of at least 2. The mean number of metabolites found for
each possible subset size is represented by the blue line, with 95% confidence intervals
represented by the error bars. The discontinuities in the otherwise monotonic curve
are described in the main text. Overall, we see that as more replicates are used, the
variation due to the finite sample set size decreases. We also see that the total number
of metabolites typically also decreases, until it converges on the well-conserved set
of metabolite peaks found by analysis of the whole dataset. We expect that some
of the metabolites lost between having five and ten replicates are low-concentration
metabolites that may sometimes be just below the threshold of detectability for our
analytical methods, making them untrackable given our requirements for tracking
metabolites.
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metabolites which may be obscured by instrumental or analytical noise. It seems that

given these phenomena, we will likely have to make some tradeoff between specificity

and sensitivity.

From the information gleaned from these preliminary calculations, we can also

analyze the chances that SpectConnect is finding "false" peaks. This can be seen by

visualizing the data in a slightly different way, as seen in Figure 6-2. Here, we compare

the number of peaks found as we add replicates one at a time. For instance, with only

two replicates (the red x at 2 on the x-axis), there are about 425 peaks found, whereas

with three replicates there are about 575 peaks (as seen by the blue circle at 2 on the

x-axis). The solid black line represents the total number of peaks found between the

two sets of replicates; that is, when SpectConnect is run with one "condition" having

two replicates and the other "condition" having those two replicates plus another,

the black line represents the total number of metabolite peaks in the non-redundant

library created from analyzing both conditions. If adding additional sample replicates

were causing noise to enter our analyses, we would expect either that the black line

would be above both the red x and the blue circle, or that we would see erratic

behavior in the black line. The former possibility would mean that certain disjoint

subsets of metabolites were being tracked, while the latter would indicate overall, non-

deterministic sensitivity of the method to the number of samples analyzed. Instead,

we see that the black line tracks ahnost exactly with the greater of the red x or blue

circle, meaning that the addition or subtraction of samples is only creating subsets

and supersets of metabolite peaks; that is, if unique metabolite peaks are found in

one set of samples, no unique peaks are found in the other, making its peaks a subset

of the other samples' peaks.

From all of this information, we can make a few generalizations about the results

that we expect SpectConnect to provide in our experiments. First of all, we expect

that the number of sample replicates will have a relatively weak effect on the overall

results of our analysis once we have at least four or five sample replicates. We can set

whether we are more or less likely to find low -lying metabolite peaks by choosing an

appropriate number of sample replicates; for instance, seven replicates ought to lead
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of metabolites identified as much as the overlap between different datasets analyzed
by SpectConnect. For each point on the x-axis, SpectConnect was run with x sample
replicates. The number of metabolites found in that analysis is denoted by the red
x. The same x metabolites, plus 1 more, are also run as a separate "condition" in
the same SpectConnect run. The number of metabolites found in that analysis are
denoted by the blue circles. The library comprising all of the peaks in both conditions
is denoted by the black line. Since there is no erratic noise in the black line, and the
black line almost always tracks the greater of the blue circle and red x, we infer that
the actual metabolites being tracked as the number of replicates increases are robust,
even if the total number of metabolites tracked tends to vary.
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to the discovery of more low-lying peaks than six replicates would reveal. (Of course,

using seven replicates would likely entail either some sort of asymmetric or unusual

experimental protocol, or explicitly leaving out portions of datasets, which would raise

even more questions about the best way to analyze the data.) We also have quite a

bit of confidence in the robustness of the actual peaks discovered --- as opposed to

the number of peaks discovered --- as a function of the number of samples that are

used. We do not expect the sets of peaks found to change drastically, though the total

number of peaks may vary a little bit. Altogether, it seems that SpectConnect is a

promising tool to perform our goal of characterizing and tracking all of the chemically

accessible metabolite peaks in an organism.

6.6 Experimental plans and difficulties

Initial experimental plans and timelines called for a combined experimental effort

with Jason Walther. While I had no previous experimental experience in our group's

work, I was slated to help out as an extra pair of hands for complicated techniques

and otherwise to relieve some of the experimental burden from Jason so that this

project would not interfere with his primary thesis objectives. He spent some time

training me, and together we began developing an optimized protocol and workflow.

We estimated that the experiments would be sufficiently low--maintenance that the

entire workflow, from cultures to GC-MS injection, could be done over a long period

in our spare time.

As we developed our protocol and workflow and began preliminary tests, we found

a few unexpected circumstances. First of all, the entire process was much more time-

consuming than we had expected. Among other confounding issues, different environ-

mental perturbations caused different growth rates, meaning that it was difficult to

get experiments synchronized and thus more time--consuming to quench and process

the samples. An alternative would be to freeze quenched samples and accumulate

them for later batch processing, but we found that there were numerous bottlenecks

in our experimental workflow that precluded the processing of more than about eight
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samples (three biological replicates and a control). While this approach wound up

being more efficient in terms of time, it still amounted to at least a week of working

time per experimental perturbation. Finally, some difficulties with our instrumen-

tation sidetracked us for weeks, ultimately leading us to wait for a new instrument

to arrive. By the time this new instrument had arrived and was running, a few

months had been lost. At this time, I was anxious to get some of this work started,

while Jason had accumulated other important priorities that needed to be addressed,

so I began the experimental work on my own. The results presented here are the

beginnings of this work.

6.7 Experimental results

Only environmental perturbations were addressed in this preliminary work. Both

glucose and galactose were used as carbon sources for the cultures. Glycerol was

another possible simple carbon source, but I was unable to get the cultures to grow

to any significant density using glycerol as a sole carbon source, so I eventually aban-

doned those attempts. Two different environmental perturbations were analyzed:

heat shock and hyperosmotic shock. Two different time courses were performed for

each perturbation. For heat shock, the temperature of the fermentations was raised

to 37'C. In one time course, this was done by merely transferring the cultures to a

warmer orbital shaking incubator. In the other time course, samples of the cultures

were added to medium already at the target temperature. For hyperosmotic shock,

the total salt (NaCl) concentration was increased to 1 M. In one time course, this

was done by adding concentrated salt to the cultures; in the other, samples from a

preliminary culture were added to prepared medium such that the total concentration

of salt would be 1 M. The time points analyzed were at 0, 15, 30, and 75 minutes

after the perturbation. Unfortunately, at least one set of samples was lost due to

accidentally being thawed. (Detailed protocols for experimental sampling and prepa-

ration are included in Appendix B.) The total number of metabolites found in each

sample condition is seen in Figure 6-3.
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The control conditions in this figure have a surprisingly large number of both total

and unique metabolite peaks. Deriv-1 and Deriv-2 are controls that contained only

derivatization reagents. Gal-C and Glu-C are controls that contained only medium

and derivatization reagents. These may have a high number of tracked metabolites

for a number of reasons. For the derivatization controls, I ran fewer sample and

injection replicates than for the other samples, so there may be more noise peaks.

Alternatively, since there are fewer compounds in these samples, it is possible that

the baseline and other noise may be slightly lower, and thus the low-lying peaks

reflective of those derivatization reagents may be seen. For the glucose and galactose

media controls, similar reasons may explain the large number of both total and unique

metabolite peaks detected by SpectConnect.

The remaining eight conditions have trends more in line with expectations, though

with some deviations. The number of metabolites detected, typically on the order of

100, seems reasonable. The number of unique metabolites detected is typically rather

small; this would be expected, as the sample conditions analyzed are not sufficiently

diverse that we would expect a significant number of metabolite peaks found in only

one condition. On the other hand, the number of metabolite peaks found in the

cultures 75 minutes after perturbation was surprisingly small. This may be due to the

perturbations causing the cells in the cultures to die, though that ought not to have

been the case, as the perturbations were not so severe that they should have evoked

such a response. It is probably more likely that this is due to experimental error,

whether in the culture conditions or in the sample preparation. This experiment has

not been repeated to confirm the source of this anomaly. The only other somewhat

anomalous result is the fact that the time 0 sample for both heat shock and salt

shock is surprisingly dissimilar from the glucose sample (which should, in principle,

not be any different). Again, this may be due to experimental error. Another likely

source of this variation may be where the two cultures were in their growth curve

when they were sampled: one may expect that the metabolic profiles of a culture still

in exponential growth phase and one in stationary phase would be quite different.

Another way of viewing this data is seen in Figure 6-4. This figure shows the
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number of metabolites that are found in a given number of sample perturbation

conditions. The fact that no metabolites were found in seven or eight conditions

is very surprising, as we would expect a core set of metabolites to be present at

detectable levels in all perturbations; this may be accounted for by the perceived

error in the 75 minute time point samples. That leaves very few metabolites present

in five conditions and none present in all six of the remaining conditions. Again,

this is disheartening, but may be explained by the other perceived errors discussed

above. This distribution is surprisingly weighted towards metabolites present in only

one condition, but this may be partly explained by the issues previously discussed.

This overlap can be seen more clearly in Figure 6-5. Here the correlations are

quite evident: cultures from time course samples 0, 15, and 30 are extremely similar.

The potentially "dead" cultures at the 75 minute time point have virtually nothing

in common with any of the other cultures. What is most surprising is that HSO

has very little in common with Gal and Glu, which each in turn have very little in

common with each other. Other than potential growth phase differences, one would

expect HSO and Glu to be very similar, as they are essentially identical cultures.

Analysis of HWO was performed at the same time as the 15, 30, and 75 minute time

points, while the Gal and Glu samples were analyzed some time prior to that. In the

intervening time, quite a few problems with the GC-MS instrumentation had been

discovered and quite a bit of routine maintenance had been performed; if some of the

subsequently identified GC -MS problems were present during the analysis of the Glu

and Gal samples, this may explain the lack of correlation with the other samples. As

noted already, though, the consistency between the different time points (other than

75 minutes) is encouraging for our potential reproducibility. The culture for the 30

minute time sample was performed a few weeks prior to the other cultures, meaning

that even across some biological variation we are still able to capture correlations and

similarities in metabolomic profiles.

The character of all metabolites found can be qualitatively seen in Figure 6-6.

Clearly, quite a few peaks were found in both the derivatization and culture medium

controls. These peaks had relatively little overlap with the peaks identified from yeast
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Figure 6-4: Histogram of metabolite frequency across the eight non-control conditions
in Figure 6-3. The number of metabolites present in x conditions is plotted on
the .x-axis. This distribution is surprisingly weighted towards unique metabolites, a
phenomenon discussed in more detail in the main text. The number of metabolites
found in 2, 3, and 4 different conditions is encouraging given the perceived accuracy
of some of the experiments performed.
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cultures, with only about 25% of the metabolite peaks from cultures falling in that

category. A core set of metabolite peaks was identified in both controls and culture

samples, while additional metabolite peaks were identified that were in both controls

but not in any culture samples. Were we more confident in this experimental data,

we would then hypothesize that we had enumerated 293 different metabolite peaks

that can be characterized using TMS derivatization for GC-MS analysis of the yeast

metabolome. In reality, though, I would imagine this number to be closer to about

100 judging from the time-course results in Figure 6-3.

6.8 Conclusions

The results of this preliminary study indicate that our approach is promising but that

some experimental difficulties must be worked out. As noted above, the workflow

for this process has yet to be optimized for a high-throughput approach. Without

such optimization, performing the desired study would take an intimidatingly large

amount of work. In addition, the experiments must be refined so that they are much

more repeatable. Obviously we expect significant biological variation from experiment

to experiment, perhaps even up to 20% in terms of metabolite concentrations, but

the variation between SHO and Glu (discussed above) is unacceptable. Culture and

preparatory protocols must be refined such that the results produced are much more

consistent. Despite all of those caveats, this does seem to be a promising approach

to explore the metabolome of a species. SpectConnect is well-suited to solving this

problem, as demonstrated by our preliminary computational experiments. Our simple

metrics of analyzing the resulting data (number of unique metabolites, number of

overlapping metabolites between conditions, etc.) are particularly useful for getting

an immediate and simple characterization of the trends in the data.
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Figure 6-6: Venn diagram for the metabolite peaks found in yeast cultures and both
types of controls. A number of peaks unique to cultures but neither control condition
may be likely metabolites. Peaks found only in controls are likely only artifacts of
sample prep and analytical noise.
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Chapter 7

Additional projects in sequential

data analysis

In the course of pursuing the main goals of this thesis, some additional interesting

projects and opportunities have arisen. These "side" projects will be explained in

more detail in this chapter.

Both side projects presented here spring from the investigation of the BLOSUM

family of amino acid substitution matrices. The first project describes the discovery of

an error in the code used to create the BLOSUM matrices and the subsequent impact

that the error has had. The second project describes the imagined "evolution" of the

BLOSUM matrices had they been updated to reflect the growth of the database used

as the input for their initial creation. This work has been done in collaboration with

Kyle Jensen and will soon be under consideration for publication.

Again, the word "we" may frequently used in this chapter to refer to the respective

authors for each project and the work that they have contributed to the project.

161



7.1 A surprising error in the BLOSUM matrices

7.1.1 Overview

The BLOSUM family of substitution matrices, and particularly BLOSUM62, has

become a de facto standard in protein database searches and sequence alignments.

The key insight in their creation was the algorithm to calculate the matrix entries,

which used conserved blocks of aligned proteins and limited the impact of highly

similar proteins. However, the implementation used to create these matrices had

some key inconsistencies with the published algorithm; these inconsistencies have in

turn had a profound impact on the BLOSUM matrices used today.

To evaluate this impact, we have used exhaustive pairwise sequence compari-

son with both BLAST and Smith-Waterman searches against a set of hand-curated

structure-based protein homologs to determine a matrix's effectiveness at locating

distant homologs. We find that, to a statistically significant degree, the BLOSUM62

matrix used today outperforms the matrix that should have been created. We also

find that this performance is dependent upon the order of sequences in the database

used to create the BLOSUM matrices. Since the database sequences were ordered

based on arbitrary metrics, including alphabetization, a slightly different database or

different arbitrary decisions would have led everyone to be searching with an inferior

matrix instead of an almost aberrantly superior matrix. We conclude that the sur-

prising performance difference is an unexpected byproduct of scaling and rounding

matrix entries. While some inconsistencies have been resolved in subsequent source

code releases, the updated matrices have never been adopted. This means that we

have been using "incorrect", but better, BLOSUM matrices.

Again, the word "we" will frequently be used throughout this section to refer to

the collective authors of this work and their contributions.
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7.1.2 Introduction

While many different amino acid substitution scoring matrices have been proposed

in the literature, the BLOSUM series [66] of matrices is one of the most widely used.

(Overviews of some of the available matrices can be found elsewhere [69, 67, 174].)

In fact, one single matrix, BLOSUM62, has become an almost de facto standard for

default, out-of-the-box sequence comparison and database searches. It is the default

matrix for such commonly-used tools as FastA [131], BLAST [10], t-coffee [124], and

Clustal-W [163]. Ssearch [129, 130], one of the most commonly-used implementa-

tions of the Smith-Waterman [152] local alignment algorithm, currently uses another

BLOSUM matrix, BLOSUM50, as its default.

One of the intellectually appealing aspects of the BLOSUM family is that it was

created in a straightforward, intuitive way that reflected contemporary knowledge

of protein structure and similarity. It was constructed in 1992 from Blocks 5, a

database of highly conserved protein regions, or "blocks", derived from families in

the PROSITE database [74]. A thorough explanation of the derivation is given else-

where [66], and a "primer" version of the explanation has also recently been given [49].

In short, the blocks were used as a training set to derive a set of implied target fre-

quencies with which an amino acid of one type can ably substitute for another amino

acid. To minimize increased impact of highly homologous sequences, all block mem-

bers that met some threshold for percentage identity were clustered together. These

clustering thresholds gave rise to the names of the matrices - BLOSUM62, BLO-

SUM50, etc. - and helped distinguished the relative level of similarity between

sequences that each matrix was tuned to detect.

In the course of looking into the potential impact of updated Blocks releases on the

BLOSUM matrices that could be made from them [159), we noticed some anomalies

in the code used to create the initial BLOSUM family of matrices. While some of

these anomalies have been corrected in subsequent versions of related programs by

the same authors [70], it is interesting to note that the matrices in common use were

never updated accordingly, so few people are aware of the anomalies or the impact
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that they may have had on the substitution matrices that we use on a daily basis. In

the following sections, we will detail the anomalies and analyze the impact they had

on the BLOSUM matrices by analyzing the effectiveness of a variety of matrices at

detecting distant homologs.

7.1.3 Methods

Matrix creation

Matrices were created using the methods described in the original BLOSUM manuscript [66].

The programs and Blocks training data used to create the original BLOSUM series of

matrices were obtained from ftp://ftp. ncbi. nih. gov/repository/blocks/unix/

blosum/blosum.tar. Z. Additional, updated programs were obtained from ftp://

ftp.ncbi.nih. gov/repository/blocks/unix/blosum/programs, while Blimps pro-

grams were obtained from ftp://ftp .ncbi .nih. gov/repository/blocks/unix/blimps/.

All matrices were created using the same Blocks 5 release available when the BLO-

SUM matrices were initially published.

Sequence datasets

We used the ASTRAL database [30] as the database for our searches. Our method

was designed to emulate the work by Price et al. [136]. ASTRAL is created based on

the SCOP database [117], which classifies proteins based on their function, structure,

and sequence into a hierarchical structure of classes, folds, superfamilies, and families.

Sequences in the same superfamily can have low sequence similarity, but are likely to

have a common evolutionary origin based on their structural and functional features.

Because these classifications are made by human inspection, not via automated se-

quence alignment procedures, it makes an ideal "gold standard" for remote homolog

detection tests.

From the full set of ASTRAL genetic domain sequences, we chose the sequence

set from which 40% identical sequences had been eliminated. By using this subset,

our search focuses on the detection of remote homologs that are more challenging
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for substitution matrices to discover and thus will differentiate the abilities of the

respective matrices to find distant relatives. The sequences were further filtered by

pseg [181] for the removal of low-complexity regions. The unfiltered sequence set

is available on-line from the ASTRAL database at http://astral. berkeley .edu/

scopseq-1.69/astral-scopdom-seqres-gd-sel-gs-bib-40-1.69.fa. This non-

redundant set numbers 7290 sequences. Each sequence was extracted from the

database one at a time and used as a query for the entire database. Search results in

the same superfamily as the query were considered to be true positives.

Search methods

We used both the Smith-Waterman [152] local alignment algorithm and BLAST [10]

for searches against the databases. In particular, we used the ssearch implementation

of the Smith-Waterman algorithm [129, 130] and the NCBI version of BLAST in the C

Toolbox, obtained from ftp://ftp. ncbi. nlm. nih. gov/toolbox/ncbi_tools/, which

gives the same results as the commonly-used web interface at NCBI. While Smith-

Waterman is an exhaustive, sensitive search that may give a more accurate assessment

of a given matrix's performance capability, BLAST is a faster search that is almost an

"industry standard" and so better represents the impact of different matrices on the

"average user". In addition, BLAST can be run in an ungapped fashion to eliminate

the effects of gap penalty parameters.

For our Smith-Waterman database searches, we mostly used the default param-

eters of the ssearch program, with one notable exception: we varied the gap initi-

ation (existence) penalty from -6 to -14 and the gap extension penalty from -1

to -2 for the initial and revised BLOSUM matrices we investigated. (In general,

we expect relatively broad maxima of approximately optimal penalty values, as seen

previously [60].) For matrices with different scales, we changed the gap parameters

accordingly.

For our BLAST searches, we varied the gap penalty parameters as in the ssearch

sections. Appropriate A, K, a, and /3 parameters for significance estimation were

calculated using the island method described elsewhere [126, 9]. Calculations were
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performed using routines provided by Stephen Altschul [7]. Other than gap penal-

ties, all other default parameters for the toolbox version of BLAST version 2.2.13

(12/6/2005) "blastall" were used. Notably, this does not include composition-based

adjustments of E-values, which are now used by default on the NCBI web interface

of BLAST. Previously [146], these adjustments have been shown to actually decrease

performance in individual protein database BLAST searches.

Evaluation of results

We used the Bayesian bootstrap method to evaluate the statistical significance of the

mean difference in coverage between any two substitution matrices in our ASTRAL-

based tests [136]. This method uses coverage vs. errors per query as a means to

evaluate the effectiveness of different substitution matrices, where coverage is defined

simply as the fraction of true positives found at a given errors per query threshold.

Concerted Bayesian bootstrapping is used to determine the statistical significance of

the difference in matrices' effectiveness by evaluating whether slightly different refer-

ence databases would have yielded different coverage vs. errors per query curves. True

positives were identified as described above. The best-performing gap parameters for

each respective matrix were used to compare performance.

It is worth noting that the most appropriate way to compare two families of

matrices is via entropy analogues. A matrix's relative entropy is a reflection of the

required minimum length of homology necessary for a potential "match" or "hit" to

be distinguishable from noise [6]. Comparing matrices with different entropies would

be an inappropriate comparison as the matrices could be tuned to find homologous

regions of different lengths. By comparing matrices with the same relative entropy,

we can better assess the "value" or "correctness" of the information encoded in the

matrices. As such, all matrices in this work that were used to search any database

were (unless otherwise noted) chosen to have approximately the same relative entropy

as BLOSUM62, which was 0.6979. Previous work [67] has further shown that matrices

with entropy values of about 0.7 typically have the best average performance within

a substitution matrix family.
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7.1.4 Results

The program used to create the original BLOSUM matrices, named blosum. c, had

a number of different anomalies that caused its calculations to deviate from what

they theoretically should have been. The anomaly with the most impact involved

normalization of sequence weights in forming "clusters". The premise of the re-

clustering step in computing the BLOSUM matrices is that sequences that are highly

similar should be downweighted (counted as essentially only "one protein") so that

they do not contribute too much to the substitution frequencies. This insightful step

is the linchpin behind creating a family of matrices reflecting various evolutionary

distances. As it turns out, this step was not implemented in the program exactly as

it was described in the published algorithm.

When two sequences are compared to find their substitution frequencies, weighting

consistent with the described algorithm would require that the contribution of such

a pair be divided (normalized) by the size of the two clusters to which the sequences

have been assigned, so that the overall contribution of each cluster is equal to just

"one protein". However, as implemented in the program, the weight is normalized

by only one cluster size, not both. As an example, we analyze this vastly simplified

block consisting of six sequences of length 3:

KLW

KLA

RLW

KKL

VKL

PIL
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If we were to re-cluster these sequences at 62% identity, then they would be in the

three groups as indicated by the spacing above: KLW is 67% similar to both KLA and

RLW, so those three form one cluster even though KLA and RLW are only 33% similar.

For the purposes of determining the number of "substitutions" at any given position,

each cluster is essentially considered as "one protein". In this example, then, there

are only three "proteins" after clustering, meaning there should only be three total

substitution pairs per position ("proteins" formed by clusters 1 & 2, 1 & 3, and 2 &

3). However, we should not throw away the information encoded by all of the possible

substitutions from the members of the clusters, so we will count substitutions between

all sequences that are not in the same cluster and weight them appropriately such

that we only have a total of three substitution pairs. This serves to decrease the

influence of highly similar sequences that have not diverged much. To perform this

weighting, we should normalize each substitution, or pair, by the product of the two

cluster sizes.

We will use the first column as an example. Without weighting, there are three

K-K pairs, three each of K-R, K-V, and K-P pairs, and one each of R-V, R-P, and

V-P pairs. Accounting for clustering, though, each pair would need to be normalized

by the size of the clusters from which the sequences used to form the pairs were

drawn. For the K-K pair within the first cluster, there would be no contribution

(since all of the sequences in the cluster are essentially "one" protein). For the K-K

pairs formed between the first and second clusters, there would be 2 pairs of weight

1/6, resulting in a total of 1/3 K-K pairs. Proceeding through the rest of the pairs,

the total weights would be 1/6 for R-K, 1/3 for K-V, 7/6 for K-P, 1/6 for R-V, 1/3

for R-P, and 1/2 for V-P, which adds up to a total of three pairs, as expected.

However, in the original blosum. c program, only the size of the "second" cluster

in a pair was used for normalization. The loop in the program proceeded from the

first sequence encountered, so the only normalization would be the size of the cluster

of the later sequence. For the case above, the K-K pairs would each be normalized

by 1/2 instead of 1/(2 x 3), leaving 1 K-K pair. The rest of the weights are 1/2 for

R-K, 1 for K-V, 3 for K-P, 1/2 for R-V, 1 for R-P, and 1 for V-P, giving a total

168



of 8 pairs. Not only does the absolute number of pairs change from what should be

computed, but the relative amounts of pairs change as well. This inconsistency has

since been fixed in updated versions of blosum. c [70], though we were unable to find

any published analysis of its impact on the BLOSUM matrices or any other programs

that use the revised matrices. That is, all of the commonly-used search tools that we

surveyed use the original, and not revised and "correct", version of BLOSUM62.

Other anomalies in blosum. c may also be found, two of which are integer over-

flow errors. These anomalies are an artifact of specific implementation choices and

the programming language used, akin to an odometer "rolling over" after it exceeds

the maximum mileage it can track. These two overflow errors and one transposition

typographical error were found in the program, though each of these had significantly

less impact than the normalization issue. Of these issues, one overflow and the nor-

malization issue were fixed in later releases of the blosum. c [70] code in another

package. What is most noteworthy, though, is that even though some of these issues

were fixed, the BLOSUM matrices in wide use were never changed to reflect these

corrections and we were unable to find published analysis of the corrections' impact

on the BLOSUM matrices.

One implication of the normalization anomaly in the original blosum. c program

is that the BLOSUM matrices currently used are not the only matrices that could

be created from the sequences in the Blocks 5 database using the same program.

Due to the implementation in blosum. c, the normalization error causes the resulting

BLOSUM matrix to be dependent on the order of each sequence within each block

(though not dependent on the order of the blocks overall). We verified this by shuffling

the order of the sequences within each block, each time obtaining different matrices

than BLOSUM62. (Our revised blosum. c code was insensitive to ordering within

blocks in identical tests.)

We analyzed two shuffled versions with both ssearch and BLAST, and analyzed

another five only with BLAST. Each of these shuffled versions of the Blocks database

needed to be re-clustered at 63% in order to make a matrix isentropic with BLO-

SUM62 (see Methods). Performance was measured by "coverage", or the fraction
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of true positive homologies uncovered at a given errors per query (EPQ) rate for a

hand-curated gold standard dataset (see Methods). These shuffled BLOSUM matri-

ces frequently showed performances different (to a statistically significant degree as

assessed via Bayesian bootstrapping; see Methods) from the original BLOSUM62 ma-

trix. Over the expected optima of gapped BLAST searches, no matrices were consis-

tently better than the original BLOSUM62, and about half of them were consistently

worse (Figure 7-1). In exhaustive Smith-Waterman searches, we found somewhat

similar results. Both matrices analyzed were inferior to BLOSUM62 over a wide

range of EPQ values (see Figure 7-2).

The difference in relative entropies of the matrices re-clustered at 62% is also

particularly interesting. We created 500 versions of the BLOSUM62 matrix from 500

shuffled versions of the Blocks 5 database by holding re-clustering percentage con-

stant instead of relative entropy. In none of these shuffled versions was the relative

entropy of the 62% re-clustering matrix as high as it was in BLOSUM62. In fact,

using the distribution of those 500 matrices as a basis and assuming the distribution

to be approximately normal, the p-value for getting a relative entropy as high as that

from BLOSUM62 is approximately 1.1-5. This p-value prediction was subsequently

verified by the generation of 425400 different matrices in the same fashion, of which

only 7 had the same or greater entropy (a fraction equal to 1.6 x 10-5). This un-

usually high relative entropy for BLOSUM62 is most likely a (random) function of

the ordering of the sequences within the blocks. However, we have been unable to

determine just what aspect of the ordering has such a great influence on the matrix's

entropy. While changing which cluster size was used for the normalization brought

the matrix's entropy down as expected, the resulting entropy was still not as aber-

rantly low as may be expected. Similarly, sorting the clusters within blocks by size

of cluster also has an impact on the matrix's entropy, but not as much as expected:

neither sorting could produce a matrix with an entropy that was as much of an outlier

as the real BLOSUM62's entropy.

Perhaps the most interesting result of our work is that if the matrices had been

initially created as they were intended, they would have been less effective than they
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Figure 7-1: BLAST coverage performance difference between BLOSUM62 and matri-
ces formed from shuffled versions of the Blocks database. "Coverage" is the fraction
of true positive homologies found at a given errors per query (EPQ) threshold for
a hand-curated gold standard dataset (see Methods). The results from each ma-
trix's best--performing gap penalty values were used. Negative values indicate that
the original BLOSUM62 is better. Error bars indicate 95% confidence intervals using
Bayesian bootstrapping methods. Error bars that do not cross the origin indicate sta-
tistically significant differences between BLOSUM62 and the matrix being plotted.
Gap extension penalties for all matrices were 1, while existence penalties were 11 for
all matrices except for shuffled versions 1, 3, and 7, which used existence penalties of
10.
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Figure 7-2: A coverage vs. errors per query (CVE) plot of ssearch performance for
BLOSUM62 and two isentropic analogs. The two isentropic analogs were formed
from Blocks databases where sequences within each block have been randomly shuf-
fled. Thick lines represent the original data, while thinner lines represent individual
bootstrap replicates. Note that the sets of lines overlap quite a bit, indicating similar
but distinct performance. This is quantitatively displayed in the insets, which plot
the difference in performance between BLOSUM62 and each shuffled version. Again,
negative values indicate that BLOSUM62 performs better, error bars are 95% confi-
dence intervals calculated using Bayesian bootstrap replicates, and error bars that do
not cross the origin indicate statistically significant differences between BLOSUM62
and the matrix being plotted. Results for the best-performing gap penalties are
displayed; for all three matrices, the optimal (existence, extension) values are (9,1).
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currently are, as illustrated in Figure 7-3. That is, using a matrix created from

the revised BLOSUM code (which we will refer to as an RBLOSUM matrix) with the

same relative entropy as the original BLOSUM62 matrix, the isentropic RBLOSUM64

matrix performs consistently worse than BLOSUM62. The difference in performance

between the two matrices is statistically significant across a wide range of EPQ values

and in a wide range of search settings. For Smith-Waterman searches, this difference

is seen at almost all combinations of gap penalty values (data not shown). Only

for penalty values with extremely poor performances is this trend not observed, and

even in these few cases RBLOSUM64 never performs statistically significantly better

than BLOSUM62. In gapped BLAST searches, the same trend is observed (data

not shown). BLOSUM62 performs better than RBLOSUM64 in ungapped BLAST

searches as well (data not shown).

As another way to assess whether the difference between the performance of BLO-

SUM62 and the RBLOSUM64 matrix is significant, we used the isentropic BLOSUM

matrices formed from shuffled versions of the Blocks database to generate a kind

of "sample distribution" that represents the distribution of matrices that could have

been formed using the same program with only different ordering within blocks. Since

the RBLOSUM64 matrix is not order-dependent, we used 10-fold cross-validation to

provide a, sense of the inherent uncertainty or error in the RBLOSUM64 matrix due to

the finite amount of training data available. Even under this relatively harsh method

of sampling (compared to merely changing the order, not content, of the database),

we see that there are some striking differences between the two distributions (see Fig-

ure 7-4). First, it seems that the distribution of performances for matrices based on

shuffled Blocks databases is quite a bit larger than the distribution of performances for

the cross-validation RBLOSUM matrices. In addition, it appears that BLOSUM62

is not necessarily representative of the "mean" matrix that could have been obtained

using the original blosum. c code. That is, it performs as good as any of a variety

of variants from shuffled Blocks databases, and better than most. Clearly, there is

something (at least qualitatively) different between the two implementations, and the

deviation of BLOSUM62 from RBLOSUM64 is more than one would expect from the
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Figure 7-3: CVE plots indicating the (A) ssearch and (B) BLAST performance of
BLOSUM62 and RBLOSUM64. Thick lines represent the original data, while thin-
ner lines represent individual bootstrap replicates. The insets plot the difference in
performance between BLOSUM62 and RBLOSUM64. Again, negative values indi-
cate that BLOSUM62 performs better, error bars are 95% confidence intervals calcu-
lated using Bayesian bootstrap replicates, and error bars that do not cross the origin
indicate statistically significant differences between BLOSUM62 and RBLOSUM64.
Results from the best-performing gap penalties are displayed; in (A), for both ma-
trices optimal (existence, extension) values were (9,1), while in (B) the values were
(11,1) for BLOSUM62 and (10,1) for RBLOSUM64.
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Figure 7-4: A CVE plot for BLOSUM62 and RBLOSUM64 performance distributions
using gapped BLAST. Rather than Bayesian bootstraps, we display versions of the
BLOSUM62 matrix derived from Blocks databases with shuffled blocks and versions of
the RBLOSUM64 matrix derived from Blocks databases each with 25% of the blocks
removed. These RBLOSUM64 matrices help to indicate the training set-dependent
error that is inherent to a matrix rigorously derived from Blocks. We note that the
variation of the RBLOSUM64 matrices is less than that of the BLOSUM62 matrices,
and that the original BLOSUM62 matrix (the darker line) is not representative of the
"meani" performance one could have expected. BLOSUM62 (and shuffled derivatives)
gap penalties are as described in Figure 7-1, while all RBLOSUM64 reduced-training
set (existence, extension) gap penalties were (10,1) except for one matrix, which used
(11.1).

error and uncertainty inherent to RBLOSUM64, the matrix that "should" have been

created.

In another set of experiments, we increased the scale of the matrices used in

ssearch queries. BLOSUM62 values are scaled in half-bits, meaning that the base-2

log-likelihood raw scores computed from the training set substitution frequencies are
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multiplied by 2 before being rounded off to integers for ease of use. However, this ap-

proximation discards some useful information contained in the raw matrix values. If,

instead, we multiply those raw scores by 3 before rounding them (for a third-bit scale

matrix), we would expect that the performance of the matrix would at least stay the

same, if not improve from truncating less information content in the matrix values.

While this was true for the RBLOSUM64 matrix, which had small (though not sta-

tistically significant) improvements, BLOSUM62 actually had statistically significant

decreases in performance (using ssearch; data not shown). These two third-bit matri-

ces performed very similarly, indicating that perhaps the intrinsic difference between

them is not very great. In fact, the RMSD for the raw values in the matrices is only

0.104, supporting the idea, that they are not too intrinsically different before scaling

and rounding.

7.1.5 Discussion

We have shown that due to some anomalies in the program used to create the initial

BLOSUM family of matrices, the widely-used BLOSUM62 matrix is, in fact, more

effective than it "ought to" have been. In addition, we demonstrated that due to one

of these anomalies, the original family of BLOSUM matrices was dependent upon

the order of the sequences in the Blocks 5 database, meaning that the BLOSUM

matrices currently used are not the unique versions of these matrices that could have

initially been derived. While some of the issues in the original blosum. c code have

since been identified and corrected, we find it interesting that fourteen years later,

the community at large is not aware that the BLOSUM62 matrix used by so many

people is not exactly what we thought it was.

As discussed above, the order of the sequences in the Blocks database had a pro-

found effect on the values in the BLOSUM62 matrix and the effectiveness of that

matrix. It seems that, fortuitously, one of the best possible arrangements was used.

Interestingly enough, this arrangement is partly a simple matter of alphabetization:

first all clusters with only one sequence are listed in alphabetical order, and then all

clusters with multiple sequences are listed in an order such that the first sequences
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across all of these clusters are in alphabetical order. With any different implementa-

tion, the effectiveness of BLOSUM62 may have been acceptable, but quite different.

We believe that the slight performance boost in BLOSUM62 relative to RBLO-

SUM64 is largely due to artifacts of truncation error. While BLOSUM62 has an ab-

normally high entropy for a re-clustering value of 62% with respect to other matrices

that could have been formed with the original BLOSUM implementation, this higher

entropy does not correlate with performance. It has been noted that the entropy

of the BLOSUM62 matrix based on its scaled and rounded values deviates notice-

ably more from the raw matrix's entropy than one typically sees for other scaled

and rounded matrices [8]. While using these scaled and rounded entropies to at-

tempt "isentropic" comparisons partially resolves the ssearch performance difference

between BLOSUM62 and RBLOSUM64, it only exaggerates the problem in BLAST

searches (data not shown). While this entropy-related anomaly does not completely

explain the performance difference of BLOSUM62, it does point out that there may

be something different about the scaling and rounding of BLOSUM62 relative to

other scoring matrices. Combining this observation with the fact that a larger scale

for BLOSUM62 actually leads to a decrease in performance, we can then reasonably

infer that the improved performance of BLOSUM62 is due to nothing more than

a rare set of circumstances caused by miscalculated normalizations, low-resolution

scaling, and some fortuitous rounding. This conclusion is actually quite fascinating,

as it indicates that there is still more to learn about amino acid substitution frequen-

cies: if essentially random processes (rounding and normalization errors) can cause

a statistically significant increase in performance for our best rational estimates of

these frequencies, then there is likely some fundamental aspect of modeling amino

acid substitution that we have yet to grasp or capture.

The entire situation speaks to the circumstances of all scientific research: when we

get results that are novel and reasonable, it is often difficult to thoroughly review the

minutiae of one's own work and determine if there were any small anomalies along

the way that may have affected the results. Perhaps most noteworthy is the fact

that when some of these bugs were later fixed, their impacts were not updated: a
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recomputed "correct" BLOSUM62 matrix was never adopted. Ultimately, this may

have worked out for the best, as we have all been a little bit more productive in our

BLAST searches and other work without even knowing it.

7.2 The evolution of the Blocks database and BLO-

SUM matrices

7.2.1 Overview

The fidelity of amino acid sequence alignment methods depends strongly on the target

frequencies implied by the underlying substitution matrices. The BLOSUM series of

matrices, constructed from the Blocks 5 database, is by far the most commonly used

family of scoring matrices. Since the derivation of these matrices, there have been

many advances in sequence alignment methods and significant growth in protein

sequence databases. However, the BLOSUM matrices have never been recalculated

to reflect these changes. Intuition suggests that if the Blocks database has changed

- by the growth or addition of blocks - that matrices computed after these changes

may be different than the original BLOSUM matrices.

Here we show that updated BLOSUM matrices computed from successive releases

of the Blocks database deviate from the original BLOSUM matrices. At constant

re-clustering percentage, later releases of the Blocks database give rise to matrices

with decreasing relative entropy, or information content. We show that this decrease

in entropy is due to the addition of large, diverse families to the Blocks database.

Using two separate tests, we demonstrate that isentropic matrices derived from later

Blocks releases are less effective for the detection of remote homologs, and that these

differences are statistically significant. Finally, we show that by removing the top 1%

large, diverse blocks, the performance of the matrices can largely be recovered.
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7.2.2 Introduction

Many different scoring matrices have been proposed in the literature, but the BLO-

SUM series [66] and PAM series [39] of matrices are by far the most widely used. For

reviews of the many different substitution matrices, the reader is referred to a variety

of literature articles [69, 67, 174]. Despite the vast array of matrices available, a single

matrix, BLOSUM62, has become a de facto standard - it is the default matrix for

popular pairwise sequence alignment tools such as BLAST [10] and FastA [131] and

multiple sequence alignment tools such as Clustal-W [163] and t-coffee [124].

The method used to create the Blocks database has its ancestor in the PAM ma-

trices by Dayhoff [39]. The PAM matrices are made by first collecting a database

of proteins known to be closely related. From these, a common ancestral protein

sequence is inferred and the mutations required to produce the descendant sequences

are tabulated. Because the set of descendant proteins is assumed to have diverged at

the same time, the table of mutations can be interpreted as a rate of mutations. By

extrapolating this mutation rate matrix (by multiplying each matrix by itself an ar-

bitrary number of times), amino acid substitution matrices for increasingly divergent

sets of proteins can be constructed, e.g. PAM1, PAM120, and PAM250.

The BLOSUM series of matrices was constructed in 1992 from Blocks 5 [66]: a

database of protein blocks, or highly conserved protein regions, derived from families

in the PROSITE database [74]. These blocks were used as a training set to derive

a set of implied target frequencies that dictate the frequency with which an amino

acid of one type should be aligned with an amino acid of another type. The various

members of the BLOSUM matrix family - BLOSUM100, BLOSUM62, BLOSUM50,

etc. -- were made by clustering the sequences in each block at various thresholds,

effectively down-weighting similar sequences to create matrices optimized for aligning

more distant homologs.

The Blocks database is itself used for homology searching [68, 133] and other

functions [144, 120]. As such, it is periodically updated, with ten major releases in the

past ten years and some minor releases. Intuition suggests that these improvements
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in the Blocks database may make it a better training set for creating scoring matrices.

The goal of this manuscript is to show the effects of updates to Blocks on the matrices

derived from the database.

When the BLOSUM matrices were initially created and published, it was hypoth-

esized that the use of more protein groups (and thus more blocks) in the matrices'

creation would have little effect on the matrix [66]. This was supported by the removal

of specific blocks, or even half of the blocks, yielding approximately the same matri-

ces. However, in retrospect it is obvious that the known protein motifs in 1992 are

a small fraction of those cataloged in today's databases. Furthermore, it is plausible

that motifs discovered "early" were inherently biased due to experimental methods

and likely not representative of nature as a whole. It is unclear whether new, more

recent blocks would yield identical, similar, or significantly different matrices.

In the following sections, we detail the construction of updated BLOSUM scoring

matrices from successive releases of the Blocks database and describe the results of

two sequence alignment tests used to evaluate the performance of these matrices.

7.2.3 Methods

Matrix construction

All previous versions of Blocks databases were taken from the Blocks ftp server, ftp:

//ftp. ncbi. nih. gov/repository/blocks/unix/. BLOSUM matrices were constructed

using a version of the BLOSUM source code (available from the above FTP server)

originally used to prepare the BLOSUM family of matrices, but with some slight

modifications and bugfixes discussed above. These changes included fixing integer

overflows in multiple locations and fixing the weighting of substitutions between clus-

ters of sequences. For each version of the Blocks database, a full scan of all integer-

valued re-clustering percentages between 20 and 100 was performed (Figure 7-5).

The matrix for each Blocks release with relative entropy closest to the originally re-

ported BLOSUM62 matrix (0.6979) was selected as the representative matrix for that

release.
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Figure 7-5: Characteristics of the BLOSUM matrices calculated from successive re-
leases of the Blocks database. Panel A) shows the entropy of the scoring matrices
computed from various Blocks releases as a function of the clustering percentage used
by the BLOSUM algorithm (see methods). Blue colors indicate low entropies and
red colors indicate high entropies. A specific clustering percentage indicates that se-
quences within a block above that percentage are clustered together, such that their
contributions to the counts of amino acid pairs are down-weighted. Intuitively, as
the clustering percentage is increased, blocks that have greater degrees of similarity
contribute more and more pairs, and the resulting matrices have a higher entropy,
or equivalently, more information content. Oddly, at constant clustering percentage,
matrix entropy decreases with successive Blocks releases (see part B below). The
middle part of panel A) shows the clustering percentage which results in the matrix
which has an entropy closest to the original BLOSUM62 matrix. The rightmost panel
shows the number of blocks in each release of the Blocks database. As shown, the
database grew tremendously in recent releases. Panel B) of the figure shows a scatter
plot in which each block in the Blocks 5 database is represented as a dot. The location
of the dot along the x-axis represents the percent of the amino acid pairs contributed
by that block that lie along the matrix diagonal - i.e. identical pairs such as A-A,
G -G, etc. The location of the dot along the y-axis indicates the total number of
amino acid pairs contributed by that block. (Note that the y-axis is in log units
and that the matrix was computed at 50% clustering.) In general, blocks located
towards the upper right quadrant of the plot contribute to higher entropy matrices,
whereas those towards the upper left quadrant contribute to lower entropy matrices.
In the middle panel, the outlines of the point clouds for each successive release of the
Blocks database are shown (light to dark colors). Finally, panel D) shows the scatter
plot for Blocks 14. Notably, successive releases of the Blocks database incorporated
many large blocks comprising distantly related sequences, as shown by the migration
of the point clouds towards the upper left quadrant. These new blocks contribute
many off-diagonal pairs and are the root of the trend shown in panel A): decreasing
entropy at constant clustering percentage with successive releases of the database.
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Sequence datasets

Two different database searches were used to judge the ability of each matrix to

detect homologs: a search of SWISS-PROT 22 [21] using a set of queries previously

determined to reflect "difficult" searches that are able to distinguish the abilities of

different matrices [67], and a search of the ASTRAL database [30] using each member

as a query. These two different validation strategies have different benefits: the former

is historically relevant, as it was a method used to initially demonstrate the superiority

of BLOSUM62 to other matrices [66, 67]. The latter is more time-consuming, but it

reflects current knowledge of protein homology and allows for the determination of

the statistical significance of differences between matrices.

The first method we used for testing matrices was designed to emulate previous

work [67]. In that work, the 257 PROSITE 9.0 [18] families that were most chal-

lenging to detect were used as queries against SWISS-PROT 22 (numbering 25,044

sequences). For each family, the list of all members was used as true positives.

The second method we used for testing matrices was also designed to emulate

previous work [136]. We used the ASTRAL database [30] as the basis for our more

exhaustive experiments for detection of remote homologs. ASTRAL is created based

on the SCOP database [117], which classifies proteins based on their function, struc-

ture, and sequence into a hierarchical structure of classes, folds, superfamilies, and

families. Sequences in the same superfamily can have low sequence similarity, but are

likely to have a common evolutionary origin based on their structural and functional

features. Because these classifications are made by human inspection, not via auto-

mated sequence alignment procedures, it makes a perfect "gold standard" for remote

homolog detection tests.

From the full set of ASTRAL genetic domain sequences, we chose the sequence

set from which 40% identical sequences had been eliminated. By using this subset,

our search focuses on the detection of remote homologs that are more challenging

for substitution matrices to discover and thus will differentiate the abilities of the

respective matrices to find distant relatives. The sequences were further filtered by
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pseg [181] for the removal of low-complexity regions. The unfiltered sequence set

is available on-line from the ASTRAL database at http://astral. berkeley. edu/

scopseq- 1. 69/astral-scopdom-seqres-gd-sel-gs-bib-40-1.69.fa. This non-

redundant set numbers 7,290 sequences. Each sequence was extracted from the

database one at a time and used as a query for the entire database. Search results in

the same superfamily as the query were considered to be true positives.

7.2.4 Search methods

We used both the Smith-Waterman [152] local alignment algorithm and BLAST [10]

for searches against the databases. In particular, we used the ssearch implementation

of the Smith-Waterman algorithm [129, 130] and the NCBI version of BLAST in the C

Toolbox, obtained from ftp://ftp. ncbi. nlm. nih. gov/toolbox/ncbi_tools/, which

gives the same results as the commonly-used web interface at NCBI. While Smith-

Waterman is an exhaustive, sensitive search that may give a more accurate assessment

of a given matrix's performance capability, BLAST is a faster search that is almost an

"industry standard" and so better represents the impact of different matrices on the

"average user". In addition, BLAST can be run in an ungapped fashion to eliminate

the effects of gap penalty parameters.

For our Smith-Waterman searches, we used the ssearch default parameters for

unknown matrices, which are a -10 penalty for gap initiation and a -2 penalty for gap

extension. We believe that these parameters are reasonable settings; they represent an

intermediate ground between the values used in the initial BLOSUM paper (-8/-4) and

current commonly-used settings (for instance, the defaults for BLOSUM62 in ssearch

are -7/-1, while in BLAST they are -11/-1). Moreover, previous work [60] has shown

that while slight performance boosts can be found by optimization of gap penalties,

there is frequently a broad maximum of penalty values with approximately equal

efficacy. In addition, a sampling of the Kolmogorov-Smirnov statistic values returned

by ssearch for searches using our penalty values were well within the acceptable range.

This indicates that the distribution of alignment scores is the expected extreme-

value distribution and that a significant alteration of the gap penalties is most likely
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unnecessary. That is, our penalties are neither too forgiving nor too permissive.

Since the goal of this work is to analyze the BLOSUM matrices as affected by

the changing entries in the Blocks database, the consistent use of some average,

acceptable parameter values for all matrices provides a level, controlled environment

for determining the relative raw ability of each matrix to detect remote homologs

without requiring that we find the optimal parameter values for each matrix for our

Smith-Waterman searches.

For our BLAST searches, we took advantage of the speed of the algorithm to scan

the likely region of local optima of gap parameters. After varying the gap initiation

(existence) penalty from -6 to -14 and the gap extension penalty from -1 to -2

for a, test matrix, we determined that merely scanning from 9 to 12 in the existence

penalty (with an extension penalty of 1) is likely to find the global optimum of gap

penalty parameters. Under these conditions, we saw local optima of performance

within those parameter ranges for most matrices.

Other than gap penalties, all other default parameters for the toolbox version of

BLAST version 2.2.13 (12/6/2005) "blastall" were used. Notably, this does not in-

clude composition-based adjustments of E-values, which are now used by default

on the NCBI web interface of BLAST. Previously [146], these adjustments have

been shown to actually decrease performance in individual protein database BLAST

searches.

7.2.5 Evaluation of results

For both sets of database searches, we used the same respective methods for eval-

uating search results as in previous literature. In the PROSITE-based testing, we

used head-to-head comparison of effectiveness in finding family members. For all

PROSITE families that were queried, the matrix that found the most true positives

was noted. The relative effectiveness of any two matrices was then found by sub-

tracting the number of times that one matrix was more effective from the number

of times that the other was more effective. True positives were defined as described

previously. The search criterion used was the same as for the previous work [67],

185



as previously described [130]: if a true positive appeared before 99.5% of the true

negative sequences, it was considered "found".

For ASTRAL-based testing, we used the Bayesian bootstrap method to evaluate

the statistical significance of the mean difference in coverage between any two sub-

stitution matrices [136]. This method uses coverage vs. errors per query as a means

to evaluate the effectiveness of different substitution matrices. Coverage is defined

simply as the fraction of true positives found at a given errors per query threshold.

True positives were identified as described above.

7.2.6 Results

We began by first assembling the matrices that we would be using in our experiments.

As stated in the Methods section, we used a modified version of the original BLOSUM

program that incorporated multiple bugfixes. We created a matrix for each integer

clustering value between 20 and 100; the results can be seen in panel A of Figure 7-5.

The center of panel A lists the re-clustering percentage needed for each Blocks

release to produce a matrix with entropy closest to that of the original BLOSUM62

matrix. We used this set of isentropic matrices for our sequence alignment tests. A

given matrix's relative entropy reflects the required minimum length of homology in

order for it to be distinguished from noise [6]. Merely maintaining (in this case) a

re-clustering percentage for a time-dependent family of matrices would have little

meaning, as changes in entropy could occur that would obscure the effectiveness of

the information encoded in the matrix. In this sense, it is only "fair" to compare

matrices of the same entropy. Thus, we used matrices with the same relative entropy

of BLOSUM62, 0.6979, which is approximately the value previously shown to be

most effective for database searches [66]. (Note that, due to the bugfixes mentioned

earlier, the BLOSUM matrix computed from Blocks 5 had its entropy analog at a

re-clustering percentage of 64 rather than 62.) We refer to matrices computed from

the "revised" BLOSUM code as RBLOSUM, making the baseline matrix for that

family RBLOSUM64.

The right-hand side of panel A in Figure 7-5 shows that the number of blocks in
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each release increases in an almost monotonic fashion, with the exception of release

9. The general trend is expected, as the PROSITE database that is used to create

the blocks would likely have more families of known homology added in later releases.

The decrease in blocks in release 9 remains an anomaly; we speculate that it may have

been due to a one-time change in parameters in the creation of the blocks, though

we have no way to verify this theory.

Inspecting the heat map in panel A of Figure 7-5 reveals that, as expected, rel-

ative entropy increases with increasing re-clustering percentage in any given Blocks

release. However, at constant clustering percentage, matrices computed from succes-

sive releases of the Blocks database show markedly decreased relative entropy. We

hypothesized that this trend was due to changes in the character of blocks in the

database. Indeed, panels B-D of Figure 7-5 suggest that the presence of extremely

large, diverse blocks may have been the cause of this phenomenon. The scatter plots

in panels B-D show point clouds representing all the blocks in a given Blocks release

(panel C shows the outlines of these clouds). Each block is represented as a single

point at a location that indicates the degree to which the block contributes identical

amino acid pairs (x-axis) and the total number of amino acid pairs contributed by

the block. The three panels show a trend towards the incorporation of blocks that

have many sequences that are only remotely homologous. This trend is manifested

in the migration of the point clouds towards the upper left quadrant of each of the

three scatter plots.

These panels explain why the re-clustering percentage needed to be increased

so much in order to create isentropic matrices. As large blocks with more diverse

sequences are added to the database, something must be done to offset that diversity

in order to obtain an isentropic matrix. Since the highly diverse members of a family

(block) will not cluster together, they will have a significant impact on the substitution

counts that are used to derive the matrices. In order to offset this impact and steer the

entropy of the matrix away from that of the background, it is necessary to increase the

re-clustering percentage used to compute the matrices. In this way, blocks containing

highly homologous sequences will have greater influence on the substitution counts
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and steer the matrix closer to the desired counts and information content.

Having assembled a set of isentropic matrices, we then used our two tests - the

historical, PROSITE-based test and the statistically rigorous, ASTRAL-based test

- to evaluate the effectiveness of updated BLOSUM matrices. By using both of

these tests rather than just one, the comparison of updated substitution matrices is

grounded in the same metrics as would have been used when the matrices were first

published, while providing quantitative statistical results.

We found that, with time, the character and quality of the entries in the Blocks

database has changed significantly. Figure 7-6 shows a slightly complex trend that

warrants some analysis. The figure shows boxes whose vertical position indicates

their relative performance; the further a box is vertically from the Blocks 5 box, the

greater the difference in performance between the isentropic matrices derived from

those releases (see caption). In early updates of Blocks, the resulting RBLOSUM

matrices tended to hover around a certain performance. This is consistent with

previous hypotheses [66] that the BLOSUM matrix would not be altered by adding

to or subtracting from the Blocks database. The variation could be explained in part

by integer rounding; since the desired scores are rounded to the nearest whole number,

it is possible that the intended scores for a given matrix are not completely accurately

represented by a given BLOSUM matrix. Another possibility is that changing block

quality causes these fluctuations; this possibility is further analyzed below. However,

the particularly poor performance of Blocks releases from 12 on, and that of release

9, is inconsistent with the initial hypothesis that matrix performance would remain

approximately constant.

These results are largely consistent with our results from the ASTRAL-based

tests. Figure 7-7 is a representative result for a set of Bayesian bootstrapping runs

for the ASTRAL-based test (in this case, for releases 5 and 14 of the Blocks database).

The lighter, thinner lines track coverage as a function of the allowed errors per query

(EPQ) for individual bootstrap runs, while the two thick lines represent the full-

database result. Clearly, there is some overlap between the two distributions, but a

pairwise comparison of runs (as demonstrated by the inset evaluated at 0.01 EPQ)
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Figure 7-6: The relative performance of updated BLOSUM matrices. This figure is
designed to emulate Figure 4 from the initial BLOSUM manuscript [66]. All matrix
performances are compared to the revised BLOSUM62 isentropic analogue derived
from Blocks 5, RBLOSUM64. Vertical distance from Blocks 5 indicates relative per-
formance, with matrices above Blocks 5 performing better and those below it per-
forming worse. Comparisons were based on the 257 "difficult" queries [67], derived
from PROSITE 9.0 keyed to SWISS-PROT 22. Numbers in each box indicate the
number of groups for which RBLOSUM64 from Blocks 5 performed better than and
worse than isentropic matrices from other releases. Releases immediately following
Blocks 5 seem to cluster around the same level of performance, while later releases

(and release 9) have unusually bad performance.
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Figure 7-7: A complete set of Bayesian bootstrap replicates, with inset plot of perfor-
mance difference statistics. These data, were created using the PSCE software [136].
(See that manuscript [136] for a thorough explanation of Bayesian bootstrapping).
Each thin, faintly colored line represents one Bayesian bootstrap run. The thick lines
represent the total dataset results. In this case, the two distributions overlap some-
what, but statistical analysis of the data reveals that the difference in coverage is
statistically significant across a wide range of EPQ values.

shows a. distinctly non- zero difference between the two distributions. The difference in

coverage at a variety of EPQ values can be used as a metric to judge how consistently

different the performances of any two matrices are.

This metric is used in Figure 7-8 to show the performance of all updated matrices

relative to the baseline RBLOSUM64 matrix computed from Blocks 5. These results

correspond quite well to the results in Figure 7-7. That is, releases 7, 8, 10, and 11

perform comparably to 5 and release 6 is slightly better, while releases 9, 12, 13, and

14 perform substantively worse than release 5. These latter releases have statistically

significant differences. This agreement suggests that the original test employed in
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Figure 7-6 [66, 67] was rather effective and efficient in that the results of the test

would not have changed much with access to today's larger databases.

7.2.7 Discussion

The reason for the poor performance of RBLOSUM matrices derived from later re-

leases of Blocks remains to be explained. Figure 7-5 suggests that the number of

blocks and shifting isentropic clustering percentage are not reasonable explanations.

If these were so, one would expect to see either gradually degrading performance (for

database size) or significant step changes in performance at releases 8, 12, and 13 (for

isentropic clustering percentage). However, there is certainly not a gradual degra-

dation in performance, and there is no significant change in performance at release

8. In addition, any decrease in performance at release 9 disappears for the next two

releases.

We hypothesized that two phenomena - the decreased entropy at constant clus-

tering in successive Blocks releases, and the poor performances of these releases -

were both caused by the changing character of blocks added in later releases. Specif-

ically, we thought that the trends shown in panels B through D in Figure 7-5 might

be responsible for these phenomena.

To test this hypothesis, we sorted the blocks in the Blocks 14 database by the num-

ber of off-diagonal (i.e., non-identity) amino acid pairs contributed to the RBLOSUM

matrix by each block. We then removed the blocks that were the top 1% of contrib-

utors to off-diagonal pairs (243 blocks) and created an isentropic RBLOSUM matrix

from this "cleaned" database. Notably, the re-clustering percentage required to create

an isentropic matrix decreased from 94 to 84 for the cleaned database. The perfor-

mance of this matrix relative to RBLOSUM64 from Blocks 5 is shown in Figure 7-9.

The cleaned version of the Blocks 14 database largely restores its utility to the level

of Blocks 5, and provides a statistically significant improvement in performance over

the original Blocks 14 (see Figure 7-10).

The performance of the RBLOSUM matrix created from the "cleaned" Blocks 14

database supports our hypothesis that the addition of large, diverse blocks has had
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Figure 7-8: Plots of the differences in performance of updated RBLOSUM matrices.
Each matrix is compared to the RBLOSUM64 matrix (derived from Blocks 5) in 200

Bayesian bootstrap replicates to find the mean difference in coverage, and the confi-
dence interval for that coverage, at a specific EPQ rate. These differences are plotted
as a function of EPQ rate, with positive values meaning that a given matrix per-

forms better than RBLOSUM64 on the dataset. Error bars represent 95% confidence

intervals. At data points where the error bars do not intersect with the origin, the

performance difference between the matrices is statistically significant. These results

correlate well with, and provide statistical analysis of, the results in Figure 7-6.
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Figure 7-9: Coverage of a cleaned RBLOSUM matrix compared to the original RBLO-

SUM64 matrix. Again, thin, faint lines represent individual bootstrap runs, while the

dark line represents the parent dataset. These two distributions are quite similar, with

the cleaned RBLOSUM matrix being about as effective as the RBLOSUM64 matrix.

The inset shows the coverage difference between the two matrices' coverage as a func-

tion of errors per query. Error bars represent 95% confidence intervals. Note that

most error bars cross the origin, indicating statistically indistinguishable performance

between the two matrices.
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Figure 7-10: Coverage of a cleaned RBLOSUM matrix compared to the RBLOSUM
matrix derived from Blocks 14. Again, thin, faint lines represent individual bootstrap
runs, while the dark line represents the parent dataset. These two distributions are
quite distinct, with the cleaned RBLOSUM matrix being significantly more effective
than the RBLOSUM matrix derived from Blocks 14. The inset shows the cover-
age difference between the two matrices' coverage as a function of errors per query.
Error bars represent 95% confidence intervals. Note that at most EPQ values the
error bar does not cross the origin, indicating a statistically significant difference in
performance.
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an adverse effect on the performance of updated RBLOSUM matrices. We believe

that the decrease in performance may be due to a change in the database that is

used to create the Blocks database [65]. Initially, Blocks was based on the PROSITE

database. As of release 12 of Blocks, blocks were formed from InterPro groups rather

than PROSITE groups. In release 12, only InterPro groups with cross-references

to PROSITE groups were used to create blocks. In release 13, this restriction was

lifted, and it has remained lifted to the current release of Blocks. We believe that

this explains almost all of the trends that we observe in the data. When the Blocks

database partially shifted to being based on InterPro, performance first decreased

slightly with the addition of sequences that had not previously been included. When

the shift was completed, performance degraded significantly. The only unexplainable

anomaly is the unusually poor performance of release 9 of Blocks; we believe that

can be attributed to the unusually small number of blocks in that release. Again, we

speculate this may have been due to some one-time change in parameters, but we

have no way to prove or disprove such a speculation.

In conclusion, we see that in some sense, the hypothesis initially proposed [66]

was true: for releases of the Blocks database based on PROSITE, despite some slight

variation, the performance of isentropic RBLOSUM matrices is relatively constant

over successive releases. However, since the quality of the blocks added in recent

releases has decreased, such is not the case for the matrices derived from the current

Blocks database. This suggests that, to the extent that there are "bad" blocks, there

may also be "good" blocks, and sensible, judicious selection of these blocks may be a

reasonable approach for the creation of amino acid substitution matrices.
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Chapter 8

Conclusion

8.1 Summary of results

In Chapter 3, we developed a generic motif discovery algorithm (Gemoda) capable

of handling diverse types of sequential data. Our approach decoupled what we iden-

tified as three key steps in the motif discovery process: comparison, clustering, and

convolution. Each of these steps is considered completely independently of the oth-

ers, allowing for a modular setup where any comparison metric can be used with any

clustering routine and any convolution method. As a proof of concept, we applied

this approach to the discovery of binding sites in the upstream region of a number

of E. coli regulons, the discovery of protein sequence motifs in a well-known class

of enzymes, and the discovery of secondary structure motifs in proteins known to be

in the same family but with significant primary sequence diversity. Our approach

proved robust with respect to noise in quite a few cases and showed the versatility of

a truly generic approach to motif discovery.

In Chapter 4, we applied our approach to the (1,d)-motif binding site discovery

problem. This problem is an abstraction and simplification of the general transcrip-

tion factor binding site discovery problem. We were able to solve this problem in a

computationally reasonable time and in a provably exhaustive fashion. Most previous

approaches were unable to accurately identify the embedded motifs in such a problem.

Our philosophy also lent itself well to the expansion of this abstract problem to a less
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restricted, more realistic problem where motif lengths can vary and the presence of

motifs in a given dataset is not as certain. The other existing approach [52] that is

capable of completely solving the (1, d)-motif problem would find significant difficulty

in solving this extended problem. Thus, Gemoda has a unique contribution in be-

ing able to handle more biologically realistic datasets and still find motifs contained

therein in a provably exhaustive fashion.

In Chapter 5, we then applied our approach to real-valued GC-MS data. We

created a program called SpectConnect which essentially calls Gemoda in an itera-

tive fashion and appropriately processes the results of each Gemoda run. Previous

methods for analyzing GC-MS data largely depended upon the use of libraries of

mass spectrum reference standards to track the metabolites in a sample. SpectCon-

nect avoids the use of these reference libraries (except for retrospective analysis of

its results) in favor of an approach that utilizes an increase in the signal-to-noise

ratio that is created by running multiple replicates on the GC-MS instead of just

one sample. While this causes a linear increase in experimental time due to the long

runs typically associated with GC-MS analysis, it greatly increases the capabilities

of downstream metabolomic analysis because one is no longer restricted to tracking

only the metabolites with know reference standard mass spectra. We showed that our

approach works both for simple chemical mixtures as well as for complex fermentation

mixtures.

In Chapter 6, we looked to apply SpectConnect to the characterization and anal-

ysis of the accessible metabolome of a species. Given our assay of choice (GC-MS)

and our derivatization chemistry of choice (TMS), we sought to track and analyze all

of the metabolites that could possibly be detected. This can be done by performing

a sufficient number of environmental and genetic perturbations that will cause intra-

cellular fluxes and concentrations to shift, leading to each metabolite hopefully being

at a detectable concentration in at least one experiment. Despite initial experimental

difficulties, we performed a number of perturbation conditions and began preliminary

analysis for the feasibility and efficacy of this study. Once some experimental tech-

niques and protocols are refined, it seems likely this project will have a lot of promise
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for a thorough analysis of the metabolome of a single species under many different

conditions.

In Chapter 7, we explored a few side projects that were completed during the

course of this thesis work. One analyzes some errors in the creation of one of the

most widely-used amino acid substitution matrices and the impact that these errors

have had on subsequent sequence comparisons and database searches. The second

project investigates the imagined "evolution" of these matrices if they had been up-

dated according to the amount of training data available for their creation. While

both of these projects are a bit further flung from the motif discovery problems ad-

dressed in earlier chapters, they represent a broader approach to motif discovery and

bioinformatics; they also entail the use of a wide variety of relevant tools and al-

gorithms in bioinformatics, which is an important aspect of any course of learning

involving computational biology.

Altogether, then, I have shown the creation and evolution of a novel, generic ap-

proach to motif discovery in sequential biological data that has quite a few interesting

applications. A number of interesting possibilities for future work have arisen from

this thesis; these will be discussed in greater detail below.

8.2 Objectives achieved

The following objectives of this thesis have been achieved:

1. To develop a motif discovery algorithm that is both as exhaustive and generic

(or "data-agnostic") as possible. Gemoda is a completely generic approach to

motif discovery. By breaking its calculations into three distinct and indepen-

dent phases, a completely modular approach was created that allows any type

of sequential data to be analyzed with the same algorithm, requiring only an

appropriate comparison function for the specific data type. Subsequent choices

of clustering and convolution functions help to further increase the capabili-

ties of this motif discovery approach while still providing reasonable and useful

default functions that will be useful for most problems.
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2. To apply this approach to existing problems in bioinformatics. The (1,d)-motif

problem was an outstanding problem at the time we were able to solve it in a

provably exhaustive manner. The analysis of the upstream regions of regulons

in E. coli for the discovery of transcription factor binding sites is a relevant

biological problem. The discovery of local secondary structure motifs in protein

structures is an interesting existing problem in bioinformatics. All of these

problems have been addressed by using Gemoda to discover interesting or novel

motifs in the respective datasets. In fact, the (1,d)-motif problem was extended

and made more biologically relevant by extending the principles of Gemoda

to that existing abstraction of the transcription factor binding site discovery

problem.

3. To apply this approach to novel problems in bioinformatics. The development

of SpectConnect is a perfect example of applying our generic approach to novel

problems in bioinformatics. In some senses, the problem of identifying conserved

spectral motifs in GC-MS data had not really been identified because existing

techniques were so entrenched in the library-based comparison approach. By

using our clustering and data-handling capabilities, we were able to define and

solve this problem, providing a useful tool for metabolomic data analysis.

8.3 Future directions

Looking at the work in this thesis, there are some specific areas that could benefit

from additional investigation. There are also some significant promising research

directions that stem from the results presented in this thesis. These future directions,

which include convolution, deconvolution, disease studies, and tracer analysis, will be

discussed below.
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8.3.1 Convolution

Convolution is the most important future direction for developing Gemoda. As noted

in Chapter 3, Gemoda currently uses an exhaustive convolution method that depends

on completely overlapping cliques. While this is useful for finding dense and contin-

uous motifs, there are numerous examples in biology of motifs that contain gaps.

These gaps are regions that have little to no sequence conservation and may be of

variable width even for instances of the same motif. Discovery of motifs with gaps is

certainly one of the hardest outstanding problems in bioinformatics, primarily due to

the combinatorial increase of potential motifs that is associated with variable-width

gaps.

The convolution step in Gemoda can likely be extended to begin to address the

problem of finding gapped motifs. This step is just as modular as the comparison and

clustering steps in Gemoda, so there is no reason that a different convolution method

could not be implemented. That method need not be exhaustive like the current

method; it could easily be heuristic. Either way, it is conceivable that a convolution

method could be designed that would allow for some finite number of gaps in motifs

such that more complex motifs can be found. In fact, this approach may even allow

for the detection of multiple otherwise low-signal short motifs whose co-occurrence

may indicate a strong motif; examples of this have been seen in programs such as

MITRA [52]. Such an approach may also require a slightly different comparison

function, though.

Even if a simple convolution step cannot be created to find gaps, it is likely that a

"meta-convolution" approach could perform similar functions. In this case, we would

look at the output created by Gemoda and essentially perform motif discovery on the

motifs, identifying which motifs occur within some constant or variable distance of

each other. While this approach is perhaps less elegant, it would fulfill the goals of

gapped motif discovery and may provide additional insight. The obvious detriment

here is that we would still be limited to motifs that are easily found on their own,

thus limiting how close to the threshold of statistically insignificant noise each motif
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component could be.

8.3.2 Mass spectral deconvolution

Mass spectral deconvolution is a key step in the SpectConnect work flow. In order

to reliably compare the mass spectra that are found by the GC-MS, we must first

tease apart any coeluting spectra such that we know what the pure spectra are for

each metabolite that may elute in a peak. This step also usually helps to eliminate

some noise in the mass spectrum as well. This problem has actually been studied

in a quite a few other forms, most notably in the signal processing field; numerous

approaches to deconvolution exist, and we need only adopt one that is appropriate

to the problem at hand.

AMDIS, the tool that we currently use for mass spectral deconvolution, is ca-

pable of separating coeluting peak spectra but suffers from some key flaws. The

most useful aspect of AMDIS is that it can take as input the raw data from any

of a variety of different GC-MS manufacturers' equipment. This key feature means

that by using AMDIS as an upstream processing step, SpectConnect can be used

with essentially any GC-MS data, regardless of the manufacturer of the instrument

used to capture the data. This cannot be said for many of the existing GC-MS

data analysis approaches, many of which are restricted to the analysis of a certain

manufacturer's raw data. In addition, AMDIS is freely available (even though it

is not open-source), meaning that there is little economic hindrance in people us-

ing an AMDIS/SpectConnect workflow for analyzing their GC-MS data. The key

flaw in AMDIS, though, is its oversensitivity. As noted in Chapter 5, AMDIS was

designed for specific governmental purposes. Due to the requirements of its initial

goals, AMDIS necessarily is extremely aggressive in identifying potential peaks. A

cursory visual analysis of a chromatogram analyzed by AMDIS may reveal that one

third, or even more, of the peaks that SpectConnect identifies are likely not metabo-

lite peaks. Not only is this true for peaks very close to the baseline, but it is even true

for very large peaks. One will often find multiple peaks enumerated that have almost

identical mass spectra, indicating that AMDIS is being too sensitive in its definition
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of what constitutes a true peak.

The development of a better deconvolution tool is thus a great opportunity for

future work. While this clearly falls outside the purveyance of SpectConnect analysis,

one can easily imagine using some combination of Gemoda's modular functions to ef-

fect a deconvolution algorithm. The premise here would be to identify individual ion

trace chromatograms (as opposed to the Total Ion Current, or TIC, chromatogram)

that covary. When quite a few individual ion chromatograms covary, it is likely that

they constitute the core ions of the spectrum of a specific metabolite. One would

then expand from those ion chromatograms to identify the portions of other ion chro-

matograms that may be a part of that peak's spectrum. This approach is somewhat

similar to the approach that is implemented by AMDIS; in this case, though, we

would have the advantage of open-source code for the appropriate adjustments and

optimizations of the deconvolution approach as well as the advantage of controlling

exactly how sensitive the method is. Obvious difficulties to overcome would include

handling noise, changing baseline, peak tailing, and the identification of the best

model of a peak.

The last difficulty mentioned above, that of identifying the best peak model, is par-

ticularly noteworthy. For an average quadrupole mass spectrometer, one frequently

finds that the time per scan (as defined by the scan rate) for all of the ions being

analyzed is of the same order of magnitude as the expected peak elution time. In

this case, one sees a confounding effect where the mass spectra seem to "tilt" as the

peak comes off the column. If we assume that the mass scanner goes from least to

greatest m/z value, we will see that scans at the beginning of a peak's elution will be

weighted towards the high m/z values, while scans at the end of a peak's elution will

be weighted towards the low m/z values. This is because when the scanner starts

at the low m/z value, there is very little of the compound eluting off of the column

and so not much ion intensity is found. Around half a second later (for example)

when the high m/z values are being scanned by the mass spectrometer, there is quite

a bit more compound eluting off of the column and thus there is more overall ion

intensity. This, even if the low and high m/z values are present at the same relative
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intensity in the true mass spectrum, it would appear that, at the beginning of the

peak's elution, the high m/z value would have a greater intensity that the low m/z

value. This means that the mass spectrum changes as the peak comes off the column,

thus further complicating the task of identifying a true mass spectrum and of finding

individual ion traces that strongly covary.

8.3.3 Diseases and human metabolomics

The study of metabolomic effects of diseases is another promising future application

of the work presented in this thesis. This work has already been started in one form

by other members of our laboratory. It entails applying SpectConnect to the analysis

of clinical samples to discover correlations between metabolite profiles and disease

states.

The premise of the approach is simple and is illustrated in Figure 8-1. Whereas

simple physiological readouts like blood pressure and pulse can give some idea of a

person's condition, it is becoming increasingly important to use biofluid samples (i.e.,

blood and urine) to analyze more specific physiological readouts. One such well-

known readout is the set of markers used for confirming the occurrence of myocardial

infarction (heart attack). These, and other blood-borne markers, give insight into

a person's (past or present) state with respect to a specific condition. Biofluids are

likely to contain significant indicators that pertain to the organs and systems that

directly interface with them; endocrine function and metabolic activity can likely

be characterized, as can the function of the liver, pancreas, or kidneys. By taking

these biofluids, extracting the metabolites, assaying them with GC-MS, and finding

trends or patterns in the data, we can identify diagnostic or predictive markers (like

myocardial infarction markers) that may increase the range of treatment options or

improve prognosis based on earlier potential treatment. Small-molecule markers can

already be seen in clinical use; for example, creatinine and urea in blood plasma are

used to assay for loss of renal function. The discovery of similar markers for specific

diseases or physiological conditions has great potential.

SpectConnect is uniquely equipped to perform such analyses thanks to its untar-
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geted approach to analyzing metabolomic data. Despite the progress of the Human

Metabolome Project mentioned earlier, appropriate and reliable reference mass spec-

tra are not prevalent enough to allow a library-based inetabolomic analysis to be

successful. By tracking all metabolite peaks, we can identify the peaks that are most

strongly correlated with or most uniquely identify a specific state, whether or not

the metabolite's chemical identity is known. The identification of these chemical

structures is the logical next step in pursuing novel biomarkers for human diseases.

A similar approach can also be taken in the analysis of pharmacokinetic and

metabolic effects of drugs. When a new drug is designed and tested, its degradation

products must be identified. Just as SpectConnect can be used to analyze the changes

in the metabolomic profile of biofluids in diseased states, it can also be used to

analyze the changes of biofluids when a drug is injected into a model system. This

approach will allow for the identification not only of the otherwise unknown and a

priori unpredictable degradation products of the drug, but also the changes in all

other biofluid metabolite concentrations. Knowing what other changes are occurring

in the system is crucial to having a better understanding of the drug's effects and

interactions before moving on with clinical trials.

8.3.4 Isotopic tracer analysis

Another possible future direction for applications of SpectConnect is in the analysis

of stable isotopic tracers. These tracers work by increasing the amount of known

stable isotopes (typically •"C or 2H) in a system by adding a labeled precursor. The

flow or flux of that labeled precursor throughout the system can then be deduced

by analyzing the labeling patterns at each specific metabolite in a pathway. These

methods have seen wide use in the literature [118] as well as in our own laboratory

and with collaborators [95, 13].

However, these approaches are only typically useful for small sections of metabolism

that are well-known and have easily accessible precursors. It is desirable to investigate

the broader labeling effects in a cell, but to do so for metabolites that have unknown

mass spectrum is otherwise impossible. An extension of SpectConnect should allow
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some sort of lumping that would facilitate the tracking and analysis of metabolite

labeling in these flux experiments. Potential applications include a better under-

standing of metabolic fluxes as well as truly metabolomic (rather than just targeted

metabolite profiling) approaches to flux analysis. This direction would require quite

a bit of both experimental and computational work, but has quite a bit of promise

for interesting and novel future applications.
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Appendix A

Supplementary methods

A.1 Preparation and analysis of supplemented and

control standard mixtures

A.1.1 Amino acid standard

A reference standard of 17 amino acids (Sigma #AAS18), of which 16 are derivatizable

by the methyl chloroformate (MCF) method, was used. All amino acids except cystine

are present at 2.5 pmol/mL; cystine (consisting of two disulfide-bonded cysteines) is

present at 1.25 pmol/mL. 150 ML of the amino acid standard was combined in a

5-mL silanized glass tube with 8.5 ML of sodium hydroxide solution (2 M), 167 iL

pure methanol, and 34 pL pyridine. The mixture was then derivatized with MCF as

previously described [171].

A.1.2 Spiked amino acid mixture

Methylmalonic acid, a-ketoglutaric acid, 2-ketoisocaproic acid, lactic acid, 3-aminobutyric

acid, 4- chloro-phenylalanine, citric acid, and stearic acid were added to methanol in

equimolar amounts (total 2.3 umol/mL). 167 pL of the spiked methanol solution were

added to a silanized glass tube which also contained 150 pL of the amino acid mix-

ture, 10 /iL of sodium hydroxide solution (2 M), and 34 pL pyridine. The mixture
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was then derivatized with MCF.

A.2 Preparation and analysis of E. coli strains

A.2.1 Bacterial strains and media

Three Escherichia coli strains were used. K12 PT5-dxs, PT5-idi, PT5-ispFD, pro-

vided by DuPont, served as the reference strain. The mutant strains K12 PT5-dxs,

PT5-idi, PT5-ispFD, 6gdhA, 6aceE, 6fdhF (mutant 1) and K12 PT5-dxs, PT5-idi,

PT5-ispFD, 6gdhA, 6aceE, 6PyjiD (mutant 2) [5], were also used. Reactor seed cul-

tures were grown overnight in 50 ml cultures grown at 37°C with 225 RPM orbital

shaking in either 2x M9-minimal medium [5] or R- medium [147] containing 5 g/L D-

glucose and 68 pg/mL chloramphenicol. All experiments were performed in duplicate.

Cell density was monitored spectrophotometrically at 600 nm. M9 Minimal salts were

purchased from US Biological and all remaining chemicals were from Sigma-Aldrich.

A.2.2 Fermentation conditions

All fed-batch fermentations were conducted in 1.5-L Applikon vessels containing an

initial volume of 500 mL (for M9-based cultures) or 600 mL (for R-medium-based

cultures). A starting inoculum of 4% by volume (for M9-cultures) and 1% by volume

(for R-medium) was used. pH was measured and controlled online using NH 40H and

HCl as appropriate for the desired control strategy. Temperature was regulated and

controlled through water bath circulation. Glucose concentration was monitored and

controlled online at a setpoint of 0.45 g/L using a YSI 2700 biochemistry analyzer

connected to a pump with a feedstock of 200 g/L glucose with 0.1% antifoam (the set

sampling interval was 20 minutes). Agitation speed was increased every two hours

for the high cell density fermentations to obtain a stepwise increase from 400 RPM

to 1100 RPM. Inlet air was supplied for aeration at a pressure of 15 psig.
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A.2.3 Metabolite sampling, quenching, and derivatization

Pure methanol was precooled at -80'C and used to quench culture samples at 8, 12,

16, 24, and 30 hours into each fermentation. At each time point four 1-mL samples

were taken. The samples were then frozen in liquid nitrogen, thawed at -40 0 C, and

centrifuged at 3200 g for 10 min. The extract was collected and the cell debris was

resuspended in 500 pL of precooled methanol (-40Co) and centrifuged again at 3200

g for 10 min. Having collected this extract, we pooled with the previous supernatant,

and concentrated by vacuum centrifugation to approximately 150 1 L. Each concen-

trated sample was transferred to a 5-mL silanized glass tube and combined with 80

1pL of sodium hydroxide solution (2M), 167 pL of methanol, and 34 /iL of pyridine.

We derivatized the resulting mixture with MCF.

A.2.4 GC-MS analysis

We used a Hewlett-Packard system HP 5890 gas chromatograph coupled to an HP

5971 quadrupole mass selective detector (EI) operated at 70 eV. The column used

for all analyses was a J&W DB-1701 (Folsom, CA, U.S.A.), 30 m x 250 /.m (internal

diameter) x 0.25 Ipm (film thickness). The MS was operated in scan mode (start

after 10 min; mass range, 50-400 a.m.u. at 2.0 scans/s). We modified the analysis

parameters from the original protocol described elsewhere [173]. The samples were

injected in splitless mode. The oven temperature was originally held at 400 C for 2

min. Thereafter, the temperature was raised with a gradient of 5°C/min until 2800 C

was reached. This temperature was held for a final 10 minutes. The flow through the

column was held constant at 0.9 ml He/min. The injection volume was 2 pL. The

temperature of the inlet was 230'C, the interface temperature was 300'C, and the

quadrupole temperature was 190'C. Injections were made in 4x replicate.
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Appendix B

Supplementary methods

B.1 Preparation and analysis of E. coli strains

B.1.1 Bacterial strains and media

The Saccharomyces cerevisiae strain S288C was used for all experiments in the

metabolome analysis project. Reactor seed cultures were grown overnight in 5 mL

culture tubes, and then transferred to 50 mL cultures grown at 30'C with 225 RPM

orbital shaking in YNB medium containing 20 g/L of glucose or galactose and 5 g/L

ammonium sulfate. All experiments were performed in triplicate, most with culture

medium controls. Cell density was monitored spectrophotometrically at 600 nm, and

samples were typically taken (or perturbations performed) when OD 600 was approx-

imately 2. Heat shock perturbations were performed two ways: by transferring the

culture flasks to an incubator at 37 0 C and by taking aliquots of fermentation cultures

and transferring them to preheated fermentation medium. Salt perturbations were

also performed two ways: by adding NaC1 sufficient to make the culture's concentra-

tion 1 M, and by taking aliquots of fermentation cultures and transferring them to

premixed fermentation media vessels such that the final concentration would be 1 M.

YNB medium was purchased from US Biological and all remaining chemicals were

from Sigma-Aldrich.
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B.1.2 Metabolite sampling, quenching, and derivatization

A 75% methanol, 25% water mixture was precooled at -80'C and used to quench

culture samples. For heat and salt shock perturbations, samples were taken either at

0 and 30 minutes after perturbation or at 0, 15, and 75 minutes after perturbation.

For each sample, 8 mL of culture was added to 32 mL of quenching mixture. Samples

were kept at -20 0 C or below in cold water baths or freezers. Samples were centrifuged

at 3200 g for 10 minutes at -9 0C, and the supernatant was discarded. The resulting

yeast pellet was quickly washed with a 60% methanol, 40% water mixture; this wash

mixture was removed and discarded, and the samples were returned to -80'C storage.

Extraction was performed by adding 2.5 mL methanol cooled at -80 0 C, 5 mL

chloroform cooled at -80'C, and 2.0 mL of 12.5 mM tricine buffered at a pH of 7.4

and cooled on ice. These mixtures were than vortexed on high at -4oC. Extraction

mixtures were then centrifuged again at -90 C and 3200 g for 10 minutes. The polar

phase was pipetted off and transferred to a 5-mL glass tube. 2 mL tricine and 2 mL

methanol were then added to the extraction mixture again; the mixture was vortexed

for 15 seconds on high and then centrifuged again at -9 0C and 3200 g for 10 minutes.

The polar phase was pipetted off and pooled with previous polar phase. The resulting

polar phase samples were then evaporated overnight.

Protecting groups were added before derivatization by adding 50 AL of methoxyamine

HC1 (20 mg/mL pyridine) to the dried metabolites. This mixture was incubated at

30'C for 90 minutes. We then added 80 yL of MSTFA + 1% TMCS and heated at

37oC for 30 minutes. We then syringe filtered the resulting mixture into microinserts

in GC-MS vials.

B.1.3 GC-MS analysis

We used a Hewlett-Packard system HP 5890 gas chromatograph coupled to an HP

5971 quadrupole mass selective detector (EI) operated at 70 eV. The column used

for all analyses was a J&W DB-35MS (Folsom, CA, U.S.A.), 30 m x 250 ,m (in-

ternal diameter) x 0.25 /m (film thickness). The MS was operated in scan mode
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(start after 10 min; mass range, 50-550 a.m.u. at 2.0 scans/s). The samples were

injected in splitless mode. The oven temperature was originally held at 700C for 5

min. Thereafter, the temperature was raised with a gradient of 50 C/min until 310 0 C

was reached. This temperature was held for final minute. The flow through the

column was held constant at 1.0 mL He/min. The injection volume was 1 4L. The

temperature of the inlet was 230 0 C, the interface temperature was 250'C, and the

quadrupole temperature was 2000 C. Injections were made in 3x replicate.
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Appendix C

Gemoda file documentation

C.1 Introduction

This chapter contains detailed documentation of the source code implementation

of the Gemoda algorithm described in Chapter 3. Our implementation of Gemoda

is written in the C programming language. As noted in Chapter 3, the different

phases in the algorithm are completely modular. First of all, this means that any

comparison metric can be used with any clustering algorithm and any convolution

scheme. Second, this means that our program is extremely extensible. For example,

if a user wants to use a new type of data or solve a new type of problem that requires

a unique comparison function, all they need to do is write that comparison function

in C; with only minor adjustments, Gemoda will then be able to use those comparison

functions just as any other functions that come with the program.

This implementation makes uses the GNU Scientific Library [58] and the Basic Linear

Algebra Subprograms (BLAS) [27, 43, 44] for optimal computational efficiency of

complex mathematical operations like singular value decomposition. Such operations

are necessary in, for instance, the analysis of protein secondary structure motifs.

We have utilized some of the data structures provided in those libraries for certain

analyses, while other data structures have been created and customized specifically
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for the purposes of Gemoda.

Gemoda source code is available at http://web.mit. edu/bamel/gemoda. The soft-

ware package includes a number of "helper" applications that increase interoperability

with common bioinformatics tools.

This software is designed for UNIX-like systems and uses the GNU autotools frame-

work for managing installation tasks and properly configuring itself for different com-

puter architectures. Gemoda is distributed with a configure shell script that tries

to guess system-dependent variables and to create a "makefile" that can be used as

an input for GNU make.

Gemoda can be installed by using the following steps:

1. Change directories to the folder that contains the "src" directory as a subfolder.

From this location, run the command ./configure. To install Gemoda to a

nonstandard location, use the optional flag -- prefix=PATH, where PATH is the

desired location, such as "/usr/local/software".

2. Type make to compile the software using your default C compiler, which is

specified by the "CC" environment variable.

3. Type make install to install the software.

There are many other options for the configure script. To see a list of available

options, use the optional flag -- help.

The remainder of this appendix contains detailed explanations of the organization and

design of our software implementation of Gemoda. These sections are organized by

file and are designed to show the dependencies and interactions of different functions.

C.2 align.c File Reference

#include <stdio.h>
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#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include "FastaSeqIO/fastaSeqIO.h"

#include "spat.h"

#include "bitSet.h"

#include "matdata.h"

Include dependency graph for align.c:

stdio.h

stdlib.h

string.h

Defines

* #define ALIGN_ALPHABET 256

Functions

* int alignMat (char *sl, char *s2, int L, int rnat[][MATRIX_SIZE])
* bitGrapht * alignWordsMat_bit (sPatt *words, int wc, int mat[][MATRIX_-

SIZE], int threshold)

Variables

* const int aaOrder []

Detailed Description

This file defines functions that are used to create a similarity graph, or adjacency
matrix via the comparison of small windows within a set of sequences. This file is
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only used for string based sequences, and not real valued data. Usually, the adjacency
matrix is created via a the alignment of the windows within the sequence set. Thus,
the name of this file. However, other functions can certainly be defined for creating
the adjacency matrix.

Definition in file align.c.

Define Documentation

C.2.0.1 #define ALIGN_ALPHABET 256

Definition at line 24 of file align.c.

Function Documentation

C.2.0.2 int alignMat (char * sl, char * s2, int L, int
mat[] [MATRIX_SIZE])

This function takes as its arguments two pointers to strings, a length, and a scoring
matrix. The function computes the score, or degree of similarity, between the two
strings by comparing each character the in the strings from zero two L minus one.
Each character receives a score that is looked up in the scoring matrix. This is most
commonly used for amino acid sequences or DNA sequences; however, it is applicable
to any series of characters. This function returns a single integer, which is the score
between the two words.

Definition at line 44 of file align.c.

References aaOrder, and mat.

Referenced by alignWordsMatbit().

45 {
46 int i;
47 int points = 0;
48 int x, y;
49
50 // Go over each character in the L-length window
51 for (i = 0; i < L; i++)

52 {
53

54 // The integer corresponding to the character in
55 // the first string, so that we can look it up

56 // in one of our scoring matricies.
57 x = aa0rder[(int) sl[il;
58
59 // And for the second character
60 y = aa0rder[(int) s2[i]];
61
62 // If the characters aren't going to be in the scoring
63 // matrix, they get a -1 value...which we'll give zero
64 // points to here.
65 if (x != -1 && y != -1)
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66 {
67
68 // Otherwise, they get a score that is looked up
69 // in the scoring matrix
70 points += mat Ex] [y];
71 }
72 }
73 return points;
74 }

C.2.0.3 bitGraph_t* alignWordsMat_bit (sPatt * words, int wc, int
mat[] [MATRIX_SIZE], int threshold)

This uses the function above. Here, we have an array of words (sPat_t objects)
and we compare (align) them all. If their score is above 'threshold' then we will
set a bit to 'true' in a bitGraph_t that we create. A bitGraph_t is essentially an
adjacency matrix, where each member of the matrix contains only a single bit: are
the words equal, true or false? The function traverses the words by doing and all by
all comparison; however, we only do the upper diagonal. The function makes use of
alignMat and needs to be passed a scoring matrix that the user has chosen which is
appropriate for the context of whatever data sent the user is looking at.

Definition at line 88 of file align.c.

References alignMat(), bitGraphSetTrueSym(), mat, and newBitGraph().

Referenced by main().

90 {
91 bitGraph_t * sg = NULL;
92 int score;
93 int i, j;
94
95 // Assign a new bitGraph_t object, with (vc x wec) possible
96 // true/false values
97 sg = newBitGraph (wc);
98 for (i = 0; i < wc; i++)
99 {
100 for (j = i; j < wc; j++)
101 {
102
103 // Get the score for the alignment of word i and word j
104 score =
105 alignMat (words [i] .string, words [j] .string, words [i] .length, mat);
106
107 // If that score is greater than threshold, set
108 // a bit to 'true' in our bitGrapht object
109 if (score >= threshold)
110 {
111
112 // We use 'bitGraphSetTrueSym' because, if i=j,
113 // then j=i for most applications. However, this
114 // can be relaxed for masochists.
115 bitGraphSetTrueSym (sg, i, j);
116 }
117 }
118 }
119
120 // Return a pointer to this new bitGraph.t object
121 return sg;
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122 }

Variable Documentation

C.2.0.4 const int aaOrder[]

Definition at line 32 of file matrices.h.

Referenced by alignMat().
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C.3 bitSet.c File Reference

#include "errno.h"

#include "bitSet.h"

Include dependency graph for bitSet.c:

errno.h i • stdio.h i

bitSet h ~stdlib.h I

jstring.h

Functions

* bit_t * newBitArray (int bytes)
* bitSet_t * newBitSet (int size)
* int setTrue (bitSet_t *sl, int x)
* int setFalse (bitSet_t *sl, int x)
* int flipBits (bitSett *sl)
* int fillSet (bitSett *sl)
* int emptySet (bitSett *sl)
* int checkBit (bitSett *sl, int x)
* int deleteBitSet (bitSett *sl)
* int bitSetUnion (bitSet t *sl, bitSet_t *s2, bitSet_t *s3)
* int copySet (bitSet_t *sl, bitSett *s2)
* int copyBitGraph (bitGrapht *bgl, bitGraph_t *bg2)
* int bitSetDifference (bitSet_t *sl, bitSet_t *s2, bitSet_t *s3)
* int bitSetSum (bitSet_t *sl, bitSet_t *s2, bitSet_t *s3)
* int bitSetIntersection (bitSett *sl, bitSet_t *s2, bitSett *s3)
* int bitSet3WayIntersection (bitSet_t *sl, bitSet_t *s2, bitSet_t *s3, bitSet_t *s4)
* int bitcount32 (unsigned int n)
* int bitcount32_precomp (unsigned int n)
* int bitcount64 (unsigned int n)
* int countSet (bitSet_t *sl)
* int nextBitBitSet (bitSett *sl, int start)
* int countBitGraphNonZero (bitGraph_t *bg)
* int printBitSet (bitSett *sl)
* int bitGraphRowUnion (bitGrapht *bg, int rowl, int row2, bitSet_t *sl)
* int bitGraphRowIntersection (bitGrapht *bg, int rowl, int row2, bitSet_t *sl)
* int printBinaryBitSet (bitSett *sl)
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* int bitGraphCheckBit (bitGraph_t *bg, int x, int y)

* int bitGraphSetTrue (bitGrapht *bg, int x, int y)
* int bitGraphSetFalse (bitGraph_t *bg, int x, int y)
* int bitGraphSetFalseSym (bitGraph_t *bg, int x, int y)
* int bitGraphSetTrueSym (bitGrapht *bg, int x, int y)
* int bitGraphSetTrueDiagonal (bitGraph_t *bg)

* int bitGraphSetFalseDiagonal (bitGraph_t *bg)

* int printBitGraph (bitGrapht *bg)

* int maskBitGraph (bitGraph_t *bgl, bitSet_t *bs)

* int fillBitGraph (bitGrapht *bgl)

* int emptyBitGraph (bitGraph_t *bgl)

* bitGraph_t * newBitGraph (int size)

* int emptyBitGraphRow (bitGrapht *bg, int row)
* int deleteBitGraph (bitGraph_t *bg)

Detailed Description

This file defines functions for handling bit sets and bit graphs.

Definition in file bitSet.c.

Function Documentation

C.3.0.5 int bitcount32 (unsigned int n)

Attempt at a fast way of counting how many true values are in a given bitSet_t.
Currently deprecated, using precompiled version instead.

Definition at line 351 of file bitSet.c.

352 {
353 /*
354 works for 32-bit numbers only
355 */
356 /*
357 fix last line for 64-bit numbers
358 */
359

360 register unsigned int tmp;
361
362 tmp = n - ((n >> 1) & 033333333333) - ((n >> 2) & 011111111111);
363 return ((tmp + (tmp >> 3)) & 030707070707) 7. 63;
364 }
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C.3.0.6 int bitcount32_precomp (unsigned int n)

Uses bitsinchar data structure to determine the number of true bits in a 32-bit int
in an efficient manner. Input: 32-bit int (equal to one slot in the bitSet). Output:
number of true bits in the input integer.

Definition at line 396 of file bitSet.c.

Referenced by countSet().

397 {
398 // works only for 32-bit ints
399

return bits_in_char [n & Oxfful
+ bits_in-char[(n >> 8) & Oxffu]
+ bits-inchar[(n >> 16) & Oxffu] + bitsinchar[(n >> 24) & Oxffu];

C.3.0.7 int bitcount64 (unsigned int n)

Currently there is no support for 64-bit architectures.

Definition at line 420 of file bitSet.c.

PCCOUNT (n, 0);
PCCOUNT (n, 1);
PCCOUNT (n, 2);
PCCOUNT (n, 3);
PCCOUNT (n, 4);
PCCOUNT (n, 5); // for 64-bit integers

C.3.0.8 int bitGraphCheckBit (bitGraph_t * bg, int x, int y)

Checks the value of a bit in a bitGrapht object. Input: a bitGraph_t object, the
index of the row of the bitGraph_t with the bit to be checked, the index of the bit in
that row that is to be checked. Output: the value of the bit in the bitGraph being
checked.

Definition at line 628 of file bitSet.c.

References checkBit(), and bitGrapht::graph.

Referenced by main(), and measureDiagonal().

629 {
630 return checkBit (bg->graph[x], y);
631 }
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C.3.0.9 int bitGraphRowIntersection (bitGrapht * bg, int rowl, int
row2, bitSet_t * sl)

Finds the intersection of two rows (bitSets) within a bitGraph_t object. Input: a bit-
Graph_t object, first row to be compared, second row to be compared, and a bitSet_t
to store the intersection results. Output: integer success value of 0 (and an altered
destination bitSet_t object with a true value wherever both source bitSets had a true
value).

Definition at line 598 of file bitSet.c.

References bitSetIntersection(), and bitGrapht::graph.

Referenced by getStatMat(), and oldGetStatMat().

599 {
600 bitSetIntersection (bg->graph[rowl], bg->graph[row2], si);
601 return 0;
602 }

C.3.0.10 int bitGraphRowUnion (bitGrapht * bg, int rowl, int row2,
bitSet_t * sl)

Finds the union of two rows (bitSets) within a bitGraph Input: a bitGrapht object,
first row to be compared, second row to be compared, and a bitSett to store the
union results. Output: integer success value of 0 (and an altered destination bitSet_t
object with a true value wherever one or both source bitSets had a true value).

Definition at line 584 of file bitSet.c.

References bitSetUnion(), and bitGraph_t::graph.

585 {
586 bitSetUnion (bg->graph[rowl], bg->graph[row2], sl);
587 return 0;
588 }

C.3.0.11 int bitGraphSetFalse (bitGrapht * bg, int x, int y)

Sets a specific bit in a bitGraph false. Input: a bitGraph_t object, the index of the
row of the bitGraph_t with the bit be set, the index of the bit in that row that is to
be set. Output: integer success value of 0 (and an altered bitGraph_t object).

Definition at line 654 of file bitSet.c.

References bitGrapht::graph, and setFalse().

655 {
656 setFalse (bg->graph[x), y);
657 return 0;
658 }
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C.3.0.12 int bitGraphSetFalseDiagonal (bitGrapht * bg)

Sets the main diagonal of a bitGraph false. Input:
integer success value of 0 (and an altered bitGraph_t

Definition at line 714 of file bitSet.c.

References bitGrapht::graph, and setFalse().

Referenced by convolve().

a bitGraph_t object.
object).

715 {
716 int i;
717 for (i = 0; i < bg->size; i++)
718 {
719 setFalse (bg->graphi] , i);
720 }
721 return 0;
722 }

C.3.0.13 int bitGraphSetFalseSym (bitGraph_t * bg, int x, int y)

Sets a specific bit and its symmetric opposite in a bitGraph false. For instance, given
that we wanted to set the 3rd bit in the 5th row false, this would also set the 5th
bit in the 3rd row. Input: a bitGraph_t object, the index of the row of the bitGraph
with the bit be set, the index of the bit in that row that is to be set. Output: integer
success value of 0 (and an altered bitGraph_t object).

Definition at line 669 of file bitSet.c.

References bitGrapht::graph, and setFalse().

670 {
671
672

673

674 }

setFalse (bg->graph[x], y);
setFalse (bg->graph[y], x);
return 0;

C.3.0.14 int bitGraphSetTrue (bitGraph_t * bg, int x, int y)

Sets a specific bit in a bitGraph true. Input: a bitGrapht object, the index of the
row of the bitGrapht with the bit be set, the index of the bit in that row that is to
be set. Output: integer success value of 0 (and an altered bitGrapht object).

Definition at line 641 of file bitSet.c.

References bitGraph t::graph, and setTrue().

642 {
643
644
645 }

setTrue (bg->graph[x], y);
return 0;
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C.3.0.15 int bitGraphSetTrueDiagonal (bitGraph_t * bg)

Sets the main diagonal of a bitGraph true. Input: a bitGraph_t object. Output:
integer success value of 0 (and an altered bitGraph_t object).

Definition at line 698 of file bitSet.c.

References bitGraph_t::graph, and setTrue().

699 {
700 int i;
701 for (i = 0; i < bg->size; i++)
702 {
703 setTrue (bg->graph[i], i);
704 }
705 return 0;
706 }

C.3.0.16 int bitGraphSetTrueSym (bitGraph_t * bg, int x, int y)

Sets a specific bit and its symmetric opposite in a bitGraph true. For instance, given
that we wanted to set the 3rd bit in the 5th row true, this would also set the 5th bit
in the 3rd row. Input: a bitGraph, the index of the row of the bitGraph with the
bit be set, the index of the bit in that row that is to be set. Output: integer success
value of 0 (and an altered bitGraph_t object).

Definition at line 685 of file bitSet.c.

References bitGraph_t::graph, and setTrue().

Referenced by alignWordsMatbit(), main(), and realComparison().

686 {
687 setTrue (bg->graph[xl, y);
688 setTrue (bg->graph[y], x);
689 return 0;
690 }

C.3.0.17 int bitSet3WayIntersection (bitSett * sl, bitSett * s2,
bitSet_t * s3, bitSett s4)

Finds the intersection of 3 bitSets. Input: First bitSet to be intersected, second bitset
to be intersected. third bitSet to be intersected, a bitSet to store the result of the
intersection. Output: Integer success value of 0 (and an altered destination bitSett
object with a true where all three source bitSets had a true.)

Definition at line 327 of file bitSet.c.

References BSINTERSECTION, bitSet_t::slots, and bitSet_t::tf.

329 {
330 int i;
331 if ((sl->slots != s2->slots) 11 (sl->slots != s3->slots)
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332
333
334
335
336
337
338
339
340
341
342
343
344 }

II (s
{

1->slots != s4->slots))

fprintf (stderr, "Sets aren't same size!\n");
fflush (stderr);
exit (0);

}
for (i = 0; i < sl->slots; i++)

{
s4->tf [i = BSINTERSECTION (sl->tf i)], s2->tf [i]);
s4->tf [i) = BSINTERSECTION (s3->tf [i], s4->tf [il);

}
return 0;

C.3.0.18 int bitSetDifference (bitSet_t * sl, bitSet_t * s2, bitSet_t * s3)

Locates all differences between two bitSets. The result bitSet contains a true at
a given bit if the two source bitSets differ at that bit. Input: first bit set to be
compared, second bit set to be compared. third bit set to store the results Output:
integer success value of 0 (and an altered destination bitSet_t object with a true where
the two source bit sets differed).

Definition at line 254 of file bitSet.c.

References bitSet_t::slots, and bitSet_t::tf.

255 {
256 int i;
257 if ((sl->slots != s2->slots) II
258 {
259 fprintf (stderr, "Sets aren
260 fflush (stderr);
261 exit (0);
262 }
263 for (i = 0; i < sl->slots; i++)
264 {
265 s3->tf [i = (sl->tf[ i & (-
266 }
267 return 0;
268 }

(si->slots != s3->slots))

't same size!\n");

s2->tf li]));

C.3.0.19 int bitSetIntersection (bitSet_t * sl, bitSet_t * s2, bitSet_t A
s3)

Finds the intersection of two bitsets. Input: First bitSet to be intersected, second
bitSet to be intersected. a bitSet to store the result of the intersection. Output:
Integer success value of 0 (and an altered destination bitSet_t object. with a true
where both source bitSets had a true).
Definition at line 299 of file bitSet.c.

References BSINTERSECTION, bitSett::slots, and bitSet_t::tf.

Referenced by bitGraphRowIntersection(), findCliques(), and maskBitGraph().

300 {
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301 int i;
302 if ((si->slots != s2->slots) II (sl->slots != s3->slots))
303 {
304 fprintf (stderr, "Sets aren't same size!\n");
305 fprintf (stderr, "set 1 slots = %d\n", sl->slots);
306 fprintf (stderr, "set 2 slots = %d\n", s2->slots);
307 fprintf (stderr, "set 3 slots = %d\n", s3->slots);
308 fflush (stderr);
309 exit (0);
310 }
311 for (i = 0; i < sl->slots; i++)

312 {
313 s3->tf [i = BSINTERSECTION (sl->tf[i], s2->tf [i);
314 }
315 return 0;
316 }

C.3.0.20 int bitSetSum (bitSett * sl, bitSet_t A s2, bitSett s3)

Adds two bitSett objects together. Currently unknown functionality, not used in
existing code.

Definition at line 275 of file bitSet.c.

References bitSet t::slots, and bitSett::tf.

276 {
277 int i;
278 if ((sl->slots != s2->slots) II (sl->slots != s3->slots))
279 {
280 fprintf (stderr, "Sets aren't same size!\n");

281 fflush (stderr);

282 exit (0);
283 }

284 for (i = 0; i < sl->slots; i++)

285 {
286 s3->tf[i] = (sl->tf [i + s2->tf[i]);
287 }
288 return 0;
289 }

C.3.0.21 int bitSetUnion (bitSet_t * sl, bitSet_t * s2, bitSet_t * s3)

Finds the union of two bitSets Input: first bit set for the union, second bit set for the
union. a bit set in which to store the results Output: an integer success value of 0
(and an altered third bitSett with the results of the union.

Definition at line 182 of file bitSet.c.

References BSUNION, bitSet_t::slots, and bitSett::tf.

Referenced by bitGraphRowUnion(), and singleLinkage().

183 {
184 int i;
185 if ((sl->slots != s2->slots) II (sl->slots != s3->slots))
186 {
187 fprintf (stderr, "Sets aren't same size!\n");
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188 fflush (stderr);
189 exit (0);
190 }
191 for (i = 0; i < sl->slots; i++)
192 {
193 s3->tf [i = BSUNION (sl->tf[i], s2->tf [i);
194 }
195 return 0;
196 }

C.3.0.22 int checkBit (bitSett * s, int x)

Finds the value of a specific bit in a bitSet. Input: a bitSet, the number of the bit
being queried. Output: the value of the bit being queried (1 or 0).

Definition at line 148 of file bitSet.c.

References BSTEST, and bitSet_t::tf.

Referenced by bitGraphCheckBit(), findCliques(), getStatMat(), maskBitGraph(),
nextBitBitSet(), singleLinkage(), and wholeRoundConv().

149 {
150 return BSTEST (sl->tf, x);
151 }

C.3.0.23 int copyBitGraph (bitGraph_t * bgl, bitGraph_t * bg2)

Copies the true/false contents of one bit graph into an existing bit graph. Both bit
graphs must be the same size, and each corresponding bit set between the two bit
graphs must be the same size. Input: source bit graph, destination bitGraph_t object.
Output: integer success value of 0 (and an altered destination bit graph).

Definition at line 229 of file bitSet.c.

References copySet(), bitGrapht::graph, and bitGraphAt::size.

230 {
231
232
233
234
235
236
237
238
239
240
241
242
243 }

int i;
if (bgl->size != bg2->size)

fprintf (stderr, "Graphs are not the same size!");
fflush (stderr);
exit (0);

for (i = 0; i < bgl->size; i++)

copySet (bgl->graph [i), bg2->graph[i]);

return 0;
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C.3.0.24 int copySet (bitSet_t * sl, bitSett * s2)

Copies the true/false contents of one bit set into an existing bit set. Both bit sets
must be the same size. Input: source bit set, destination bitSet_t object. Output:
integer success value of 0 (and an altered destination bitset.

Definition at line 205 of file bitSet.c.

References bitSet_t::slots, and bitSett::tf.

Referenced by copyBitGraph(), filterGraph(), and singleLinkage().

206 {
207 int i;
208 if (sl->slots != s2->slots)
209 {
210 fprintf (stderr, "Sets are not the same size!");
211 fflush (stderr);
212 exit (0);
213 }
214 for (i = 0; i < sl->slots; i++)
215 {
216 s2->tf [i] = sl->tf[i];
217 }
218 return 0;
219 }

C.3.0.25 int countBitGraphNonZero (bitGraph_t * bg)

Counts the number of true (non-zero) values in a bitGraph_t object. Input: a bit-
Grapht object. Output: the integer number of true (non-zero) values in the bit-
Grapht object.

Definition at line 537 of file bitSet.c.

References countSet(), and bitGraph_t::graph.

538 {
539 int i;
540 int sum = 0;
541 // Iterate over all bitSets in the bitGraph
542 for (i = 0; i < bg->size; i++)
543 {
544 sum += countSet (bg->graph[i]);
545 }
546 return sum;
547 }

C.3.0.26 int countSet (bitSet_t * sl)

Counts the number of true values in a bitSet. Input: a bitSett object. Output:
number of true values in that bitSett object.

Definition at line 437 of file bitSet.c.

References bitcount32_precomp(), and bitSet_t::tf.
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Referenced by bitSetToCSet(), countBitGraphNonZero(), filterGraph(), filterIter(),
findCliques(), getStatMat(), oldGetStatMat(), printBitSet(), singleLinkage(), and
wholeCliqueConv().

438 {
439 int i;
440 int sum = 0;
441 int (*bitCounter) () = &bitcount32.precomp;
442 // Currently there is no support for 64-bit architectures.
443
444 if (sizeof (bit_t) * 8 != 32)
445 {
446 fprintf (stderr,
447 "\nSorry, no support for 64-bit architectures just yet! - countSet\n");
448 fflush (stderr);
449 exit (0);
450 }
451
452 // Just count the number of true bits in each char, and do this for
453 // (num of chars per int) chars.
454 for (i = 0; i < si->slots; i++)
455 {
456 sum += bitCounter (s1->tf [i]);
457 }
458 return sum;
459 }

C.3.0.27 int deleteBitGraph (bitGrapht * bg)

Deletes a bitGraph_t object from memory. Input: a bitGraph_t object to be deleted.
Output: integer success value from 0 (and deletion of a bitGraph_t object).

Definition at line 853 of file bitSet.c.

References deleteBitSet(), and bitGraph_t::graph.

Referenced by main().

854 {
855 int i;
856 if (bg != NULL)
857 {
858 if (bg->graph != NULL)
859 {
860 for (i = 0; i < bg->size; i++)
861 {
862 deleteBitSet (bg->graph[i));
863 }
864 free (bg->graph);
865 bg->graph = NULL;
866 }
867 free (bg);
868 bg = NULL;
869 }
870 return 0;
871 }
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C.3.0.28 int deleteBitSet (bitSet_t * sl)

Performs memory management for the deletion of a bitSet_t structure. Input: a
bitSet_t object. Output: integer success value of 1.

Definition at line 159 of file bitSet.c.

References bitSet_t::tf.

Referenced by convolve(), deleteBitGraph(), filterGraph(), findCliques(), getStat-
Mat(), oldGetStatMat(), wholeCliqueConv(), and wholeRoundConv().

160 {
161 if (sl->tf != NULL)

162 {
163 free (sl->tf);

164 sl->tf = NULL;
165 }
166 if (sl != NULL)

167 {
168 free (sl);
169 sl = NULL;
170 }
171 return 0;
172 }

C.3.0.29 int emptyBitGraph (bitGraph_t * bgl)

Sets all bits in the bitGraph_t object to false. Input: a bitGrapht object. Output:
integer success value of 0 (and a bitGraph_t with all false bits).

Definition at line 791 of file bitSet.c.

References emptySet(), and bitGrapht::graph.

792 {
793 int i;
794 for (i = 0; i < bgl->size; i++)

795 {
796 emptySet (bgl->graph[iJ);

797 }
798 return 0;
799 }

C.3.0.30 int emptyBitGraphRow (bitGrapht * bg, int row)

Sets all bits in a bitGraph_t row (a bitSet_t object) false. Input: a bitGraph, a row
in the bitGraph_t object to be emptied. Output: integer success value of 0 (and an
altered bitGraph_t object).

Definition at line 841 of file bitSet.c.

References emptySet(), and bitGraph_t::graph.

842 {
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843 emptySet (bg->graph[row]);
844 return 0;
845 }

C.3.0.31 int emptySet (bitSet_t * sl)

Sets all values in a bitSet to false. Input: a bitSett object. Output: integer success
value of 1.

Definition at line 136 of file bitSet.c.

References bitSet_t::bytes, and bitSett::tf.

Referenced by emptyBitGraph(), emptyBitGraphRow(), filterGraph(), filterlter(),
maskBitGraph(), pruneBitGraph(), and searchMemsWithList().

137 {
138 memset (sl->tf, 0, sl->bytes);
139 return 0;

140 1

C.3.0.32 int fillBitGraph (bitGraph_t * bgl)

Sets all bits in the bitGraph_t object to true. Input: a bitGrapht object. Output:
integer success value of 0 (and a bitGrapht object with all true bits).
Definition at line 775 of file bitSet.c.

References fillSet(), and bitGraph_t::graph.

776 {
777 int i;
778 for (i = 0; i < bgl->size; i++)
779 {
780 fillSet (bgl->graph[i]);

781 }
782 return 0;
783 }

C.3.0.33 int fillSet (bitSett sl)

Sets all values in a bitSet to true. Input: a bitSet. Output: integer success value of
1.

Definition at line 124 of file bitSet.c.

References bitSet_t::bytes, and bitSett::tf.

Referenced by convolve(), fillBitGraph(), and wholeRoundConv().

125 {
126 memset (sl->tf, -0, sl->bytes);
127 return 0;
128 }
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C.3.0.34 int flipBits (bitSet_t * sl)

Inverts all values in a bitSet, making all trues false and all falses true. Input: a bitSet.
Output: integer success value of 1.

Definition at line 108 of file bitSet.c.

References bitSet_t::tf.

109 {
110 int i;
111 for (i = 0; i < sl->slots; i++)

112 {
113 sl->tf[i] = 'sl->tf(i];

114 }
115 return 0;

116 }

C.3.0.35 int maskBitGraph (bitGraph_t * bgl, bitSet_t * bs)

Makes a bitGraph contain only true bits according to the bitmask given. Only lo-
cations with the row and column both true in the bitmask can be true if they were
initially true. If they were false, they remain false. If the location does not have both
the row and the column in the bitmask, it is made false. Note, this is not currently
used in Gemoda. Input: a bitGraph, a mask in the form of a bitSet_t object. Output:
integer success value of 0 (and an altered bitGraph_t object).

Definition at line 752 of file bitSet.c.

References bitSetIntersection(), checkBit(), emptySet(), and bitGraph_t::graph.

753 {
754 int i;
755 for (i = 0; i < bgl->size; i++)

756 {
757 if (checkBit (bs, i))
758 I
759 bitSetIntersection (bgl->graph[i], bs, bgl->graph[il);

760 }
761 else
762 {
763 emptySet (bgl->graph[i]);
764 }
765 }
766 return 0;

767 }

C.3.0.36 bitt* newBitArray (int bytes)

Creates a bit array for use in high-throughput intersections/unions. Input: desired
size of bit array in byte. Output: a new bit array in bitt forma. Note: this should
not be called directly; see newBitSet.

Definition at line 20 of file bitSet.c.

Referenced by newBitSet().
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21 {
22 bit_t *b = (bit.t *) malloc (bytes);

23 if (b == NULL)
24 {
25 fprintf (stderr, "\nMemory error --- couldn't allocate bitArray!"
26 " - newBitArray\ns\n", strerror (errno));
27 fflush (stderr);
28 exit (0);
29 }
30 // Set them all false
31 memset (b, 0, bytes);
32 return b;
33 }

C.3.0.37 bitGraph_t* newBitGraph (int size)

Creates a bitGraph_t data structure. Input: the size of the (square) bitGrapht
object. Output: a new bitGraph_t data structure.

Definition at line 807 of file bitSet.c.

References bitGrapht::graph, newBitSet(), and bitGrapht::size.

Referenced by alignWordsMat_bit(), main(), and realComparison().

808 {
809 bitGraph_t *bg = NULL;
810 int i;
811 bg = (bitGraph_t *) malloc (sizeof (bitGraph_t));
812 if (bg == NULL)
813 {
814 fprintf (stderr, "Memory error - Cannot allocate bitGraph -
815 "newBitGraph\n%s\n", strerror (errno));
816 fflush (stderr);
817 exit (0);
818 }
819 bg->size = size;
820 bg->graph = (bitSet_t **) malloc (size * sizeof (bitSet_t *));
821 if (bg->graph == NULL)
822 {
823 fprintf (stderr, "Memory error - Cannot allocate bitGraphGraph - "
824 "newBitGraph\ns\n", strerror (errno));
825 fflush (stderr);
826 exit (0);
827 }
828 for (i = 0; i < size; i++)
829 {
830 bg->graph[i) = newBitSet (size);
831 }
832 return bg;
833 }

C.3.0.38 bitSet_t* newBitSet (int size)

Creates a bitSet data structure that contains a bit array and information about that
bit array that is necessary for quick and efficient access of the array. Input: the
desired length of the bit array. Output: a bitSet data structure.

Definition at line 43 of file bitSet.c.
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References BSNUMSLOTS, bitSett::bytes, bitSet_t::max, newBitArray(), bitSet-
t::slots, and bitSet_t::tf.

Referenced by convolve(), filterGraph(), findCliques(), getStatMat(), newBitGraph(),
oldGetStatMat(), wholeCliqueConv(), and wholeRoundConv().

44 {
45 bitSett *sl = (bitSet_t *) malloc (sizeof (bitSett));
46 if (sl == NULL)
47 {
48 fprintf (stderr, "\nMemory error --- couldn't allocate biSet!"
49 " - newBitSet\n.s\n", strerror (errno));
50 fflush (stderr);
51 exit (0);
52 }
53 // Fill in details about the bitSet, allocate bitSet
54 sl->max = size;
55 sl->slots = BSNUMSLOTS (size);
56 sl->bytes = sl->slots * sizeof (bit_t);
57 sl->tf = newBitArray (sl->bytes);
58 return si;
59 }

C.3.0.39 int nextBitBitSet (bitSett * sl, int start)

Finds the index of the first non-zero bit at-or-after start. Input: a bitSet_t to be
searched, the index of the start bit. Output: the index of the first non-zero bit
at-or-after start.

Definition at line 468 of file bitSet.c.

References BITSLOT, BSBITSIZE, checkBit(), bitSet_::max, and bitSet_t::tf.

Referenced by bitSetToCSet(), filterIter(), findCliques(), getStatMat(), pruneBit-
Graph(), and singleLinkage().

469 {
470 // slot is our starting slot, the
471 // slot containing bit 'start'
472 int slot = BITSLOT (start);
473 int i;
474 // stop is the bit to stop it --- it is equal to max, and it is
475 // the index of a bit that does NOT belong to the bitset
476 int stop;
477 bit-t bitFalse;
478 memset (&bitFalse, 0, sizeof (bit-t));
479
480
481 // sl->max is the number of bits in sl
482 // test to see if we're looking too high
483 if (start >= sl->max)
484 {
485 return -1;
486 }
487 // sl->slots is the number of available slots
488 // skip over empty slots
489 while (slot < sl->slots)
490 {
491 /*
492 printf("w");
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*/
if (sl->tf[slot] != bitFalse)

// this slot is not empty

if each slot is, say 32 bits and
we asked for nextBitBitSet(sl, 5),
then slot 0 will be non-zero. but,
instead of starting at 0, start at 5!
(BSBITSIZE * slot > start)

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529 }

// set the stop, with a a check against the 'max'

// element of the bitSett object

if (BSBITSIZE * (slot + 1) > sl->max)

{
stop = sl->max;

}
else

stop = BSBITSIZE * (slot + 1);

for (i = start; i < stop; i++)

if (checkBit (sl, i))

return i;

slot+4+;

return -1;

C.3.0.40 int printBinaryBitSet (bitSett * sl)

Prints a representation of a bitSett structure as a string of l's and O's. Input: a
bitSet-t object to be printed. Output: integer success value of 0 (and the stdout text
described above).

Definition at line 611 of file bitSet.c.

References BSTEST, and bitSett::tf.

Referenced by printBitGraph().

612 {
613 int i;
614 for (i = 0; i < sl->max; i++)
615 {
616 printf ("7d", (BSTEST (sl->tf, i) ? I : 0));
617 }
618 return 0;
619 }
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C.3.0.41 int printBitGraph (bitGrapht * bg)

Prints a representation of a bitGraph using printBinaryBitSet. Input: a bitGrapht
object. Output: integer success value of 0 (and stdout text as described above).

Definition at line 730 of file bitSet.c.

References bitGraph_t::graph, and printBinaryBitSet().

731 {
732 int i;
733 for (i = 0; i < bg->size; i++)

734 {
735 printBinaryBitSet (bg->graph[i));

736 printf ("\n");

737 }
738 return 0;

739 }

C.3.0.42 int printBitSet (bitSett * sl)

Prints a representation of a bitSet_t data structure. Input: a bitSet_t to be displayed.
Output: integer success value of 0 (and the stdout text described above).

Definition at line 555 of file bitSet.c.

References BSTEST, and countSet().

556 {
557 int i;
558 printf ("bitSet (addr = %d; %d members)\n", (int) si, countSet (sl));

559 printf ("\tmax = %d\n", sl->max);
560 printf ("\tslots = %d\n", sl->slots);

561 printf ("\tbytes = %d\n", sl->bytes);

562 printf ("\tmembers =");
563
564

565 for (i = 0; i < sl->max; i++)

566 {
567 if (BSTEST (sl->tf, i))

568 {
569 printf (" %d", i);
570 }
571 }
572 printf ("\n");
573 return 0;
574 }

C.3.0.43 int setFalse (bitSet_t * sl, int x)

Sets a specific bit in a bitSet as false. Input: a bitSet, the number of the bit to be
set as false. Output: integer success value of 1.

Definition at line 85 of file bitSet.c.

References BSCLEAR, bitSet_t::max, and bitSett::tf.
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Referenced by bitGraphSetFalse(), bitGraphSetFalseDiagonal(), bitGraphSetFalse-
Sym(), filterlter(), findCliques(), singleCliqueConv(), and singleLinkage().

86 {
87 /*
88 if (BSNUMSLOTS(x) > sl->slots) { Conditional changed, 5/25, by MPS: check x against sl->max,
89 should be safer
90 */
91 if (x >= sl->max)
92 {
93 fprintf (stderr, "Set isn't large enough! - setFalse\n");
94 fflush (stderr);
95 exit (0);
96 }
97 BSCLEAR (s1->tf, x);
98 return 0;
99 }

C.3.0.44 int setTrue (bitSett * sl, int x)

Sets a specific bit in a bitSet as true. Input: a bitSet, the number of the bit to be set
as true. Output: integer success value of 1.

Definition at line 67 of file bitSet.c.

References BSSET, bitSet t::max, and bitSett::tf.

Referenced by bitGraphSetTrue(), bitGraphSetTrueDiagonal(), bitGraphSetTrue-
Sym(), filterIter(), findCliques(), and setStackTrue().

68 {
69 if (x >= sl->max)
70 {
71 fprintf (stderr, "Set isn't large enough! - setTrue\n");
72 fflush (stderr);
73 exit (0);
74 }
75 BSSET (sl->tf, x);
76 return 0;
77 }
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C.4 convll.c File Reference

#include <errno.h>

#include <string.h>

#include "convll.h"

#include "bitSet.h"

Include dependency graph for convll.c:

errno.h

sr. llD.

Functions

* cllt * pruneCll (cllt *head, int *indexToSeq, int p)
* cllt * pushCll (cllt *head)

* cllt * popCll (cllt *head)

* cllt * popAlICll (cllt *head)
* int printCll (cllt *head)
* cllt * initheadCll (cllt *head, cSet_t *newset)
* cllt * pushcSet (cllt *head, cSett *newset)
* cSet_t * bitSetToCSet (bitSett *clique)

* int checkCliquecSet (cSet_t *cliquecSet, int *indexToSeq, int p)
* cllt * pushClique (bitSet_t *clique, cllt *head, int *indexToSeq, int p)
* mllt * pushMernStack (mlLt *head, int cliqueNum)
* mllt * popMemStack (mllt *head)

* mllt * popWholeMemStack (mllt *head)
* mllt ** addToStacks (cllt *node, mlLht **memberStacks)
* mllt ** fillMemberStacks (cllt *head, mllt **memberStacks)
Smllt ** emptyMemberStacks (mllt **memberStacks, int size)

* void printMermberStacks (mllt **memberStacks, int size)
* bitSett * setStackTrue (mllt **memList, int i, bitSett *queue)
* bitSett * searchMemsWithList (int *list, int listsize, mllt **memList, int num-

Offsets, bitSett *queue)
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* cllt * singleCliqueConv (cllt head, int firstClique, cllt **firstGuess, int
secondClique, cllt **secondGuess, cll_t *nextPhase, bitSet_t *printStatus, int
support)

* mllt * mergeIntersect (cllt *first, cll_t *second, mllt *intersection, bitSet_t
*printstatus, int *newSupport)

* int uniqClique (cSet_t *cliquecSet, cll_t *head)
* cllt * swapNodecSet (cllt *head, int node, cSet_t *newClique)
* cll_t * removeSupers (cllt *head, int node, cSett *newClique)
* int printCSet (cSet_t *node)
* cllt * pushConvClique (millt *clique, cllt *head)
* cSet_t * mllToCSet (mllt *clique)
* cllt * wholeCliqueConv (cllt *head, cllt node, cll_t **firstGuess, nllt

**memList, int numOffsets, cll_t *nextPhase, bitSet_t *printStatus, int sup-
port)

* cllt * wholeRoundConv (cllt **head, mllt **memList, int numOffsets, int
support, int length, cllt **allCliques)

* int yankCll (cllt **head, cll_t *prev, cllt **curr, cllt **allCliques, int length)
* cllt * completeConv (cllt **head, int support, int numOffsets, int minLength,

int *indexToSeq, int p)
* int printCllPattern (cllt *node, int length)

Variables

* int cliquecounter = 0

Detailed Description

This file defines a number of functions for handling link lists of motifs, or cliques.
The functions defined in this file are called extensively during the convolution stage
of the Gemoda algorithm for both the sequence based and real value based software.

Definition in file convll.c.

Function Documentation

C.4.0.45 mllt** addToStacks (cllt * node, mll_t ** memberStacks)

For one clique, it adds membership for that clique to all of its members' member
stacks. Input: a specific clique in a clique linked list, an array of member stacks.
Output: the array of updated member stacks.

Definition at line 482 of file convll.c.
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References cnode::id, cSet_t::members, pushMemStack(), and cnode::set.

Referenced by fillMemberStacks().

483 {
484 int i = 0;
485 int cliqueNum = 0;
486
487 // Make sure that we don't reference NULL values
488 if (node->set != NULL)
489 {
490 // Go through each member of the clique's set
491 for (i = 0; i < node->set->size; i++)
492 {
493 // Get the member's number
494 cliqueNum = node->set->members [i;
495 // Go to that member's linked list and push
496 // on the number of the current clique
497 memberStacks [cliqueNum] =
498 pushMemStack (memberStacks [cliqueNum], node->id);
499 }
500 }
501 else
502 {
503 fprintf (stderr, "\nNULL set for clique! - addToStacks\n");
504 fflush (stderr);
505 exit (0);
506 }
507 return memberStacks;
508 }

C.4.0.46 cSet_t bitSetToCSet (bitSett * clique)

Converts a bitSet_t to a cSet_t for the purposes of pushing it onto a linked list of
cliques. The bitSett data structure is used for massive comparisons during clique-
finding but is unwieldy/inefficient when it is known that the structure is sparse. The
cSet allows for efficient comparison of sparse bitSet_t's. Use this just before pushing
a newly-discovered clique onto a clique linked list. Input: a new clique in the form of
a bitSet_t. Output: the same clique in the form of a cSett.

Definition at line 212 of file convll.c.

References countSet(), cSett::members, nextBitBitSet(), and cSett::size.

Referenced by pushClique(), and wholeCliqueConv().

213 {
214 int cliqueSize 

= countSet (clique);
215 int i = 0, start = 0;
216 cSet_t *holder = (cSet_t *) malloc (sizeof (cSet-t));
217
218 // Memory error checking
219 if (holder == NULL)
220 {
221 fprintf (stderr, "\nMemory Error - bitSetToCSet - [1]\n/s\n",
222 strerror (errno));
223 fflush (stderr);
224 exit (0);
225 }
226 // More memory checking
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227 holder->members = (int *) malloc (cliqueSize * sizeof (int));
228 if (holder->members == NULL)
229 {
230 fprintf (stderr, "\nMemory Error - bitSetToCSet - [2]\n/s\n",
231 strerror (errno));
232 fflush (stderr);
233 exit (0);
234 }
235
236 // For each member of the clique in the bitSet,
237 for (i = 0; i < cliqueSize; i++)
238 {
239 // Find the next one, add its location to the members array
240 holder->members[i] = nextBitBitSet (clique, start);
241 // (But check for errors... if we get to the end of the
242 // bitSet, then something is wrong)
243 if (holder->members(i] == -1)
244
245 fprintf (stderr, "\nClique error - not enough members\n");
246 fflush (stderr);
247 exit (0);
248
249 // Increment to move on in the nextBitBitSet search
250 start = holder->members[i) + 1;
251
252
253 holder->size = cliqueSize;
254 return holder;
255 }

C.4.0.47 int checkCliquecSet (cSett * cliquecSet, int * indexToSeq, int
P)

Checks to enforce the -p flag (minimum number of unique input sequences in which the
motif occurs). Input: a clique in the form of a cSet_t, pointer to the index/sequence
number data structure, the -p flag value. Output: An integer: 1 for success, 0 for
failure.

Definition at line 266 of file convll.c.

References cSet-t::members, and cSet_t::size.

Referenced by pushClique().

267 {
268 int *seqNums = NULL;
269 int thisSeq = 0, i = 0, j = 0;
270 seqNums = (int *) malloc (p * sizeof (int));
271
272 if (seqNums == NULL)
273 {
274 fprintf (stderr, "Memory error - checkCliquecSet\n/s\n",
275 strerror (errno));
276 fflush (stderr);
277 exit (0);
278 }
279 // Initialize an array of integers of size p to sentinel values of -1
280 for (i = O; i < p; i++)
281 {
282 seqNums[i] = -1;
283 }
284 j = 0;
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285
286 if (cliquecSet->size < 1)
287 {
288 fprintf (stderr, "\nClique of zero size! - checkCliquecSet\n");
289 fflush (stderr);
290 exit (0);
291 }
292 // Find the first sequence number.
293 seqNums 03 = indexToSeq[cliquecSet->members[ o0 ;
294 // Iterate over the remaining size of the clique
295 for (i = 1; i < cliquecSet->size; i++)
296 {
297 // Find the next sequence number.
298 thisSeq = indexToSeq[cliquecSet->members [i] ;
299 // The member list is in monotonic order, so we only need
300 // to compare the current member to the previous member to
301 // find out if it comes from the same sequence.
302 // If it's not from the same sequence, increment the unique
303 // sequence counter (j), store the next sequence number
304 // in the array.
305 // Also check to see if we've already reached the p threshold,
306 // and if so, then bail out.
307 if (thisSeq != seqNums[j])
308
309 j++;
310 seqNums [j = thisSeq;
311 if (j == p - 1)
312 {
313 break;
314 }
315 }
316 }
317
318 // Now just see what the value of the last number in the array is;
319 // if it's the sentinel, then we didn't find instances in p
320 // unique sequences. If it's not the sentinel, then we've met
321 // the -p criterion.
322 if (seqNums[p - 11 == -1)
323 {
324 free (seqNums);
325 return (0);
326 }
327 else
328 {
329 free (seqNums);
330 return (1);
331 }
332 }

C.4.0.48 clLt* completeConv (cllt ** head, int support, int numOffsets,
int minLength, int * indexToSeq, int p)

Performs complete convolution given the starting list of cliques. Input: a pointer to
the head of the initial clique linked list, the minimum support criterion value, the
number of offsets in the sequence set, the minimum length of motifs (which is the
length of motifs in the initial clique linked list), the index/Sequence data structure,
and the value of the -p flag to prune based on unique sequence occurrences. Output:
a linked list of all maximal cliques based on the initial clique linked list.

Definition at line 1417 of file convll.c.

References emptyMemberStacks(), fillMemberStacks(), popAllCll(), pruneCll(), and
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wholeRoundConv().

Referenced by convolve().

1419 {
1420 int i = 0;
1421 mll_t **memList = NULL;
1422 cll_t *nextPhase = NULL;
1423 cll_t *allCliques = NULL;
1424 int length = minLength;
1425 memList = (mll_t **) malloc (numOffsets * sizeof (mllt *));
1426 if (memList == NULL)
1427 {
1428 fprintf (stderr, "Memory error - completeConv\ns\n", strerror (errno));
1429 fflush (stderr);
1430 exit (0);
1431 }
1432 // The number of offsets will never change, so this can be defined
1433 // now, though we will have to change what is in these arrays later.
1434 for (i = 0; i < numOffsets; i++)
1435
1436 memList i] = NULL;
1437 }
1438
1439 // NOTE: This assumes that the elemPats all meet the support criterion
1440
1441 // So we'll do this as long as the head is non-null.. that means that
1442 // the initial set of cliques must be non-null. Those are then
1443 // convolved and the linked list for the next round is set to head,
1444 // so this continues until the linked list for the "next round" at
1445 // the end of some round is null.
1446 while (*head != NULL)
1447 {
1448 // First we get the inverse information for this round: find
1449 // out which cliques each offset is a member of.
1450 memList = fillMemberStacks (*head, memList);
1451 // printf("numOffsets.bak = %d\n",numOffsets);
1452 // // Then we convolve a whole round.
1453 nextPhase =
1454 wholeRoundConv (head, memList, numOffsets, support, length,
1455 &allCliques);
1456 // Do some housekeeping.
1457 memList = emptyMemberStacks (memList, numOffsets);
1458 popAllCll (*head);
1459 // Enforce the -p flag for subsequent rounds.
1460 if (p > 1)
1461 {
1462 nextPhase = pruneCll (nextPhase, indexToSeq, p);
1463 }
1464 // And move on to the next round of convolution.
1465 *head = nextPhase;
1466 length++;
1467 }
1468
1469 free (memList);
1470
1471 return allCliques;
1472 }

C.4.0.49 rmllt** emptyMemberStacks (mll_t ** memberStacks, int size)

After we have performed a round of convolution, this "empties" the member stacks
by popping all nodes off each member linked list. Input: array of member linked
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lists, the size of that array (total number of offsets). Output: the array of now-empty
member linked lists.

Definition at line 538 of file convll.c.

References popWholeMemStack().

Referenced by completeConv().

539 {
540 int i = 0;
541
542 for (i = 0; i < size; i++)
543 {
544 memberStacks [i = popWholeMemStack (memberStacks[il);
545 }
546
547 return memberStacks;
548 }

C.4.0.50 mllt** fillMemberStacks (cllt * head, mllt ** memberStacks)

Fills the entire memberStacks data structure by calling addToStacks for each clique
in the clique linked list. Input: head of a clique linked list, array of member linked
lists. Output: the array of updated member linked lists.

Definition at line 517 of file convll.c.

References addToStacks(), and cnode::next.

Referenced by completeConv().

518 {
519 cllt *curr = head;
520 // Just go down the linked list calling addToStacks
521 while (curr != NULL)
522 {
523 memberStacks = addToStacks (curr, memberStacks);
524 curr = curr->next;
525 }
526
527 return memberStacks;
528 }

C.4.0.51 cllt* initheadCll (cllt * head, cSet_t * newset)

Initializes the empty head of a linked list by adding a set to that head. Note: this
is only called immediately after pushing onto a cll, because the push always creates
a new empty head. This function should not be called by the user; see pushcSet.
Input: head of a linked list, pointer to a cSett list of clique members. Output: head
of a linked list.

Definition at line 172 of file convll.c.

References cnode::set.

Referenced by pushcSet().
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173 {
174 // Check to make sure that the head is not already initialized.
175 if (head->set != NULL)
176 {
177 printf ("Stack head already initialized!");
178 exit (0);
179 }
180 // Make the head's set pointer point to the new set.
181 head->set = newset;
182 return head;
183 }

C.4.0.52 mllt* mergelntersect (cllt * first, cll_t * second, mll_t
intersection, bitSet_t * printstatus, int newSupport)

Convolves two cliques in a non-commutative manner. It finds which members of
the first clique are immediately followed by a member in the second clique. Input:
pointer to the location in the linked list of the first clique to be convolved, pointer to
the location in the linked list of the second clique to be convolved, a member linked
list used to store the intersection of the two cliques, the printstatus bitSet, and a
pointer to an integer with the support of the clique formed by convolution. Output:
a member linked list with the intersection of the two cliques, plus the side effect of
that intersection's cardinality being stored in the integer pointed to by newSupport.

Definition at line 759 of file convll.c.

References cSett::members, pushMemStack(), and cnode::set.

Referenced by singleCliqueConv().

761 {
762
763 int i = 0, j = 0, status = 0;
764
765 // Make sure we are still in-bounds, otherwise we bail out
766 // We'll refer to the offset currently being analyzed from the
767 // first clique as the 'first offset' and the offset currently
768 // being analyzed from the second clique as the 'second offset'
769 while ((i < first->set->size) && (j < second->set->size))
770 {
771 // If the second offset is earlier than the first offset plus
772 // one, then we move on to the next possible second offset
773 if ((first->set->members[i) + 1) > second->set->members(j])
774 {
775 j++;
776 }
777 // If the second offset is later than the first offset plus
778 // one, then we move on the next possible first offset
779 else if ((first->set->members[i] + 1) < second->set->members[j])
780 {
781 i++;
782 }
783 // Otherwise, the second offset is equal to the first offset
784 // plus one, so we have an extendable node. Push that on
785 // to the intersection stack, move both the first and second
786 // offsets to their respective next possible offsets, and
787 // increment the support counter for the new clique (status)
788 else
789 {
790 intersection = pushMemStack (intersection, first->set->members[i]);
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791 i++;
792 j++;
793 status++;

794 }
795 }
796
797 // Send the value of the clique's new support out of this function
798 *newSupport = status;
799 return intersection;
800 }

C.4.0.53 cSet_t mllToCSet (mllt * clique)

Turns a member linked list used to store the intersection of two cliques into something
more useful: a cSet_t structure. Input: a clique in mllt form. Output: a clique in
cSet_t form.

Definition at line 1145 of file convll.c.

References mnode::cliqueMembership, cSett::members, mnode::next, and cSet_-
t::size.

Referenced by pushConvClique().

1146 {
1147 int sizecount = 0, i = 0;
1148 cSet_t *cliqueCset = malloc (sizeof (cSet_t));
1149 mll_t *head = clique;
1150 if (cliqueCset == NULL)
1151 {
1152 fprintf (stderr, "Memory error - mllToCSet cSet\n/s\n",
1153 strerror (errno));
1154 fflush (stderr);
1155 exit (0);
1156 }
1157 // First count up how many members there are in the member linked list
1158 while (head != NULL)
1159 {
1160 sizecount++;
1161 head = head->next;
1162 }
1163
1164 head = clique;
1165 cliqueCset->size = sizecount;
1166 cliqueCset->members = (int *) malloc (sizecount * sizeof (int));
1167
1168 if (cliqueCset->members == NULL)
1169 {
1170 fprintf (stderr, "Memory error - mllTlCSet cliquemembers\ns\n",
1171 strerror (errno));
1172 fflush (stderr);
1173 exit (0);
1174 }
1175 // In order to stay in the same format as with bitSet translation to
1176 // cSet, we ensure that the ids of the members are ascending with
1177 // ascending index number in the cSet. This is accomplished by noting
1178 // that since the intersection members are pushed onto the stack,
1179 // a LIFO operation, that the first intersected nodes off the stack
1180 // will have the highest ids, so we will put them at the end of
1181 // the members array with the higher index values.
1182 for (i = sizecount - 1; i >= 0; i--)
1183 {
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1184 cliqueCset->members [i] = head->cliqueMembership;
1185 head = head->next;
1186 }
1187
1188 return cliqueCset;
1189 }

C.4.0.54 cllt* popAllCll (cllt * head)

Shortcut function to pop all of the members of a linked list. Input: head of a linked
list. Output: head of a now-empty linked list.

Definition at line 109 of file convll.c.

References popCll().

Referenced by completeConv(), and main().

110 {
111 while (head != NULL)
112 {
113 head = popCll (head);
114 }
115 return head;
116 }

C.4.0.55 cllt* popCll (cllt * head)

Removes the head of the clique linked list, returns the
list, and frees the memory occupied by the old head.
Output: head of a linked list.

Definition at line 66 of file convll.c.

References cSett::members, cnode::next, and cnode::set.

Referenced by popAllCll().

// by default the new head is
cll_t *newHead = NULL;
if (head == NULL)

fprintf (stderr, "\nCan't
fflush (stderr);
exit (0);

NULL...is important later

pop a null linked list\n");

unless this is the end of the linked list, set the new head
to the next member of the list. Otherwise, since by default the
new head is NULL, it will properly return an empty list
(head->next != NULL)

newHead = head->next;

Check to see if there is a set. If there is, and there are members,
then first free the members. And if there is a set, then free it.
(head->set != NULL)
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87 if (head->set->members != NULL)
88 {
89 free (head->set->members);
90 head->set->members = NULL;
91 }
92 free (head->set);
93 head->set = NULL;
94 }
95 // Both the members and set have been freed, so now can free the cll_t
96 // without leaking anything.
97
98 free (head);
99 head = NULL;
100 return newHead;
101 }

C.4.0.56 mllt* popMemStack (mllt * head)

Pops the head off of a single member linked list. Input: head of a member linked list.
Output: the new head of a member linked list after popping one item.

Definition at line 440 of file convll.c.

References mnode::next.

Referenced by popWholeMemStack().

441 {
442 // by default the new head is NULL...is important later
443 mll_t *newHead = NULL;
444 if (head == NULL)
445 {
446 fprintf (stderr, "\nCan't pop a null linked list - popMemStack\n");
447 fflush (stderr);
448 exit (0);
449 }
450 if (head->next != NULL)
451 {
452 newHead = head->next;
453 }
454 free (head);
455 head = NULL;
456 return newHead;
457 }

C.4.0.57 mllt* popWholeMemStack (mllt head)

Pops all items off of a member linked list. Input: head of a member linked list.
Output: empty head of a member linked list.

Definition at line 465 of file convll.c.

References popMemStack().

Referenced by emptyMemberStacks(), and singleCliqueConv().

466 {
467 while (head != NULL)
468 {
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469 head = popMemStack (head);
470 }
471 return head;
472 }

C.4.0.58 int printCll (cll_t * head)

Prints the members (cliques) of a linked list in the format: id = unique id number of
clique within linked list; Length = number of members of clique, if available; Size =
length of each member of clique; Members = newline-separated list of members of the
clique. Input: head of a linked list. Output: Gives text output, returns (meaningless)
exit value.

Definition at line 128 of file convll.c.

References cnode::id, cnode::length, cSett::members, cnode::next, cnode::set, and c-
Sett::size.

129 {
130 int i = 0;
131 cll_t *curr = head;
132 while (curr != NULL)
133 {
134 printf ("id = /d\n", curr->id);
135 // Make sure the clique is nonzero in size before attempting
136 // to print it
137 if ((curr->set != NULL) && (curr->set->size > 0))
138 {
139 if (curr->length >= 0)
140 {
141 printf ("Length = %d\n", curr->length);
142 }
143 printf ("Size = %d\n", curr->set->size);
144 printf ("Members = \n");
145 for (i = 0; i < curr->set->size; i++)
146 {
147 printf ("\t%d\n", curr->set->members [i]);
148 }
149 printf ("**********************************************\n");
150 }
151 else
152 {
153 fprintf (stderr, "\nClique has no members! -- printCll\n");
154 fflush (stderr);
155 exit (0);
156
157 curr = curr->next;
158 }
159 return EXIT-SUCCESS;
160 }

C.4.0.59 int printCllPattern (cllt * node, int length)

Prints out the contents of a clique linked list node in this format: support = number
of motif occurrences (id = some id number); members = newline-separated list of
offsets. Input: a specific node to be output, the length of the motif inside it. Output:
text per above, and an integer success value.
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Definition at line 1482 of file convll.c.

References cnode::id, cSet_t::members, cnode::set, and cSet_t::size.

1483 {
1484 int i = 0;
1485

1486 printf ("\nSupport = Yd\t(id = %d)\n", node->set->size, node->id);
1487 printf ("Members = \n");
1488 for (i = 0; i < node->set->size; i++)
1489 {
1490 printf ("\td\n", node->set->members [i));
1491 }
1492 return 1;
1493 }

C.4.0.60 int printCSet (cSet_t * node)

Prints out the contents of a cSet_t in the following format: support = number of
nodes in clique; members = newline-separated list of nodes in clique. Input: a clique
in the form of a cSet_t object. Output: in text, the contents of the cSet_t object. An
integer is returned as well, with 1 indicating success.

Definition at line 1068 of file convll.c.

References cSet_t::members, and cSet_t::size.

1069 {
1070 int i = 0;
1071 if (node->size == 0)
1072 {
1073 fprintf (stderr, "cSet has no members! - printCSet\n");
1074 fflush (stderr);
1075 exit (0);

1076 }
1077 else

1078 {
1079 printf ("\nSupport = %d\n", node->size);
1080 printf ("Members = \n");
1081 for (i = 0; i < node->size; i++)
1082 {
1083 printf ("\td\n", node->members[i]);
1084 }
1085 return 1;
1086 }
1087

C.4.0.61 void printMemberStacks (mllt ** memberStacks, int size)

Prints the contents of the member stacks. Input: array of member linked lists, size
of that array (total number of offsets). Output: only text output/no return value.

Definition at line 557 of file convll.c.

References mnode::cliqueMembership, and mnode::next.

558 {

254



559 int i = 0;
560 mll-t *curr = NULL;
561
562 for (i = 0; i < size; i++)
563 {
564 curr = memberStacks [i];
565 printf ("Offset %d: ", i);
566 while (curr 1= NULL)
567 {
568 printf ("%d,", curr->cliqueMembership);
569 curr = curr->next;
570 }
571 printf ("\n");
572 }
573 }

C.4.0.62 clLt* pruneCll (cllt * head, int * indexToSeq, int p)

Prunes a motif linked list of all motifs without support in at least

unique source sequences. Input: head of a motif linked list, pointer to a structure that
dereferences offset indices to sequence numbers, minimum number of unique source
sequences in which a motif must occur. Output: head of a (potentially altered) motif
linked list.

Definition at line 514 of file newConv.c.

References cSet_t::members, cnode::next, cnode::set, and cSet-t::size.

Referenced by completeConv(), and convolve().

515 {
516 int i = 0, j = 0, thisSeq = 0;
517 int *seqNums = NULL;
518 cll_t * curr = head;
519 cllt * prey = NULL;
520 cll_t * storage = NULL;
521
522 // We'll do this similar to the pruneBitGraph function... we will
523 // keep track of which source sequence each motif occurrence was in.
524 // Again, since the occurrences are listed monotonically, we only
525 // need to compare the last non-sentinel index to the current
526 // sequence number.
527 seqNums = (int *) malloc (p * sizeof (int));
528 if (seqNums == NULL)
529 {
530 fprintf (stderr, "Memory error - pruneCll\n/.s\n", strerror (errno));
531 fflush (stderr);
532 exit (0);
533 }
534 while (curr != NULL)
535 {
536
537 // First make sure the set size is at least p.
538 // This is redundant, but extremely simple and not expensive,
539 // so we'll leave it in just as a check.
540 if (curr->set->size < p)
541 {
542 if (prey != NULL)
543 {
544 prev->next = curr->next;
545 }
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546 else
547 {
548 head = curr->next;

549 }
550 storage = curr->next;

551 free (curr->set->members);
552 free (curr->set);

553 free (curr);

554 curr = storage;

555 continue;

556 }
557 for (i = 0; i < p; i++)
558 {
559 seqNums(i] = -1;

560 }
561 j = 0;
562 seqNums[0O = indexToSeq[curr->set->membersO[]];
563

564 // Note, we've checked to make sure size > p, and we know
565 // p must be 2 or greater, so we can start at 1 without
566 // worrying about segfaulting

567 for (i = 1; i < curr->set->size; i++)
568 {

569 thisSeq = indexToSeq[curr->set->members[i]];
570 if (thisSeq != seqNums[j])

571 {
572 j++;

573 seqNums[j] = thisSeq;
574 if (j == p - 1)

575 {
576 break;

577 }

578 }

579
580
581 // Same story as before... if the last number is -1,

582 // then we didn't have enough to fill up the <p> different

583 // slots, so this doesn't meet our criterion.

584 if (seqNums[p - 13 == -1)

585 {
586 if (prev != NULL)

587 {
588 prev->next = curr->next;

589 }
590 else

591 {
592 head = curr->next;

593 }
594 storage = curr->next;

595 free (curr->set->members);
596 free (curr->set);
597 free (curr);

598 curr = storage;
599 }
600 else

601 {
602 prey = curr;
603 curr = curr->next;
604 }
605 }

606 free (seqNums);
607 return (head);
608 }
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C.4.0.63 cllt* pushClique (bitSett * clique, cllt * head, int
index ToSeq, int p)

Pushes a bitSet onto a clique linked list, performing all necessary manipulations in
order to do so. Input: new clique in the form of a bitSet_t, head of a linked list,
pointer to the index/sequence number data structure, integer value of the -p flag.
Output: head of an updated clique linked list.

Definition at line 345 of file convll.c.

References bitSetToCSet(), checkCliquecSet(), cliquecounter, and pushcSet().

Referenced by findCliques(), and singleLinkage().

346 {
347 cSet_t *cliquecSet = NULL;
348
349 // Change the bitSet-t to a cSet_t
350 cliquecSet = bitSetToCSet (clique);
351 // If the -p flag has been assigned a value, then check the clique
352 // and only proceed if that criterion is met. Otherwise, free the
353 // memory that we had allocated up to this point.
354 if (p > 1)
355 {
356 if (checkCliquecSet (cliquecSet, indexToSeq, p))
357
358 cliquecounter++;
359 /*
360 printf ("%d\n", cliquecounter);
361 */
362 /*
363 fflush(stdout);
364 */
365 head = pushcSet (head, cliquecSet);
366 }
367 else
368 {
369 free (cliquecSet->members);
370 free (cliquecSet);
371
372 // If the -p flag wasn't set, then just push the cSet onto the linked
373 // list.
374 }
375 else
376 {
377 cliquecounter++;
378 /*
379 printf("7.d\n" ,cliquecounter);
380 */
381 /*
382 fflush(stdout);
383 */
384 head = pushcSet (head, cliquecSet);
385 }
386 return head;
387 }

C.4.0.64 clLt* pushCll (cll t * head)

Pushes a new, empty head onto a linked list of cliques. Note: this should always be
followed by a call to initheadCll, as the head pushed on here is empty and will be
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meaningless without any members. This function should NOT be used by the user;
see pushcSet. Input: head of a linked list. Output: head of a linked list.

Definition at line 28 of file convll.c.

References cnode::id, cnode::length, cnode::next, cnode::set, and cnode::stat.

Referenced by pushcSet().

29 {
30 // Make a pointer, verify memory
31 cllt *a = NULL;
32 a = (cll_t *) malloc (sizeof (cll_t));

33 if (a == NULL)

34 {
35 fprintf (stderr, "\nMemory Error - pushCll\ns\n", strerror (errno));
36 fflush (stderr);
37 exit (0);
38 }
39 // Initialize id (sequential) and pointer to next item, but not
40 // the cSet with the clique members
41 if (head == NULL)
42 {
43 a->id = 0;
44 a->next = NULL;
45 }
46 else

47 {
48 a->next = head;
49 a->id = head->id + 1;

50 }
51 a->set = NULL;

52 a->length = -1;

53 a->stat = -1;

54 return a;
55 }

C.4.0.65 cllt* pushConvClique (mllt clique, cll_t * head)

Pushes a freshly-convolved clique, currently in mllt form, onto the clique linked list
for the next level. Also checks to make sure that the convolved clique is unique, and
if it isn't, it takes appropriate action. Input: a convolved clique in mllt form, the
head of a clique linked list for the next level. Output: (potentially new) head of the
clique linked list for the next level.

Definition at line 1099 of file convll.c.

References cSet_t::members, mllToCSet(), pushcSet(), removeSupers(), swapNodec-
Set(), and uniqClique().

Referenced by singleCliqueConv().

1100 {
1101 int status = 0;
1102 cSet_t *cliquecSet = NULL;
1103

1104 // First change the clique to something we can used more easily
1105 cliquecSet = mllToCSet (clique);
1106 // Then check to make sure it's unique by finding out its status
1107 status = uniqClique (cliquecSet, head);
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1108
1109 // printf("Candidate:\n");
1110 // printCSet(cliquecSet);
1111
1112 // If we get -2, then this clique is a subset, so just free
1113 // the cSet we just made and move on.
1114 if (status == -2)
1115 {
1116 free (cliquecSet->members);
1117 free (cliquecSet);
1118 cliquecSet = NULL;
1119 }
1120 // If we get -1, then this is a unique clique, so push it on.
1121 else if (status == -1)
1122 {
1123 head = pushcSet (head, cliquecSet);
1124 }
1125 // Otherwise, this clique is a superset, so we'll first remove
1126 // all of the other cliques of which this is a superset. Then
1127 // we'll swap out the first clique of which this is a superset
1128 // with this current clique. The clique being removed is free'd
1129 // within the swapNode function.
1130 else
1131 {
1132 head = removeSupers (head, status, cliquecSet);
1133 head = swapNodecSet (head, status, cliquecSet);
1134 }
1135 return head;
1136 }

C.4.0.66 cllt* pushcSet (cll_t * head, cSet_t * newset)

Function that pushes the contents of a cSet (set of members of a clique) onto a linked
list of cliques. Input: head of a linked list, new clique in the form of a cSet_t. Output:
head of a linked list.

Definition at line 192 of file convll.c.

References initheadCll(), and pushCll().

Referenced by pushClique(), and pushConvClique().

193 {
194 head = pushCll (head);
195 head = initheadCll (head, newset);
196 return head;
197 }

C.4.0.67 mllt* pushMemStack (mllt * head, int cliqueNum)

This begins code for the member linked lists. A single one of these linked lists
functions somewhat similarly to the clique linked lists, though with less information
stored. Functionally, an array of member linked lists is used to access the "inverse"
of what is contained in the clique linked lists. That is, we would like to be able to
look up the cliques that a given node is a member of, so we have an array of member
linked lists of size equal to the number of nodes.
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This function pushes a single clique membership onto a node's member stack. Input:
the head of a single member linked list, a clique number to be added. Output: the
head of a single member linked list.

Definition at line 404 of file convll.c.

References mnode::cliqueMembership, and mnode::next.

Referenced by addToStacks(), and mergeIntersect().

405 {
406 mll_t *a = NULL;
407 a = (mll_t *) malloc (sizeof (mllt));
408 // Memory error checking
409 if (a == NULL)
410 {
411 fprintf (stderr, "\nMemory Error - pushMemStack: /,s\n",
412 strerror (errno));
413 fflush (stderr);
414 exit (0);
415 }
416 if (head == NULL)
417 {
418 a->next = NULL;
419 }
420 else

421 {
422 a->next = head;
423 }
424 // Store the number of the clique of which the node is a member.
425 // Note that we assume no duplication, which is guaranteed
426 // by our method of filling the member stacks, which is quite simple:
427 // go through all members of a clique (which have no duplicates
428 // because they are constructed from merge-intersections or from
429 // bitSet_t's) and add that clique to each node's membership list.
430 a->cliqueMembership = cliqueNum;
431 return a;
432 }

C.4.0.68 cllt removeSupers (cILt * head, int node, cSett * newClique)

This function finds all cliques in a linked list of which the proposed clique is a superset.
It starts looking AFTER the first clique which has already been found to be a subset.
In some senses, it is just a continuation of the uniqclique function in order to take
advantage of the fact that though a proposed clique can only be a subset of one
existing next-level clique, it can be a superset of many existing next- level cliques.
Input: head of a clique linked list, the id of the first node found to be a subset of
the proposed clique, and the proposed clique (in cSet-t form). Output: the head of
the clique linked list with all but the first subset (which was passed as an argument)
removed. This function is now ready for swapNode to be called.

Definition at line 952 of file convll.c.

References enode::id, cSet_t::members, cnode::next, cnode::set, and cSett::size.

Referenced by pushConvClique().

953 {

260



954 int foundStatus = 0;
955 cllt *curr = head;
956 cllt *prev = NULL;
957 int i = 0, j = 0, breakFlag = 0;
958
959 while (curr != NULL)
960 {
961 if (curr->id == node)
962 {
963 foundStatus = 1;
964 break;
965 }
966 curr = curr->next;
967 }
968
969 if (foundStatus == 0)
970 {
971 fprintf (stderr, "\nFirst clique not found! (removeSupers)\n");
972 fflush (stderr);
973 exit (0);
974 }
975 // Now this is trickier, to remove nodes from the middle of a linked
976 // list; this means that we need to remember which node we were just
977 // at so that we can connect it to the node after the one we are
978 // about to delete.
979 prey = curr;
980 curr = curr->next;
981
982 // This code is similar to that in uniqClique.
983 // Descend through all members of the next level's linked list.
984 while (curr != NULL)
985 {
986 i = 0;
987 j = 0;
988 breakFlag = 0;
989 // The proposed convolved clique will be referred to as the
990 // 'first' clique, and the current clique being analyzed
991 // in the next level is the 'second' clique.
992 // Continue if we have more members in both cliques. We will
993 // have already broken out if it is not possible for this
994 // second clique to be a subset of the first.
995 while ((i < newClique->size) && (j < curr->set->size))
996 {
997 // If the current member of the first clique is
998 // less than the current member of the second clique
999 // then it is still possible that the first is a
1000 // superset of the second, so move on to the next
1001 // member.
1002 if (newClique->members [i < curr->set->members[j])
1003 {
1004 i++;
1005 }
1006 // If the current member of the first clique is greater
1007 // than the current member of the second clique, then
1008 // the proposed second clique cannot be a subset since
1009 // its members are all in ascending order. We also
1010 // know that since the first clique already has
1011 // a subset in this linked list, the current node
1012 // cannot possibly be a superset of the proposed
1013 // clique, so we can just disregard that. Thus,
1014 // we make a flag signifying this and break out.
1015 else if (newClique->members[i) > curr->set->members[j])
1016 {
1017 breakFlag = 1;
1018 break;
1019 1
1020 else
1021 {
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1022 i++;
1023 j++;
1024 }
1025 }
1026 // If the breakflag is 1, then we know
1027 // that there is a member of the second clique not in the
1028 // first, and so the second is not a subset. If the breakflag
1029 // is 0 but j is less than the second clique's size, then
1030 // we must have broken because we ran out of members in the
1031 // first clique.., thus, there is a member of the second
1032 // clique not in the first. Thus, only if the breakflag is
1033 // 0 and j is equal to the size of the second clique do we
1034 // know that every member of the second clique is in the first
1035 // and that the second clique can thus be removed.
1036 if ((breakFlag == 0) && (j == curr->set->size))
1037 {
1038 // Make the previous clique point to the next one
1039 // instead of the current one.
1040 prev->next = curr->next;
1041 // Free all of the memory used by the current clique.
1042 free (curr->set->members);
1043 free (curr->set);
1044 free (curr);
1045 curr = prev->next;
1046 }
1047 else
1048 {
1049 // Otherwise, the current second clique is not a
1050 // subset of the first, and we advance the prev and
1051 // curr pointers.
1052 prey = curr;
1053 curr = curr->next;
1054 }
1055 }
1056 return head;
1057 }

C.4.0.69 bitSet_t* searchMemsWithList (int * list, int listsize, mllt **
memList, int numOffsets, bitSet_t queue)

Creates one large queue by calling "setStackTrue" for each member of a list of offsets.
This then creates the union of clique membership for all offsets in the list being
searched. Input: an array of offset numbers, the length of that array, an array of
member linked lists, the length of that array (the total number of offsets), and a
bitSet_t to store the union/queue. Output: the union/queue in a bitSet_t structure.

Definition at line 611 of file convll.c.

References emptySet(), and setStackTrue().

Referenced by wholeCliqueConv().

613 (
614 int i = O;
615 emptySet (queue);
616
617 // Go through each offset in the list
618 for (i = 0; i < listsize; i++)
619 {
620 // Check to make sure that's a valid offset number, and if so
621 // then set its stack true in the queue.
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if (list i] + 1 < numOffsets)

queue = setStackTrue (memList, list [i + 1, queue);

else

fprintf (stderr, "\nInvalid offset number! - searchMemsWithList\n");
fprintf (stderr, "\nlist[i+1l (%d) >= numOffsets (%d)\n",

list[i] + 1, numOffsets);
fflush (stderr);
exit (0);

622

623
624

625

626
627

628

629
630

631
632
633
634
635
636
637 }

C.4.0.70 bitSet_t* setStackTrue (mllt ** memList, int i, bitSett *
queue)

Adds all of the members of a given stack to a "queue" in the form of a bitSet_t data
structure. That is, for each clique in the member linked list, it sets the corresponding
bit in the bitSet_t true. Input: array of member linked lists, an integer indicating a
specific member linked list, and a bitSet_t of length >= the number of cliques in the
current clique linked list. Ouput: the updated bitSet_t object.

Definition at line 585 of file convll.c.

References mnode::cliqueMembership, mnode::next, and setTrue().

Referenced by searchMemsWithList().

586 {
587 mll t *curr = memList[i];
588
589 // Traverse down the memb
590 while (curr != NULL)
591 {
592 // Set the bit in que
593 // membership true
594 setTrue (queue, curr-
595 curr = curr->next;
596 }
597

598 return queue;
599 }

er linked list

ue corresponding to

>cliqueMembership);

the current clique

C.4.0.71 cllt* singleCliqueConv (cllt * head, int firstClique, cllt **
firstGuess, int secondClique, clLt ** secondGuess, cll_t *
nextPhase, bitSett * printStatus, int support)

Convolves one single clique against one other single clique. Note that this is non-
commutative, so exchanging firstClique and secondClique will not give the same re-
sults. The "guess" pointers keep the location of the previous clique in the linked list
so that we don't have to search the linked list from the beginning/end every time. We
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exploit our earlier tidiness in that we can reasonably guess that we will monotonically
traverse down cliques. Input: head of the current clique linked list, the id number of
the first clique, a pointer to a guess at the first clique, the id number of the second
clique, a pointer to a guess at the second clique, the head of the clique linked list for
the next round of convolution, a bitSet indicating which cliques should be output as
maximal, and the minimum support flag. Output: the head of clique linked list for
the next round of convolution (which may have changed if the two cliques could be
convolved).

Definition at line 657 of file convll.c.

References cnode::id, mergeIntersect(), cnode::next, popWholeMemStack(), push-
ConvClique(), cnode::set, setFalse(), and cSet t::size.

Referenced by wholeCliqueConv().

660 {
661 cll_t *first = NULL, *second = NULL;
662 mll_t *survivingMems = NULL;
663 // int flag = 0;
664 int newSupport = 0;
665 // cllt *checker = head;
666
667 // Check to make sure we're looking for legitimate cliques.
668 if ((firstClique > head->id) II (secondClique > head->id))
669 {
670 fprintf (stderr, "\nNonexistent clique! - singleCliqueConv\n");
671 fflush (stderr);
672 exit (0);
673 }
674 // Our guesses depend on monotonic traversal. If we don't find
675 // the first clique, then bail out.
676 while ((*firstGuess)->id != firstClique)
677 {
678 if ((*firstGuess)->next != NULL)
679 {
680 *firstGuess = (*firstGuess)->next;
681
682 else
683
684 fprintf (stderr, "\nFirst clique not found! - singleCliqueConv\n");
685 fflush (stderr);
686 exit (0);
687 }
688 }
689 first = *firstGuess;
690
691 // Our guesses depend on monotonic traversal. If we don't find
692 // the second clique, then bail out.
693 while ((*secondGuess)->id != secondClique)
694 {
695 if ((*secondGuess)->next != NULL)
696 {
697 (*secondGuess) = (*secondGuess)->next;
698 }
699 else
700 {
701 fprintf (stderr, "\nSecond clique not found! - singleCliqueConv\n");
702 fflush (stderr);
703 exit (0);
704 }
705 }
706 second = *secondGuess;
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707 // Find out what the surviving members are when the first clique
708 // is convolved with the second clique
709 survivingMems =
710 mergeIntersect (first, second, survivingMems, printStatus, &newSupport);
711
712 // If the first clique is subsumed by the second, then it is not
713 // maximal, so don't print it.
714 // printStatus true means print it!
715 if (newSupport == first->set->size)
716 {
717 setFalse (printStatus, first->id);
718 }
719 // If the second clique is subsumed by the first, then it is not
720 // maximal, so don't print it.
721 if (newSupport == second->set->size)
722 {
723 setFalse (printStatus, second->id);
724 }
725
726 // If the support of the clique just formed by convolution meets the
727 // support criterion, then push it on to the linked list for
728 // the next phase of convolution.
729 if (newSupport >= support)
730 {
731 // printf("Push %d and ,d\n" ,first->id,second->id);
732 nextPhase = pushConvClique (survivingMems, nextPhase);
733 // printf ("---------\n") ;
734 // printCll(nextPhase);
735 // printf( "---------\n");
736 }
737 // Pop the surviving members; they are no longer needed, as they
738 // either didn't meet the support criterion or have been pushed on
739 // already
740 survivingMems = popWholeMemStack (survivingMems);
741
742 return nextPhase;
743 }

C.4.0.72 cllt* swapNodecSet (cllt * head, int node, cSet_t A newClique)

Swaps out a node in a linked list that has been found to be a subset of a node that is
not yet in the list. Input: the head of a clique linked list, a specific node within that
linked list that is to be removed, and the new clique that is the superset of the node
to be removed (in cSet_t form). Output: the head of the altered clique linked list.

Definition at line 904 of file convll.c.

References cnode::id, cSett::members, cnode::next, and cnode::set.

Referenced by pushConvClique().

905 {
906 int foundflag = 0;
907 cll_t *curr = head;
908
909 // First we find the node that needs to be swapped out
910 while (curr != NULL)
911 {
912 if (curr->id == node)
913 {
914 foundflag = 1;
915 break;
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916 }
917 curr = curr->next;

918 )
919
920 // If we can't find it, then we get upset and exit.

921 if (foundflag == 0)
922 {
923 fprintf (stderr, "\nClique not found! (in swapNode)\n");

924 fflush (stderr);
925 exit (0);

926 }
927 // Then we free the useless clique's members and its set data structure
928 // before pointing its set to the new clique.
929 free (curr->set->members);
930 free (curr->set);
931 curr->set = newClique;
932 return head;
933
934 }

C.4.0.73 int uniqClique (cSett * cliquecSet, cll_t * head)

Before we push a convolved clique onto the stack for the next level, this function
ensures that it is not subsumed by and does not subsume any other clique currently
on that stack. Input: a candidate clique for the next level in cSet_t form, and the
head of the clique linked list for the next level. Output: an integer indicating the
status of the proposed clique with respect to the next level: -1 if the clique is unique,
-2 if the clique is a subset/duplicate of an existing clique, or a clique id in the range
[O,numcliques) representing the first clique of which the proposed one is a superset.
Note that by executing this each time a clique is added to the next level, we ensure
that if the new clique is not unique, it can only be a superset or a subset of some other
clique; it cannot be both a strictly superset of one and a strictly subset of another.
One of those other two cliques would have been identified in previous steps as being
super- or sub-sets, so it is impossible for one clique now to be both a super and a
subset.

Definition at line 821 of file convll.c.

References cnode::id, cSet_t::members, cnode::next, cnode::set, and cSett::size.

Referenced by pushConvClique().

822 {
823 int i = 0, j = 0;
824 int asubbflag = 1, bsubaflag = 1;
825

826 // Descend through all members of the next level's linked list
827 while (head != NULL)
828 {
829 asubbflag = 1;
830 bsubaflag = 1;
831 i = O;
832 j = 0;
833 // The proposed convolved clique will be referred to as the
834 // "first" clique, and the current clique being analyzed
835 // in the next level is the "second" clique.
836 // Continue if we have more members in both cliques AND if it
837 // is still possible for one clique to be a subset of

266



838 // the other.
839 while ((i < cliquecSet->size) && (j < head->set->size) &&
840 ((asubbflag == 1) II (bsubaflag == 1)))
841
842 // If the current member of the first clique is less
843 // than the current member of the second clique,
844 // it is impossible for the first clique to be a
845 // subset of the second (since the members are
846 // traversed in ascending order.
847 if (cliquecSet->members[i] < head->set->members[j])
848 {
849 i++;
850 asubbflag = 0;
851 }
852 // Similarly, if the current member of the second
853 // clique is less than the current member of the
854 // second clique, the second can't be a subset
855 // of the first.
856 else if (cliquecSet->members[i] > head->set->members[j])
857 {
858 j++;
859 bsubaflag = 0;
860 }
861 // Otherwise, they matched this time, so move them
862 // both on.
863 else
864 {
865 i++;
866 j++;
867 }
868
869
870 // If the proposed clique is a subset of some other clique
871 // in the next level, then return -2, and it won't be added.
872 // (Note, this also is how exact duplicates are handled.)
873 if ((asubbflag == 1) && (i == cliquecSet->size))
874 {
875 return (-2);
876 }
877 // If the proposed clique is a superset of some other clique(s)
878 // in the next level, then return the id of the first clique
879 // of which it is a superset.
880 if ((bsubaflag == 1) && (j == head->set->size))
881 {
882 return (head->id);
883 }
884 // If the proposed clique has not been found to be a superset
885 // or a subset yet, then move on to the next clique in
886 // the next level.
887 head = head->next;
888 }
889 // If we've gotten here, we've checked all cliques in the previous
890 // level and haven't found the proposed clique to be a superset or
891 // a subset... if so, then we're all good, so return a -1.
892 return (-1);
893 }

C.4.0.74 cllt* wholeCliqueConv (cllt * head, cllt node, cll_t
** firstGuess, mllt ** memList, int numOffsets, cllt *
nextPhase, bitSett * printStatus, int support)

Convolves one single clique against all possible cliques that could possibly be con-
volved. It does not attempt to convolve all other cliques, but prunes that set by first
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looking at the offsets that are in the clique, then collecting all of the cliques who have
members that are one greater than the offsets in this clique, and then convolving those
cliques in a sort of "queue" using the bitSett data structure. Input: the head of the
clique linked list for the current level, the current node being convolved against in the
linked list, the location of the previous node in the form of a pointer to a "guess", an
array of member linked lists, the length of that array, the head of the clique linked
list for the next level, a bitSett for the printStatus of maximality, and the support
criterion. Output: the head of the (possibly modified) clique linked list for the next
level.

Definition at line 1208 of file convll.c.

References bitSetToCSet(), countSet(), deleteBitSet(), cnode::id, cSett::members,
newBitSet(), searchMemsWithList(), cnode::set, singleCliqueConv(), and cSett::size.

Referenced by wholeRoundConv().

1211 {
1212 bitSet-t *queue = NULL;
1213 cSett *cliquesToSearch = NULL;
1214 int i = 0;
1215 cllt **secondGuess = NULL;
1216
1217 // This bitSet will be used to create a "queue" of the different
1218 // cliques that must be convolved against the current primary clique.
1219 // A bitset is used to make it easy to deal with duplicates, where
1220 // multiple clique members' next offsets
1221 // are all members of some other specific clique.
1222 queue = newBitSet (head->id + 1);
1223 queue =
1224 searchMemsWithList (node->set->members, node->set->size, memList,
1225 numOffsets, queue);
1226 // We'll use this "secondGuess" to store where the previous clique
1227 // being convolved was... since we will progressing monotonically
1228 // in descending order, this will save us some time in traversing the
1229 // linked list looking for the clique that we want.
1230 secondGuess = (cll_t **) malloc (sizeof (cll_t *));
1231 if (secondGuess == NULL)
1232 {
1233 fprintf (stderr, "Memory error - wholeCliqueConv\n/s\n",
1234 strerror (errno));
1235 fflush (stderr);
1236 exit (0);
1237 }
1238 // If the offsets that we are looking for are in no other cliques,
1239 // we can just bail out now.
1240 if (countSet (queue) == 0)
1241 {
1242 deleteBitSet (queue);
1243 return nextPhase;
1244 }
1245 // Otherwise, we start our secondGuess at the head and get going.
1246 *secondGuess = head;
1247
1248 // We change the bitSet to something more useful.
1249 cliquesToSearch = bitSetToCSet (queue);
1250
1251 // Note that we start from the end of the cSet member list so that
1252 // we can convolve the highest-id cliques first, which are at the
1253 // beginning of our stack of cliques.
1254 for (i = cliquesToSearch->size - 1; i >= 0; i--)
1255 {

268



1256 nextPhase = singleCliqueConv (head, node->id, firstGuess,
1257 cliquesToSearch->members i], secondGuess,
1258 nextPhase, printStatus, support);
1259 }
1260
1261 // And then we free everything that we created
1262 deleteBitSet (queue);
1263 free (cliquesToSearch->members);
1264 free (cliquesToSearch);
1265 free (secondGuess);
1266 return nextPhase;
1267 }

C.4.0.75 cllt* wholeRoundConv (cllt ** head, mllt ** memList, int
numOffsets, int support, int length, cllt ** allCliques)

Performs convolution on all cliques in a linked list by repeatedly calling wholeClique-
Conv. Input: pointer to the head of a clique linked list for the current level, array
of member linked lists, length of that array, minimum support threshold, the current
length of motifs, and a pointer to a linked list containing all cliques that will be printed
out. Output: the head of the clique linked list for the next level of convolution.

Definition at line 1279 of file convll.c.

References checkBit(), deleteBitSet(), fillSet(), cnode::id, newBitSet(), cnode::next,
wholeCliqueConv(), and yankCll().

Referenced by completeConv().

1281 {
1282 bitSett *printStatus = NULL;
1283 cll_t *curr = *head;
1284 cll_t *prev = NULL;
1285 cll_t *nextPhase = NULL;
1286 cll_t **firstGuess = NULL;
1287
1288 // Create a bitset to keep track of print status for this level.
1289 // It starts off all true, and gets changed to false if the patterns
1290 // are not maximal.
1291 printStatus = newBitSet ((*head)->id + 1);
1292 fillSet (printStatus);
1293 firstGuess = (cll_t **) malloc (sizeof (cll-t *));
1294 if (firstGuess == NULL)
1295 {
1296 fprintf (stderr, "Memory error - wholeRoundConv\n/s\n",
1297 strerror (errno));
1298 fflush (stderr);
1299 exit (0);
1300 }
1301 // Start off at the head.
1302 *firstGuess = *head;
1303 // Convolve a whole clique at a time, traversing the linked list.
1304 // Note that firstGuess gets altered within the function.
1305 while (curr != NULL)
1306 {
1307 nextPhase =
1308 wholeCliqueConv (*head, curr, firstGuess, memList, numOffsets,
1309 nextPhase, printStatus, support);
1310 curr = curr->next;
1311 }
1312
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// Now go back to the head for printing output
curr = *head;

// printf("\n****************************************************\n");
// printf("Length = /d", length);
// printf("\n****************************************************\n");

// For each clique that is still 'true' in printStatus and is thus
// maximal, perform some sort of output. Yankcll will pull out the
// clique and save it for printing at a later time.
while (curr != NULL)

1313

1314
1315

1316
1317

1318

1319
1320
1321

1322
1323

1324
1325
1326

1327
1328

1329
1330
1331
1332
1333

1334
1335
1336
1337

1338
1339

1340
1341
1342

1343

// This is the line that makes the allCliques output.
// Can either printcll, or add to allCliques.
// printCllPattern(curr, length);
yankCll (head, prev, &curr, allCliques, length);

else

prevy = curr;
curr = curr->next;

}

// And clean up.
deleteBitSet (printStatus);
free (firstGuess);
return nextPhase;

C.4.0.76 int yankCll (cllt ** head, cll_t
allCliques, int length)

* prey, cllt ** curr, cllt **

Removes a clique from within a linked list in order to save it for later printing. This
is done so that the cliques are not printed as they are convolved, but rather after
all rounds of convolution are complete. Input: a pointer to the head of the current
linked list, the clique prior to the one that is to be yanked (NULL if the clique to be
yanked is the head), the clique that is to be yanked, a pointer to the head of the list
with all cliques that are to be printed, and the length of the current motif. Output:
Nothing is returned beyond a success integer, but it alters the current level cll-t, the
value of curr, and the linked list of all cliques that are to be printed.

Definition at line 1359 of file convll.c.

References cnode::id, and cnode::next.

Referenced by convolve(), and wholeRoundConv().

1361 {
1362 if (*curr == NULL)
1363 {
1364 fprintf (stder
1365 fflush (stderr
1366 exit (0);
1367 }
1368 // If we're not on
1369 // If we are on th
1370 if (prey != NULL)

r, "\nCan't yank from end of cll!\n");
);

the head, change the previous node's "next".
e head, make the new head be our current node's "next".
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prev->next = (*curr)->next;

else

*head = (*curr)->next;

// Change next in curr, then change
(*curr)->next = *allCliques;

id and length information in curr

1371

1372

1373
1374

1375

1376

1377

1378

1379
1380
1381

1382
1383

1384

1385
1386
1387

1388
1389
1390

1391
1392

1393

1394
1395
1396
1397
1398

1399
1400
1401
1402
1403
1404

(*curr)->id = (*allCliques)->id + 1;

else

(*curr)->id = 0;

(*curr)->length = length;

*allCliques = *curr;

if (prev != NULL)

*curr = prev->next;

else

*curr = *head;

return (1);

Variable Documentation

C.4.0.77 int cliquecounter = 0

Definition at line 335 of file convll.c.

Referenced by pushClique().

271

if (*allCliques != NULL)



C.5 convll.h File Reference

#include <stdio.h>

#include <stdlib.h>

#include "bitSet.h"

Include dependency graph for convll.h:

stdio.h

biSet.h string.h

stdlib.h

This graph shows which files directly or indirectly include this file:

Data Structures

* struct cSet-t
* struct cnode

* struct mnode

Typedefs

* typedef cnode cllt

* typedef mnode mil_t

Functions

* cll_t * pushCll (cllt *head)
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* cll_t * popCll (cllt *head)
* cllt * popAIlCll (cll_t *head)
* int printCll (cllt head)
* cllt * initheadCll (cllt *head, cSett *newset)
* cllt * pushcSet (cllt *head, cSett *newset)
* cllt * pushClique (bitSet_t *clique, cllt *head, int *indexToSeq, int p)
* mllt * pushMemStack (mllt *head, int cliqueNum)
* mllt * popMemStack (mllt *head)
* mllt * popWholeMernStack (mllt *head)
* millt ** addToStacks (cllt *node, mll_t **memberStacks)
* mllt ** fillMemberStacks (cllt *head, mllt **memberStacks)
* mllt ** emptyMemberStacks (mllt **memberStacks, int size)
* void printMemberStacks (mllt **memberStacks, int size)
* bitSet.t * searchMeinsWithList (int *list, int listsize, mll_t **memList, int num-

Offsets, bitSet_t *queue)
* bitSett * setStackTrue (mllt **memList, int i, bitSet_t *queue)
* cllt * singleCliqueConv (cllt *head, int firstClique, cllt **firstGuess, int

secondClique, cll_t **secondGuess, cll_t *nextPhase, bitSett *printStatus, int
support)

* mllt * mergeIntersect (cllt *first, cllt *second, mllt *intersection, bitSet_t
*printStatus, int *newSupport)

* cllt * pushConvClique (mllt *clique, cllt head)
* cSet_t * mllToCSet (mllt *clique)
* cSet_t * bitSetToCSet (bitSett *clique)
* cllt * wholeCliqueConv (cllt *head, cllt *node, cllt **firstGuess, mllt

**memList, int numOffsets, cllt *nextPhase, bitSet_t *printStatus, int sup-
port)

Scllt * wholeRoundConv (cllt **head, mllt **memList, int numOffsets, int
support, int length, cllt **allCliques)

* cllt * completeConv (cllt **head, int support, int numOffsets, int minLength,
int *indexToSeq, int p)

* int printCllPattern (cllt *node, int length)
* int uniqClique (cSet_t *clique, cllt *head)
* cllt * swapNodecSet (cllt *head, int node, cSet_t *newClique)
* int yankCll (cll_t **head, cll_t *prev, cllt **curr, cllt **allCliques, int length)
* cllt * removeSupers (cllt *head, int node, cSet_t *newClique)

Detailed Description

This header file contains declarations and definitions for dealing with different kinds
of sets that are used throughout the convolution stage of Gemoda.

Definition in file convll.h.
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Typedef Documentation

C.5.0.78 typedef struct cnode cll_t

This data structure is a linked list for storing cliques. Each member of the linked
list has a set, an ID number, a length (which gives the number of characters in the
motif), a pointer to the next member of the linked list, and a floating-point number
for storing statistical information.

C.5.0.79 typedef struct mnode mllt

This data structure is just a link to list of integers used for bookkeeping during the
convolution stage.

Function Documentation

C.5.0.80 mllt** addToStacks (cllt * node, mllt ** memberStacks)

For one clique, it adds membership for that clique to all of its members' member
stacks. Input: a specific clique in a clique linked list, an array of member stacks.
Output: the array of updated member stacks.

Definition at line 425 of file convll.c.

References cnode::id, cSet_t::members, pushMemStack(), and cnode::set.

Referenced by fillMemberStacks().

C.5.0.81 cSet_t* bitSetToCSet (bitSet_t * clique)

Converts a bitSet_t to a cSett for the purposes of pushing it onto a linked list of
cliques. The bitSett data structure is used for massive comparisons during clique-
finding but is unwieldy/inefficient when it is known that the structure is sparse. The
cSett allows for efficient comparison of sparse bitSet_t's. Use this just before pushing
a newly-discovered clique onto a clique linked list. Input: a new clique in the form of
a bitSet_t. Output: the same clique in the form of a cSett.

Definition at line 193 of file convll.c.

References countSet(), cSet_t::members, nextBitBitSet(), and cSet_t::size.

Referenced by pushClique(), and wholeCliqueConv().
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C.5.0.82 cllt* completeConv (cllt ** head, int support, int numOffsets,
int minLength, int * indexToSeq, int p)

Performs complete convolution given the starting list of cliques. Input: a pointer to
the head of the initial clique linked list, the minimum support criterion value, the
number of offsets in the sequence set, the minimum length of motifs (which is the
length of motifs in the initial clique linked list), the index/Sequence data structure,
and the value of the -p flag to prune based on unique sequence occurrences. Output:
a linked list of all maximal cliques based on the initial clique linked list.

Definition at line 1267 of file convll.c.

References emptyMemberStacks(), fillMemberStacks(), popAllCll(), pruneCll(), and
wholeRoundConv().

Referenced by convolve().

C.5.0.83 mll_t** emptyMemberStacks (mllt ** memberStacks, int size)

After we have performed a round of convolution, this "empties" the member stacks
by popping all nodes off each member linked list. Input: array of member linked
lists, the size of that array (total number of offsets). Output: the array of now-empty
member linked lists.

Definition at line 474 of file convll.c.

References popWholeMemStack().

Referenced by completeConv().

C.5.0.84 mlLt** fillMemberStacks (cllt * head, mlLt ** memberStacks)

Fills the entire memberStacks data structure by calling addToStacks for each clique
in the clique linked list. Input: head of a clique linked list, array of member linked
lists. Output: the array of updated member linked lists.

Definition at line 455 of file convll.c.

References addToStacks(), and cnode::next.

Referenced by completeConv().

C.5.0.85 cllt* initheadCll (cllt * head, cSett * newset)

Initializes the empty head of a linked list by adding a set to that head. Note: this
is only called immediately after pushing onto a cll, because the push always creates
a new empty head. This function should not be called by the user; see pushcSet.
Input: head of a linked list, pointer to a cSett list of clique members. Output: head
of a linked list.
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Definition at line 156 of file convll.c.

References cnode::set.

Referenced by pushcSet().

C.5.0.86 mllt* mergeIntersect (cll_t * first, clLt * second, mll_t A
intersection, bitSett * printstatus, int * newSupport)

Convolves two cliques in a non-commutative manner. It finds which members of
the first clique are immediately followed by a member in the second clique. Input:
pointer to the location in the linked list of the first clique to be convolved, pointer to
the location in the linked list of the second clique to be convolved, a member linked
list used to store the intersection of the two cliques, the printstatus bitSet, and a
pointer to an integer with the support of the clique formed by convolution. Output:
a member linked list with the intersection of the two cliques, plus the side effect of
that intersection's cardinality being stored in the integer pointed to by newSupport.

Definition at line 671 of file convll.c.

References cSet_t::members, pushMemStack(), cnode::set, and cSett::size.

Referenced by singleCliqueConv().

C.5.0.87 cSett* mllToCSet (mllt * clique)

Turns a member linked list used to store the intersection of two cliques into something
more useful: a cSett structure. Input: a clique in mlLt form. Output: a clique in
cSet_t form.

Definition at line 1022 of file convll.c.

References mnode::cliqueMembership, cSet_t::members, mnode::next, and cSet-
t::size.

Referenced by pushConvClique().

C.5.0.88 cllt popAllClI (cllt * head)

Shortcut function to pop all of the members of a linked list. Input: head of a linked
list. Output: head of a now-empty linked list.

Definition at line 101 of file convll.c.

References popCll().

Referenced by completeConv(), and main().
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C.5.0.89 cllt* popCll (cllt * head)

Removes the head of the clique linked list, returns the new head of the clique linked
list, and frees the memory occupied by the old head. Input: head of a linked list.
Output: head of a linked list.

Definition at line 60 of file convll.c.

References cSett::members, cnode::next, and cnode::set.

Referenced by popAllCll().

C.5.0.90 mllt popMemStack (mllt * head)

Pops the head off of a single member linked list. Input: head of a member linked list.
Output: the new head of a member linked list after popping one item.

Definition at line 388 of file convll.c.

References innode::next.

Referenced by popWholeMemStack().

C.5.0.91 mllt* popWholeMemStack (mllt * head)

Pops all items off of a member linked list. Input: head of a member linked list.
Output: empty head of a member linked list.

Definition at line 410 of file convll.c.

References popMemStack().

Referenced by emptyMemberStacks(), and singleCliqueConv().

C.5.0.92 int printCll (cllt * head)

Prints the members (cliques) of a linked list in the format: id = unique id number of
clique within linked list; Length = number of members of clique, if available; Size =
length of each member of clique; Members = newline-separated list of members of the
clique. Input: head of a linked list. Output: Gives text output, returns (meaningless)
exit value.

Definition at line 118 of file convll.c.

References cnode::id, cnode::length, cSett::members, cnode::next, cnode::set, and c-
Set_t::size.
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C.5.0.93 int printCllPattern (cllt * node, int length)

Prints out the contents of a clique linked list node in this format: support = number
of motif occurrences (id = some id number); members = newline-separated list of
offsets. Input: a specific node to be output, the length of the motif inside it. Output:
text per above, and an integer success value.

Definition at line 1328 of file convll.c.

References cnode::id, cSett::members, cnode::set, and cSett::size.

C.5.0.94 void printMemberStacks (mllt ** memberStacks, int size)

Prints the contents of the member stacks. Input: array of member linked lists, size
of that array (total number of offsets). Output: only text output/no return value.

Definition at line 491 of file convll.c.

References mnode::cliqueMembership, and mnode::next.

C.5.0.95 cllt* pushClique (bitSett * clique, cll_t * head, int *
indexToSeq, int p)

Pushes a bitSet onto a clique linked list, performing all necessary manipulations in
order to do so. Input: new clique in the form of a bitSet_t, head of a linked list,
pointer to the index/sequence number data structure, integer value of the -p flag.
Output: head of an updated clique linked list.

Definition at line 314 of file convll.c.

References bitSetToCSet(), checkCliquecSet(), cliquecounter, cSet_t::members, and
pushcSet().

Referenced by findCliques(), and singleLinkage().

C.5.0.96 cllt* pushCll (cllt * head)

Pushes a new, empty head onto a linked list of cliques. Note: this should always be
followed by a call to initheadCll, as the head pushed on here is empty and will be
meaningless without any members. This function should NOT be used by the user;
see pushcSet. Input: head of a linked list. Output: head of a linked list.

Definition at line 26 of file convll.c.

References cnode::id, cnode::length, cnode::next, cnode::set, and cnode::stat.

Referenced by pushcSet().
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C.5.0.97 cllt* pushConvClique (mllt * clique, cllt * head)

Pushes a freshly-convolved clique, currently in mllt form, onto the clique linked list
for the next level. Also checks to make sure that the convolved clique is unique, and
if it isn't, it takes appropriate action. Input: a convolved clique in mllt form, the
head of a clique linked list for the next level. Output: (potentially new) head of the
clique linked list for the next level.

Definition at line 980 of file convll.c.

References cSett::members, mllToCSet(), pushcSet(), removeSupers(), swapNodec-
Set(), and uniqClique().

Referenced by singleCliqueConv().

C.5.0.98 cllt* pushcSet (cllt head, cSett * newset)

Function that pushes the contents of a cSet (set of members of a clique) onto a linked
list of cliques. Input: head of a linked list, new clique in the form of a cSett. Output:
head of a linked list.

Definition at line 174 of file convll.c.

References initheadCll(), and pushCll().

Referenced by pushClique(), and pushConvClique().

C.5.0.99 mllt* pushMemStack (mllt * head, int cliqueNum)

This begins code for the member linked lists. A single one of these linked lists
functions somewhat similarly to the clique linked lists, though with less information
stored. Functionally, an array of member linked lists is used to access the "inverse"
of what is contained in the clique linked lists. That is, we would like to be able to
look up the cliques that a given node is a member of, so we have an array of member
linked lists of size equal to the number of nodes.

This function pushes a single clique membership onto a node's member stack. Input:
the head of a single member linked list, a clique number to be added. Output: the
head of a single member linked list.

Definition at line 358 of file convll.c.

References mnode::cliqueMembership, and mnode::next.

Referenced by addToStacks(), and mergeIntersect().
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C.5.0.100 cllt* removeSupers (cllt * head, int node, cSet_t *
new Clique)

This function finds all cliques in a linked list of which the proposed clique is a superset.
It starts looking AFTER the first clique which has already been found to be a subset.
In some senses, it is just a continuation of the uniqclique function in order to take
advantage of the fact that though a proposed clique can only be a subset of one
existing next-level clique, it can be a superset of many existing next- level cliques.
Input: head of a clique linked list, the id of the first node found to be a subset of
the proposed clique, and the proposed clique (in cSet_t form). Output: the head of
the clique linked list with all but the first subset (which was passed as an argument)
removed. This function is now ready for swapNode to be called.

Definition at line 849 of file convll.c.

References cnode::id, cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by pushConvClique().

C.5.0.101 bitSett* searchMemsWithList (int * list, int listsize, mllt **

memList, int numOffsets, bitSet_t A queue)

Creates one large queue by calling "setStackTrue" for each member of a list of offsets.
This then creates the union of clique membership for all offsets in the list being
searched. Input: an array of offset numbers, the length of that array, an array of
member linked lists, the length of that array (the total number of offsets), and a
bitSet_t to store the union/queue. Output: the union/queue in a bitSet_t structure.

Definition at line 540 of file convll.c.

References emptySet(), and setStackTrue().

Referenced by wholeCliqueConv().

C.5.0.102 bitSet_t* setStackTrue (mllt ** memList, int i, bitSet_t A
queue)

Adds all of the members of a given stack to a "queue" in the form of a bitSet_t data
structure. That is, for each clique in the member linked list, it sets the corresponding
bit in the bitSet_t true. Input: array of member linked lists, an integer indicating a
specific member linked list, and a bitSett of length >= the number of cliques in the
current clique linked list. Ouput: the updated bitSett object.

Definition at line 516 of file convll.c.

References mnode::cliqueMembership, mnode::next, and setTrue().

Referenced by searchMemsWithList().
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C.5.0.103 cllt* singleCliqueConv (cllt * head, int firstClique, cll_t **
firstGuess, int secondClique, cllt ** secondGuess, cllt *
nextPhase, bitSet_t * printStatus, int support)

Convolves one single clique against one other single clique. Note that this is non-
commutative, so exchanging firstClique and secondClique will not give the same re-
sults. The "guess" pointers keep the location of the previous clique in the linked list
so that we don't have to search the linked list from the beginning/end every time. We
exploit our earlier tidiness in that we can reasonably guess that we will monotonically
traverse down cliques. Input: head of the current clique linked list, the id number of
the first clique, a pointer to a guess at the first clique, the id number of the second
clique, a pointer to a guess at the second clique, the head of the clique linked list for
the next round of convolution, a bitSet indicating which cliques should be output as
maximal, and the minimum support flag. Output: the head of clique linked list for
the next round of convolution (which may have changed if the two cliques could be
convolved).

Definition at line 580 of file convll.c.

References cnode::id, mergeIntersect(), cnode::next, popWholeMemStack(), push-
ConvClique(), cnode::set, setFalse(), and cSet_t::size.

Referenced by wholeCliqueConv().

C.5.0.104 cllt* swapNodecSet (cllt * head, int node, cSett *
newClique)

Swaps out a node in a linked list that has been found to be a subset of a node that is
not yet in the list. Input: the head of a clique linked list, a specific node within that
linked list that is to be removed, and the new clique that is the superset of the node
to be removed (in cSet_t form). Output: the head of the altered clique linked list.

Definition at line 804 of file convll.c.

References cnode::id, cSet_t::members, cnode::next, and cnode::set.

Referenced by pushConvClique().

C.5.0.105 int uniqClique (cSet_t * cliquecSet, cll_t * head)

Before we push a convolved clique onto the stack for the next level, this function
ensures that it is not subsumed by and does not subsume any other clique currently
on that stack. Input: a candidate clique for the next level in cSett form, and the
head of the clique linked list for the next level. Output: an integer indicating the
status of the proposed clique with respect to the next level: -1 if the clique is unique,
-2 if the clique is a subset/duplicate of an existing clique, or a clique id in the range
[0,numcliques) representing the first clique of which the proposed one is a superset.
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Note that by executing this each time a clique is added to the next level, we ensure
that if the new clique is not unique, it can only be a superset or a subset of some other
clique; it cannot be both a strictly superset of one and a strictly subset of another.
One of those other two cliques would have been identified in previous steps as being
super- or sub-sets, so it is impossible for one clique now to be both a super and a
subset.

Definition at line 729 of file convll.c.

References cnode::id, cSet_t::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by pushConvClique().

C.5.0.106 cllt* wholeCliqueConv (cllt * head, cllt node, cllt
** firstGuess, mll_t ** memList, int numOffsets, cll_t *
nextPhase, bitSett * printStatus, int support)

Convolves one single clique against all possible cliques that could possibly be con-
volved. It does not attempt to convolve all other cliques, but prunes that set by first
looking at the offsets that are in the clique, then collecting all of the cliques who have
members that are one greater than the offsets in this clique, and then convolving those
cliques in a sort of "queue" using the bitSet_t data structure. Input: the head of the
clique linked list for the current level, the current node being convolved against in the
linked list, the location of the previous node in the form of a pointer to a "guess", an
array of member linked lists, the length of that array, the head of the clique linked
list for the next level, a bitSet_t for the printStatus of maximality, and the support
criterion. Output: the head of the (possibly modified) clique linked list for the next
level.

Definition at line 1081 of file convll.c.

References bitSetToCSet(), countSet(), deleteBitSet(), cnode::id, cSett::members,
newBitSet(), searchMemsWithList(), cnode::set, singleCliqueConv(), and cSet_t::size.

Referenced by wholeRoundConv().

C.5.0.107 clLt* wholeRoundConv (cllt ** head, mllt ** memList, int
numOffsets, int support, int length, cllt ** allCliques)

Performs convolution on all cliques in a linked list by repeatedly calling wholeClique-
Conv. Input: pointer to the head of a clique linked list for the current level, array
of member linked lists, length of that array, minimum support threshold, the current
length of motifs, and a pointer to a linked list containing all cliques that will be printed
out. Output: the head of the clique linked list for the next level of convolution.

Definition at line 1148 of file convll.c.

References checkBit(), deleteBitSet(), fillSet(), cnode::id, newBitSet(), cnode::next,
wholeCliqueConv(), and yankCll().
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Referenced by completeConv().

C.5.0.108 int yankCll (cllt ** head, cllt prey, cll_t ** curr, cllt **
allCliques, int length)

Removes a clique from within a linked list in order to save it for later printing. This
is done so that the cliques are not printed as they are convolved, but rather after
all rounds of convolution are complete. Input: a pointer to the head of the current
linked list, the clique prior to the one that is to be yanked (NULL if the clique to be
yanked is the head), the clique that is to be yanked, a pointer to the head of the list
with all cliques that are to be printed, and the length of the current motif. Output:
Nothing is returned beyond a success integer, but it alters the current level cllt, the
value of curr, and the linked list of all cliques that are to be printed.

Definition at line 1221 of file convll.c.

References cnode::id, and cnode::next.

Referenced by convolve(), and wholeRoundConv().
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C.6 FastaSeqIO/fastaSeqIO.c File Reference

#include "fastaSeqlO.h"

#include <stdlib.h>

#include <string.h>

#include <errno.h>

Include dependency graph for fastaSeqIO.c:

fastaSeqlO.h stdio.h

' =trin.h i
Serrno.h

Data Structures

* struct sSizet

Defines

* #define BUFFER 100000

* #define BIG_BUFFER 1000000

Functions

* int printFSeqSubSeq (fSeq_t *seq, int start, int stop)
* long measureLine (FILE *INPUT)

* long CountFSeqs (FILE *INPUT)

* long countLines (FILE *INPUT)

* int initAofFSeqs (fSeqt *aos, int numSeq)
* char ** ReadFile (FILE *INPUT, int *n)

* fSeq_t * ReadTxtSeqs (FILE *INPUT, int *numberOfSequences)

* fSeq_t * ReadFSeqs (FILE *INPUT, int *numberOfSequences)

* int FreeFSeqs (fSeq_t *arrayOfSequences, int numberOfSequences)
* int WriteFSeqA (FILE *MY_FILE, fSeq_t *arrayOfSequences, int start, int

stop)
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Define ]Documentation

C.6.0.109 #define BIG_BUFFER 1000000

Definition at line 11 of file fastaSeqIO.c.

C.6.0.110 #define BUFFER 100000

Definition at line 10 of file fastaSeqIO.c.

Function Documentation

long CountFSeqs (FILE * INPUT)

Definition at line 44 of file fastaSeqIO.c.

45 {
46
47
48
49

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64

65 }

long start;
long count = 0;
int myChar;
int newLine = 1;
start 

= 
ftell(INPUT);

myChar = fgetc(INPUT);
while (myChar != EOF) {

if (newLine == 1 && myChar == '>') {
count++;

}
if (myChar == '\n') {

newLine = 1;
} else {

newLine 
= 0;

myChar = fgetc(INPUT);

fseek(INPUT, start, SEEKSET);
return count;

long countLines (FILE * INPUT)

Definition at line 69 of file fastaSeqlO.c.

Referenced by ReadFile().

70 {
71 long start;

72 long count = 1;
73 int myChar;
74 int status = 0;
75 start = ftell(INPUT);
76 myChar = fgetc(INPUT);
77 while (myChar != EOF) {
78 if (myChar == '\n') {
79 count++;
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80 status = 1;
81 }else {
82 status = 0;
83 }
84 myChar = fgetc(INPUT);
85 }
86 if (status == 1) {
87 count--;
88 }
89 fseek(INPUT, start, SEEK_SET);
90 return count;
91 }

C.6.0.113 int FreeFSeqs (fSeq_t * arrayOfSequences, int
numberOfSequences)

Definition at line 304 of file fastaSeqIO.c.

References fSeq_t::label, and fSeqt::seq.

Referenced by main().

305 {
306 int i;
307 for (i = 0; i < number0fSequences; i++) {
308 if (arrayOfSequences [i.label != NULL) {
309 free(arrayOfSequences[i] .label);
310 }
311 arrayOfSequences [i.label = NULL;
312
313 if (arrayOfSequences [i .seq != NULL) {
314 free (arrayOfSequences [i .seq);
315 }
316 array0fSequences[il.seq = NULL;
317 }
318 if (arrayOfSequences != NULL) {
319 free (array0fSequences);
320 }
321 arrayOfSequences = NULL;
322 return EXIT_SUCCESS;
323 }

C.6.0.114 int initAofFSeqs (fSeqt * aos, int numSeq)

Definition at line 94 of file fastaSeqlO.c.

References fSeq_t::label, and fSeqt::seq.

Referenced by ReadFSeqs(), and ReadTxtSeqs().

95 {
96 int i;
97 for (i 0; i < numSeq; i++) {
98 aos [il .seq = NULL;
99 aosi]J.label = NULL;
100 }
101 return 1;
102 }
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C.6.0.115 long measureLine (FILE * INPUT)

Definition at line 25 of file fastaSeqIO.c.

Referenced by ReadFile().

long start;
long count = 0;
int myChar;
start = ftell(INPUT);
myChar = fgetc(INPUT);
count++;
while (myChar != '\n' && myChar != EOF) {

count++;
myChar = fgetc(INPUT);

}
fseek(INPUT, start, SEEKSET);
return count;

int printFSeqSubSeq (fSeq_t * seq, int start, int stop)

Definition at line 14 of file fastaSeqIO.c.

References fSeq_t::seq.

int i;
for(i=start; i<stop; i++){

putchar(seq->seq[il);
}
return O;

C.6.0.117 char** ReadFile (FILE * INPUT, int * n)

Definition at line 105 of file fastaSeqIO.c.

References countLines(), and measureLine().

Referenced by ReadFSeqs(), readRealData(), and ReadTxtSeqs().

106 {
107 char **buf = NULL;
108 long nl;
109 long tls = 0;
110 int i=O;

nl = countLines(INPUT);
if( nl == 0){

fprintf(stderr, "\nNo sequences!
fflush(stderr);
return NULL;

Error! \n\n");

buf = (char **) malloc ( (int)(nl+l) * sizeof(char *));
if ( buf == NULL){

fprintf(stderr, "\nMemory Error\n'/s\n", strerror(errno));
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26 {
27

28
29

30
31

32
33

34
35
36
37

38

39 }

C.6.0.116

14
15
16
17
18
19
20 }

111
112
113
114
115
116
117
118
119
120



121 fflush(stderr);
122 exit(0);

123 }
124
125 // measure the first line

126 tls = measureLine(INPUT) + 1;

127 if(tls != 0){
128 buf[i] = (char *) malloc ( tls * sizeof(char));

129 if ( bufr[i == NULL){
130 fprintf(stderr, "\nMemory Error\ns\n", strerror(errno));
131 fflush(stderr);

132 exit(0);
133 }
134 }
135 fgets(buf[i], t1s, INPUT);

136 do{
137 if(buf[i][ strlen(buf[il)-1 ] == '\n'){

138 buf[i][ strlen(buf[i])-1 ] = '\0';

139 }
140 tls = measureLine(INPUT) + 1;

141 if(tls != 0){

142 i++;

143 buf[i] = (char *) malloc ( tls * sizeof(char) );
144 if ( buf[i] == NULL){
145 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));

146 fflush(stderr);
147 exit(0);

148 }
149 }
150 }while( fgets(buf[i], tls, INPUT) != NULL );

151 free(buf[i]);
152 buf = (char **) realloc ( buf, i * sizeof(char *) );
153 if ( buf == NULL){
154 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
155 fflush(stderr);

156 return NULL;

157 }
158 // I think that 'i' might actually be the # of lines

159 // plus one here? somehow line 131 isn't being freed,

160 // or at least 2 bytes of it.

161 *n = i;
162 return buf;

163 }

C.6.0.118 fSeq_t* ReadFSeqs (FILE * INPUT, int *
numberOfSequences)

Definition at line 199 of file fastaSeqIO.c.

References initAofFSeqs(), fSeqt::label, ReadFile(), fSeq_t::seq, sSize_t::size, sSize-
t::start, and sSize_t::stop.

Referenced by main().

199
200 int i,j,k;
201 int nl, ns=O;
202 char **buf = NULL;
203 fSeq_t *aos;
204 sSize_t *ss;
205 sSize_t *11;
206
207 buf = ReadFile(INPUT, &nl);
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208 if(buf == NULL){
209 return NULL;
210 }
211
212 // Count how many sequences we have
213 for( j=O ; j<nl ; j++){
214 if(buf[j] [0] == '>'){
215 ns++;
216 }
217 }
218 ss = (sSize_t *) malloc ( ns * sizeof(sSize_t) );
219 if(ss == NULL){
220 fprintf(stderr, "\nMemory Error\ns\n", strerror(errno));
221 fflush(stderr);
222 exit(0O);
223 }
224 11 = (sSize_t *) malloc ( ns * sizeof(sSize_t) );
225 if(ll == NULL){
226 fprintf(stderr, "\nMemory Error\ns\n", strerror(errno));
227 fflush(stderr);
228 exit(0);
229 }
230
231 // find the first sequence
232 k=O;
233 while( bufE[k][O != '>'){
234 k++;
235 }
236
237 // record how large each sequence is
238 i = -1;
239 for( j=k ; j<nl ; j++){
240 if(buf[j] [01 == '>'){
241 i++;
242 11li] .start = j;
243 11[i].stop = j;
244 ll[i].size = strlen( buf[j] );;
245 ss[i].start = j+1;
246 ssli].size = 0;
247 }else{
248 ss[i].stop = j;
249 ss[i].size += strlen( buf[j] );;
250 }
251
252
253 aos = (fSeq_t *) malloc ( ns * sizeof(fSeqt));
254 if( aos == NULL){
255 fprintf(stderr, "\nMemory Error\ns\n", strerror(errno));
256 fflush(stderr);
257 exit(0);
258 }
259 initAofFSeqs(aos, ns);
260
261 for ( i=O ; i<ns ; i++ ){
262 if( 1[i.size > 0 ){
263 aos[i].label = (char *) malloc ( (11Ci].size+1) * sizeof(char) );
264 if( aos(i].label == NULL){
265 fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
266 fflush(stderr);
267 exit(0);
268 }
269 aos[il.label[Ol = '\0';
270 for ( j=ll[i .start ; j<=11i i.stop ; j++ ){
271
272 // both instances of strcat here are using
273 // .label/.seq's that are NULL and that is
274 // throwing a memory error in valgrind
275 aos[i].label = strcat ( aos[i].label, buf[j] );
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if( ss[i].size > 0 ){
aos[i].seq = (char *) malloc ( (ss[i).size+l) * sizeof(char) );
if( aos[i).seq == NULL){

fprintf (stderr, "\nMemory Error\ns\n", strerror(errno));
fflush(stderr);
exit (0);

}
aos[i).seq[O] = 1\0';
for ( j=ss[i].start ; j<=ss[i].stop ; j++ ){

aos[i].seq = strcat ( aos[i].seq, buf[j] );

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301 }

C.6.0.119 fSeq_t* ReadTxtSeqs (FILE * INPUT, int
numberOfSequences)

Definition at line 172 of file fastaSeqIO.c.

References initAofFSeqs(), ReadFile(),

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195 }

and fSeqt::seq.

int i;
int nl;
char **buf = NULL;
fSeq_t *aos;

buf = ReadFile(INPUT, &nl);
if(buf == NULL){

return NULL;
}
aos = (fSeq.t *) malloc ( n1 * sizeof(fSeq_t));
if( aos == NULL){

fprintf(stderr, "\nMemory Error\n%s\n", strerror(errno));
fflush(stderr);
exit(0);

}
initAofFSeqs(aos, nl);
for ( i=O ; i<nl ; i++ ){

aos i].seq = buf[i);

free (buf);
*numberOfSequences = nl;
return (aos);
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free (11);
free(ss);

for ( i=O ; i<nl ; i++ ){
free (buf i]);

free(buf);

*numberOfSequences = ns;
return aos;



C.6.0.120 int WriteFSeqA (FILE * MYFILE, fSeq_t *
array OfSequences, int start, int stop)

Definition at line 330 of file fastaSeqIO.c.

331 {
332 int i;
333 for (i = start; i <= stop; i++) {
334 fprintf (MY_FILE, "%s\n", arrayOfSequences [i .label);
335 f:printf(MYFILE, "Xs\n", arrayOfSequences [i] .seq);
336 }
337 return EXIT_SUCCESS;
338 }
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C.7 FastaSeqIO/fastaSeqIO.h File Reference

#include <stdio.h>

Include dependency graph for fastaSeqIO.h:

-- stdio.h

This graph shows which files directly or indirectly include this file:

Data Structures

* struct fSeq-t

Functions

* int printFSeqSubSeq (fSeq_t *seq, int start, int stop)
* long measureLine (FILE *INPUT)
* long countLines (FILE *INPUT)
* long CountFSeqs (FILE *INPUT)
* int initAofFSeqs (fSeq_t *aos, int numSeq)
* fSeq_t * ReadFSeqs (FILE *INPUT, int *numberOfSequences)
* int FreeFSeqs (fSeq_t *arrayOfSequences, int numberOfSequences)
* int WriteFSeqA (FILE *MY_FILE, fSeq_t *arrayOfSequences, int start, int

stop)
* fSeq_t * ReadTxtSeqs (FILE *INPUT, int *numberOfSequences)

Function Documentation

C.7.0.121 long CountFSeqs (FILE * INPUT)

Definition at line 44 of file fastaSeqIO.c.
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C.7.0.122 long countLines (FILE * INPUT)

Definition at line 69 of file fastaSeqIO.c.

Referenced by ReadFile().

C.7.0.123 int FreeFSeqs (fSeq_t * arrayOfSequences, int
numberOfSequences)

Definition at line 306 of file fastaSeqIO.c.

References fSeqt::label, and fSeq_t::seq.

Referenced by main().

C.7.0.124 int initAofFSeqs (fSeqt * aos, int numSeq)

Definition at line 94 of file fastaSeqIO.c.

References fSeqt::label, and fSeqt::seq.

Referenced by ReadFSeqs(), and ReadTxtSeqs().

C.7.0.125 long measureLine (FILE * INPUT)

Definition at line 25 of file fastaSeqIO.c.

Referenced by ReadFile().

C.7.0.126 int printFSeqSubSeq (fSeqt * seq, int start, int stop)

Definition at line 14 of file fastaSeqIO.c.

References fSeq_t::seq.

C.7.0.127 fSeq_t* ReadFSeqs (FILE * INPUT, int *
numberOfSequences)

Definition at line 199 of file fastaSeqIO.c.

References initAofFSeqs(), fSeq.t::label, ReadFile(), fSeq.t::seq, sSizet::size, sSize_-
t::start, and sSizet::stop.

Referenced by main().
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C.7.0.128 fSeq_t* ReadTxtSeqs (FILE * INPUT, int *
numberOfSequences)

Definition at line 172 of file fastaSeqIO.c.

References initAofFSeqs(), ReadFile(), and fSeq_t::seq.

C.7.0.129 int WriteFSeqA (FILE * MY_FILE, fSeq_t *
arrayOfSequences, int start, int stop)

Definition at line 332 of file fastaSeqIO.c.
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C.8 gemoda-r.c File Reference

#include "bitSet.h"

#include "convll.h"

#include "FastaSeqIO/fastaSeqIO.h"

#include <:unistd.h>

#include <:stdlib.h>

#include <:errno.h>

#include <string.h>

#include "realIo.h"

#include "realCompare. h"

Include dependency graph for gemoda-r.c:

stdio.h

stdlib.h

string.h

Functions

* void usage (char **argv)
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* cllt * convolve (bitGraph_t *bg, int support, int R, int *indexToSeq, int p, int
clusterMethod, int **offsetTolndex, int numberOfSequences, int noConvolve,
FILE *OUTPUT_FILE)

* bitGraph_t * pruneBitGraph (bitGraph_t *bg, int *indexToSeq, int **offsetTo-
Index, int numOfSeqs, int p)

* int countExtraParams (char *s)
* double * parseExtraParams (char *s, int numParams)
* int main (int argc, char **argv)

Detailed Description

This file contains the main routine for the real valued version of Gemoda. There are
also some accessory functions for printing information on how to use Gemoda and
run it from the commandline.

Definition in file gemoda-r.c.

Function Documentation

C.8.0.130 cllt* convolve (bitGraph_t * bg, int support, int R, int *

indexToSeq, int p, int clusterMethod, int ** offsetTolndex,
int numberOfSequences, int noConvolve, FILE *
0 UTP UTFILE)

Our outer convolution function. This function will call preliminary functions, cluster
the data, and then call the main convolution function. This is the interface between
the main gemoda-<x> code and the generic code that gets all of the work done.
Input: the bitGraph to be clustered and convolved, the minimum support necessary
for a motif to be returned, a flag indicating whether recursive filtering should be used,
a pointer to the data structure that dereferences offset indices to sequence numbers,
the number of unique source sequences that a motif must be present in, and a number
indicating the clustering method that is to be used. Output: the final motif linked
list with all motifs that are to be given as output to the user.

Definition at line 625 of file newConv.c.

Referenced by main().

629 {
630 bitSet_t * cand = NULL;
631 bitSet_t * mask = NULL;
632 bitSet_t * Q = NULL;
633 int size = bg->size;
634 cll_t * elemPats = NULL;
635 cll_t * allCliques = NULL;
636 cll_t * curr = NULL;
637
638 // contains indices (rows) containing the threshold value.
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639 cand = newBitSet (size);
640 mask = newBitSet (size);
641 Q = newBitSet (size);
642 fillSet (cand);
643 fillSet (mask);
644
645 // Note that we prune based on p before setting the diagonal false.
646 if (p > 1)
647 {
648 bg =
649 pruneBitGraph (bg, indexToSeq, offsetToIndex, numberOfSequences, p);
650 }
651
652 // Now we set the main diagonal false for clustering and filtering.
653 bitGraphSetFalseDiagonal (bg);
654 filterGraph (bg, support, R);
655 fprintf (OUTPUT-FILE, "Graph filtered! Now clustering.. .\n");
656 fflush (NULL);
657 if (clusterMethod == 0)
658 {
659 findCliques (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq, p);
660 }
661 else
662 {
663 singleLinkage (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq,
664 p);
665 }
666 fprintf (OUTPUT_FILE,
667 "Clusters found! Now filtering clusters (if option set)...\n");
668 fflush (NULL);
669 if (p > 1)
670 {
671 elemPats = pruneCll (elemPats, indexToSeq, p);
672 }
673 deleteBitSet (cand);
674 deleteBitSet (mask);
675 deleteBitSet (Q);
676
677 // Now let's convolve what we made.
678 if (noConvolve == 0)
679 {
680 fprintf (OUTPUT-FILE, "Now convolving.. .\n");
681 fflush (NULL);
682 allCliques = completeConv (&elemPats, support, size, 0, indexToSeq, p);
683 }
684
685 else
686 {
687 curr = elemPats;
688 while (curr != NULL)
689 C
690 yankCll (&elemPats, NULL, &curr, &allCliques, 0);
691 }
692 }
693 return allCliques;
694 }

C.8.0.131 int countExtraParams (char * s)

Definition at line 91 of file gemoda-r.c.

Referenced by main().

92 {
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93 int i = 0;
94 int numParams = 1;
95 for (i = 0; i < strlen (s); i++)
96 {
97 if (s[i) == ',')
98 {
99 numParams++;
100 }
101 }
102 return numParams;
103 }

C.8.0.132 int main (int argc, char ** argv)

This is the main routine of the real value Gemoda code. The code runs similarly
to the sequence Gemoda code: there is a comparison phase, followed by a clustering
phase, followed by a convolution phase. Only the comparison phase is unique to the
real value Gemoda. Of course, since the data are formatted so differently, there are
vastly different pieces of code in the front matter. In particular, there is no hashing
of words obviously. As well, we use the GNU scientific library to store real value data
as matrices that can be easily manipulated.

Definition at line 160 of file gemoda-r.c.

References calcStatAllCliqs(), convolve(), countExtraParams(), cumDMatrix(),
deleteBitGraph(), freeD(), freeRdh(), getStatMat(), rdht::indexToSeq, rdh_t::offset-
ToIndex, outputRealPats(), outputRealPatsWCentroid(), parseExtraParams(), pop-
AllCll(), readRealData(), realComparison(), bitGraph_t::size, rdh_t::size, sortBy-
Stats(), and usage().

161 {
162 int inputOption = 0;
163 char *sequenceFile = NULL;
164 FILE *SEQUENCEFILE = NULL;
165 char *outputFile = NULL;
166 FILE *OUTPUT_FILE = NULL;
167 int L = 0;
168 int status = 0;
169 double g = 0;
170 int sup = 2;
171 int R = 1;
172 int P = 0;
173 int compFunc = 0;
174 double *extraParams = NULL;
175 int numExtraParams 0;
176 int i = 0, j = 0;
177 /*
178 int j, k, i, 1;
179 */
180 int noConvolve = 0;
181 int samp = 1;
182 int supportDim = 0, lengthDim = 0;
183 bitGraph_t *oam = NULL;
184 unsigned int **d = NULL;
185 int oamSize = 0;
186
187 cllt *allCliques = NULL;
188 /*
189 cll_t *curCliq = NULL;
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190 */
191 /*
192 int curSeq;
193 */
194 /*
195 int curPos;
196 */
197 int clusterMethod = 0;
198 int joelOutput = 0;
199
200 // gemoda-r new stuff
201 rdht *data = NULL;
202
203 /*
204 Get command-line options
205 */
206 while ((inputOption = getopt (argc, argv, "p:m:e:i:o:l:g:k:c:njs:")) != EOF)
207 {
208 switch (inputOption)
209 {
210 // Comparison metric
211 case 'm':
212 compFunc = atoi (optarg);
213 break;
214 // Input file
215 case 'i':
216 sequenceFile = optarg;
217 break;
218 // Output file
219 case 'o':
220 outputFile =
221 (char *) malloc ((strlen (optarg) + 1) * sizeof (char));
222 if (outputFile == NULL)
223 {
224 fprintf (stderr, "Error allocating memory for options.\n");
225 exit (EXIT_FAILURE);
226 }
227 else
228 {
229 strcpy (outputFile, optarg);
230 }
231 break;
232 // Minimum motif length
233 case '1':
234 L = atoi (optarg);
235 break;
236 // Minimum motif similarity score
237 case 'g':
238 g = atof (optarg);
239 status++;
240 break;
241 // Minimum support (number of motif occurrences)
242 case 'k':
243 sup = atoi (optarg);
244 break;
245
246 /**************************************************************
247 * Recursive initial pruning: an option for clique finding.
248 * It takes all nodes with less than the minimum
249 * number of support and removes all of their nodes, and does this
250 * recursively so that nodes that are connected to many sparsely connected
251 * nodes will be removed and not left in the
252 * This option is deprecated as it is at worst no-gain and at best useful.
253 * It will be on by default for clique-finding, but can be turned
254 * back off with some
255 * minor tweaking. For almost all cases in which it does not speed
256 * up computations, it will have a trivial time to perform. Thus, if
257 * clique-finding is turned on, then R is set to 1 by default.
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258 case 'r':
259 R = 1;
260 break;
261 ***********************************************************************/
262 // Optional pruning parameter to require at motif occurrences
263 // in at least P distinct input sequences
264
265 case 'p':
266 P = atoi (optarg);
267 break;
268
269 // Clustering method.
270 case 'c':
271 clusterMethod = atoi (optarg);
272 break;
273 // Extra parameters for comparison function
274 case 'e':
275 numExtraParams = countExtraParams (optarg);
276 extraParams = parseExtraParams (optarg, numExtraParams);
277 break;
278 case 'n':
279 noConvolve = 1;
280 break;
281 case 'j':
282 joelOutput = 1;
283 break;
284 case 's':
285 samp = atoi (optarg);
286 break;
287 // Catch-all.
288 case '?':
289 fprintf (stderr, "Unknown option '-%c'.\n", optopt);
290 usage (argv);
291 return EXIT_SUCCESS;
292 default:
293 usage (argv);
294 return EXIT_SUCCESS;
295 }
296 }
297 // Require an input file, a nonzero length, and a similarity threshold
298 // to be set.
299 if (sequenceFile == NULL II L == 0 II status < 1)
300 {
301 usage (argv);
302 return EXIT_SUCCESS;
303 }
304 // Open the sequence file
305 if ((SEQUENCE_FILE = fopen (sequenceFile, "r")) == NULL)
306 {
307 fprintf (stderr, "Couldn't open file Xs; %s\n", sequenceFile,
308 strerror (errno));
309 exit (EXIT_FAILURE);
310 }
311 // Open the output file
312 if (outputFile != NULL)
313 {
314 if ((OUTPUT_FILE = fopen (outputFile, "w")) == NULL)
315 {
316 fprintf (stderr, "Couldn't open file %s; %s\n", outputFile,
317 strerror (errno));
318 exit (EXITFAILURE);
319 }
320 }
321 else
322 {
323 OUTPUT_FILE = stdout;
324 }
325
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326
327
328 // Verbosity in output helps to distinguish output files.
329 fprintf (OUTPUT_FILE, "Input file = %s\n", sequenceFile);
330 fprintf (OUTPUT_FILE, "1 = %d, k = %d, g = %f\n", L, sup, g);
331 if (P > 1)
332 {
333 fprintf (OUTPUT_FILE, "Minimum # of sequences with motif = %d\n", P);
334 }
335 if (R > 0)
336 {
337 fprintf (OUTPUT-FILE, "Recursive pruning is ON.\n");
338 }
339
340 data = readRealData (SEQUENCEFILE);
341 fclose (SEQUENCE_FILE);
342 // printf("size = %d,indexSize = %d\n",data->size,data->indexSize);
343 // printf("sizel = %d,size2 = %d\n",data->seq[O]->sizel,data->seq[0->size2);
344 // for(i = 0; i < 2; i++) {
345 // for(j = O0; j < 3; j++) {
346 // printf ("%lf,%lf,%lf\n" ,gsl_matrix_get (data->seq [il ,j,0),
347 // gsl_matrix_get(data->seq[i,j ,1),
348 // gsl_matrix_get(data->seq[il,j ,2));}}
349 oam = realComparison (data, L, g, compFunc, extraParams);
350 // printf("oam->size = 0d\n", oam->size);
351 if ((samp > 0) && (clusterMethod == 0))
352 {
353 // We are currently using one gap per sequence, as done in
354 // realCompare.c's call to initRdhIndex in realComparison.
355 // Note that this is data->size, NOT oam->size.
356 d =
357 getStatMat (oam, sup, L, &supportDim, &lengthDim, data->size, samp,
358 OUTPUT_FILE);
359 }
360 else
361 {
362 d = NULL;
363 supportDim = 0;
364 }
365
366 allCliques =
367 convolve (oam, sup, R, data->indexToSeq, P, clusterMethod,
368 data->offsetToIndex, data->size, noConvolve, OUTPUT_FILE);
369
370 oamSize = oam->size;
371 // Do some early memory cleanup since this is so big.
372 deleteBitGraph (oam);
373
374 if ((samp > 0) && (clusterMethod == 0))
375 {
376 cumDMatrix (d, allCliques, supportDim, lengthDim, oamSize, data->size);
377 calcStatAllCliqs (d, allCliques, oamSize - data->size);
378 allCliques = sortByStats (allCliques);
379 }
380
381 if (joelOutput == 0)
382 {
383 outputRealPats (data, allCliques, L, OUTPUT_FILE, d);
384 }
385 else
386 {
387 outputRealPatsWCentroid (data, allCliques, L, OUTPUT-FILE, extraParams,
388 compFunc);
389 }
390
391 freeD (d, supportDim);
392 freeRdh (data);
393 allCliques = popAllC11 (allCliques);
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394 fclose (OUTPUTFILE);
395
396 return 0;
397 }

C.8.0.133 double* parseExtraParams (char * s, int numParams)

This was borrowed from the old gemoda-p code, there it used to parse filenames, here
we are parsing comma-separated lists of doubles that are useful for SpecConnect.

Definition at line 110 of file gemoda-r.c.

Referenced by main().

111 {
112 int i = 0, j = 0, k = 0;
113 int startLength = 0;
114 double *extraParams = NULL;
115 char *paramString = NULL;
116
117 extraParams = (double *) malloc (numParams * sizeof (double));
118 if (extraParams == NULL)
119 {
120 fprintf (stderr, "Can't allocate extra params!\n");
121 exit (0);
122 }
123 j = 0;
124 k = 0;
125 startLength = strlen (s);
126 for (i = 0; i < startLength; i++)
127 {
128 if (s[i] == ',')
129 {
130 // We've found an end. So point the pointer to
131 // the beginning of the previous string.
132 paramString = &s[k];
133 // Terminate the string where the comma used to be
134 sli] = '\0';
135 // Update the location for the next string beginning
136 k = i + 1;
137 // Convert to a double and update the param number.
138 extraParams[j] = atof (paramString);
139 j++;
140 }
141 }
142 // Don't forget to do the last one, which isn't comma-terminated.
143 paramString = &s[k];
144 extraParams [j] = atof (paramString);
145 return (extraParams);
146 }

C.8.0.134 bitGraph_t* pruneBitGraph (bitGraph_t * bg, int *
indexToSeq, int ** offsetToIndex, int numOfSeqs, int p)

Simple function (non-recursive) to prune off the first level of motifs that will not
meet the "minimum number of unique sequences" criterion. This could have been
implemented as above, but it may have gotten a little expensive with less yield, so
only the first run through is done here. Input: a bit graph to be pruned, a pointer to
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the structure that dereferences offset indices to sequence numbers, a pointer to the
structure that dereferences seq/position to offsets, the number of unique sequences in
the input set, and the minimum number of unique sequences that must contain the
motif. Output: a pruned bitGraph.

Definition at line 402 of file newConv.c.

Referenced by convolve().

404 {
405 int i 

= 
0, j = 0, nextBit = 0;

406 int *seqNums = NULL;
407

408 // Since we don't immediately know which node is in which source
409 // sequence, we can't just count them up regularly. Instead, we'll
410 // need to keep track of which sequences they come from and
411 // increment _something_. What we chose to do here is just make
412 // an array of integers of length = <p>. Then, we try to put the
413 // source sequence number of each neighbor (including itself, since
414 // the main diagonal is still true at this time) into the next slot
415 // Since we will monotonically search the bitSet, we can just
416 // move on to the first bit in the next sequence using the
417 // offsetToIndex structure so that we know the next sequence number
418 // to be put in is always unique.
419 seqNums = (int *) malloc (p * sizeof (int));
420 if (seqNums == NULL)
421 {
422 fprintf (stderr, "Memory error - pruneBitGraph\nY.s\n",
423 strerror (errno));
424 fflush (stderr);

425 exit (0);
426 }
427

428 // So, for each row in the bitgraph...
429 for (i = 0; i < bg->size; i++)

430 {
431

432 // Make sure the whole array is -1 sentinels.
433 for (j = 0; j < p; j++)
434 {
435 seqNums[j] = -1;
436 }
437 j = 0;
438

439 // Find the first neighbor of this bit.
440 nextBit = nextBitBitSet (bg->graph [i], 0);
441 if (nextBit == -1)
442 {
443 continue;
444 }
445 else
446 {
447

448 // and put its sequence number in the array of ints.
449 seqNums [0] = indexToSeq[nextBit] ;
450 }
451

452 // If it's the last sequence, then bail out so that we don't
453 // segfault in the next step.
454 if (seqNums [0] >= num0fSeqs - 1)
455 {
456 emptySet (bg->graph[il);
457 continue;
458 }
459
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460 // Find the next neighbor of this bit, STARTING AT the first
461 // bit in the next sequence.
462 nextBit =
463 nextBitBitSet (bg->graph(i),
464 offsetToIndex[indexToSeq[nextBit] + 1] [03);
465
466 // And iterate this until we run out of neighbors.
467 while (nextBit >= 0)
468 {
469 j++;
470 seqNums[j] = indexToSeq[nextBit ;
471
472 // Or until this new neighbor will fill up the array
473 if (j == p - 1)
474 {
475 break;
476 }
477
478 // Or until this new neighbor is in the last sequence.
479 if (seqNums[j] >= numOfSeqs - 1)
480 {
481 break;
482 }
483
484 // Get the next neighbor!
485 nextBit =
486 nextBitBitSet (bg->graph[i],
487 offsetToIndex [indexToSeq[nextBit] + 13 [03);
488
489
490 // If we didn't have enough unique sequences, and either a) we
491 // were in the nth-to-last sequence and there were no
492 // neighbors after it, or b) we were in the last sequence,
493 // then the last number will still be our sentinel, -1. If
494 // the last number is not a sentinel, then we have at least
495 // p distinct sequence occurrences, so we're OK.
496 if (seqNums[p - 1] == -1)
497 {
498 emptySet (bg->graph[i]);
499 }
500 }
501 free (seqNums);
502 return (bg);
503 }

C.8.0.135 void usage (char ** argv)

This function tells the user how to run Gemoda. The function displays all the available
flags and gives an example of how to use the commandline to run the code.

Definition at line 35 of file gemoda-r.c.

Referenced by main().

36 {
37 fprintf (stdout,
38 "Usage: /,s -i <Fasta sequence file> "
39 "-1 <word size> \n\t-k <support> -g <threshold> 

"

"-m <matrix name> [-z] \n\t[-c <cluster method [011]>]"
" [-p <unique support>] \n\n\n"

40 "Required flags and input:\n\n"
41 "-i <Fasta sequence file>:\n\t"
42 "File containing all sequences to be searched, in Fasta format.\n\n"
43 "-1 <word size>:\n\t"
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44 "Minimum length of motifs; also the sliding window length\n\t"
45 "over which all motifs must meet the similarity criterion\n\n"
46 "-k <support>:\n\t"
47 "Minimum number of motif occurrences.\n\n"
48 "-g <threshold>:\n\t"
49 "Similarity threshold. Two windows, when scored with the\n\t"
50 " similarity matrix defined by the -m flag, must have at least\n\t"
51 " this score in order to be deemed 'connected'. This criterion\n\t"
52 " must be met over all sliding windows of length l.\n\n"
53 "-c <cluster method [0113>:\n\t"
54 "The clustering method to be used after evaluating the "
55 "\n\tsimilarity of the unique words in the input. Note that the "

56 "\n\tclustering method will have a significant impact on both the "
57 "\n\tresults that one obtains and the computation time.\n\n\t"
58 "0: clique-finding\n\t\t"
59 "Uses established methods to find all maximal cliques in the "
60 "\n\t\tdata. This will give the most thorough results (that are "

61 "\n\t\tprovably exhaustive), but will also give less-significant "

62 "\n\t\tresults in addition to the most interesting and most\n\t"
63 "significant ones. The results are deterministic but may take some "
64 "\n\t\ttime on data sets with high similarity or if the similarity "
65 "\n\t\tthreshold is set extremely low.\n\t"
66 "1: single-linkage clustering\n\t\t"
67 "Uses a single-linkage-type clustering where all nodes that "
68 "\n\t\tare connected are put in the same cluster. This method is "
69 "\n\t\talso deterministic and will be faster than clique-finding, "

70 "\n\t\tbut it loses guarantees of exhaustiveness in searching the "
71 "\n\t\tdata set.\n\n",
72 "-p <unique support>:\n\t"
73 "A pruning parameter that requires the motif to occur in "
74 "\n\tat least <unique support> different input sequences. Note "
75 "\n\tthat this parameter must be less than or equal to the total "
76 "\n\tsupport parameter set by the -k flag.\n\n", argv[0]);
77 fprintf (stdout, "\n");
78 }
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C.9 gemoda-s.c File Reference

#include "bitSet.h"

#include "spat.h"

#include "convll.h"

#include "matdata.h"

#include "FastaSeqIO/fastaSeqIO.h"

#include <unistd.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include "patStats.h"

Include dependency graph for gemoda-s.c:

ing.h

dio.h

dlib.h

Functions

* void usage (char **argv)

* void matrixlist (void)

* void getMatrixByName (char name[], int mat[][MATRIX_SIZEI)

* bitGrapht * alignWordsMatbit (sPat_t *words, int wc, int mat[][MATRIX -
SIZE], int threshold)
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* sPat_t * countWords2 (fSeqt *seq, int numSeq, int L, int *numWords)
* cll_t * convolve (bitGraph_t *bg, int support, int R, int *indexToSeq, int p, int

clusterMethod, int **offsetToIndex, int numberOfSequences, int noConvolve,
FILE *OUTPUTFILE)

* bitGraph_t * pruneBitGraph (bitGraph_t *bg, int *indexToSeq, int **offsetTo-
Index, int numOfSeqs, int p)

* int main (int argc, char **argv)

Detailed Description

This file houses the main routine for the sequence based Gemoda algorithm. In
addition, there are a few helper functions which are used to inform the user how to
run the software.

The Gemoda algorithm has three stages: comparison, clustering, and convolution.
These three stages are called in serial from the main routine in this file.

Definition in file gernoda-s.c.

Function Documentation

C.9.0.136 bitGraph_t* alignWordsMatbit (sPat_t * words, int wc, int
mat[] [MATRIX_SIZE], int threshold)

This uses the function above. Here, we have an array of words (sPatt objects)
and we compare (align) them all. If their score is above 'threshold' then we will
set a bit to 'true' in a bitGraph_t that we create. A bitGraph_t is essentially an
adjacency matrix, where each member of the matrix contains only a single bit: are
the words equal, true or false? The function traverses the words by doing and all by
all comparison; however, we only do the upper diagonal. The function makes use of
alignMat and needs to be passed a scoring matrix that the user has chosen which is
appropriate for the context of whatever data sent the user is looking at.

Definition at line 88 of file align.c.

References alignMat(), bitGraphSetTrueSym(), mat, and newBitGraph().

Referenced by main().

90 {
91 bitGrapht * sg = NULL;
92 int score;
93 int i, j;
94

95 // Assign a new bitGraph_t object, with (vc x wc) possible
96 // true/false values
97 sg = newBitGraph (wc);
98 for (i = 0; i < wc; i++)
99 {
100 for (j = i; j < wc; j++)
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101
102
103 // Get the score for the alignment of word i and word j
104 score =
105 alignMat (words [i .string, words [j]. string, words li] .length, mat);
106
107 // If that score is greater than threshold, set
108 // a bit to 'true' in our bitGraph_t object
109 if (score >= threshold)
110 {
111
112 // We use 'bitGraphSetTrueSym' because, if i=j,
113 // then j=i for most applications. However, this
114 // can be relaxed for masochists.
115 bitGraphSetTrueSym (sg, i, j);
116 }
117 }
118 }
119
120 // Return a pointer to this new bitGraph_t object
121 return sg;
122 }

C.9.0.137 cllt* convolve (bitGraph_t * bg, int support, int R, int *
indexToSeq, int p, int clusterMethod, int ** offsetToIndex,
int numberOfSequences, int noConvolve, FILE *
O UTP UT_FILE)

Our outer convolution function. This function will call preliminary functions, cluster
the data, and then call the main convolution function. This is the interface between
the main gemoda-<x> code and the generic code that gets all of the work done.
Input: the bitGraph to be clustered and convolved, the minimum support necessary
for a motif to be returned, a flag indicating whether recursive filtering should be used,
a pointer to the data structure that dereferences offset indices to sequence numbers,
the number of unique source sequences that a motif must be present in, and a number
indicating the clustering method that is to be used. Output: the final motif linked
list with all motifs that are to be given as output to the user.

Definition at line 625 of file newConv.c.

References bitGraphSetFalseDiagonal(), completeConv(), deleteBitSet(), fillSet(),
filterGraph(), findCliques(), newBitSet(), pruneBitGraph(), pruneCll(), single-
Linkage(), bitGraph_t::size, and yankCll().

629 {
630 bitSet_t * cand = NULL;
631 bitSet_t * mask = NULL;
632 bitSet_t * Q = NULL;
633 int size = bg->size;
634 cllt * elemPats = NULL;
635 cll_t * allCliques = NULL;
636 cll_t * curr = NULL;
637
638 // contains indices (rows) containing the threshold value.
639 cand = newBitSet (size);
640 mask = newBitSet (size);
641 Q = newBitSet (size);
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fillSet (cand);
fillSet (mask);

// Note that we prune based on p before setting the diagonal false.
if (p > 1)
{
bg =

pruneBitGraph (bg, indexToSeq, offsetToIndex, number0fSequences, p);
}

// Now we set the main diagonal false for clustering and filtering.
bitGraphSetFalseDiagonal (bg);

filterGraph (bg, support, R);
fprintf (OUTPUT_FILE, "Graph filtered! Now clustering...\n");
fflush (NULL);
if (clusterMethod == 0)
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694 }

else
{
singleLinkage (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq,

fprintf (OUTPUT_FILE,
"Clusters found!

fflush (NULL);
if (p > 1)

Now filtering clusters (if option set)...\n");

elemPats = pruneCll (elemPats, indexToSeq, p);

deleteBitSet (cand);
deleteBitSet (mask);
deleteBitSet (Q);

// Now let's convolve
if (noConvolve == 0)

what we made.

fprintf (0OUTPUT_FILE, "Now convolving...\n");
fflush (NULL);
allCliques = completeConv (&elemPats, support, size, 0, indexToSeq, p);

else

curr = elemPats;
while (curr != NULL)

yankCll (&elemPats, NULL, &curr, &allCliques, 0);

}
return allCliques;

sPatt* countWords2 (fSeq_t * seq, int numSeq, int L, int *
num Words)

Counts words of size L in the input FastA sequences, hashes all of the words, and
returns an array of sPat_t objects.

Definition at line 373 of file words.c.

References sHashEntryt::data, destroySHash(), sHashEntryt::idx, initSHash(), s-

309

findCliques (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq, p);

C.9.0.138



HashEntry.t::key, sHashEntryt::L, sPat_t::length, sOffset_t::next, sPat_t::offset, s-
Offsett::pos, sOffsett::prev, searchSHash(), sOffset_t::seq, sieve3(), sPat_t::string,
and sPat_t: :support.

Referenced by main().

374 {
375 int i, j;
376 int totalChars = 0;
377 int hashSize;
378 sHashEntry_t newEntry;
379 sHashEntry-t *ep;
380 sHash_t wordHash;
381 sPat_t *words = NULL;
382 int wc = 0;
383 int prey = -1;
384 int 1;
385
386
387 // Count the total number of characters. This
388 // is the upper limit on how many words we can have
389 for (i = 0; i < numSeq; i++)
390 {
391 totalChars += strlen (seq[Ci.seq);
392 }
393
394 // Get a prime number for the size of the hash table
395 hashSize = sieve3 ((long) (2 * totalChars));
396 wordHash = initSHash (hashSize);
397
398 // Chop up each sequence and hash out the words of size L
399 for (i = 0; i < numSeq; i++)
400 {
401 prey = -1;
402
403 // skip sequences that are too short to have
404 // a pattern
405 if (strlen (seq[i].seq) < L)
406 {
407 continue;
408 }
409 for (j = 0; j < strlen (seq[i].seq) - L + 1; j++)
410 {
411
412 // Make a hash table entry for this word
413 newEntry.key = &(seq[i].seq[j]);
414 newEntry.data = 1;
415 newEntry.idx = wc;
416 newEntry.L = L;
417
418 // Check to see if it's already in the hash table
419 ep = searchSHash (&newEntry, &wordHash, 0);
420 if (ep == NULL)
421 {
422
423 // If it's not, create an entry for it
424 ep = searchSHash (&newEntry, &wordHash, 1);
425
426 // Increase the size of our word array
427 words = (sPat_t *) realloc (words, (wc + 1) * sizeof (sPat-t));
428 if (words == NULL)
429
430 fprintf (stderr, "Error!\n");
431 fflush (stderr);
432 }
433 // Add the new word
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434 words[wc].string = &(seq[i].seq[jl);
435 words[wc .length = L;
436 words [wc] . support = 1;
437 words [wc.offset =
438 (sOffset_t *) malloc (1 * sizeof (sOffset_t));
439 if (words[wc].offset == NULL)
440 {
441 fprintf (stderr, "\nMemory Error\n/s\n", strerror (errno));
442 fflush (stderr);
443 exit (0);
444
445 words[wc].offset[0].seq = i;
446 words [wc].offset [] .pos = j;
447 words [wc] .offset [0] .prev = prev;
448 words[wc].offset[0].next = -1;
449
450 if (prev != -1)
451 {
452 words[prev.offsetwordsprev] .support - 1 .next = wc;
453 }
454 prey = wc;
455 wc++;
456

457 }
458 else
459 {
460

461 // If it is, increase the count for this word
462 ep->data++;
463

464 // add a new offset to the word array
465 1 = words [ep->idx] .support;
466 words[ep->idxl.offset =
467 (sOffset_t *) realloc (words[ep->idxl] .offset,
468 (1 + 1) * sizeof (sOffset_t));
469 words[ep->idx] .offsetCl] . seq = i;
470 words[ep->idx].offset[ll].pos = j;
471 words[ep->idx].offset [1] .prev = prev;
472 words[ep->idx] . offset [l.next = -1;
473

474 // Update the next/prev
475 if (prev != -1)
476 {
477 words [prevy] .offset [words [prev] .support - 1] .next = ep->idx;
478 }
479 prey = ep->idx;
480
481 // Have to put this down here for cases when we create
482 // a word and it is immeadiately followed by itself!!
483 words[ep->idx]. support += 1;
484
485 }
486 }
487
488

489 destroySHash (&wordHash);
490 *numWords = wc;
491 return words;
492 1

C.9.0.139 void getMatrixByName (char name[], int
mat[] [MATRIX_SIZE])

Referenced by main().

311



C.9.0.140 int main (int argc, char ** argv)

This is the main routine of the Gemoda source code. The routine performs basic
operations such as parsing the input from the user and opening input files. Then, the
function hashes words of length L. The unique words are aligned against each other
to produce an adjacency matrix that says whether the unique word i is sufficiently
similar, based on the user supplied threshold, to the unique word j. This adjacency
matrix is then dereferenced into an adjacency matrix in which each index of the matrix
represents a unique position in the input sequences, rather than a unique word. This
dereferencing is required for the convolution stage. Finally, this adjacency matrix is
convolved and the final motifs are returned as a linked list. The routine then closes
all input and output files and frees up dynamically allocated memory.

Definition at line 187 of file gemoda-s.c.

References alignWordsMat_bit(), bitGraphCheckBit(), bitGraphSetTrueSym(), calc-
StatAllCliqs(), convolve(), countWords2(), cumDMatrix(), deleteBitGraph(), Free-
FSeqs(), getMatrixByName(), getStatMat(), cnode::length, mat, MATRIX_SIZE,
matrixlist(), cSet_t::members, newBitGraph(), cnode::next, sPat_t::offset, popAll-
Cll(), sOffsett::pos, ReadFSeqs(), sOffset_t::seq, cnode::set, cSet_t::size, bitGraph_-
t::size, sortByStats(), cnode::stat, and usage().

188 {
189 int inputOption = 0;
190 char *sequenceFile = NULL;
191 char *outputFile = NULL;
192 char *matName = NULL;
193 FILE * SEQUENCE_FILE = NULL;
194 FILE * OUTPUT_FILE = NULL;
195 int L = 0;
196 int number0fSequences = 0;
197 fSeq_t * mySequences = NULL;
198 fSeq_t * (*seqReadFunct) () = &ReadFSeqs;
199 sPat_t * words = NULL;
200 int wc;
201 int status = 0;
202 int g = 0;
203 int sup = 2;
204 int R = 1;
205 int P = 0;
206 int (*mat) [MATRIX_SIZE] = NULL;
207 int noConvolve = 0;
208 int j, k, i, 1;
209 bitGraph_t * bg = NULL;
210 bitGraph_t * oam = NULL;
211
212 // new
213 int **offsetToIndex = NULL;
214 int *indexToSeq = NULL;
215 int *indexToPos = NULL;
216 int numberOfOffsets = 0;
217 int posl, pos2;
218
219 // int *prevRowArray;
220 sOffset_t * offsetl, *offset2;
221 cll_t * allCliques = NULL;
222 cll_t * curCliq = NULL;
223 int curSeq;
224 int curPos;
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int clusterMethod = 0;

// patStats
int samp = 1;
unsigned int **d
int supportDim =
int oamSize = 0;

= NULL;
0, lengthDim = 0;

Get command-line options

225
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290
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292

switch (inputOption)

// Input file
case 'i':
sequenceFile = optarg;
seqReadFunct = &ReadFSeqs;
break;

// Output file
case 'o':
outputFile =

(char *) malloc ((strlen
if (outputFile == NULL)

(optarg) + 1) * sizeof (char));

fprintf (stderr, "Error allocating memory for options.\n");
exit (EXITFAILURE);

else

strcpy (outputFile, optarg);

break;

// Minimum motif length
case '1':

L = atoi (optarg);
break;

// Minimum motif similarity score
case 'g':
g = atoi (optarg);
status++;
break;

// Minimum support (number of motif occurrences)
case 'k':

sup = atoi (optarg);
break;

// Similarity matrix used to find similarity score
case 'm':
getMatrixByName (optarg, &mat);
matName = (char *) malloc (strlen (optarg) * sizeof (char));
if (matName == NULL)

fprintf (stderr, "Error allocating memory for options.\n");
exit (EXIT_FAILURE);

else
{
strcpy (matName, optarg);

}
break;
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293 /***************************************************************

294 * Recursive initial pruning: an option for clique finding.
295 * It takes all nodes with less than the minimum
296 * number of support and removes all of their nodes, and does this
297 * recursively so that nodes that are connected to many sparsely connected
298 * nodes will be removed and not left in the
299 * This option is deprecated as it is at worst no-gain and at best useful.
300 * It will be on by default for clique-finding, but can be turned
301 * back off with some
302 * minor tweaking. For almost all cases in which it does not speed
303 * up computations, it will have a trivial time to perform. Thus, if
304 * clique-finding is turned on, then R is set to 1 by default.
305 case 'r':
306 R = 1;
307 break;
308 ************************************************************************/
309 // Optional pruning parameter to require at motif occurrences
310 // in at least P distinct input sequences
311 case 'p':
312 P = atoi (optarg);
313 break;
314
315 // Clustering method.
316 case 'c':
317 clusterMethod = atoi (optarg);
318 break;
319 case 'n':
320 noConvolve = 1;
321 break;
322 case 's':
323 samp = atoi (optarg);
324 break;
325
326 // Catch-all.
327 case '?':
328 fprintf (stderr, "Unknown option '-%c'.\n", optopt);
329 usage (argv);
330 return EXIT_SUCCESS;
331 case 'z':
332 matrixlist ();
333 return EXIT_SUCCESS;
334 default:
335 usage (argv);
336 return EXIT_SUCCESS;
337 }
338 }
339
340 // Require a similarity matrix
341 if (mat == NULL)
342 {
343 usage (argv);
344 return EXIT_SUCCESS;
345 }
346
347 // Require an input file, a nonzero length, and a similarity threshold
348 // to be set.
349 if (sequenceFile == NULL II L == 0 II status < 1)
350 {
351 usage (argv);
352 return EXITSUCCESS;
353 }
354
355 // Open the sequence file
356 if ((SEQUENCEFILE = fopen (sequenceFile, "r")) == NULL)
357 {
358 fprintf (stderr, "Couldn't open file %s; %s\n", sequenceFile,
359 strerror (errno));
360 exit (EXIT_FAILURE);
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// Open the output file
if (outputFile != NULL)
{
if ((OUTPUTFILE = fopen (outputFile, "w")) == NULL)

fprintf (stderr, "Couldn't open file %s; %s\n", outputFile,
strerror (errno));

exit (EXIT_FAILURE);

else

OUTPUTFILE = stdout;

// Allocate some sequences
mySequences = seqReadFunct (SEQUENCE_FILE, &numberOfSequences);

if (mySequences == NULL)

fprintf (stderr, "\nError
fprintf (stderr, "\nCheck
fprintf (stderr, "\nERROR:
return EXIT_FAILURE;

reading your sequences/text.");
the format/size of the file.");

%s\n", strerror (errno));

// Close the input files
fclose (SEQUENCE_FILE);

// Verbosity in output helps to distinguish output files.
fprintf (OUTPUT_FILE, "\nMatrix used = %s\n", matName);

fprintf (OUTPUT_FILE, "Input file = %s\n", sequenceFile);
fprintf (OUTPUT_FILE, "1 = %d, k = %d, g = %d\n", L, sup, g);
if (P > 1)

fprintf (OUTPUT_FILE, "Minimum # of sequences with motif = %d\n", P);
}

if (R > 0)

fprintf (OUTPUT_FILE, "Recursive pruning is ON.\n");

// Find the unique words in the input.
words = countWords2 (mySequences, numberOfSequences, L, &wc);

fprintf(stderr, "Counted %d words\n", wc);
*/

fflush(stderr);
*/

// Align the words that we just found by applying the similarity
// matrix to each pair of them. Note that
// bg is the adjacency matrix of words, but we
// need an adjacency matrix of offsets instead.
bg = alignWordsMat bit (words, wc, mat, g);

fprintf (OUTPUTFILE, "\nAligned! Creating offset matrix...\n");
fflush (NULL);

// Create an intermediate translation matrix
// to store the offset number of each sequence number/position.
//
// Note that this matrix is better called "Index to offset", and
// the other matrices are better called "offset to Seq" and
// "offset to Pos"
offsetToIndex = (int **) malloc (numberOfSequences * sizeof (int *));
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429 if (offsetToIndex == NULL)
430 {
431 fprintf (stderr,
432 "Unable to allocate memory - offsetToIndex in gemoda.c\ns\n",
433 strerror (errno));
434 fflush (stderr);
435 exit (0);
436 }
437 for (i = 0; i < number0fSequences; i++)
438 {
439
440 // MPS 5/23/05: Added in "-L+2" to make there only be one
441 // blank between sequences.
442 offsetToIndex [i =
443 malloc ((strlen (mySequences[iJ.seq) - L + 2) * sizeof (int));
444 if (offsetToIndex [i == NULL)
445
446 fprintf (stderr,
447 "Unable to allocate memory - offsetToIndex[d]J in gemoda.c\n%s\n",
448 i, strerror (errno));
449 fflush (stderr);
450 exit (0);
451
452
453 // MPS 5/23/05: Added in "-L+2" to make there only be one
454 // blank between sequences.
455 for (j = 0; j < (strlen (mySequences[i).seq) - L + 2); j++)
456 {
457 offsetToIndex[i] [j] = number0f0ffsets;
458 numberOfOffsets++;
459 }
460 }
461
462 // Now create translation matrices such that we can get the sequence
463 // or position number of a given offset.
464 indexToSeq = (int *) malloc (numberOfOffsets * sizeof (int));
465 if (indexToSeq == NULL)
466 {
467 fprintf (stderr,
468 "Unable to allocate memory - indexToSeq in gemoda.c\n%s\n",
469 strerror (errno));
470 fflush (stderr);
471 exit (0);
472 }
473 indexToPos = (int *) malloc (numberOfOffsets * sizeof (int));
474 if (indexToPos == NULL)
475 {
476 fprintf (stderr,
477 "Unable to allocate memory - indexToPos in gemoda.c\n%s\n",
478 strerror (errno));
479 fflush (stderr);
480 exit (0);

481 }
482 k = 0;
483 for (i = 0; i < number0fSequences; i++)
484 {
485
486 // MPS 5/23/05: Added in "-L+2" to make there only be one
487 // blank between sequences.
488 for (j = 0; j < (strlen (mySequences[i].seq) - L + 2); j++)
489 {
490 indexToSeq[k) = i;
491 indexToPos[k] = j;
492 k++;
493 }
494 }
495
496 // Now make an offset adjacency matrix!
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497
498 oam = newBitGraph (numberOfOffsets);
499
500 // Go through each unique word
501 for (i = 0; i < wc; i++)
502 {
503 offsetl = words[i].offset;
504
505 // Go through each occurrence
506 for (k = 0; k < words[i].support; k++)
507 {
508
509 // Use the offsetToIndex translation to get the offset
510 // of the first occurrence
511 posl = offsetToIndex[offsetl[k].seq] [offsetl[k].pos];
512
513 // And go through each word in the first offset to
514 // find words that meet the similarity threshold
515 for (j = 0; j < wc; j++)
516 {
517 if (bitGraphCheckBit (bg, i, j))
518 {
519 offset2 = words[j].offset;
520
521 // And find all of their occurrences,
522 // using offsetToIndex to get the
523 // offsets, and then setting those
524 // locations in the offset adjacency
525 // matrix true.
526 for (1 = 0; 1 < words[j].support; 1++)
527 {
528 pos2 = offsetToIndex[offset2[1 .seq] [offset2[1 .pos];
529 bitGraphSetTrueSym (oam, posl, pos2);
530 }
531 }
532 }
533 }
534 }
535 fprintf (OUTPUT_FILE, "Offset matrix created...");
536 deleteBitGraph (bg);
537 if ((samp > 0) && (clusterMethod == 0))
538 {
539 fprintf (OUTPUT-FILE, " taking preliminary statistics.\n");
540 fflush (NULL);
541 d =
542 getStatMat (oam, sup, L, &supportDim, &lengthDim, numberOfSequences,
543 samp, OUTPUT_FILE);
544 fprintf (OUTPUT_FILE, "Now filtering...\n");
545 fflush (NULL);
546 }
547 else
548 {
549 fprintf (OUTPUT_FILE, " now filtering.\n");
550 fflush (NULL);
551 d = NULL;
552 supportDim = 0;
553 }
554
555 // Now we're convolving on offsets
556 allCliques =
557 convolve (oam, sup, R, indexToSeq, P, clusterMethod, offsetToIndex,
558 numberOfSequences, noConvolve, OUTPUTFILE);
559
560 // Do some early memory cleanup to limit usage
561 oamSize = oam->size;
562 deleteBitGraph (oam);
563 fprintf (OUTPUT-FILE, "Convolved! Now making output...\n");
564 fflush (NULL);
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565 if ((samp > 0) && (clusterMethod == 0))
566 {
567 cumDMatrix (d, allCliques, supportDim, lengthDim, oamSize,
568 numberOfSequences);
569 calcStatAllCliqs (d, allCliques, numberOfOffsets - numberOfSequences);
570 allCliques = sortByStats (allCliques);
571 }
572
573 // walk over the cliques and give some output in the format:
574 // pattern <pattern id num>: len=<motif length> sup=<motif instances>
575 // <sequence num> <position num> <motif instance>
576 // ...
577 curCliq = allCliques;
578
579 i = 0;
580 while (curCliq != NULL)
581 {
582 fprintf (OUTPUT-FILE, "pattern %d:\tlen=%d\tsup=%d", i,
583 curCliq->length + L, curCliq->set->size);
584 if (d != NULL)
585 {
586 fprintf (OUTPUT_FILE, "\tsignif=%le\n", curCliq->stat);
587 }
588 else
589 {
590 fprintf (OUTPUT_FILE, "\n");
591 }
592
593 for (j = 0; j < curCliq->set->size; j++)
594 {
595 posl = curCliq->set->members[j];
596 curSeq = indexToSeq[posll;
597 curPos = indexToPos[posl];
598 fprintf (0OUTPUT_FILE, " %d\t%d\t", curSeq, curPos);
599 for (k = curPos; k < curPos + curCliq->length + L; k++)
600 {
601 fprintf (OUTPUT_FILE, "%c", mySequences[curSeq].seq[k]);
602 }
603 fprintf (OUTPUT_FILE, "\n");
604
605 fprintf (OUTPUT_FILE, "\n\n");
606 curCliq = curCliq->next;
607 i++;
608
609
610 // And do some memory cleanup
611 // And cleanup of probability stuff...
612 /*
613 free(letterfreqs); delete_augmented_matrix(augmat);
614 */
615 allCliques = popAllCll (allCliques);
616 free (indexToSeq);
617 indexToSeq = NULL;
618 free (indexToPos);
619 indexToPos = NULL;
620 for (i = 0; i < numberOfSequences; i++)
621 {
622 free (offsetToIndex[i]);
623 offsetToIndex[i] = NULL;
624 }
625
626 // Free'ing added by MPS, 6/4
627 for (i = 0; i < wc; i++)
628 {
629 free (words[i. offset);
630 1
631 free (words);
632
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633 // End free'ing added by MPS
634 free (offsetToIndex);
635 offsetToIndex = NULL;
636
637 //---------------------------------------
638
639 // Free up fastaSequences
640 FreeFSeqs (mySequences, numberOfSequences);
641 fclose (OUTPUT_FILE);
642 return 0;
643 }

C.9.0.141 void matrixlist (void)

This function prints a list of the matrices that Gemoda can use to do the alignment of
words. Most of these matrices are appropriate for amino acid sequences. In addition,
there are matrices for DNA sequences and an identity matrix that is appropriate for
other sequences, such as the analysis of English text. The matrix is selected using
the -m flag.

Definition at line 99 of file gemoda-s.c.

Referenced by main().

100 {
101 fprintf (stdout, "\nThe following similarity matrices are installed "
102 "with the default Gemoda installation.\n Most of these "

103 "were obtained from publically available BLAST distributions. \n\n"
104 "dnaidmat:\n\t"
105 "Identity matrix for DNA: returns 1 when A,C,G,T are "

106 "compared to \n\tthemselves, 0 otherwise.\n\n"
107 "identity_aa:\n\t"
108 "Identity matrix for amino acids: returns 1 when any \n\t"
109 "letter but J,O,U are compared to themselves, and 0 "
110 "otherwise.\n\n" "idmat:\n\t"
111 "Similar to identity_aa, but it returns 10 in place "
112 "of 1.\n\n" "est_idmat:\n\t"
113 "Similar to idmat, but it returns -10 in place of 0. " "\n\n"
114 "pamO00: \n" "pamllO:\n" "paml20: \n" "paml30: \n"
115 "paml40: \n" "paml50: \n" "paml60: \n" "paml90: \n"
116 "pam200:\n" "pam210:\n" "pam220:\n" "pam230:\n"
117 "pam240:\n" "pam250: \n" "pam260:\n" "pam280: \n"
118 "pam290:\n" "pam300:\n" "pam310:\n" "pam320:\n"
119 "pam330:\n" "pam340:\n" "pam360:\n" "pam370:\n"
120 "pam380: \n" "pam390:\n" "pam400:\n" "pam430:\n"
121 "pam440:\n" "pam450: \n" "pam460:\n" "pam490:\n"
122 "pam500: \n\t"
123 "PAM matrices for various evolutionary distances.\n\n"
124 "blosum30:\n" "blosum35:\n" "blosum40:\n" "blosum45:\n"
125 "blosum50:\n" "blosum55:\n" "blosum60:\n" "blosum62:\n"
126 "blosum65:\n" "blosum70:\n" "blosum75:\n" "blosum80:\n"
127 "blosum85:\n" "blosum90:\n" "blosuml00:\n\t"
128 "BLOSUM matrices for various evolutionary distances.\n\n"
129 "blosumn:\n\t" "BLOSUM matrix of unknown origin.\n\n"
130 "dayhoff : \n\t"
131 "'Vanilla-flavored' pam250, very similar to pam250.\n\n"
132 "phat_t75_b73: \n" "phat_t80_b78: \n" "phatt85_b82:\n\t"
133 "BLOSUM-clustered scoring matrix with target frequency\n\t"
134 "PHDhtm clustering = {75,80,85}percent and background frequency\n\t"
135 "Persson-Argos clustering = {73,78,82}percent.\n\t"
136 "From Ng, Henikoff, & Henikoff, Bioinformatics 16: 760.\n\n"
137 "coil_mat:\n" "alpha_mat:\n" "beta_mat:\n\t"
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138 "Three structure-specific matrices described by Luthy,\n\t"

139 "McLachlan, and Eisenberg in Proteins 10, 229-239, obtained from AAindex.\n\n");
140 fprintf (stdout, "\n");
141 }

C.9.0.142 bitGraph_t* pruneBitGraph (bitGraph_t * bg, int *
indexToSeq, int ** offsetToIndex, int numOfSeqs, int p)

Simple function (non-recursive) to prune off the first level of motifs that will not
meet the "minimum number of unique sequences" criterion. This could have been
implemented as above, but it may have gotten a little expensive with less yield, so
only the first run through is done here. Input: a bit graph to be pruned, a pointer to
the structure that dereferences offset indices to sequence numbers, a pointer to the
structure that dereferences seq/position to offsets, the number of unique sequences in
the input set, and the minimum number of unique sequences that must contain the
motif. Output: a pruned bitGraph.

Definition at line 402 of file newConv.c.

References emptySet(), bitGraph_t::graph, and nextBitBitSet().

404 {
405 int i = 0, j = 0, nextBit = 0;
406 int *seqNums = NULL;
407
408 // Since we don't immediately know which node is in which source
409 // sequence, we can't just count them up regularly. Instead, we'll
410 // need to keep track of which sequences they come from and
411 // increment _something_. What we chose to do here is just make
412 // an array of integers of length = <p>. Then, we try to put the
413 // source sequence number of each neighbor (including itself, since
414 // the main diagonal is still true at this time) into the next slot
415 // Since we will monotonically search the bitSet, we can just
416 // move on to the first bit in the next sequence using the
417 // offsetToIndex structure so that we know the next sequence number
418 // to be put in is always unique.
419 seqNums = (int *) malloc (p * sizeof (int));
420 if (seqNums == NULL)
421 {
422 fprintf (stderr, "Memory error - pruneBitGraph\n/s\n",
423 strerror (errno));
424 fflush (stderr);
425 exit (0);
426 }
427
428 // So, for each row in the bitgraph...
429 for (i = 0; i < bg->size; i++)
430 {
431
432 // Make sure the whole array is -1 sentinels.
433 for (j = 0; j < p; j++)
434 {
435 seqNums [j = -1;
436 }
437 j = 0;
438
439 // Find the first neighbor of this bit.
440 nextBit = nextBitBitSet (bg->graph[i], 0);
441 if (nextBit == -1)
442 {

320



443 continue;

444 }
445 else
446 {
447
448 // and put its sequence number in the array of ints.
449 seqNums [0] = indexToSeq[nextBit];
450 }
451

452 // If it's the last sequence, then bail out so that we don't
453 // segfault in the next step.
454 if (seqNums[0] >= numOfSeqs - 1)
455 {
456 emptySet (bg->graph[il);
457 cont;inue;
458 }
459

460 // Find the next neighbor of this bit, STARTING AT the first
461 // bit in the next sequence.
462 nextBit =
463 nextBitBitSet (bg->graph [i ,
464 offsetToIndex[indexToSeq[nextBit] + 1] [0]);
465
466 // And iterate this until we run out of neighbors.
467 while (nextBit >= 0)
468 {
469 j++;

470 seqNums [j] = indexToSeq[nextBit] ;
471

472 // Or until this new neighbor will fill up the array
473 if (j == p - 1)
474 {
475 break;
476 }
477

478 // Or until this new neighbor is in the last sequence.
479 if (seqNums[j] >= numOfSeqs - 1)
480 {
481 break;
482 }
483

484 // Get the next neighbor!
485 nextBit =
486 nextBitBitSet (bg->graph[i] ,
487 offsetToIndex[indexToSeq[nextBit] + 11] 0]);
488
489
490 // If we didn't have enough unique sequences, and either a) we
491 // were in the nth-to-last sequence and there were no
492 // neighbors after it, or b) we were in the last sequence,
493 // then the last number will still be our sentinel, -1. If
494 // the last number is not a sentinel, then we have at least
495 // p distinct sequence occurrences, so we're OK.
496 if (seqNums[p - 1] == -1)
497 {
498 emptySet (bg->graph[il);
499 }
500 }
501 free (seqNums);
502 return (bg);
503 }
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C.9.0.143 void usage (char ** argv)

This function describes the basic usage of Gemoda. It is invoked whenever the user
submits poor input parameters or selects the help parameter. The function prints a
list of possible parameters for Gemoda.

Definition at line 32 of file gemoda-s.c.

33 {
34 fprintf (stdout, "Usage: %s -i <Fasta sequence file> "

35 "-1 <word size> \n\t-k <support> -g <threshold>"
36 "-m <matrix name> [-z] \n\t [-c <cluster method [Ol 1]>]"
37 " [-p <unique support>] \n\n\n"
38 "Required flags and input:\n\n"
39 "-i <Fasta sequence file>:\n\t"
40 "File containing all sequences to be searched, in Fasta format.\n\n"
41 "-1 <word size>:\n\t"
42 "Minimum length of motifs; also the sliding window length\n\t"
43 "over which all motifs must meet the similarity criterion\n\n"
44 "-k <support>:\n\t" "Minimum number of motif occurrences.\n\n"
45 "-g <threshold>:\n\t"
46 "Similarity threshold. Two windows, when scored with the\n\t"
47 " similarity matrix defined by the -m flag, must have at least\n\t"
48
49 " this score in order to be deemed 'connected'. This criterion\n\t"
50 " must be met over all sliding windows of length l.\n\n"
51 "-m <matrix name>:\n\t"
52 "Name of the similarity matrix to be used to compare windows.\n\t"
53 "Use -z to see a list of matrices installed by default.\n\n\n"
54 "Optional flags and input:\n\n" "-z:\n\t"
55 "Lists all of the similarity matrices available with the\n\t"
56 "initial installation of Gemoda. Note that this overrides\n\t"
57 "all other options and will only give this output.\n\n"
58 "-c <cluster method [O011>:\n\t"
59 "The clustering method to be used after evaluating the "
60 "\n\tsimilarity of the unique words in the input. Note that the "
61
62 "\n\tclustering method will have a significant impact on both the "
63 "\n\tresults that one obtains and the computation time.\n\n\t"
64 "0: clique-finding\n\t\t"
65 "Uses established methods to find all maximal cliques in the "
66 "\n\t\tdata. This will give the most thorough results (that are "
67
68 "\n\t\tprovably exhaustive), but will also give less-significant "
69 "\n\t\tresults in addition to the most interesting and most\n\t"
70
71 "significant ones. The results are deterministic but may take some 

"

72
73 "\n\t\ttime on data sets with high similarity or if the similarity 

"

74 "\n\t\tthreshold is set extremely low.\n\t"
75 "1: single-linkage clustering\n\t\t"
76 "Uses a single-linkage-type clustering where all nodes that "
77 "\n\t\tare connected are put in the same cluster. This method is "
78
79 "\n\t\talso deterministic and will be faster than clique-finding, 

"

80
81 "\n\t\tbut it loses guarantees of exhaustiveness in searching the "
82 "\n\t\tdata set.\n\n" "-p <unique support>:\n\t"
83 "A pruning parameter that requires the motif to occur in "
84 "\n\tat least <unique support> different input sequences. Note "
85
86 "\n\tthat this parameter must be less than or equal to the total "
87 "\n\tsupport parameter set by the -k flag.\n\n", argv[0));
88 fprintf (stdout, "\n");
89 }
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C.10 matdata.h File Reference

This graph shows which files directly or indirectly include this file:

align.c

gemoda-s.c

matrices.c
matrixmap.h

Defines

* #define MATRIXSIZE 23

Detailed Description

This file defines the size of the scoring matrices so that we don't have to pound-include
the whole matrices.h file due to worries about incompatibilities with earlier extern
variable declarations.

Definition in file matdata.h.

Define Documentation

C.10.0.144 #define MATRIX_SIZE 23

Definition at line 10 of file matdata.h.

Referenced by main().
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C.11 matrices.c File Reference

#include <stdio.h>

#include <string.h>

#include "matdata.h"

#include "matrixmap.h"

Include dependency graph for matrices.c:

stdio.h

sring.h

matdata.h

matrimap.h .

Defines

* #define DEFAULT_MATRIX blosum62

Functions

* void getMatrixByName (char name[], const int(**matp)[MATRIXSIZE])

Detailed Description

This file contains functions for handling scoring matrices used for the sequence based
Gemoda.

Definition in file matrices.c.

Define Documentation

C.11.0.145 #define DEFAULT_MATRIX blosum62

Definition at line 7 of file matrices.c.

Referenced by getMatrixByName().
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Function Documentation

C.11.0.146 void getMatrixByName (char name[], const int **
matp[MATRIX_SIZE])

A simple function to take the matrix name argument given as input to gemoda and
return the physical memory location of that matrix by using the matrix-map con-
struct. Input: a string containing the matrix name a pointer to a two-dimensional
array. Output: None, though the value of the pointer given as input is changed to
reflect the location of the matrix

Definition alt line 34 of file matrices.c.

References DEFAULT_MATRIX, and matrix_map.

int i;
for (i = 0; matrix_map[i].name != NULL; i++)

if (strcmp (name, matrix_map[i].name) == 0)

break;

if (matrix_map[i].name != NULL)

*matp = (matrix_map[il.mat);

else

*matp = (DEFAULT_MATRIX);

35 {
36
37
38
39
40
41
42
43
44
45
46
47

48
49

50
51

52 }
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C.12 matrices.h File Reference

This graph shows which files directly or indirectly include this file:

matrixmaps~h

Variables

* const int aaOrder []
* const int dna_idmat [MATRIXSIZE][MATRIXSIZE]
* const int identity_aa [MATRIXSIZE] [MATRIXSIZE]
* const int idmat [MATRIX_SIZE][MATRIX_SIZE]
* const int blosuml00 [MATRIXSIZE] [MATRIXSIZE]
* const int blosum30
* const int blosum35

[MATRIX-SIZE] [MATRIX_SIZE]
[MATRIXSIZE] [MATRIXSIZE]

* const int blosum40 [MATRIXSIZE] [MATRIXSIZE]
* const int blosum45 [MATRIXSIZE] [MATRIXSIZE]
* const int blosum50 [MATRIXSIZE] [MATRIXSIZE]
* const int blosum55
* const int blosum60
* const int
* const int
* const int
* const int

blosum62
blosum65
blosum70
blosum75

* const int blosurn80
* const int blosum85
* const int blosum90

[MATRIXSIZE] [MATRIXSIZE]
[MATRIXSIZE] [MATRIXSIZE]
[MATRIX-SIZE] [MATRIX_SIZE]
[MATRIXSIZE] [MATRIXSIZE]
[MATRIX-SIZE] [MATRIX_SIZE]
[MATRIXSIZE] [MATRIXSIZE]
[MATRIX-SIZE] [MATRIX_SIZE]
[MATRIXSIZE] [MATRIX_SIZE]
[MATRIX-SIZE] [MATRIX_SIZE]

* const int blosumn [MATRIX_SIZE] [MATRIXSIZE]

* const int dayhoff [MATRIXSIZE] [MATRIXSIZE]
* const int pam100 [MATRIXSIZE][MATRIXSIZE]
* const int pamll0 [MATRIXSIZE] [MATRIXSIZE]
* const int paml20 [MATRIXSIZE][MATRIXSIZE]
* const int paml30 [MATRIX_SIZE] [MATRIXSIZE]
* const int pam140 [MATRIXSIZE] [MATRIXSIZE]
* const int paml150 [MATRIXSIZE] [MATRIXSIZE]
* const int pam160 [MATRIXSIZE][MATRIXSIZE]
* const int paml90 [MATRIXSIZE] [MATRIXSIZE]
* const int pam200 [MATRIXSIZE] [MATRIXSIZE]
* const int pam210 [MATRIXSIZE] [MATRIXSIZE]
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const
const
const.

e const

const
const

* const

const
const

* const

const

const
const
const
const

const

const

const
const

const
const

* const
* const
" const
* const int
* const int
* const int
* const int
* const int
* const int

J

phat_t75_b73 [MATRIX_SIZE] [MATRIX_SIZE]
phat_t80_b78 [MATRIX_SIZE] [MATRIXSIZE]
phat_t85_b82 [MATRIXSIZE] [MATRIX_SIZE]
alphamat [MATRIX_SIZE] [MATRIX_SIZE]
beta_mat [MATRIXSIZE] [MATRIX_SIZE]
coilmat [MATRIX_SIZE] [MATRIX_SIZE]

Detailed Description

This file contains a number of scoring matrices, most of which are intended for com-
paring amino acid sequences; however a few are for DNA. In general, if a user wants
to add their own matrix for use with Gemoda, they should add it to this file and
recompile Gemoda.

Note that users are not restricted to 23x23 matrices. By changing aaOrder, you can
easily make matrices for comparing ANSII strings with up to 256 different characters.

327

int pam220 [MATRIXSIZE] [MATRIXSIZE]
int pam230 [MATRIXSIZE][MATRIXSIZE]

int pamn240 [MATRIXSIZE][MATRIXSIZE]

int pam250 [MATRIXSIZE][MATRIXSIZE]

int pam260 [MATRIXSIZE][MATRIXSIZE]
int pam280 [MATRIXSIZE][MATRIXSIZE]

int pam290 [MATRIXSIZE][MATRIXSIZE]

int pam300 [MATRIXSIZE][MATRIXSIZE]
int pam310 [MATRIXSIZE] [MATRIXSIZE]

int pam320 [MATRIXSIZE][MATRIXSIZE]

int pam330 [MATRIXSIZE] [MATRIXSIZE]
int pam340 [MATRIXSIZE] [MATRIXSIZE]

int pari360 [MATRIXSIZE][MATRIXSIZE]
int pam370 [MATRIXSIZE] [MATRIXSIZE]
int pam380 [MATRIXSIZE][MATRIXSIZE]

int pam390 [MATRIXSIZE][MATRIXSIZE]

int pam400 [MATRIXSIZE][MATRIXSIZE]
int pam430 [MATRIXSIZE] [MATRIXSIZE]

int pam440 [MATRIXSIZE][MATRIXSIZE]

int pam450 [MATRIXSIZE][MATRIXSIZE]

int pam460 [MATRIXSIZE][MATRIXSIZE]
int pam490 [MATRIXSIZE] [MATRIXSIZE]
int pam500 [MATRIXSIZE][MATRIXSIZE]



All of the matrices below were obtained directly from BLAST/WU-BLAST; they are
all also part of the public domain, so there is nothing intrinsic to BLAST with respect
to the matrices. It was just the easiest way to get all of the matrices into our software.

The most popular matrix for amino acid sequences is blosum62.

A good location for getting new scoring matrices, such as those based on structural
data, is the AAIndex. URLs tend to change, so rather than us listing it here, Google
it!

Definition in file matrices.h.

Variable Documentation

C.12.0.147 const int aaOrder[]

Definition at line 32 of file matrices.h.

Referenced by alignMat().

C.12.0.148 const int alpha_mat [MATRIXSIZE] [MATRIX_SIZE]

Definition at line 1398 of file matrices.h.

C.12.0.149 const int beta_mat[MATRIX_SIZE] [MATRIX_SIZE]

Definition at line 1422 of file matrices.h.

C.12.0.150 const int blosuml00 [MATRIX_SIZE] [MATRIX_SIZE]

Definition at line 126 of file matrices.h.

C.12.0.151 const int blosum30[MATRIX_SIZE] [MATRIX_SIZE]

Definition at line 150 of file matrices.h.

C.12.0.152 const int blosum35 [MATRIXSIZE] [MATRIX_SIZE]

Definition at line 174 of file matrices.h.

C.12.0.153 const int blosum40 [MATRIX_SIZE] [MATRIX_SIZE]

Definition at line 198 of file matrices.h.
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C.12.0.154

Definition at

C.12.0.155

Definition at

C.12.0.156

Definition at

C.12.0.157

Definition at

C.12.0.158

Definition at;

C.12.0.159

Definition at

C.12.0.160

Definition at

C.12.0.161

Definition at

C.12.0.162

Definition at

const int blosum45 [MATRIXSIZE] [MATRIXSIZE]

line 222 of file matrices.h.

const int blosum50 [MATRIXSIZE] [MATRIXSIZE]

line 246 of file matrices.h.

const int blosum55 [MATRIXSIZE] [MATRIXSIZE]

line 270 of file matrices.h.

const int blosum60[MATRIXSIZE] [MATRIX_SIZE]

line 294 of file matrices.h.

const int blosum62 [MATRIXSIZE] [MATRIX_SIZE]

line 318 of file matrices.h.

const int blosum65 [MATRIX SIZE] [MATRIX_SIZE]

line 342 of file matrices.h.

const int blosum70[MATRIXSIZE] [MATRIX_SIZE]

line 366 of file matrices.h.

const int blosum75 [MATRIXSIZE] [MATRIX_SIZE]

line 390 of file matrices.h.

const int blosum80[MATRIXSIZE] [MATRIX_SIZE]

line 414 of file matrices.h.

C.12.0.163 const int blosum85[MATRIXSIZE] [MATRIX_SIZE]

Definition at line 438 of file matrices.h.
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C.12.0.164

Definition at

C.12.0.165

Definition at

C.12.0.166

Definition at

C.12.0.167

Definition at

C.12.0.168

Definition at

C.12.0.169

Definition at

C.12.0.170

Definition at

C.12.0.171

Definition at

C.12.0.172

Definition at

C.12.0.173

Definition at

const int blosum90 [MATRIX_SIZE] [MATRIX_SIZE]

line 462 of file matrices.h.

const int blosumn[MATRIX_SIZE] [MATRIXSIZE]

line 486 of file matrices.h.

const int coilmat [MATRIX_SIZE] [MATRIX_SIZE]

line 1446 of file matrices.h.

const int dayhoff[MATRIXSIZE] [MATRIXSIZE]

line 510 of file matrices.h.

const int dnaidmat [MATRIX_SIZE] [MATRIXSIZE]

line 50 of file matrices.h.

const int identityaa[MATRIXSIZE][MATRIX_SIZE]

line 76 of file matrices.h.

const int idmat [MATRIX_SIZE] [MATRIX_SIZE]

line 101 of file matrices.h.

const int paml00[MATRIX_SIZE] [MATRIXSIZE]

line 534 of file matrices.h.

const int paml10[MATRIXSIZE] [MATRIX_SIZE]

line 558 of file matrices.h.

const int paml20[MATRIXSIZE] [MATRIXSIZE]

line 582 of file matrices.h.
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C.12.0.174

Definition at

C.12.0.175

Definition at

C.12.0.176

Definition at

C.12.0.177

Definition at

C.12.0.178

Definition at

C.12.0.179

Definition at

C.12.0.180

Definition at

C.12.0.181

Definition at

C.12.0.182

Definition at

C.12.0.183

Definition at

const int paml30[MATRIX_SIZE] [MATRIXSIZE]

line 606 of file matrices.h.

const int paml40[MATRIXSIZE] [MATRIXSIZE]

line 630 of file matrices.h.

const int paml50[MATRIX_SIZE] [MATRIXSIZE]

line 654 of file matrices.h.

const int paml60[MATRIXSIZE] [MATRIXSIZE]

line 678 of file matrices.h.

const int paml90 [MATRIXSIZE] [MATRIXSIZE]

line 702 of file matrices.h.

const int pam200[MATRIXSIZE] [MATRIXSIZE]

line 726 of file matrices.h.

const int pam210[MATRIXSIZE] [MATRIXSIZE]

line 750 of file matrices.h.

const int pam220[MATRIX_SIZE] [MATRIXSIZE]

line 774 of file matrices.h.

const int pam230 [MATRIXSIZE] [MATRIXSIZE]

line 798 of file matrices.h.

const int pam240 [MATRIXSIZE] [MATRIXSIZE]

line 822 of file matrices.h.

331



C.12.0.184

Definition at

C.12.0.185

Definition at

C.12.0.186

Definition at

C.12.0.187

Definition at

C.12.0.188

Definition at

C.12.0.189

Definition at

C.12.0.190

Definition at

C.12.0.191

Definition at

C.12.0.192

Definition at

C.12.0.193

Definition at

const int pam250[MATRIXSIZE] [MATRIX_SIZE]

line 846 of file matrices.h.

const int pam260[MATRIX_SIZE] [MATRIX_SIZE]

line 870 of file matrices.h.

const int pam280[MATRIX_SIZE] [MATRIX_SIZE]

line 894 of file matrices.h.

const int pam290[MATRIX_SIZE] [MATRIX_SIZE]

line 918 of file matrices.h.

const int pam300[MATRIX_SIZE] [MATRIXSIZE]

line 942 of file matrices.h.

const int pam310[MATRIX_SIZE] [MATRIXSIZE]

line 966 of file matrices.h.

const int pam320[MATRIX_SIZE] [MATRIX_SIZE]

line 990 of file matrices.h.

const int

line 1014 of

const int

line 1038 of

pam330 [MATRIXSIZE] [MATRIXSIZE]

file matrices.h.

pam340 [MATRIXSIZE] [MATRIXSIZE]

file matrices.h.

const int pam360[MATRIXSIZE] [MATRIX_SIZE]

line 1062 of file matrices.h.
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C.12.0.194 const int pam370 [MATRIX_SIZE] [MATRIX SIZE]

Definition at line 1086 of file matrices.h.

C.12.0.195 const int pam380[MATRIXSIZE] [MATRIXSIZE]

Definition at line 1110 of file matrices.h.

C.12.0.196 const int pam390[MATRIXSIZE] [MATRIXSIZE]

Definition ýa;t line 1134 of file matrices.h.

C.12.0.197 const int pam400[MATRIXSIZE] [MATRIXSIZE]

Definition at line 1158 of file matrices.h.

C.12.0.198 const int pam430[MATRIXSIZE][MATRIXSIZE]

Definition at line 1182 of file matrices.h.

C.12.0.199 const int pam440[MATRIXSIZE] [MATRIXSIZE]

Definition at line 1206 of file matrices.h.

C.12.0.2001 const int pam450[MATRIX_SIZE] [MATRIXSIZE]

Definition at line 1230 of file matrices.h.

C.12.0.201 const int pam460 [MATRIX_SIZE] [MATRIXSIZE]

Definition at line 1254 of file matrices.h.

C.12.0.202 const int pam490[MATRIXSIZE] [MATRIXSIZE]

Definition at line 1278 of file matrices.h.

C.12.0.203 const int pam500[MATRIXSIZE] [MATRIXSIZE]

Definition at line 1302 of file matrices.h.
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C.12.0.204 const int phat_t75_b73 [MATRIX_SIZE] [MATRIX_SIZE]

Definition at line 1326 of file matrices.h.

C.12.0.205 const int phat_t80_b78 [MATRIXSIZE] [MATRIXSIZE]

Definition at line 1350 of file matrices.h.

C.12.0.206 const int phat_t85_b82 [MATRIXSIZE] [MATRIXSIZE]

Definition at line 1374 of file matrices.h.
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C.13 matrixmap.h File Reference

#include "matdata.h"

#include "matrices.h"

Include dependency graph for matrixmap.h:

matilces.h

This graph shows which files directly or indirectly include this file:

matrices.c

Variables

* struct {
char * name
const int(* mat )[MATRIXSIZE]

} mnatrixmap []

Detailed Description

This file contains structures and functions for handling scoring matrices.

Definition in file matrixmap.h.

Variable Documentation

C.13.0.207 const int(* mat)[MATRIXSIZE]

Definition at line 15 of file matrixmap.h.

Referenced by alignMat(), alignWordsMatbit(), and main().

C.13.0.208 struct { ... } matrixmap[]

This data structure maps the names of common matrices to the names of their vari-
ables

Referenced by getMatrixByName().
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C.13.0.209 char* name

Definition at line 14 of file matrixmap.h.
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C.14 newConv.c File Reference

#include "bitSet.h"

#include <errno.h>

#include "convll.h"

Include dependency graph for newConv.c:

itin. h

...... .. .. ..
stdlib.h

string.h

errno.h

Functions

* int findCliques
int support, int

(bitSet_t *Q, bitSet_t *cand, bitSet_t *mask, bitGraph_t *oG,
qCount, cll_t **elemPats, int *indexToSeq, int p)

* int singleLinkage (bitSet_t *Q, bitSet_t *cand, bitSet_t *mask, bitGraph_t *oG,
int support, int qCount, cll_t **elemPats, int *indexToSeq, int p)

* int filterIter (bitGraph_t *graph, int support, bitSett *changed, bitSet_t *work)

* int filterGraph (bitGrapht *graph, int support, int R)

* bitGraph_t * pruneBitGraph (bitGraph_t *bg, int *indexToSeq, int **offsetTo-
Index, int numOfSeqs, int p)

* cll_t * pruneCll (cllt *head, int *indexToSeq, int p)

* cllt * convolve (bitGraph_t *bg, int support, int R, int *indexToSeq, int p, int
clusterMethod, int **offsetToIndex, int numberOfSequences, int noConvolve,
FILE *OUTPUT_FILE)

Detailed Description

This file contains the core functions that performed the convolution in the Gemoda
algorithm. As well, there are two clustering functions defined in this file: one for
single linkage clustering, and one for clique based clustering.

Definition in file newConv.c.
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Function Documentation

C.14.0.210 cll_t* convolve (bitGraph_t * bg, int support, int R, int *
indexToSeq, int p, int clusterMethod, int ** offsetTolndex,
int numberOfSequences, int noConvolve, FILE *
OUTPUT_FILE)

Our outer convolution function. This function will call preliminary functions, cluster
the data, and then call the main convolution function. This is the interface between
the main gemoda-<x> code and the generic code that gets all of the work done.
Input: the bitGraph to be clustered and convolved, the minimum support necessary
for a motif to be returned, a flag indicating whether recursive filtering should be used,
a pointer to the data structure that dereferences offset indices to sequence numbers,
the number of unique source sequences that a motif must be present in, and a number
indicating the clustering method that is to be used. Output: the final motif linked
list with all motifs that are to be given as output to the user.

Definition at line 625 of file newConv.c.

References bitGraphSetFalseDiagonal(), completeConv(), deleteBitSet(), fillSet(),
filterGraph(), findCliques(), newBitSet(), pruneBitGraph(), pruneCll(), single-
Linkage(), bitGraph_t::size, and yankCll().

629 {
630 bitSet_t * cand = NULL;
631 bitSet_t * mask = NULL;
632 bitSet_t * Q = NULL;
633 int size = bg->size;
634 cll_t * elemPats = NULL;
635 cll_t * allCliques = NULL;
636 cll_t * curr = NULL;
637
638 // contains indices (rows) containing the threshold value.
639 cand = newBitSet (size);
640 mask = newBitSet (size);
641 Q = newBitSet (size);
642 fillSet (cand);
643 fillSet (mask);
644
645 // Note that we prune based on p before setting the diagonal false.
646 if (p > 1)
647 {
648 bg =
649 pruneBitGraph (bg, indexToSeq, offsetToIndex, number0fSequences, p);
650 }
651

652 // Now we set the main diagonal false for clustering and filtering.
653 bitGraphSetFalseDiagonal (bg);
654 filterGraph (bg, support, R);
655 fprintf (OUTPUT_FILE, "Graph filtered! Now clustering...\n");
656 fflush (NULL);
657 if (clusterMethod == 0)
658 {
659 findCliques (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq, p);
660 }
661 else
662 {
663 singleLinkage (Q, cand, mask, bg, support, 0, &elemPats, indexToSeq,
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664 p);
665 }
666 fprintf (OUTPUT_FILE,
667 "Clusters found! Now filtering clusters (if option set)...\n");
668 fflush (NULL);
669 if (p > 1)
670 {
671 elemPats = pruneCll (elemPats, indexToSeq, p);
672 }
673 deleteBitSet (cand);

674 deleteBitSet (mask);
675 deleteBitSet (Q);
676
677 // Now let's convolve what we made.
678 if (noConvolve == 0)
679 {
680 fprintf (OUTPUTFILE, "Now convolving...\n");
681 fflush (NULL);
682 allCliques = completeConv (&elemPats, support, size, 0, indexToSeq, p);
683 }
684
685 else
686 {
687 curr = elemPats;
688 while (curr 1= NULL)
689 {
690 yankCll (&elemPats, NULL, &curr, &allCliques, 0);
691 }
692 }
693 return allCliques;
694 }

C.14.0.211 int filterGraph (bitGrapht * graph, int support, int R)

Function to "filter" the initial bitGraph that is being clustered. "Filtering" is the
process of removing all nodes from the graph that cannot possibly be in motifs because
they are not connected to enough other nodes. This can be done once (if R != 1),
or it can be done recursively (if R == 1). When done recursively, it takes the
just-filtered graph and checks all of the nodes that the recently removed node used
to be connected to; since they have changed in connectivity, they may no longer
be connected to enough nodes to be a member of a motif. This is iterated until
convergence. Note that the default is to have recursive filtering on, as it ought to
decrease the computational complexity of the clustering step and ought not have
much of a computational footprint.., in cases where it takes a while, it is probably
having a good impact in the clustering step, whereas if it is not effective, it probably
won't take that long anyway. Input: a bitGraph to be filtered, the minimum support
that a motif must have, and the flag indicating recursive filtering or not. Output:
Integer success value of 0 (and an altered bitGraph so that all nodes with connections
have at least <min support>=""> connections).

Definition at line 359 of file newConv.c.

References copySet(), countSetO, deleteBitSet(), emptySet(), filterlter(), newBit-
Set(), and bitGraph_t::size.

Referenced by convolve().
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360 {
361 bitSet_t * changed = newBitSet (graph->size);
362 bitSet_t * work = newBitSet (graph->size);
363 emptySet (changed);
364 emptySet (work);
365
366 // Iteratively call the filtering by copying the previous "work" into
367 // "changed" after each iteration step.
368 if (R == 1)
369 {
370
371 do
372 {
373 filterIter (graph, support, changed, work);
374 copySet (work, changed);
375 }
376 while (countSet (changed) > 0);
377 }
378 else
379 {
380
381 // Otherwise, just do it once.
382 filterIter (graph, support, changed, work);
383 }
384 deleteBitSet (changed);
385 deleteBitSet (work);
386 return 0;
387 }

C.14.0.212 int filterIter (bitGrapht * graph, int support, bitSet_t A
changed, bitSet_t * work)

The iterator used to "filter" the graph. It takes information in the bitset telling which
nodes' rows have changed and only checks them... this should make it pretty efficient
time-wise at only a small memory cost. Note the convention that the first time this
is called, the changed bitSet is empty... and that the master function is responsible
for catching the signal that no changes were made in the last iteration. Input: the
bitGraph to be filtered, the minimum support required for a motif to be returned,
a bitSet with nodes changed from the previous iteration, and a bitSet to export the
nodes changed in this iteration. Output: integer success value of 0 (and also a filtered
bitGraph and a bitSet with the nodes changed in this iteration).

Definition at line 228 of file newConv.c.

References countSet(), emptySet(), bitGraph_t::graph, nextBitBitSet(), setFalse(),
and setTrue().

Referenced by filterGraph().

230 {
231 int i = 0, j = 0;
232 int lastBit = 0, nextBit = 0, lastRow = 0, nextRow = 0;
233 int numNodes = 0;
234 int changedSize = countSet (changed);
235 emptySet (work);
236
237 // Note the convention that the first time the function is called,
238 // it is done with an empty "changed" bitSet as a sentinel. It is
239 // the responsibility of the master function calling the iterator
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240 // to catch future empty changed sets to know that convergence has
241 // been achieved.
242 //
243 // So, if it's your first time through, go through each node and make
244 // sure that each is connected to at least <support> - 1 others.
245 if (changedSize == 0)
246 {
247 for (i = 0; i < graph->size; i++)
248 {
249 numNodes = countSet (graph->graph[il);
250 if (numNodes >= support - 1)
251 {
252 continue;
253 }
254 else
255 {
256
257 // Otherwise, zero it out, but going one by
258 // one so that you can also zero out the
259 // symmetric bit.
260 lastBit = 0;
261 for (j = 0; j < numNodes; j++)
262 {
263 nextBit = nextBitBitSet (graph->graph[i], lastBit);
264 if (nextBit == -1)
265 {
266 fprintf (stderr,
267 "\nEnd of bitSet reached! - initial\n");
268 fflush (stderr);
269 exit (0);
270 }
271 setFalse (graph->graphli], nextBit);
272 setFalse (graph->graph[nextBit], i);
273
274 // And set that corresponding bit true
275 // in the work bitSet so that we
276 // know we changed it for the next
277 // round.
278 setTrue (work, nextBit);
279 lastBit = nextBit + 1;
280 }
281 }
282 }
283 }
284 else
285 {
286
287 // Otherwise, we've been here before, so just follow what
288 // the changed bitSet says to do... only those bitSets that
289 // were changed could possibly have gone under the minimum
290 // support requirement.
291 lastRow = 0;
292 for (i = 0; i < changedSize; i++)
293 {
294 nextRow = nextBitBitSet (changed, lastRow);
295 if (nextRow == -1)
296 {
297 fprintf (stderr, "\nEnd of bitSet reached! - iter,row\n");
298 fflush (stderr);
299 exit (0);
300 }
301
302 // So now we've found the row that needs to be checked.
303 // We do the same thing we did above.., either move
304 // on if it has enough possible support, or zero
305 // it out (with its symmetric locations) one by one.
306 numNodes = countSet (graph->graph nextRow]);
307 if (numNodes >= support - 1)
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308

309 lastRow = nextRow + 1;
310 continue;
311 }
312 else

313 {
314 lastBit = 0;
315 for (j = 0; j < numNodes; j++)
316 {
317 nextBit = nextBitBitSet (graph->graph[nextRow , lastBit);
318 if (nextBit == -1)
319 {
320 fprintf (stderr,
321 "\nEnd of BitSet reached! = iter,Bit\n");
322 fflush (stderr);
323 exit (0);
324 }
325 setFalse (graph->graph[nextRow], nextBit);
326 setFalse (graph->graph[nextBit], nextRow);
327 setTrue (work, nextBit);
328 lastBit = nextBit + 1;
329 }
330 lastRow = nextRow + 1;
331 }
332 }
333 }
334 return 1;
335 }

C.14.0.213 int findCliques (bitSett * Q, bitSet_t * cand, bitSet_t *

mask, bitGrapht * oG, int support, int qCount, cll_t **
elemPats, int * indexToSeq, int p)

Recursive algorithm to exhaustively enumerate all of the maximal cliques that exist in
the data. This is one of the main workhorses of Gemoda when used in its exhaustive
form. This algorithm was originally published by Etsuji Tomita, Akira Tanaka, and
Haruhisa Takahasi as a Technical Report of IPSJ (Information Processing Society
of Japan): Tomita, E, A Tanaka, & H Takahasi (1989). "An optimal algorithm for
finding all of the cliques". SIG Algorithms 12, pp 91-98. Input: a bitset with the
nodes currently in the clique, a bitset with the candidates for expanding the clique,
a bitset inidcating the current subgraph being searched, the bitGraph to be searched
for cliques, the minimum support parameter, a counter variable for keeping track of
how many nodes are in the current clique, a linked list of cliques that have been
discovered so far, and a pointer to the data structure that dereferences offset indexes
into sequence numbers, and the minimum number of unique sequences that must
contain the motif. Output: integer success value of 0 (but more importantly, the
elemPats clique linked list is expanded to contain all elementary (minimum-length)
motif cliques.

Definition at line 37 of file newConv.c.

References bitSetIntersection(), checkBit(), countSet(), deleteBitSet(), bitGraphL-
t::graph, newBitSet(), nextBitBitSet(), pushClique(), setFalse(), setTrue(), and bit-
Grapht::size.
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Referenced by convolve().

40 {
41 bitSet-t ** gamma0G = NULL;
42 bitSet_t * candQ = newBitSet (oG->size);
43 bitSet_t * newMask = newBitSet (oG->size);
44 int i, q;
45 int graphSize;
46 int max = -1;
47 int numBits;
48 int u = 0;
49 int newMaskCount;
50 int candQCount;
51 graphSize = oG->size;
52
53 //
54 // Find which vertex in subg maximizes Icand intersect gamma(u)
55 gammaOG = oG->graph;
56 for (i = 0; i < graphSize; i++)
57 {
58
59 // Don't check this vertex if it's masked
60 if (!(checkBit (mask, i)))
61 {
62 continue;
63 }
64
65 // cand is always a subset of mask, so intersecting
66 // with mask is redundant
67 bitSetIntersection (gammaOG[i], cand, candQ);
68 numBits = countSet (candQ);
69 if (numBits > max)
70 {
71 u = i;
72 max = numBits;
73 }
74 }
75
76 // Then do the extension of the q's
77 qCount++;
78
79 // This loop iterates over all possible values of cand - gamma() by
80 // iterating over all possible values of cand but immediately
81 // "continue"ing if the node is also in gamma(u)
82 q = nextBitBitSet (cand, 0);
83 while (q != -1)
84 {
85 if (checkBit (gammaOG[u], q))
86 {
87 q = nextBitBitSet (cand, q + 1);
88 continue;
89 }
90
91 // SUBGq = SUBG i Gamma
92 bitSetIntersection (mask, gammaOG[q], newMask);
93 newMaskCount = countSet (newMask);
94 setTrue (Q, q);
95
96 // Only recurse if there are more candidates to be included,
97 // and they will allow us to reach the minimum support.
98 if (newMaskCount > 0 && qCount + newMaskCount >= support)
99 {
100
101 // CANDq = CAND i Gamma
102 bitSetIntersection (gammaOG[q], cand, candQ);
103 candQCount = countSet (candQ);
104
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105 // only recurse if we can possibly get to a clique
106 // of size with minimum support
107 if (candQCount > 0 && qCount + candQCount >= support)
108 {
109
110 // recursion with
111 // new candidates, new mask, and original graph
112 findCliques (Q, candQ, newMask, oG, support, qCount, elemPats,
113 indexToSeq, p);
114 }
115 }
116 else if (qCount >= support)
117 {
118
119 // This should be done when:
120 // 1. countSet(newMask) == 0 [connected subgraph is maximal]
121 // 2. Qcount >= minCount [connected subgraph has enough nodes]
122 *elemPats = pushClique (Q, *elemPats, indexToSeq, p);
123 }
124
125 // Remove q from Q, and remove q from cand
126 setFalse (Q, q);
127 setFalse (cand, q);
128 q = nextBitBitSet (cand, q + 1);
129 }
130 qCount--;
131 deleteBitSet (candQ);
132 deleteBitSet (newMask);
133 return 0;
134 }

C.14.0.214 bitGraph_t* pruneBitGraph (bitGraph_t * bg, int
indexToSeq, int ** offsetTolndex, int numOfSeqs, int p)

Simple function (non-recursive) to prune off the first level of motifs that will not
meet the "minimum number of unique sequences" criterion. This could have been
implemented as above, but it may have gotten a little expensive with less yield, so
only the first run through is done here. Input: a bit graph to be pruned, a pointer to
the structure that dereferences offset indices to sequence numbers, a pointer to the
structure that dereferences seq/position to offsets, the number of unique sequences in
the input set, and the minimum number of unique sequences that must contain the
motif. Output: a pruned bitGraph.

Definition at line 402 of file newConv.c.

References emptySet(), bitGraph_t::graph, and nextBitBitSet().

404 {
405 int i = 0, j = 0, nextBit = 0;
406 int *seqNums = NULL;
407
408 // Since we don't immediately know which node is in which source
409 // sequence, we can't just count them up regularly. Instead, we'll
410 // need to keep track of which sequences they come from and
411 // increment -something_. What we chose to do here is just make
412 // an array of integers of length = <p>. Then, we try to put the
413 // source sequence number of each neighbor (including itself, since
414 // the main diagonal is still true at this time) into the next slot
415 // Since we will monotonically search the bitSet, we can just
416 // move on to the first bit in the next sequence using the
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// offsetTolndex structure so that we know the next sequence number
// to be put in is always unique.
seqNums = (int *) malloc (p * sizeof (int));

if (seqNums == NULL)

fprintf (stderr, "Memory error - pruneBitGraph\ns\n",
strerror (errno));

fflush (stderr);
exit (0);

417
418
419
420
421
422

423
424
425
426
427
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

478
479
480
481
482
483
484

seqNums[j] = -1;

j = 0;

// Find the first neighbor of this bit.
nextBit = nextBitBitSet (bg->graph[i], 0);

if (nextBit == -1)

{
continue;

}
else

{

// and put its sequence number in the array of ints.
seqNums [0] = indexToSeq[nextBit];

}

// If it's the last sequence, then bail out so that we don't
// segfault in the next step.
if (seqNums[0] >= num0fSeqs - 1)

emptySet (bg->graph[i]);
continue;

// Find the next neighbor of this bit, STARTING AT the first
// bit in the next sequence.
nextBit =
nextBitBitSet (bg->graph[i],

off setToIndex[indexToSeq[nextBit] + 1] [01);

// And iterate this until we run out of neighbors.
while (nextBit >= 0)

j++;
seqNums[j] = indexToSeq[nextBit];

// Or until this new neighbor will fill up the array
if (j == p - 1)

break;

// Or until this new neighbor is in the
if (seqNums[j] >= num0fSeqs - 1)

last sequence.

break;

// Get the next neighbor!
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// So, for each row in the bitgraph...
for (i = 0; i < bg->size; i++)
{

// Make sure the whole array is -1 sentinels.
for (j = 0; j < p; j++)

emptySet 

(bg->graph[i]) ;

continue;



485 nextBit =
486 nextBitBitSet (bg->graph[i],
487 offsetToIndex [indexToSeq[nextBit] + 13 [03);
488
489
490 // If we didn't have enough unique sequences, and either a) we
491 // were in the nth-to-last sequence and there were no
492 // neighbors after it, or b) we were in the last sequence,
493 // then the last number will still be our sentinel, -1. If
494 // the last number is not a sentinel, then we have at least
495 // p distinct sequence occurrences, so we're OK.
496 if (seqNums[p - 13 == -1)
497 {
498 emptySet (bg->graph[i]);
499 }
500 }
501 free (seqNums);
502 return (bg);
503 }

C.14.0.215 cllt* pruneCll (cllt * head, int * indexToSeq, int p)

Prunes a motif linked list of all motifs without support in at least

unique source sequences. Input: head of a motif linked list, pointer to a structure that
dereferences offset indices to sequence numbers, minimum number of unique source
sequences in which a motif must occur. Output: head of a (potentially altered) motif
linked list.

Definition at line 514 of file newConv.c.

References cSett::members, cnode::next, cnode::set, and cSet_t::size.

Referenced by completeConv(), and convolve().

515 {
516 int i = 0, j = 0, thisSeq = 0;
517 int *seqNums = NULL;
518 cll_t * curr = head;

519 cll_t * prey = NULL;
520 cll_t * storage = NULL;
521
522 // We'll do this similar to the pruneBitGraph function... we will
523 // keep track of which source sequence each motif occurrence was in.
524 // Again, since the occurrences are listed monotonically, we only
525 // need to compare the last non-sentinel index to the current
526 // sequence number.
527 seqNums = (int *) malloc (p * sizeof (int));
528 if (seqNums == NULL)
529 {
530 fprintf (stderr, "Memory error - pruneCll\ns\n", strerror (errno));
531 fflush (stderr);
532 exit (0);
533 }
534 while (curr != NULL)
535 {
536
537 // First make sure the set size is at least p.
538 // This is redundant, but extremely simple and not expensive,
539 // so we'll leave it in just as a check.
540 if (curr->set->size < p)
541 {
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if (prev != NULL)
{
prev->next = curr->next;

}
else

head = curr->next;
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608 }

j = 0;
seqNums [0] = indexToSeq[curr->set->members [0] ];

// Note, we've checked to make sure size > p, and we know

// p must be 2 or greater, so we can start at 1 without
// worrying about segfaulting

for (i = 1; i < curr->set->size; i++)

thisSeq = indexToSeq[curr->set->members[i]];
if (thisSeq != seqNums[j])

seqNums[j] = thisSeq;
if (j == p - 1)

break;

Same story as before... if the last number is -1,
then we didn't have enough to fill up the <p> different
slots, so this doesn't meet our criterion.
(seqNums[p - 1] == -1)

if (prev != NULL)

prev->next = curr->next;

else

{
head = curr->next;

}
storage = curr->next;

free (curr->set->members);
free (curr->set);
free (curr);
curr = storage;

else

prey = curr;
curr = curr->next;

free (seqNums);
return (head);
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storage 
= 
curr->next;

free (curr->set->members);

free (curr->set);
free (curr);
curr = storage;

continue;

for (i = 0; i < p; i++)

seqNums[i] = -1;



C.14.0.216 int singleLinkage (bitSett * Q, bitSet_t * cand, bitSet_t A
mask, bitGrapht * oG, int support, int qCount, cllt **
elemPats, int * indexToSeq, int p)

A recursive routine for single linkage clustering. This clustering is much faster than
exhaustively enumerating all cliques, but it puts each node in only one cluster and
is not guaranteed to give all possible motifs. Input: a bitSet containing the current
motif, a bitSet containing candidates to be added to the current motif, a bitSet
containing the current subgraph to be clustered, the original bitGraph to be clustered,
the minimum support necessary for a motif to be returned, the current number of
nodes in the motif, a linked list of elementary motifs (length is the same as the
window size), pointer to a structure to derference index values to sequence numbers,
and the minimum number of unique sequences that a motif must be in to be returned.
Output: integer success value of 0 (but more importantly, the linked list elemPats is
updated to contain all of the motifs of length = window size.

Definition at line 154 of file newConv.c.

References bitSetUnion(), checkBit(), copySet(), countSet(), bitGraph_t::graph, next-
BitBitSet(), pushClique(), and setFalse().

Referenced by convolve().

157
158 int i = 0;
159 int j = 0;
160

161 // go to the first vertex that has not been clustered yet
162 i = nextBitBitSet (cand, 0);
163 if (i != -1)
164 {
165
166 // this vertex has been clustered
167 setFalse (cand, i);
168
169 // start a new cluster, Q
170 copySet (oG->graphli], Q);
171
172 // go over each vertex in the cluster
173 j = nextBitBitSet (Q, 0);
174 while (j != -1)
175 {
176

177 // if this vertex has been clustered already, skip it and go
178 // to the next one
179 if (!checkBit (cand, j))
180 {
181 j = nextBitBitSet (Q, j + 1);
182 continue;
183 }
184
185 // Add this vertex's neighbors to the current cluster
186 bitSetUnion (Q, oG->graph[j], Q);
187
188 // This vertex has now been clustered
189 setFalse (cand, j);
190

191 // go over each vertex in the cluster
192 j = nextBitBitSet (Q, 0);
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193
194

195 // Did we make a cluster that was large enough?

196 if (countSet (Q) >= support)
197 {
198 *elemPats = pushClique (Q, *elemPats, indexToSeq, p);

199 }
200

201 // recurse
202 singleLinkage (Q, cand, mask, oG, support, 0, elemPats, indexToSeq,
203 p);
204 }
205 else

206 {
207 return 0;
208 }
209 return 0;
210 }
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C.15 patStats.c File Reference

#include <math.h>

#include "patStats.h"

Include dependency graph for patStats.c:

stdio.h

stdlib.h 5

string.h
..'... . ...... . . .

time.h

Functions

* int getLargestSupport (cllt *cliqs)
* int getLargestLength (cllt cliqs)
* int measureDiagonal (const bitGrapht *bg, const int i, const int j)
* unsigned int ** increaseMem (unsigned int **d, int dimToChange, int curr-

Support, int currLength, int newVal)
* unsigned int ** oldGetStatMat (bitGraph_t *bg, int support, int length, int

*supportDim, int *lengthDim, int numBlanks)
* unsigned int ** getStatMat (bitGraph_t *bg, int support, int length, int

*supportDim, int *lengthDim, int numBlanks, int s, FILE *OUTPUTFILE)
* int cumDMatrix (unsigned int **d, clLt *cliqs, int currSupport, int currLength,

int bgSize, int numSeqs)
* double calcStatCliq (unsigned int **d, cllt *cliq, int numWindows)

* int calcStatAllCliqs (unsigned int **d, cllt *allCliqs, int numWindows)
* int freeD (unsigned int **d, int supportDim)
* int statCompare (const cllt **first, const cllt **second)

* cllt * sortByStats (cllt *allCliqs)

Detailed Description

This file defines functions that are used to compute the statistical significance of motifs
for both the sequence based and real value based implementations of Gemoda. The
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basic approach we take, is to calculate the probability of establishing a single cluster,
and to multiply this probability by the probability that the cluster can be extended
an arbitrary number of locations. Essentially, this is the probability of getting and
elementary motif during the clustering phase and having that motif convolved multiple
times during the convolution phase.

Definition in file patStats.c.

Function Documentation

C.15.0.217 int calcStatAllCliqs (unsigned int ** d, cllt * allCliqs, int
num Windows)

Definition at line 676 of file patStats.c.

References calcStatCliq(), cnode::next, and cnode::stat.

Referenced by main().

677 {
678 cll_t * curr = NULL;
679 curr = allCliqs;
680 while (curr != NULL)
681 {
682 curr->stat = calcStatCliq (d, curr, numWindows);
683 curr = curr->next;
684 }
685 return (0);
686 1

C.15.0.218 double calcStatCliq (unsigned int ** d, cllt * cliq, int
num Windows)

Definition at line 623 of file patStats.c.

References cnode::length, cnode::set, and cSett::size.

Referenced by calcStatAllCliqs().

624 {
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

double stat = 0;
int i = 0;
int supChooseTwo = 0;
double interimP = 0;
int support = cliq->set->size;
int length = cliq->length;
double numTrials = 0;
if (support < 2)

fprintf (stderr, "Support for cluster less than 2... exiting.\n");
fflush (stderr);
exit (0);

// OK, so support is at least two. So we make the connections all
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640 // on the first level, knowing that each node being connected has
641 // at least zero in common. There are [(size of cluster) - 11 of
642 // these connections to be made.
643 // And we know we can call for d[O] (1) because if the second index
644 // were out of bounds, then there would be no similarities, and
645 // there would be no reason to call this function.
646 interimP = ((double) d[O i13) / ((double) d[O[O)]);
647 stat = pow (interimP, support - 1);
648 stat *= ((double) numWindows * (numWindows - 1)) / ((double) 2);
649
650 // Now we actually calculate the probability... the first connection
651 // has to be made no matter what, and after that we multiply for
652 // every connection after the first one. So we descend iteratively
653 // until we have made all connections, terminating after we've made
654 // the single i = (n - 2) connection. There is no i = (n - 1)
655 // connection.
656 for (i = 1; i < support - 1; i++)
657 {
658 interimP = ((double) d[i] [1]) / ((double) d[i]O[0);
659 stat *= pow (interimP, support - i - 1);
660 stat *= ((double) (numWindows - (i + 1))) / ((double) (i + 2));
661 } supChooseTwo = (support * (support - 1)) / 2;
662
663 // Remember that length = (numwindows - 1), or alternatively,
664 // the number of extensions... normally we'd want to have the last
665 // p be p[support] [numwindows - 1], which corresponds to
666 // alteredD [support] [numwindows]/alteredD [support] [numwindows-1i,
667 // so that means we want our last d to be d[support) [numwindows].
668 // Here, we note that the calculation of p's would be continuously
669 // re-normalizing, so multiplying all p's is the same as dividing
670 // the last d by the initial d.
671 interimP = ((double) d[support] [length + 1)) / ((double) d[support] [1]);
672 stat *= pow (interimP, supChooseTwo);
673 return stat;
674 }

C.15.0.219 int cumDMatrix (unsigned int ** d, cllt * cliqs, int
currSupport, int currLength, int bgSize, int numSeqs)

Definition at line 522 of file patStats.c.

References getLargestLength(), and getLargestSupport().

Referenced by main().

524 {
525 int maxSup = 0;
526 int maxLen = 0;
527 int i, j;
528 int numWins = 0;
529
530 maxSup = getLargestSupport (cliqs);
531 maxLen = getLargestLength (cliqs);
532
533 /********* COMMENTED OUT
534 // First we note that the number of unique streaks of a given
535 // support is defined by d[support] [1], where as 1 increases,
536 // the value of d decreases because only unique streaks are
537 // counted.
538 // We also note that the number of disjoint node-pairs with a given
539 // number of other nodes in common is defined by d(support] (0].
540 // So, in order to properly account for all "unique" comparisons
541 // (which is equal to (# streaks + # disjoint node-pairs), we must
542 // add d(support] [1] to d[support] [0].
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543
544 for (i = 0; i < currSupport + 1; i++) {
545 d[i] [03 += d[i] [1];
546 }
547 ********************/
548
549 // We no longer need to do that, since now we sum across both
550 // the support and the length dimensions. Now, d[support] [03 will
551 // necessarily include d[support] [1] being added to it. We don't
552 // want to add this anymore, otherwise we would be underestimating
553 // the probability of making that first connection. For instance,
554 // if there were no nodes with 20 in common that weren't also
555 // connected, and no nodes whatsoever with more than 20 in common,
556 // we'd want the p[20 [O] to be 1, which would be
557 // d[203 [13 /d[20 [03]. When summing across length directions,
558 // this happens naturally, whereas before we needed to do it
559 // artificially as per above. If we did above, we'd have the
560 // probability of each node being 1/2 instead of 1.
561
562 // Rather than storing doubles and doing lots of multiplications,
563 // we're going to limit the number of operations done in the actual
564 // probability calculation by only storing cumulative sums in d.
565 // Now remember, what we're storing at each location is the
566 // number of nodes with [i] or more nodes in common (including
567 // each other and selves) that can be extended [j] times (with
568 // their initial similarity counting as 1).
569 //
570 // We go up to the last possible index in the length direction, which
571 // means going up to [maxLen]. We know that this is legitimate
572 // because maxLen is less than or equal to the longest possible
573 // diagonal, and the longest possible diagonal will be less
574 // than or equal to currLength. Since we have allotted
575 // (currLength + 1) integers, we know we're OK to access [currLength].
576 for (j = 0; j < currLength + 1; j++)
577 {
578
579 // We start at currSupport - 1, because currSupport will
580 // clearly not be changed, and this makes it a much easier
581 // loop to read.
582 for (i = currSupport - 1; i >= 0; i--)
583 {
584 d[i] [j] += d[i + 1) [j];
585 }
586 }
587 for (i = 0; i < currSupport + 1; i++)
588 {
589 for (j = currLength - 1; j >= 0; j--)
590 {
591 d[i] [j] += d[i] [j + 11;
592 }
593 }
594
595 // Now we need to forcibly set d[0103] to its correct value... it's
596 // just the total number of comparisons, not including comparisons
597 // to delimiter O's meant to separate sequences. The number of
598 // windows is equal to the number of offsets minus the number
599 // of sequences (assuming one delimiter per sequence). We don't count
600 // the main diagonal, so the first row has one less, and we want to
601 // sum over all the subsequent rows in the upper half of the matrix.
602 // So it's (numWins - 1)*(numWins - 1 + 1)/2 to sum that up.
603 numWins = bgSize - numSeqs;
604 d [0 ]0] = numWins * (numWins - 1) / 2;
605
606 /*
607 for (i = 0; i <= maxSup; i++) { printf("support = %d:\t",i); for (j = 0; j <=
608 maxLen; j++) { printf("%d\t",d[i][j]); } printf("\n"); }
609 */
610 return 1;
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611 }

C.15.0.220 int freeD (unsigned int ** d, int supportDim)

Definition at line 688 of file patStats.c.

Referenced by main().

689 {
690 int i = 0;
691 if (d == 0)
692
693
694
695
696

697
698

699
700

701
702
703

704
705

706
707 }

return 0;

else
{

// Still, it's supportDim + 1, because we have an extra
// one for the "0" support.
for (i = 0; i < supportDim + 1; i++)

free (d[il);

free (d);
return 0;

C.15.0.221 int getLargestLength (cllt * cliqs)

Given a clique linked list, this function will return an integer which is equal to the
length of the member of the linked list with the largest length.

Definition at line 44 of file patStats.c.

References cnode::length, and cnode::next.

Referenced by cumDMatrix().

45 {
46 int len = 0;
47 cll_t * curCliq = NULL;
48 curCliq = cliqs;
49 while (curCliq != NULL)
50

51 if (curCliq->length > len)
52

53 len = curCliq->length;
54
55 curCliq = curCliq->next;

// We return (len + 1) because the length of
// is one, but is stored in the cluster data
// zero (number of extensions that have been
return (len + 1);

the shortest streak
structure as being
made).

354

56

57
58
59
60
61
62 }



C.15.0.222 int getLargestSupport (cllt * cliqs)

Given a clique linked list, this function will return an integer which is equal to the
support of the member of the linked list with the largest support.

Definition at line 22 of file patStats.c.

References cnode::next, cnode::set, and cSet_t::size.

Referenced by cumDMatrix().

23 {
24 int size = 0;
25 cllt * curCliq = NULL;
26 curCliq = cliqs;
27 while (curCliq != NULL)
28 {
29 if (curCliq->set->size > size)
30 {
31 size = curCliq->set->size;
32 }
33 curCliq = curCliq->next;
34 }
35 return size;
36 }

C.15.0.223 unsigned int** getStatMat (bitGrapht * bg, int support, int
length, int * supportDim, int * lengthDim, int numBlanks,
int s, FILE * OUTPUTFILE)

Definition at line 329 of file patStats.c.

References bitGraphRowIntersection(), checkBit(), countSet(), deleteBitSet(), bit-
Grapht::graph, increaseMem(), measureDiagonal(), newBitSet(), nextBitBitSet(),
and bitGrapht::size.

Referenced by main().

331 {
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

int *Q = NULL;
unsigned int **d = NULL;

int i, j, k;
int x, y;
bitSett * X = NULL;
int currSupport;
int currLength;
int multiplier = 50;
int diagonal = 0;
time_t probStart, probEnd;
int timeNeeded = 0;
int sampleCounter = 1;

// int visitCounter = 0, uniqCounter
currSupport = support * multiplier;

currLength = length * multiplier;
X = newBitSet (bg->size);

= 0;

// printf("Made bitSet of size %d\n", bg->size);
Q = (int *) malloc (bg->size * sizeof (int));
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352 if (Q == NULL)
353 {
354 fprintf (stderr,
355 "\nMemory error --- couldn't allocate array!" "\n%s\n",
356 strerror (errno));
357 fflush (stderr);
358 exit (0);
359 }
360 for (i = 0; i < bg->size; i++)
361 {
362 Qli] = 0;
363 }
364 d =
365 (unsigned int **) malloc ((currSupport + 1) * sizeof (unsigned int *));
366 if (d == NULL)
367 {
368 fprintf (stderr,
369 "\nMemory error --- couldn't allocate array!" "\nts\n",
370 strerror (errno));
371 fflush (stderr);
372 exit (0);
373 }
374 for (i = 0; i < currSupport + 1; i++)
375 {
376 d[i] =
377 (unsigned int *) malloc ((currLength + 1) * sizeof (unsigned int));
378 if (d [i == NULL)
379 {
380 fprintf (stderr, "\nMemory error --- couldn't allocate array!"
381 "\ns\n", strerror (errno));
382 fflush (stderr);
383 exit (0);
384 }
385 for (j = 0; j < currLength + 1; j++)
386 {
387 d[i] [j] = 0;
388 }
389 }
390
391 // printf ("size=%d\n",bg->size);
392 time (&probStart);
393 for (i = 0; i < bg->size; i++)
394 {
395 if (i == 200)
396
397 time (&probEnd);
398 timeNeeded = ((double) (probEnd - probStart)) /
399 ((double) 60) * ((double) bg->size) / ((double) 200);
400 if (timeNeeded > 2)
401 {
402 fprintf (OUTPUT_FILE,
403 "Max total time to calculate probability:\n");
404 fprintf (OUTPUT_FILE, "\t%d minutes\n", timeNeeded);
405 fprintf (OUTPUT_FILE, "Actual time will be less than this,
406 "but at least half of it.\n");
407 fprintf (OUTPUT_FILE,
408 "To bypass excessive probability calculations,"
409 " cancel and use a different value\n"
410 " for the '-s' flag (samples every "
411 "'s' points).\n");
412 fflush (NULL);
413 }
414 }
415 j = nextBitBitSet (bg->graph[i), 0);
416 while (j >= 0)
417 {
418 k = nextBitBitSet (bg->graph[i], j + 1);
419 while (k >= 0)
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420 {
421 if (checkBit (bg->graph[j] , k) == 0)
422 {
423 if (sampleCounter == s)
424 {
425 bitGraphRowlntersection (bg, j, k, X);
426
427 // visitCounter++;
428 if (nextBitBitSet (X, 0) >= i)
429 {
430
431 // uniqCounter++;
432 x = countSet (X);
433 while (x > currSupport)
434 {
435 d=
436 increaseMem (d, 1, currSupport, currLength,
437 currSupport +
438 support * multiplier);
439 currSupport += support * multiplier;
440 }
441 d [x [0) += 1;
442
443 sampleCounter = 0;
444 }
445 sampleCounter++;
446
447 k = nextBitBitSet (bg->graph[i], k + 1);
448 }
449 if (j <= i)
450 {
451 j = nextBitBitSet (bg->graph[i], j + 1);
452 continue;
453 }
454 bitGraphRowIntersection (bg, i, j, X);
455 x = countSet (X);
456
457 // Note, now we're using "diagonals" rather than
458 // location in a horizontal array. So you always
459 // start from the main diagonal at 0 and move out.
460 diagonal = j - i;
461
462 // We change this to greater-than-one because
463 // after Q[diagonal] is reduced to one, it isn't
464 // visited again until we reach a new streak, (because
465 // the next bit in the diagonal is a zero), and at
466 // that point we want to start with a new diagonal
467 // measure.
468 if (Q[diagonal] > 1)
469 {
470 y = Q[diagonall - 1;
471 Q [diagonal]--;
472 }
473 else
474 {
475 y = measureDiagonal (bg, i, j);
476 Q [diagonal] = y;
477 }
478 while (x > currSupport)
479 {
480 d = increaseMem (d, 1, currSupport, currLength,
481 currSupport + support * multiplier);
482 currSupport += support * multiplier;
483 }
484 while (y > currLength)
485 {
486 d=
487 increaseMem (d, 2, currSupport, currLength,
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currLength + length * multiplier);
currLength += length * multiplier;

d Ex] [y] ++;
j = nextBitBitSet (bg->graph[i], j + 1);

/*
if(x != 0){ printf("%d:\td %d\n", j, x, y); fflush(stdout); }

488
489

490
491

492
493
494

495
496
497

498
499

500
501

502
503
504
505

506
507
508
509
510
511

512
513
514

515
516
517

518

519

520 }

// We need to rescale by the sampling factor for all i>O in d[i] [03.
//
for (i = 1; i < currSupport; i++)

d[i] [03 *= s;

// Now we only need to assign the correct value for d[01 01)...
// but rather than figuring that out, we will just assign it in the
// cumulative function, since there it is merely the number of unique
// non-self comparisons and is easy to calculate.
deleteBitSet (X);

free (Q);
*supportDim = currSupport;
*lengthDim = currLength;
return (d);

C.15.0.224 unsigned int** increaseMem (unsigned int ** d, int
dimToChange, int currSupport, int currLength, int newVal)

This function is used to increase the size of an array of pointers to pointers to inte-
gers. dimToChange is 1 for the first dimension (support), 2 for the second dimension
(length). newVal is the new value for the dimension to be changed, not including
the "1" that should be added... so it should just be some integer times the initial
support.

Definition at line 91 of file patStats.c.

Referenced by getStatMat(), and oldGetStatMat().

93 {
94 int i = 0, j = 0;
95 if (dimToChange == 1)

(unsigned int **) realloc (d, (newVal +
if (d == NULL)

fprintf (stderr, "\nMemory error ---
"\ns\n", strerror (errno));

fflush (stderr);
exit (0);

1) * sizeof (unsigned int *));

couldn't allocate array!"

for (i = currSupport + 1; i < newVal + 1; i++)
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96
97
98
99
100
101
102
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107 {
108 d(i] =
109 (unsigned int *) malloc ((currLength + 1) *
110 sizeof (unsigned int));
111 if (d[i] == NULL)
112 {
113 fprintf (stderr,
114 "\nMemory error --- couldn't allocate array!"
115 "\n%s\n", strerror (errno));
116 fflush (stderr);
117 exit (0);
118 }
119 for (j = 0; j < currLength + 1; j++)
120 {
121 d [i [j] = 0;
122 }
123
124 return d;
125 1
126 else if (dimToChange == 2)
127 {
128 for (i = 0; i < currSupport + 1; i++)
129
130 d[i] =
131 (unsigned int *) realloc (d[il,
132 (newVal + 1) * sizeof (unsigned int));
133 if (d[Ei == NULL)
134 {
135 fprintf (stderr,
136 "\nMemory error --- couldn't allocate array!"
137 "\n%s\n", strerror (errno));
138 fflush (stderr);
139 exit (0);
140 1
141 for (j = currLength + 1; j < nevVal + 1; j++)
142 {
143 d[i] [j] = 0;
144 }
145 1
146 return d;
147 }
148 else
149 {
150 fprintf (stderr, "Invalid arguments to increaseMem!\n\n");
151 fflush (stderr);
152 exit (0);
153 }
154 }

C.15.0.225 int measureDiagonal (const bitGraph_t bg, const int i,
const int j)

Given a bit graph, and two indices within that bit graph, this will return an integer
which is equal to the number of values in the bit graph that are true along a diagonal
that begins at the two indices. This routine is used to check for streaks in an adjacency
matrix and is used during the convolution.

Definition at line 72 of file patStats.c.

References bitGraphCheckBit().

Referenced by getStatMat(), and oldGetStatMat().
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73 {
74 int len = 0;
75 while (bitGraphCheckBit (bg, i + len, j + len) != 0)
76 {
77 len++;
78 }
79 return len;
80 }

C.15.0.226 unsigned int** oldGetStatMat (bitGrapht * bg, int
support, int length, int * supportDim, int * lengthDim, int
numBlanks)

OK, here is something that is a little bit "hackish" but that we have to do. Since
our initial matrix is being pruned and filtered before being clustered, but we need
to calculate stats based on the original matrix, we need to get information from the
matrix before pruning, so we're using this function. We could just make a copy of
that matrix, but it's far too big, and that would cause an unneccessary constraint
on memory, limiting the size of problems we can address. But we need to define just
how big our d matrix is before we can use it. We could go through and compute
the longest streak beforehand, and then redo everything, but we've already found the
first step of finding all of the streaks to be fairly expensive (KLJ). So instead what
we'll do is use the user's parameters as a benchmark and expand from there. We'll
assume that most of the time, the biggest streak (number of extensions) will be less
than 50 times the length given as input by the user, and the biggest support will be
less than 50 times the minimum number of support given by the user. This seems
perhaps overly conservative, but otherwise is reasonable. We then realize that even on
a 64-bit computer, if the user gives L=50 and K=50, we'll still use less than 48 MB of
memory... and if L=50 and K=50, it is extremely likely that doubling the adjacency
matrix would have been a much worse option. Scaling back to more common values
of LN20 and K-20, the memory used shoots down to -9MB, which is definitely
acceptable. Now, if for some reason our initial allocation wasn't enough, then we'll
have to go through and realloc all of our memory again. Somewhat time-consuming,
but hopefully not done too often. Each time we find we try to put something in
an index that doesn't exist, we'll reallocate our memory, adding twice as much in
the dimension that was violated. It is important to us that we get back the final
dimensions of this matrix, since in the support dimension we'll have to sum across
all values, and in the length dimension we'll have to be sure we're not at the edge of
a matrix during our d manipulations later on.

Definition at line 196 of file patStats.c.

References bitGraphRowIntersection(), countSet(), deleteBitSet(), increaseMem(),
measureDiagonal(), newBitSet(), and bitGraph_t::size.

198 {
199 int *Q = NULL;
200 unsigned int **d = NULL;
201 int i, j;
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202 int x, y;
203 bitSet-t * X = NULL;
204 int currSupport;
205 int currLength;
206 int multiplier = 50;
207 time_t probStart, probEnd;
208 int timeNeeded = 0;
209 currSupport = support * multiplier;
210 currLength = length * multiplier;
211 X = newBitSet (bg->size);
212
213 // printf("Made bitSet of size %d\n", bg->size);
214 Q = (int *) malloc (bg->size * sizeof (int));
215 if (Q == NULL)
216 {
217 fprintf (stderr,
218 "\nMemory error --- couldn't allocate array!" "\n%s\n",
219 strerror (errno));
220 fflush (stderr);
221 exit (0);
222 }
223 for (i = 0; i < bg->size; i++)
224 {
225 Q [i = 0;
226 }
227 d=
228 (unsigned int **) malloc ((currSupport + 1) * sizeof (unsigned int *));
229 if (d == NULL)
230 {
231 fprintf (stderr,
232 "\nMemory error --- couldn't allocate array!" "\n%s\n",
233 strerror (errno));
234 fflush (stderr);
235 exit (0);
236 }
237 for (i = 0; i < currSupport + 1; i++)
238 {
239 d[i] =
240 (unsigned int *) malloc ((currLength + 1) * sizeof (unsigned int));
241 if (d[i] == NULL)
242 C
243 fprintf (stderr, "\nMemory error --- couldn't allocate array!"
244 "\n%s\n", strerror (errno));
245 fflush (stderr);
246 exit (0);
247 }
248 for (j = 0; j < currLength + 1; j++)
249 {
250 d[i [j] = 0;
251 }
252 }
253 time (&probStart);
254 for (i = 0; i < bg->size; i++)
255 {
256 if (i == 200)
257 {
258 time (&probEnd);
259 timeNeeded = ((double) (probEnd - probStart)) /
260 ((double) 60) * ((double) bg->size) / ((double) 200);
261 if (timeNeeded > 2)
262 {
263 printf ("Max total time to calculate probability:\n");
264 printf ("\t%d minutes\n", timeNeeded);
265 printf ("Actual time will be less than this, but at",
266 "least half of it.\n");
267 printf ("To bypass excessive probability calculations,",
268 "cancel and use the '-d' flag.\n");
269 fflush (NULL);
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for (j = bg->size - 1; j > i; j--)

bitGraphRowIntersection
x = countSet (X);
if (Q[j - 13 != 0)

(bg, i, j, X);

y = Q [j - 1] - 1;
Q[jI = Q[j - 1) - 1;

else

270
271
272

273
274
275

276
277
278

279
280

281
282
283

284
285
286

287
288
289
290
291
292

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327 }

while (x > currSupport)

d = increaseMem (d, 1, currSupport, currLength,
currSupport + support * multiplier);

currSupport += support * multiplier;

while (y > currLength)
{
d =

increaseMem (d, 2, currSupport, currLength,
currLength + length * multiplier);

currLength += length * multiplier;

I
d [x] [y]++;

if(x != 0){ printf("%d:\td %d\n", j, x, y); fflush(stdout); I

printf("done\n"); fflush(stdout);

*/

// We know that the "blanks", inserted to delimit unique sequences

// and prevent convolution through them, will skew our statistics,

// so we subtract them. We know that they will never be similar to
// any others, so will only add to the d[O0 03 number. Furthermore,

// we know how many they add. Since d never hits the main diagonal

// and only does the upper half of the matrix, the first one

// contributes bgsize - 1 to d(0 10)], the next bgsize - 2, etc.

for (i = 0; i < numBlanks; i++)

{
d[10 [03 -= bg->size - 1 - i;

deleteBitSet (X);
free (Q);
*supportDim = currSupport;

*lengthDim = currLength;
return (d);

C.15.0.227 clt* sortByStats (cll_t * allCliqs)

This function is used to sort a link
the motifs found in that linked list.

to list of cliques by the statistical significance of
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Definition at line 732 of file patStats.c.

References cnode::id, cnode::next, and statCompare().

Referenced by main().

cll_t * curCliq = NULL;
cll1t ** arrayOfCliqs = NULL;
int num0fCliqs = 0;
int i = 0;
curCliq = allCliqs;
if (curCliq != NULL)

num0fCliqs = curCliq->id + 1;

else

return (NULL);
}

arrayOfCliqs = (cll_t **) malloc (numOfCliqs
for (i = 0; i < num0fCliqs; i++)

733 {
734
735
736
737

738

739
740
741
742
743
744
745
746
747

748
749

750
751
752

753
754

755

756
757
758
759
760 }

* sizeof (cllt *));

t *), statCompare);

arrayOfCliqs [i->next = arrayOfCliqs[i + 1];

arrayOfCliqs[numOfCliqs - 13->next = NULL;
return (arrayOfCliqs [03);

C.15.0.228 int statCompare (const cllt ** first, const cllt ** second)

Definition at line 709 of file patStats.c.

Referenced by sortByStats().

double difference =
if (difference < 0)

(*first)->stat - (*second)->stat;

return (-1);

else if (difference > 0)

return (1);

else

return (0);
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array0fCliqs [i = curCliq;
curCliq = curCliq->next;

}
qsort (arrayOfCliqs, num0fCliqs, sizeof (cll_
for (i = 0; i < numOfCliqs - 1; i++)

710 {
711
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714
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C.16 patStats.h File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include "bitSet.h"

#include "convll.h"

#include <time.h>

Include dependency graph for patStats.h:

stdio.h

stdlib.h

string.h

time.h

This graph shows which files directly or indirectly include this file:

gemoda-s.c

patStats.c

Functions

* unsigned int ** getStatMat (bitGraph_t *bg, int support, int length, int
*supportDim, int *lengthDim, int numBlanks, int s, FILE *OUTPUTFILE)

* int cumDMatrix (unsigned int **d, cllt *cliqs, int currSupport, int currLength,
int bgSize, int numSeqs)

* int calcStatAllCliqs (unsigned int **d, cllt *allCliqs, int numWindows)
* cllt * sortByStats (cllt *allCliqs)
* int freeD (unsigned int **d, int supportDim)
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Function Documentation

C.16.0.229 int calcStatAllCliqs (unsigned int ** d, clt * allCliqs, int
num Windows)

Definition at line 623 of file patStats.c.

References calcStatCliq(), cnode::next, and cnode::stat.

Referenced by main().

C.16.0.230 int cumDMatrix (unsigned int ** d, cllt * cliqs, int
currSupport, int currLength, int bgSize, int numSeqs)

Definition at line 460 of file patStats.c.

References getLargestLength(), and getLargestSupport().

Referenced by main().

C.16.0.231 int freeD (unsigned int ** d, int supportDim)

Definition at line 637 of file patStats.c.

Referenced by main().

C.16.0.232 unsigned int** getStatMat (bitGraph_t * bg, int support, int
length, int * supportDim, int * lengthDim, int numBlanks,
int s, FILE * OUTPUTFILE)

Definition at line 289 of file patStats.c.

References bitGraphRowIntersection(), checkBit(), countSet(), deleteBitSet(), bit-
Graph_t::graph, increaseMem(), measureDiagonal(), newBitSet(), nextBitBitSet(),
and bitGrapht::size.

Referenced by main().

C.16.0.233 cllt* sortByStats (cllt allCliqs)

This function is used to sort a link to list of cliques by the statistical significance of
the motifs found in that linked list.

Definition at line 674 of file patStats.c.

References cnode::id.

Referenced by main().
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C.17 realCompare.c File Reference

#include "realCompare.h"

Include dependency graph for realCompare.c:

protAlign.h

Functions

* double rmsdCompare (rdht *data, int winl,
Params)

* double generalMatchFactor (rdh_t *data, int
*extraParams)

* double massSpecCompareWElut (rdht *data,
*extraParams)

int win2, int L, double *extra-

win1, int win2, int L, double

int win1, int win2, int L, double

* double(*)(rdh_t *, int, int, int, double *) getCompFunc (int compFunc)
* bitGraph_t * realComparison (rdht *data, int L, double g, int compFunc, dou-

ble *extraParams)

Detailed Description

This file defines a series of functions that are used during the comparison phase of
the Gemoda algorithm in the real valued implementation. We define a handful of
comparison functions - some that are well suited to protein structure comparison
and others that are more suited to the comparison of mass spectrometry spectra.

Definition in file realCompare.c.
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Function Documentation

C.17.0.234 double generalMatchFactor (rdht * data, int win1, int win2,
int L, double * extraParams)

This function is used to compute a generalized match factor, which is useful for
computing the degree of similarity between mass spectrometry spectra.

Definition at line 111 of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdht::seq.

Referenced by getCompFunc().

113 {
114 int i, j;
115 double numerator = 0.0;
116
117 /*
118 double denominator=0.0;
119 */
120 double xsum;
121 double ysum;
122 double ldenom = 0.0;
123 double rdenom = 0.0;
124 int dim;
125 int seql, posl;
126 int seq2, pos2;
127 gsl_matrixview viewl;
128 gsl_matrixview view2;
129 gsl_matrix * matl;
130 gsl_matrix * mat2;
131 dim = getRdhDim (data);
132
133 // Find out which seq,pos pairs these two
134 // windows correspond to
135 getRdhIndexSeqPos (data, win1, &seql, &posl);
136 getRdhIndexSeqPos (data, win2, &seq2, &pos2);
137
138 // Get a reference to a submatrix. That is,
139 // 'chop out' the window.
140 viewi = gsl_matrixsubmatrix (data->seq[seql], posl, 0, L, dim);
141 view2 = gsl-matrix submatrix (data->seq[seq23, pos2, 0, L, dim);
142
143 // Some error checking here would be nice!
144 // Did we get the matrices we wanted?
145
146 // This just makes it easier to handle the views
147 mat1 = &viewl.matrix;
148 mat2 = &view2.matrix;
149
150 // Loop over each position
151 for (i = 0; i < matl->sizel; i++)
152 {
153 xsum = 0.0;
154 ysum = 0.0;
155
156 // Loop over each dimension at each position
157 for (j = O; j < dim; j++)
158 {
159 xsum += gsl-matrix_get (mat1, i, j);
160 ysum += gslmatrix_get (mat2, i, j);
161 }
162 numerator += (i + 1) * sqrt (xsum * ysum);
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163 Idenom += (i + 1) * xsum;
164 rdenom += (i + 1) * ysum;
165 }
166 return pow (numerator, 2.0) / (Idenom * rdenom);
167 }

C.17.0.235 double(*)(rdht *, int, int, int, double *) getCompFunc ()

Definition at line 264 of file realCompare.c.

References generalMatchFactor(), massSpecCompareWElut(), and rmsdCompare().

265 {
266 double (*comparisonFunc) (rdh_t *, int, int, int, double *) = &rmsdCompare;

267 switch (compFunc)
268 {
269 case 0:
270 comparisonFunc = &rmsdCompare;
271 break;
272 case 1:
273 comparisonFunc = &generalMatchFactor;
274 break;
275 case 2:
276 comparisonFunc = &massSpecCompareWElut;
277 break;
278 default:
279 comparisonFunc = &rmsdCompare;
280 break;
281 1
282 return (comparisonFunc);
283 }

C.17.0.236 double massSpecCompareWElut (rdht A data, int win1, int
win2, int L, double * extraParams)

This function is used to compute the match factor between to mass spectrometry
spectra in a similar manner to the previous function; however, this function imposes
a penalty for spectra that are separated by large distances in elution time. This
function is commonly used by SpecConnect.

Definition at line 178 of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdh_t::seq.

Referenced by getCompFunc().

180 {
181 int i, j;
182 4ouble numerator = 0.0;
183
184 /*
185 double denominator=0.0;
186 */
187 double xsum;
188 double ysum;
189 double cum;
190 double ldenom = 0.0;
191 double rdenom = 0.0;
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192 int dim;
193 int seql, posl;
194 int seq2, pos2;
195 double weight = 2.0;
196 gsl_matrixview viewl;
197 gslmatrixview view2;
198 gsl_matrix * matl;
199 gsl_matrix * mat2;
200 double maxElut = -1;
201 if (extraParams != NULL)
202 {
203 maxElut = extraParams[O];
204 }
205 dim = getRdhDim (data);
206
207 // Find out which seq,pos pairs these two
208 // windows correspond to
209 getRdhIndexSeqPos (data, wini, &seql, &posl);
210 getRdhIndexSeqPos (data, win2, &seq2, &pos2);
211
212 // Get a reference to a submatrix. That is,
213 // 'chop out' the window.
214 viewi = gslmatrix_submatrix (data->seq[seqll, posi, 0, L, dim);
215 view2 = gsl_matrix_submatrix (data->seq[seq23, pos2, 0, L, dim);
216
217 // Some error checking here would be nice!
218 // Did we get the matrices we wanted?
219
220 // This just makes it easier to handle the views
221 mati = &viewl.matrix;
222 mat2 = &view2.matrix;
223 cum = 1.0;
224
225 // Loop over each position
226 for (i = 0; i < matl->sizel; i++)
227 {
228 xsum = 0.0;
229 ysum = 0.0;
230
231 // First take the first dimension for elution time
232 if (maxElut >= 0)
233 {
234 if (fabs
235 (gslmatrix_get (mat1, i, 0) - gsl_matrix_get (mat2, i, 0)) >
236 maxElut)
237 {
238 cum = 0;
239 break;
240 }
241 }
242
243 // printf("\n");
244 //
245 // Loop over each subsequent dimension at each position
246 for (j = 1; j < dim; j++)
247 {
248
249 // printf("matlval=%lf,mat2val=%lf\n",gsl.matrix-get(matl,i,j),
250 // gslmatrix-get(mat2,i,j));
251 numerator += pow (j, weight) * sqrt (gsl_matrix_get (mat1, i, j)
252 *gslmatrix_get (mat2, i,
253 j));
254 Idenom += pow (j, weight) * gsl_matrix_get (matl, i, j);
255 rdenom += pow (j, weight) * gsl.matrixrget (mat2, i, j);
256
257 // printf ("numer=%lf ,ldenom=%lf ,rdenom=%lf\n",numerator,
258 // Idenom,rdenom);
259 }
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260 cum *= pow (numerator, 2.0) / (idenom * rdenom);
261 }
262 return pow (cum, 1.0 / L);
263 }

C.17.0.237 bitGrapht* realComparison (rdht * data, int L, double g,
int compFunc, double * extraParams)

Definition at line 285 of file realCompare.c.

References bitGraphSetTrueSym(), getCompFunc, getRdhIndexSeqPos(), rdhL-
t::indexSize, initRdhIndex(), newBitGraph(), and rmsdCompare().

Referenced by main().

287 {
288 int i, j;
289 int seql, posl;
290 int seq2, pos2;
291 bitGraph_t * bg = NULL;
292 double score;
293 double (*comparisonFunc) (rdh-t *, int, int, int, double *) = &rmsdCompare;
294
295 // Initialize the rdh's index
296 initRdhIndex (data, L, 1);
297
298 // Allocate a new bit graph
299 bg = newBitGraph (data->indexSize);
300
301 // Choose the comparison function, pass a reference to it
302 comparisonFunc = getCompFunc (compFunc);
303 for (i = 0; i < data->indexSize; i++)
304 {
305
306 // Skip seperators
307 getRdhIndexSeqPos (data, i, &seql, &posl);
308 if (seql == -1 II posl == -1)
309 {
310 continue;
311 }
312 for (j = i; j < data->indexSize; j++)
313 {
314 getRdhIndexSeqPos (data, j, &seq2, &pos2);
315 if (seq2 == -1 II pos2 == -1)
316 {
317 continue;
318 }
319
320 // This is the comparison function
321 score = comparisonFunc (data, i, j, L, extraParams);
322
323 // printf("score (%2d,%2d) vs. (%2d, ,2d) =\t%lf\n",seql, posl, seq2, pos2,
324 // score);
325 if (compFunc == 0)
326 {
327 if (score <= g)
328 {
329 bitGraphSetTrueSym (bg, i, j);
330 }
331 }
332 else if ((compFunc == 1) II (compFunc == 2))
333 {
334 if (score >= g)
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335 {
336 bitGraphSetTrueSym (bg, i, j);
337 }
338 }
339 else

340 {
341 fprintf (stderr, "Comparison function undefined in "

342 "realComparison function,\n located in "

343 "realCompare.c. Exiting.\n\n");
344 fflush (stderr);
345 exit (0);
346 }
347 }
348 }
349 return bg;
350 }

C.17.0.238 double rmsdCompare (rdht * data, int win1, int win2, int
L, double * extraParams)

Calculate the rmsd between two windows, with optional translation and rotation.
The input to this function is a real data handler object, two integers that point to
the windows within the real data that are to be compared, an integer that specifies
the length of the windows, and a pointer to a double precision floating point that can
be used to store other parameters as needed. This last parameter is most useful for
implementing other comparison functions, without having to make, too many changes
to other parts of the code.

This function operates in three stages. First, we compute the centroid of each win-
dow and move the second window such that its centroid overlaps with that of the
first window. Second, we use rigid body rotation to find the rotational matrix that
minimizes the root mean squared deviation between the two windows. Finally, this
function returns that minimized RMSD.

Definition at line 31 of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdh_t::seq.

Referenced by getCompFunc(), and realComparison().

32 {
33 int trans = 1;
34 int rot = 1;
35 int dim;
36 double result = 0;
37 int seql, posl;
38 int seq2, pos2;
39 gsl-matrix_view viewi;
40 gslmatrix_view view2;
41 gsl-matrix * matl;
42 gslmatrix * mat2;
43 gslmatrix * maticopy;
44 gsl-matrix * mat2copy;
45
46 // The "rint" function is in math.h and rounds a number to the
47 // nearest integer. It raises an "inexact exception" if the
48 // number initially wasn't an integer.
49 if (extraParams != NULL)
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50

51 trans = rint (extraParams [0]);
52 rot = rint (extraParams [1);
53 }
54 dim = getRdhDim (data);
55
56 // Find out which seq,pos pairs these two
57 // windows correspond to
58 getRdhIndexSeqPos (data, win1, &seql, &posl);
59 getRdhIndexSeqPos (data, win2, &seq2, &pos2);
60
61 // Get a reference to a submatrix. That is,
62 // 'chop out' the window.
63 viewl = gslhmatrix_submatrix (data->seq[seqlj, posl, 0, L, dim);
64 view2 = gsl_matrix_submatrix (data->seq[seq2], pos

2 , 0, L, dim);
65
66 // This just makes it easier to handle the views
67 mati = &viewl.matrix;
68 mat2 = &view2.matrix;
69
70 // Create copies of the windows, because our comparison
71 // will require altering the matrices
72 maticopy = gslmatrix_alloc (matl->sizel, mati->size2);
73 mat2copy = gsl_matrix_alloc (mat2->sizel, mat2->size2);
74 gslhmatrix_memcpy (maticopy, mati);
75 gslhmatrix_memcpy (mat2copy, mat2);
76
77 /*
78 printf("matrixl:\n"); gsl_matrix-pretty_fprintf(stdout, matlcopy, "1f ");
79 printf("\nmatrix2:\n"); gsl_matrix_pretty_fprintf(stdout, mat2copy, "%f ");
80 */
81
82 // Are we going to do a translation?

83 if (trans == 1)
84 {
85 moveToCentroid (maticopy);
86 moveToCentroid (mat2copy);
87 }
88
89 // Are we going to do a rotation?
90 if (rot == 1)
91 {
92
93 // Rotate mat2copy to have a minimal
94 // rmsd with maticopy
95 rotateMats (maticopy, mat2copy);
96 }
97
98 // Compute the rmsd between mat2copy and mat2copy
99 result = gsl_matrixrmsd (maticopy, mat2copy);
100 gsl_matrix_free (maticopy);
101 gsl_matrix_free (mat2copy);
102 return result;
103 }
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C.18 realCompare.h File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string. h>

#include <errno.h>

#include <gsl/gslmatrix.h>

#include "realIo.h"

#include "bitSet.h"

#include "protAlign.h"

Include dependency graph for realCompare.h:

protAlign.h

This graph shows which files directly or indirectly include this file:

I g e m o d a
-r

c

, Compre.c

reallo.c
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Functions

* double rmsdCompare (rdh_t *data, int winl, int win2, int L, double *extra-
Params)

* double generalMatchFactor (rdht *data, int winl, int win2, int L, double
*extraParams)

* double massSpecCompareWElut (rdht *data, int winl, int win2, int L, double
*extraParams)

* bitGraph_t * realComparison (rdh_t *data, int 1, double g, int compFunc, double
*extraParams)

Variables

* double(*)(rdh_t *, int, int, int, double *) getCompFunc (int compFunc)

Detailed Description

This file contains declarations and definitions used for the comparison of real valued
data during the comparison phase of Gemoda. The functions declared here are defined
in realCompare.c.

Definition in file realCompare.h.

Function Documentation

C.18.0.239 double generalMatchFactor (rdht * data, int win1, int win2,
int L, double * extraParams)

This function is used to compute a generalized match factor, which is useful for
computing the degree of similarity between mass spectrometry spectra.

Definition at line 111 of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdht::seq.

Referenced by getCompFunc().

C.18.0.240 double massSpecCompareWElut (rdh_t * data, int win1, int
win2, int L, double * extraParams)

This function is used to compute the match factor between to mass spectrometry
spectra in a similar manner to the previous function; however, this function imposes
a penalty for spectra that are separated by large distances in elution time. This
function is commonly used by SpecConnect.
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Definition at line 174 of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdht::seq.

Referenced by getCompFunc().

C.18.0.241 bitGrapht* realComparison (rdht * data, int 1, double g,
int compFunc, double * extraParams)

Definition at line 272 of file realCompare.c.

References bitGraphSetTrueSym(), getCompFunc, getRdhIndexSeqPos(), rdh_-
t::indexSize, initRdhIndex(), newBitGraph(), and rmsdCompare().

Referenced by main().

C.18.0.242 double rmsdCompare (rdht * data, int win1, int win2, int
L, double * extraParams)

Calculate the rmsd between two windows, with optional translation and rotation.
The input to this function is a real data handler object, two integers that point to
the windows within the real data that are to be compared, an integer that specifies
the length of the windows, and a pointer to a double precision floating point that can
be used to store other parameters as needed. This last parameter is most useful for
implementing other comparison functions, without having to make, too many changes
to other parts of the code.

This function operates in three stages. First, we compute the centroid of each win-
dow and move the second window such that its centroid overlaps with that of the
first window. Second, we use rigid body rotation to find the rotational matrix that
minimizes the root mean squared deviation between the two windows. Finally, this
function returns that minimized RMSD.

Definition at line 31 of file realCompare.c.

References getRdhDim(), getRdhIndexSeqPos(), and rdht::seq.

Referenced by getCompFunc(), and realComparison().

Variable Documentation

C.18.0.243 double(*)(rdh_t*, int, int, int, double*) getCompFunc(int
compFunc)

Definition at line 36 of file realCompare.h.

Referenced by findCliqueCentroid(), outputRealPatsWCentroid(), and real-
Comparison().
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C.19 reallo.c File Reference

#include "realIo.h"

#include "realCompare.h"

#include "patStats.h"

Include dependency graph for realIo.c:

Functions

wordToDouble (char *s, int begin, int end)
int countFields (char *s, char sep)

int checkRealDataFormat (char **buf, int nl, char sep, int *numSeqp, int
*dim_p)
int countTotalFields (char **buf, int nl, char sep)
rdh_t * initRdh (int x)
int getRdhSeqLength (rdh_t *data, int seqNo)
int initRdhIndex (rdh_t *data, int wordSize, int seqGap)
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* rdh_t * freeRdh (rdh_t *data)
* int getRdhDim (rdh_t *data)
* int setRdhLabel (rdht *data, int seqNo, char *s)
* int setRdhValue (rdht *data, int seqNo, int posNo, int dimNo, double val)
* int setRdhIndex (rdhAt data, int seqNo, int posNo, int index)
* int getRdhIndexSeqPos (rdht *data, int index, int *seq, int *pos)
* double getRdhValue (rdht *data, int seqNo, int posNo, int dimNo)
* char * getRdhLabel (rdh_t *data, int seqNo)
* int printRdhSeq (rdh_t *data, int seqNo, FILE *FH)
* int setRdhColFromString (rdh_t *data, int seqNo, int colNo, char *s, char sep)
* int initRdhGslMat (rdht *data, int seqNo, int x, int y)
* int pushOnRdhSeq (rdh_t *data, char **buf, int startLine, int dim, char sep)
* rdht * parseRealData (char **buf, int nl, char sep, int numSeq, int dim)
* rdht * readRealData (FILE *INPUT)
* int outputRealPats (rdh_t *data, cllt *allPats, int L, FILE *OUTPUTFILE,

int **d)
* int findCliqueCentroid (rdh_t *data, cllt *curCliq, int L, int compFunc, double

*extraParams, int *candidates)
* int makeAlternateCentroid (rdh_t *data, cll_t *curCliq, int *candidates)
* int outtputRealPatsWCentroid (rdh_t *data, cllt *allPats, int L, FILE

*OUTPUT_FILE, double *extraParams, int compFunc)

Detailed Description

This file defines functions that are used for the parsing of user supplied data in the
real valued implementation of Gemoda.

Definition in file reallo.c.

Function Documentation

C.19.0.244 int checkRealDataFormat (char ** buf, int nl, char sep, int *
numSeq_p, int * dim_p)

Check that each sequence has the same dimensionality and that, within a sequence,
each dimension has the same number of entries. Note: this routine alters *nunSeqp
and *dim.p! Also, you must call this routine before calling parseRealData. Otherwise,
parseRealData is garunteed to die if the data turn out to be ill-formatted.

Definition at line 163 of file realIo.c.

References countFields().

Referenced by readRealData().
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i;
thisDim = 0;
status = 1;
width;
fieldCount = 0;
numSeq = 0;
dim = 0;

// number of positions in a single sequence
// number of sequences
// The dimensionality of the sequences

NOTE this is not checking the dimensionality of the last sequence...
that's bad. We can fix that though.
Check the dimensionality of each sequence
(i = 0; i < nl; i++)

if (buf[i] [0 == '>')

164
165

166
167
168

169
170
171

172
173
174
175
176
177
178
179
180
181
182
183
184

185
186
187
188

189
190
191
192

193
194

195
196
197

198
199

200
201

202

203
204
205
206
207

208
209
210

211
212
213

214
215
216

217
218

219
220
221
222
223
224
225
226
227
228
229
230
231

dim = thisDim;

// For other sequences, we need to check to make sure
// that they've got the same dimensions as previous
// sequences

else if (numSeq > 1)

// If the dimensions
if (thisDim != dim)

are wrong, quit with status=0

status = 0;
break;

numSeq++;
width = 0;
thisDim = 0;

else
{

// Field count can be different for each sequence but
// must be the same for each dimension in a single sequence
fieldCount = countFields (buf[i], sep);

If this is the first row of this sequence,
then store the number of fields
(thisDim == 0)

width = fieldCount;

// If it's not
// same number
// sequence

}
else

{

the first row, make sure it has the
of fields as previous rows in this

if (fieldCount != width)
{

status = 0;
break;

t

thisDim++;
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}
}

// Pass back the numSeq and dim
*numSeq_p = numSeq;
*dim_p = thisDim;
return status;

C.19.0.245 int countFields (char * s, char sep)

Count the number of fields (delimited by 'sep') in a single string. I was going to use
strsep in string.h for this; however, I don't like that it changes the input string, which
makes free-ing the string later more tricky. Ignores consecutive seperators.

Definition at line 90 of file realIo.c.

References wordToDouble().

Referenced by checkRealDataFormat(), countTotalFields(), and pushOnRdhSeq().

int i;
int begin = 0;
int end = 0;
int status = 0;
int fieldCount = 0;
double val;
if (s == NULL)

fprintf (stderr,
fflush (stderr);
exit (0);

// 0 = in sep, 1 = in word

"Passed NULL string to countFields -- error!");

// Loop over the length of the string
for (i = 0; i < strlen (s); i++)

// The previous state was space
if (status == 0)

// We hit a word
if (s[i] != sep)

else
{

{
else

begin = i;
status =1

continue;

// T
if (s[il != se

// We hit more space

The previous state was word
p)

91 {
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

else
{ //

end = i - 1;

We hit a space
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232
233
234
235
236
237
238
239 }

continue;



status = 0;

// being and end now delimit a word,
// turn that word into a double
val = wordToDouble (s, begin, end);
fieldCount++;

// At the end, if we were
// one more field
if (status == 1)

133
134
135
136

137
138
139

140
141
142

143
144

145
146
147

148
149
150

151 }

I
return fieldCount;

in a word, we have

in a word
begin, strlen (s));

C.19.0.246 int countTotalFields (char ** buf, int nl, char sep)

Count the number of fields in each sequence and return the sum of these.

Definition at line 246 of file reallo.c.

References countFields().

Referenced by parseRealData().

int i = 0;
int totalFields = 0;
int seqNo = 0;
while (i < nl)

{

// Hit a new sequence
if (buf[i] [0 == '>')

seqNo++;

// Assume that the sequence has at least
// one row (should have called checkRealDataFormat!
// and that each row has the same number of fields
totalFields += countFields (buf[i + 1], sep);

return totalFields;

C.19.0.247 int findCliqueCentroid (rdht * data, cll_t * curCliq, int L,
int compFunc, double * extraParams, int * candidates)

This function is used to find the centroid of a clique. That is, to find the center of
mass.

Definition at line 1096 of file reallo.c.
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// We're
val = wordToDouble (s,
fieldCount++;

247 {
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267 }



References getCompFunc, cSett::members, cnode::set, and cSet_t::size.

Referenced by outputRealPatsWCentroid().

1098 {
1099 double (*comparisonFunc) (rdh-t *, int, int, int, double *) = NULL;
1100 int i = 0, j = 0, indmin = -1, counter = 0;
1101 double sim = 0, min = 0, flagmin = 0;
1102 double *cliqueAdjMat = NULL;
1103 cliqueAdjMat = (double *) malloc (curCliq->set->size * sizeof (double));
1104 if (cliqueAdjMat == NULL)
1105 {
1106 fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
1107 fflush (stderr);
1108 exit (0);
1109 }
1110 for (i = 0; i < curCliq->set->size; i++)
1111 {
1112 cliqueAdjMat([i = 0;
1113 }
1114
1115 // We'll accumulate our comparison function values... except here
1116 // we're really assuming that we're using a match factor, with
1117 // value less than one, so that we can subtract it from one to
1118 // get a distance, and then find the centroid by identifying the
1119 // node with the smallest cumulative Euclidean distance to all
1120 // nodes.
1121 // Note that we only need to compare each unique pair, and can apply
1122 // the results from each comparison to each member of the pair,
1123 // hence the somewhat odd indices of initiation for the for loops.
1124 comparisonFunc = getCompFunc (compFunc);
1125 for (i = 0; i < curCliq->set->size; i++)
1126 {
1127 for (j = i + 1; j < curCliq->set->size; j++)
1128 {
1129 sim =
1130 comparisonFunc (data, curCliq->set->members[i],
1131 curCliq->set->members[j], L, extraParams);
1132
1133 // printf("i = %d, j = %d, L = %d, extra = %lf, sim =
1134 // %lf\n",i,j,L,extraParams[0),sim);
1135 cliqueAdjMat[Ei += pow (1 - sim, 2);
1136 cliqueAdjMat[j] += pow (1 - sim, 2);
1137 }
1138 }
1139
1140 // Now we find the minimum Euclidean distance.
1141 min = cliqueAdjMat[O];
1142 indmin = 0;
1143 for (i = 1; i < curCliq->set->size; i++)
1144 {
1145
1146 // printf("index %d product = %lf\n",i,cliqueAdjMat[i));
1147 if (cliqueAdjMat[i) < min)
1148 {
1149 indmin = i;
1150 min = cliqueAdjMat [i;
1151 flagmin = 0;
1152 }
1153 else if (cliqueAdjMat[i] == min)
1154 {
1155 flagmin = 1;
1156 }
1157 }
1158
1159 // If we had a duplicate on the minimum, we locate all duplicates.
1160 if (flagmin == 1)
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1161 C
1162 counter = 0;
1163 for (i 0= ; i < curCliq->set->size; i++)
1164 {
1165 if (cliqueAdjMat[i] == min)
1166 {
1167 counter++;
1168 candidates[counter] = i;
1169 }
1170 }
1171
1172 // Store the number of candidates at the array's beginning
1173 candidates[O] = counter;
1174 free (cliqueAdjMat);
1175 return (-1);
1176 }
1177 else
1178 {
1179 free (cliqueAdjMat);
1180 return (indmin);
1181 }
1182 }

C.19.0.248 rdht* freeRdh (rdht data)

This function returns a null pointer after freeing the memory associated with a real
data holder object. The function takes one parameter: a pointer to the real data
holder, data.

Definition at line 462 of file reallo.c.

References rdh_t::indexToPos, rdh_t::indexToSeq, rdh_t::label, rdh_t::offsetToIndex,
and rdh_t::seq.

Referenced by main().

463 {
464 int i;
465 if (data != NULL)
466 {
467 if (data->indexToPos != NULL)
468
469 free (data->indexToPos);
470 data->indexToPos = NULL;
471 }
472 if (data->indexToSeq != NULL)
473 {
474 free (data->indexToSeq);
475 data->indexToSeq = NULL;
476 }
477 if (data->offsetToIndex != NULL)
478 {
479 for (i = 0; i < data->size; i++)
480 {
481 free (data->offsetToIndex[i]);
482 data->offsetToIndex[i] = NULL;
483 }
484 free (data->offsetToIndex);
485 data->offsetToIndex = NULL;
486 }
487 for (i = 0; i < data->size; i++)
488 {
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489
490
491
492
493
494
495

496
497
498
499
500
501
502
503
504

505
506

507
508
509

510
511

512
513

514 }

if (data->seq[i] != NULL)

gsl_matrix-free (data->seq[i]);
data->seq[i) = NULL;

if (data->label[i] != NULL)

free (data->label [i);
data->label[i] = NULL;

if (data->seq != NULL)

free (data->seq);
data->seq = NULL;

if (data->label != NULL)

free (data->label);
data->label = NULL;

free (data);
data = NULL;

}
return data;

C.19.0.249 int getRdhDim (rdht * data)

This function returns an integer equal to the dimensions of the data stored in a real
data holder object. The function takes one parameter: a pointer to the real data
holder, data.

Definition at line 524 of file reallo.c.

References rdht::seq.

Referenced by generalMatchFactor(), getRdhValue(), massSpecCompareWElut(),
printRdhSeq(), rmsdCompare(), and setRdhValue().

525 {
526 if (data == NULL It data->seq == NULL II data->seq[O0 == NULL)
527 {
528 fprintf (stderr, "Passed bad data to getRdhSeqLength -- error!");
529 fflush (stderr);
530 exit (0);
531 }
532 return data->seq[01->size2;
533 }

C.19.0.250 int getRdhIndexSeqPos (rdht * data, int index, int * seq,
int * pos)

This function is used to access and change the sequence and position values, given an
index. The function takes four parameters: a pointer to the real data holder, data,
an integer index, a pointer integer seq, and a pointer integer pos.

Definition at line 633 of file realIo.c.
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References rdht::indexSize, rdh_t::indexToPos, and rdh_t::indexToSeq.

Referenced by generalMatchFactor(), makeAlternateCentroid(), massSpecCompare-
WElut(), outputRealPats(), outputRealPatsWCentroid(), realComparison(), and
rmsdCompare().

634 {
635 if (data == NULL II data->indexToSeq == NULL II data->indexToPos == NULL
636 II index > data->indexSize)
637
638 fprintf (stderr, "Passed bad data to getRdhIndexSeqPos -- error!");
639 fflush (stderr);
640 exit (0);
641 }
642
643 /*
644 printf("Setting index %d -> Yd, %d\n", index, seqNo, posNo);
645 */
646 /*
647 fflush(stdout);
648 */
649 *seq = data->indexToSeq[index];
650 *pos = data->indexToPos [index];
651 return 0;

652 }

C.19.0.251 char* getRdhLabel (rdh_t * data, int seqNo)

This function is used to retrieve the label of a particular sequence in a real data holder
object. The function takes two parameters: a pointer to the real data holder data;
and an integer which is the sequence number to be accessed seqNo. The function
returns a pointer to a string, which is the label for that sequence.

Definition at line 689 of file realIo.c.

References rdh_t::label.

Referenced by printRdhSeq().

690 {
691 if (data == NULL II data->label == NULL II data->label[seqNo] == NULL)
692 {
693 fprintf (stderr, "Passed bad data to getRdhLabel -- error!");
694 fflush (stderr);
695 exit (0);
696 }
697 return data->label[seqNol;
698 }

C.19.0.252 int getRdhSeqLength (rdh_t * data, int seqNo)

This function returns an integer that is equal to the sequence length of a particular
sequence within the real data holder object. The function takes two parameters: a
pointer to the real data holder, data, and the index of the sequence for which we need
to know the length, seqNo.
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Definition at line 331 of file realIo.c.

References rdht::seq.

Referenced by getRdhValue(), initRdhIndex(), printRdhSeq(), and setRdhValue().

332 {
333 if (data == NULL II data->seq == NULL II data->seq[seqNo] == NULL)
334 {
335 fprintf (stderr, "Passed bad data to getRdhSeqLength -- error!");
336 fflush (stderr);
337 exit (0);
338 }
339 return data->seq[seqNo]->sizel;
340 }

C.19.0.253 double getRdhValue (rdht * data, int seqNo, int posNo, int
dimNo)

This function is used to retrieve the value of a particular dimension, position, and
sequence. The function takes four parameters: a pointer to the real data holder data;
an integer which is the sequence number to be accessed seqNo; an integer that is the
position number to be accessed posNo; and an integer that is the dimension to be
accessed dimNo.

Definition at line 666 of file realIo.c.

References getRdhDim(), getRdhSeqLength(), and rdh_t::seq.

Referenced by printRdhSeq().

667 {
668 if (data == NULL II data->seq == NULL II data->seq[seqNo] == NULL
669 II posNo > getRdhSeqLength (data, seqNo) II dimNo > getRdhDim (data))
670 {
671 fprintf (stderr, "Passed bad data to getRdhValue -- error!");
672 fflush (stderr);
673 exit (0);
674 }
675 return gsl matrix-get (data->seq[seqNo], posNo, dimNo);
676 }

C.19.0.254 rdh_t* initRdh (int x)

This function initializes a real data holder object. The function takes as its input
a size x which is the number of sequences that will be stored in the object. The
function returns a pointer to the object, which has been allocated the correct amount
of memory.

Definition at line 277 of file realIo.c.

References rdht::indexSize, rdh_t::indexToPos, rdht::indexToSeq, rdht::label, rdh_-
t::seq, and rdht::size.

Referenced by parseRealData().
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278 {
279 int i;
280 rdh_t *data = NULL;
281
282 // Allocate space for our structure
283 data = (rdh_t *) malloc (sizeof (rdh_t));
284 if (data == NULL)
285 {
286 fprintf (stderr, "\nMemory Error\ns\n", strerror (errno));
287 fflush (stderr);
288 exit (0);
289 }
290 data->size = x;
291
292 // Index has to be initialized later, once
293 // we know the word size.
294 data->indexSize = 0;
295 data->indexToSeq = NULL;
296 data->indexToPos = NULL;
297
298 /*
299 data->indexSize = y;
300 */
301 data->label = (char **) malloc (data->size * sizeof (char *));
302 if (data->label == NULL)
303 {
304 fprintf (stderr, "\nMemory Error\ns\n", strerror (errno));
305 fflush (stderr);
306 exit (0);
307 }
308 data->seq = (gsl_matrix **) malloc (data->size * sizeof (gsl_matrix *));
309 if (data->seq == NULL)
310 {
311 fprintf (stderr, "\nMemory Error\ns\n", strerror (errno));
312 fflush (stderr);
313 exit (0);
314 }
315 for (i = 0; i < data->size; i++)
316 {
317 data->label[i] = NULL;
318 data->seq[i] = NULL;
319 }
320 return data;
321 }

C.19.0.255 int initRdhGslMat (rdh_t * data, int seqNo, int x, int y)

This function is used to initialize the memory for the matrix in which the real value to
data are stored. To store these data, we use the GNU scientific library. The function
takes four parameters: a pointer to the real data holder data; an integer, which is
the sequence number to be set seqNo; an integer, which is the first dimension of the
matrix size x; and an integer, which is the second dimension of the matrix size y;

Definition at line 829 of file reallo.c.

References rdht::seq.

Referenced by pushOnRdhSeq().

830 {
831 data->seq[seqNo] = gsl_matrix_alloc (x, y);
832 if (data->seq[seqNo] == NULL)
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833 {
834 return 0;
835 }
836 else
837 {
838 return 1;
839 }
840 }

C.19.0.256 int initRdhIndex (rdh_t * data, int wordSize, int seqGap)

This function is used to initialize the two indices inside a real data holder. The
function takes as its input three parameters a pointer to the real data holder, data,
the size of the words to be compared during the comparison stage wordSize, and an
integer seqGap, which is used to place empty data between unique sequences, such
that we do not convolve from one sequence into another during the convolution stage.

Definition at line 358 of file reallo.c.

References getRdhSeqLength(), rdht::indexSize, rdh_t::indexToPos, rdh_t::indexTo-
Seq, rdh_t::offsetToIndex, and rdht::size.

Referenced by realComparison().

359 {
360 int i, j, k;
361 int numWindows = 0;
362 int thisNumWindows;
363 int numSeq;
364 int seqLen = 0;
365
366 // The number of sequences
367 numSeq = data->size;
368
369 // Allocate offsetToIndex's outer structure
370 data->offsetTolndex = (int **) malloc (numSeq * sizeof (int *));
371 if (data->offsetToIndex == NULL)
372 {
373 fprintf (stderr, "\nMemory Error\n%/s\n", strerror (errno));
374 fflush (stderr);
375 exit (0);
376 }
377
378 // For each sequence
379 for (i = 0; i < numSeq; i++)
380 {
381
382 // How many windows are in this sequence
383 seqLen = getRdhSeqLength (data, i);
384 numWindows += seqLen - wordSize + 1;
385
386 // And also use this to further allocate offsetToIndex
387 data->offsetToIndex [i] =
388 (int *) malloc ((seqLen - wordSize + 1) * sizeof (int));
389 if (data->offsetToIndex [i] == NULL)
390 {
391 fprintf (stderr, "\nMemory Error\n%/s\n", strerror (errno));
392 fflush (stderr);
393 exit (0);
394 }
395 }
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396
397 // One index for each word plus seqGap between each sequence
398 // and a gap at the end
399 data->indexSize = numWindows + numSeq * seqGap;
400
401 // Allocate indexToSeq
402 // NOTE that it should be size of int, not int *... I think we got
403 // fortunate in the previous revision because they are the same
404 // size
405 data->indexToSeq = (int *) malloc (data->indexSize * sizeof (int));
406 if (data->indexToSeq == NULL)
407 {
408 fprintf (stderr, "\nMemory Error\n/s\n", strerror (errno));
409 fflush (stderr);
410 exit (0);
411 }
412
413 // Allocate indexToPos
414 // See above for int vs. int* argument.
415 data->indexToPos = (int *) malloc (data->indexSize * sizeof (int));
416 if (data->indexToPos == NULL)
417 {
418 fprintf (stderr, "\nMemory Error\ns\n", strerror (errno));
419 fflush (stderr);
420 exit (0);
421 }
422
423 // Fill in the values
424 k = 0;
425 for (i = 0; i < numSeq; i++)
426 {
427
428 // How many windows are in this sequence?
429 thisNumWindows = getRdhSeqLength (data, i) - wordSize + 1;
430
431 // For each window, make an entry in the indexToSeq
432 // and indexToPos and offsetToIndex
433 for (j = 0; j < thisNumWindows; j++)
434
435 data->indexToSeq[k) = i;
436 data->indexToPos[k] = j;
437 data->offsetToIndex[i] [j] = k;
438 k++;
439
440
441 // Add gaps between sequences in the index.
442 // Usually seqGap is just 1;
443 for (j = 0; j < seqGap; j++)
444
445
446 // -1 means no sequence and no position
447 data->indexToSeq[k] = -1;
448 data->indexToPos[k] = -1;
449 k++;
450 }
451 }
452 return 0;
453 }

C.19.0.257 int makeAlternateCentroid (rdht * data, cllt curCliq, int
* candidates)

This function is used to choose an alternate centroid for a given clique. In order to
make the centroid decision slightly less dependent on input order, we decide to choose
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from the tied candidates the one whose relative position in the sequence is highest.
There is no basis in theory for this, it is done so that a consistent choice is made.
Only rarely will two spectra be tied for being a centroid and have the same sequence
number. In that case, we pretty much have to default to the sequence number, which
is what would be done without this function. Note that now though we are less
sensitive to the order of input of the sequences, we are now more sensitive to the
context surrounding a given spectrum. That is, if it is put in the beginning of the
sequence, it is more likely to be chosen. This choice can only be justified insofar as if
multiple choices are tied, then they are the same cumulative distance to the clique,
and so *any* should be allowed to be chosen equally. There should be little difference
in terms of tangible results. This just makes the semantics consistent.

Definition at line 1202 of file realIo.c.

References getRdhIndexSeqPos(), cSet_t::members, and cnode::set.

Referenced by outputRealPatsWCentroid().

1203 {
1204 int indmin, min, i;
1205 int curSeq, curPos;
1206 int numCandidates = candidates10];
1207 indmin = candidates [1];
1208 getRdhIndexSeqPos (data, curCliq->set->members[indmin], &curSeq, &curPos);
1209 min = curPos;
1210
1211 // We use less-than-or-equal here because we're starting at 1,
1212 // so we want 1 to end. The length of candidates is one more than
1213 // the maxSup, so we know we can reach candidates[maxSup] without
1214 // a segfault.
1215 for (i = 2; i <= numCandidates; i++)
1216 {
1217 getRdhIndexSeqPos (data, curCliq->set->members[candidates [i]], &curSeq,
1218 &curPos);

1219 if (curPos < min)
1220 {
1221 indmin = candidates[i];
1222 min = curPos;
1223 }
1224 }
1225 return (indmin);
1226 }

C.19.0.258 int outputRealPats (rdh_t * data, cllt * allPats, int L, FILE
* OUTPUTFILE, int ** d)

This function is used to print out motifs discovered by Gemoda in an attractive
fashion. The function takes five parameters: a pointer to a real data holder object
data; a pointer to a linked list of motifs allPats; an integer which is Gemoda's input
parameter L; and a pointer to a file handle to which output is printed OUTPUT_-
FILE.

Definition at line 1046 of file realIo.c.

References getRdhIndexSeqPos(), cnode::length, cSet_t::members, cnode::next, rdh -
t::seq, cnode::set, cSet t::size, and cnode::stat.
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Referenced by main().

1048 {
1049 int i, j, posl;
1050 int curSeq, curPos;
1051 cllt *curCliq = NULL;
1052 curCliq = allPats;
1053 i = 0;
1054 while (curCliq != NULL)
1055 f
1056 fprintf (OUTPUT_FILE, "pattern %d:\tlen=.d\tsup=%d\t", i,
1057 curCliq->length + L, curCliq->set->size);
1058 if (d != NULL)
1059 {
1060 fprintf (OUTPUT_FILE, "\tsignif=%le\n", curCliq->stat);
1061 1
1062 else
1063 {
1064 fprintf (OUTPUT_FILE, "\n");
1065 }
1066 for (j = 0; j < curCliq->set->size; j++)
1067 {
1068 posl = curCliq->set->members[j];
1069 getRdhIndexSeqPos (data, posl, &curSeq, &curPos);
1070 fprintf (OUTPUTFILE, " %d\td\t", curSeq, curPos);
1071 fprintf (OUTPUTFILE, "%lf\t",
1072 gsl_matrixget (data->seq[curSeq], curPos, 0));
1073
1074 /*
1075 for(k=curPos ; k<curPos+curCliq->length+L ; k++){ fprintf(OUTPUT_FILE, "%c",
1076 mySequences [curSeq]. seq[k]); }
1077 */
1078 fprintf (OUTPUT_FILE, "\n");
1079 }
1080 fprintf (OUTPUT_FILE, "\n\n");
1081 curCliq = curCliq->next;
1082 i++;
1083 }
1084 return 0;
1085 }

C.19.0.259 int outputRealPatsWCentroid (rdh_t * data, cllt * allPats,
int L, FILE * OUTPUTFILE, double * extraParams, int
compFunc)

This function is used to output real valued patterns in a format such that they are
centered on a particular centroid.

Definition at line 1233 of file reallo.c.

References findCliqueCentroid(), getCompFunc, getRdhIndexSeqPos(), cn-
ode::length, makeAlternateCentroid(), cSet_t::members, cnode::next, cnode::set,
and cSet_t::size.

Referenced by main().

1236 {
1237 int i, j, k, posl, centroid;
1238 int curSeq, curPos;
1239 int maxSup = 0;
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1240 cll_t *curCliq = NULL;
1241 double mfToCentroid = 0;
1242 double (*comparisonFunc) (rdh_t *, int, int, int, double *) = NULL;
1243 int *candidates = NULL;
1244 curCliq = allPats;
1245 while (curCliq != NULL)
1246 {
1247 if (curCliq->set->size > maxSup)
1248 {
1249 maxSup = curCliq->set->size;
1250 }
1251 curCliq = curCliq->next;
1252 }
1253 candidates = (int *) malloc ((maxSup + 1) * sizeof (int));
1254 if (candidates == NULL)
1255 {
1256 fprintf (stderr, "\nMemory Error\n.s\n", strerror (errno));
1257 fflush (stderr);
1258 exit (0);

1259 }
1260 for (i = 0; i <= maxSup; i++)
1261 {
1262 candidates[i] = 0;
1263 }
1264 comparisonFunc = getCompFunc (compFunc);
1265 curCliq = allPats;
1266 i = 0;
1267 while (curCliq != NULL)
1268 {
1269 fprintf (OUTPUT_FILE, "pattern %d:\tlen=%d\tsup=·d\n", i,
1270 curCliq->length + L, curCliq->set->size);
1271 centroid =
1272 findCliqueCentroid (data, curCliq, L, compFunc, extraParams,
1273 candidates);
1274 if (centroid < 0)
1275 {
1276 centroid = makeAlternateCentroid (data, curCliq, candidates);
1277
1278 // fprintf(OUTPUTFILE, "WARNING: No single node in"
1279 // " cluster has non-zero similarity to all other\n nodes"
1280 // " in cluster; centroid set to first node.\n");
1281 // centroid = 0;
1282 }
1283 for (j = 0; j < curCliq->set->size; j++)
1284 {
1285 posl = curCliq->set->members[j];
1286 getRdhIndexSeqPos (data, posl, &curSeq, &curPos);
1287 fprintf (OUTPUT_FILE, " %d\t%d\t", curSeq, curPos);
1288
1289 // fprintf(OUTPUT_FILE, "%lf\t",
1290 // gsl_matrix_get(data->seq(curSeq] ,curPos,0));
1291 mfToCentroid =
1292 comparisonFunc (data, curCliq->set->members[j],
1293 curCliq->set->members[centroid], L, extraParams);
1294 fprintf (OUTPUTFILE, "%lf\t", mfToCentroid);
1295
1296 /*
1297 for(k=curPos ; k<curPos+curCliq->length+L ; k++){ fprintf(OUTPUT_FILE, "%c",
1298 mySequences[curSeq].seq [k); }
1299 */
1300 fprintf (OUTPUT_FILE, "\n");
1301 }
1302 fprintf (OUTPUT-FILE, "\n\n");
1303 curCliq = curCliq->next;
1304 i++;
1305 for (k = 0; k <= maxSup; k++)
1306 {
1307 candidates[k] = 0;
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1308 }
1309 }
1310 free (candidates);

1311 return 0;

1312 }

C.19.0.260 rdht* parseRealData (char ** buf, int nl, char sep, int
numSeq, int dim)

This function is used to parse a single line of a fastA formatted input buffer containing
real valued data. The function takes

parameters: a pointer to an array of pointers to characters, which stores the sequences
that we will read from buf; an integer, which is the line in the buffer on which we
should start nl; a single character, which is used to delimit the input data sep; an
integer which is the number of the sequence that we are currently reading in numSeq;
an integer that is the dimensionality of the input data dim;

Definition at line 933 of file reallo.c.

References countTotalFields(), initRdh(), and pushOnRdhSeq().

Referenced by readRealData().

934 {
935 int i;
936 int seqNo = -1;
937 int totalNumFields;
938 rdh_t *data = NULL;
939 totalNumFields = countTotalFields (buf, nl, sep);

940

941 /*
942 data = initRdh(numSeq, totalNumFields + numSeq - 1);
943 */
944 data = initRdh (numSeq);
945

946 // We're going to add an empty index between

947 // windows that correspond to different

948 // sequences
949

950 // Fast forward to the first sequence
951 i = 0;
952 while (i < nl)
953 {
954

955 // Hit a new sequence

956 if (bufr[i][0 == '>')

957 {
958 seqNo++; // Note that seqNo started at -1!

959 push0nRdhSeq (data, buf, i, dim, sep);

960 i += dim + 1;
961 }
962 else

963 {
964 i++;

965 }
966 }
967

968 /*

969 printRdhSeq(data, 0, stdout);

970 */
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971 return data;
972 }

C.19.0.261 int printRdhSeq (rdh_t * data, int seqNo, FILE * FI)

This function is used to print out a real valued data sequence in a pretty manner. The
function takes three parameters: a pointer to the real data holder data; an integer
which is the sequence to be printed out seqNo; and a pointer to a file handle which
is where the output will be printed FH.

Definition at line 710 of file realIo.c.

References getRdhDim(), getRdhLabel(), getRdhSeqLength(), and getRdhValue().

711 {
712 int i, j;
713 int len;
714 int dim;
715 len = getRdhSeqLength (data, seqNo);
716 dim = getRdhDim (data);
717 fprintf (FH, "%s\n", getRdhLabel (data, seqNo));

718 for (i = 0; i < len; i++)
719 {
720 for (j = 0; j < dim; j++)

721 {
722 fprintf (FH, "%3.1f ", getRdhValue (data, seqNo, i, j));
723 }
724 fprintf (FH, "\n");
725 }
726 return 0;

727 }

C.19.0.262 int pushOnRdhSeq (rdht * data, char
int dim, char sep)

** buf, int startLine,

This function is used to fill in a real data holder structure as we are reading in the
sequences. Notably, this routine uses a few static variables, so it can only be called
once and should not be used to alter the real data holder structure later. The function
takes five parameters: a pointer to the real data holder data; a pointer to an array
of pointers to characters, which stores the sequences that we will read from buf; an
integer, which is the line in the buffer on which we should start startLine; an integer
that is the dimensionality of the input data dim; a single character, which is used to
delimit the input data sep;

Definition at line 863 of file realIo.c.

References countFields(), initRdhGslMat(), setRdhColFromString(), and setRdh-
Label().

Referenced by parseRealData().

864 {
865
866

int i, j, k;
int numFields;
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867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916 }

printf("%d\n", countFields(buf [j], sep));

// Set the k-th dimension of this sequence
// STILL NOTE THE TRANSPOSE!
setRdhColFromString (data, seqNo, k, buf[j], sep);

for ( 1=0 ; l<numFields ; 1++ ){ setRdhIndex(data, seqNo, 1, indexNo); indexNo++;
}

*/
seqNo++;

// Augment indexNo once more to have a -1 between each sequence!
/*

indexNo++;
*/

return 0;

C.19.0.263 rdht* readRealData (FILE * INPUT)

This function is used to read in a fasta formatted file containing real value data and
store the entire thing and a real data holder object. The function takes one parameter:
a pointer to a file handle, which is where the data are read from INPUT;

Definition at line 983 of file reallo.c.

References checkRealDataFormat(), parseRealData(), and ReadFile().

Referenced by main().

394

// NOTE THAT THESE ARE STATIC VARIABLES!!!!!
// That is, they retain their last value on
// each call to this function!
static int seqNo = 0;

/*
static int indexNo=0;

*/
i = startLine;

// Assume that the sequence has at least
// one row (should have called checkRealDataFormat!
numFields = countFields (buf [i + 11], sep);

// Initialize the gslmatrix object for this
// sequence in 'data'
//
// NOTE THAT WE STORE THE TRANSPOSE OF WHAT'S IN
// THE INPUT FILE -- x,y = position x, dimension y
initRdhGslMat (data, seqNo, numFields, dim);

// Set the sequence label
setRdhLabel (data, seqNo, buf [i);

// Read in 'dim' rows
for (j = i + 1, k = 0; j < i + 1 + dim; j++, k++)



984 {
985 char **buf = NULL;
986 int nl;
987 int i;
988 char sep = ' ';
989 int numSeq = 0;
990 int dimensions = 0;
991 int status = 1;
992 rdh-t *data = NULL;
993
994 // Read the entire INPUT file and put it's
995 // contents into 'buf'. This function also
996 // alters the contents of the location pointed
997 // to by &nl. Now nl is the number of lines
998 // in the file (or the size of the buff array.
999 buf = ReadFile (INPUT, &nl);
1000 if (buf == NULL)
1001 {
1002 return NULL;
1003 1
1004 status = checkRealDataFormat (buf, nl, sep, &numSeq, &dimensions);
1005 if (numSeq <= 0 II dimensions <= 0 II status == 0)
1006 {
1007 fprintf (stderr,
1008 "Data file is poorly formatted or no sequences read!\n");
1009 fprintf (stderr,
1010 "Each sequence needs to be the same dimensionality! QUITTING!\n");
1011 fprintf (stderr, "numSeq = %d, dimensions = %d, status = %d\n", numSeq,
1012 dimensions, status);
1013 exit (EXIT_FAILURE);
1014 }
1015
1016 // From here on, we assume that the sequence file is well-formatted
1017 // to make the code more simple.
1018 data = parseRealData (buf, nl, sep, numSeq, dimensions);
1019
1020 // Free up our buffer
1021 for (i = 0; i < nl; i++)
1022 {
1023 if (bufr[i != NULL)
1024 {
1025 free (buf[i]);
1026 }
1027 }
1028 if (buf != NULL)
1029 {
1030 free (buf);
1031 }
1032 return data;
1033 }

C.19.0.264 int setRdhColFromString (rdht * data, int seqNo, int
colNo, char * s, char sep)

This function is used to fill in the values of a sequence in a real data holder object by
reading them straight from a string, which is assumed to be a series of floating-point
values separated by some particular character. The function takes five parameters: a
pointer to the real data holder data; an integer, which is the sequence number to be
set seqNo; an integer representing the dimension of the sequence which is to be set
colNo; a pointer to the string holding the floating-point values s; a character, which
separates the floating-point values in the string sep;
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Definition at line 744 of file reallo.c.

References rdht::seq, setRdhValue(), and wordToDouble().

Referenced by pushOnRdhSeq().

int i;
int begin = 0;
int end = 0;
int status = 0;
int fieldCount = 0;
double val;

// 0 = in sep, 1 = in word

Make sure the string is not null and
the rdh_t gsl_matrix array is not null
and the selected gsl_matrix is not null
(s == NULL II data->seq == NULL II data->seq[seqNo] == NULL)

fprintf (stderr, "Passed bad data

fflush (stderr);

exit (0);

to setRdhColFromString -- error!");

// Loop over the length of the string
for (i = 0; i < strlen (s); i++)

745 {
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

// We hit a word
if (s[i] != sep)

begin = i;
status = 1;

else
// We hit more space

continue;

else
// The

if (s[i] != sep)
previous state was word

continue;

else
{ // We hit a space

end = i- 1;
status = 0;
val = vordToDouble (s, begin, end);

// Go to the gsl_matrix object data->seq[seqNo]

// and set the (fieldCount, colNo) = val;
setRdhValue (data, seqNo, fieldCount, colNo, val);

fieldCount++;

}

// At the end, if we were in a word, we have
// one more field
if (status == 1)

// We're in a word
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806 val = wordToDouble (s, begin, strlen (s));
807
808 // Added in, MPS 5/3/05 ---
809 // And don't forget to set the RdhValue!
810 setRdhValue (data, seqNo, fieldCount, colNo, val);
811 fieldCount++;
812 }
813 return fieldCount;
814 }

C.19.0.265 int setRdhIndex (rdh_t * data, int seqNo, int posNo, int
index)

This function is used to fill in entries in the indices of the real data holder. The
function takes four parameters: a pointer to the real data holder, data, an integer
specifying the sequence number seqNo, an integer specifying the position number
within the sequence posNo, and an integer specifying what the index for this sequence
number and position number should be index.

Definition at line 600 of file reallo.c.

References rdh_t::indexSize, rdh_t::indexToPos, and rdh t::indexToSeq.

601 {
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619 }

if (data == NULL II data->indexToSeq == NULL II data->indexToPos == NULL
II index > data->indexSize)

{
fprintf (stderr, "Passed bad data to getRdhValue -- error!");
fflush (stderr);
exit (0);

}

/*

printf("Setting index %d -> 'd, %d\n", index, seqNo, posNo);

fflush(stdout);
/[

data->indexToSeq[index] = seqNo;
data->indexToPos[index] = posNo;
return O;

C.19.0.266 int setRdhLabel (rdht * data, int seqNo, char * s)

This function will label a sequence within a real data holder object with a particular
string. The function takes two parameters: a pointer to the real data holder, data,
an integer seqNo, and a pointer to a string s.

Definition at line 543 of file realIo.c.

References rdhAt::label, and rdht::seq.

Referenced by pushOnRdhSeq().

544 {

397

*/
/*



if (data->seq == NULL II data->label == NULL)

fprintf (stderr, "Passed bad data to setRdhLabel -- error!");

fflush (stderr);

exit (0);

data->label(seqNo] = strdup (s);
if (data->label[seqNo] == NULL)

fprintf (stderr, "\nMemory Error allocating label!\n/s\n",
strerror (errno));

fflush (stderr);
exit (0);

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560 }

C.19.0.267 int setRdhValue (rdht * data, int seqNo, int posNo, int
dimNo, double val)

This function will set a particular dimension at a particular position within a specified
sequence to a user supplied value. The function takes five parameters: a pointer to
the real data holder, data, an integer seqNo which is the sequence which needs its
value set, two integers that specify the position number and the dimension number
that needs to be set, and finally a double precision floating point number which is
the value to which the the data should be set.

Definition at line 575 of file reallo.c.

References getRdhDim(), getRdhSeqLength(), and rdht::seq.

Referenced by setRdhColFromString().

576 {
577
578
579
580
581
582

583
584
585

586 }

if (data == NULL II data->seq == NULL II data->seq[seqNo] == NULL

II posNo > getRdhSeqLength (data, seqNo) 11 dimNo > getRdhDim (data))

fprintf (stderr, "Passed bad data to setRdhValue -- error!");

fflush (stderr);
exit (0);

gsl_matrixset (data->seq[seqNo), posNo, dimNo, val);

return 0;

C.19.0.268 wordToDouble (char * s, int begin, int end)

Turn the substring of s starting at char s[begin] and
INPUT: a string s, integer begin, and integer end.
Throws an error and dies if there's a problem making
No room for ill-formated data files. double

ending at s[end] int a double.
OUTPUT: a double. NOTE:
the double from the substring.

Definition at line 30 of file reallo.c.

Referenced by countFields(), and setRdhColFromString().
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31 {
32 char *str = NULL;
33 char *endptr;
34 double val;
35 int size;
36 int memsize;
37
38 // Check for a sane substring
39 if (end - begin <= 0)
40 {
41 fprintf (stderr, "\nInvalid argument to wordToDouble!\n");
42 fflush (stderr);
43 exit (0);
44 }
45
46 // Get the required string size
47 memsize = end - begin + 2; // An extra space in mem for null-termination
48 size = end - begin + 1;
49
50 // Get memory for a temporary string
51 str = (char *) malloc (memsize * sizeof (char));
52 if (str == NULL)
53 {
54 fprintf (stderr, "\nMemory Error\ns\n", strerror (errno));
55 fflush (stderr);
56 exit (0);
57 }
58
59 // Make sure the string ends with a null char
60 str[size] = '\0';
61
62 // Copy the word into str
63 str = strncpy (str, s + begin, size);
64
65 // Set endptr to str as initial value
66 endptr = str;
67 val = strtod (str, &endptr);
68
69 // endptr should point to the last char
70 // used in the conversion if strtod worked
71 if (val == 0 && endptr == str)
72 {
73 fprintf (stderr, "\nError making double from string: %s\n", str);
74 fflush (stderr);
75 exit (0);
76 }
77 free (str);
78 return val;
79 }
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C.20 realIo.h File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <gsl/gsl.matrix.h>

#include "FastaSeqIO/fastaSeqIO.h"

#include "convll.h"

Include dependency graph for reallo.h:

gs/gslmatrix.h

This graph shows which files directly or indirectly include this file:

gemoda-r.c

realompare.h realCompare.c

reallo.c

Data Structures

* struct rdh_t

Functions

* rdh_t * readRealData (FILE *INPUT)
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* rdh_t * freeRdh (rdh_t *data)
* int initRdhIndex (rdht *data, int wordSize, int seqGap)
* int getRdhIndexSeqPos (rdht *data, int index, int *seq, int *pos)
* int getRdhDim (rdh_t *data)
* int outputRealPats (rdht *data, cll_t *allPats, int L, FILE *OUTPUT_FILE,

int **d)
* int outputRealPatsWCentroid (rdht *data, cllt *allPats, int L, FILE

*OUTPUT_FILE, double *extraParams, int compFunc)

Function Documentation

C.20.0.269 rdh_t* freeRdh (rdht * data)

This function returns a null pointer after freeing the memory associated with a real
data holder object. The function takes one parameter: a pointer to the real data
holder, data.

Definition at line 396 of file realIo.c.

References rdht::indexToPos, rdh_t::indexToSeq, rdht::label, rdh_t::offsetToIndex,
rdh_t::seq, and rdht::size.

Referenced by main().

C.20.0.270 int getRdhDim (rdht * data)

This function returns an integer equal to the dimensions of the data stored in a real
data holder object. The function takes one parameter: a pointer to the real data
holder, data.

Definition at line 447 of file realIo.c.

References rdh-t::seq.

Referenced by generalMatchFactor(), getRdhValue(), massSpecCompareWElut(),
printRdhSeq(), rmsdCompare(), and setRdhValue().

C.20.0.271 int getRdhIndexSeqPos (rdh_t * data, int index, int * seq,
int * pos)

This function is used to access and change the sequence and position values, given an
index. The function takes four parameters: a pointer to the real data holder, data,
an integer index, a pointer integer seq, and a pointer integer pos.

Definition at line 544 of file reallo.c.

References rdh_t::indexSize, rdh_t::indexToPos, and rdh_t::indexToSeq.
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Referenced by generalMatchFactor(), makeAlternateCentroid(), massSpecCompare-
WElut(), outputRealPats(), outputRealPatsWCentroid(), realComparison(), and
rmsdCompare().

C.20.0.272 int initRdhIndex (rdh_t * data, int wordSize, int seqGap)

This function is used to initialize the two indices inside a real data holder. The
function takes as its input three parameters a pointer to the real data holder, data,
the size of the words to be compared during the comparison stage wordSize, and an
integer seqGap, which is used to place empty data between unique sequences, such
that we do not convolve from one sequence into another during the convolution stage.

Definition at line 307 of file realIo.c.

References getRdhSeqLength(), rdht::indexSize, rdh_t::indexToPos, rdht::indexTo-
Seq, rdht::offsetToIndex, and rdht::size.

Referenced by realComparison().

C.20.0.273 int outputRealPats (rdht * data, cllt * allPats, int L, FILE
* OUTPUT_FILE, int ** d)

This function is used to print out motifs discovered by Gemoda in an attractive
fashion. The function takes five parameters: a pointer to a real data holder object
data; a pointer to a linked list of motifs allPats; an integer which is Gemoda's input
parameter L; and a pointer to a file handle to which output is printed OUTPUT_-
FILE.

Definition at line 904 of file reallo.c.

References getRdhIndexSeqPos(), cnode::length, cSett::members, cnode::next, rdh_-
t::seq, cnode::set, cSet_t::size, and cnode::stat.

Referenced by main().

C.20.0.274 int outputRealPatsWCentroid (rdht * data, cllt * allPats,
int L, FILE * OUTPUTFILE, double * extraParams, int
compFunc)

This function is used to output real valued patterns in a format such that they are
centered on a particular centroid.

Definition at line 1068 of file realIo.c.

References findCliqueCentroid(), getCompFunc, getRdhIndexSeqPos(), cn-
ode::length, makeAlternateCentroid(), cSett::members, cnode::next, cnode::set,
and cSett::size.

Referenced by main().
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C.20.0.275 rdh_te readRealData (FILE * INPUT)

This function is used to read in a fasta formatted file containing real value data and
store the entire thing and a real data holder object. The function takes one parameter:
a pointer to a file handle, which is where the data are read from INPUT;

Definition at line 850 of file realIo.c.

References checkRealDataFormat(), parseRealData(), and ReadFile().

Referenced by main().
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C.21 spat.h File Reference

This graph shows which files directly or indirectly include this file:

align.c

gemoda-s.

words.c

Data Structures

* struct sOffset_t

* struct sPat_t
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C.22 words.c File Reference

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include "spat.h"

#include "FastaSeqIO/fastaSeqIO.h"

Include dependency graph for words.c:

stdio.h

Data Structures

* struct sHashEntryt
* struct sHash_t

Defines

* #define SHASH_MAXKEY_SIZE 1000

Functions

* int sieve3 (long n)
* unsigned long hashl (unsigned char *str)
* int hashpjw (char *s)
* sHasht initSHash (int n)
* sHashEntry_t * searchSHash (sHashEntry_t *newEntry, sHasht *thisHash, int

create)
* int destroySHash (sHash_t *thisHash)
* int printSHash (sHash_t *thisHash, FILE *FH)
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* int printSPats (sPatt *a, int n)
* int destroySPatA (sPat_t *words, int wc)
* sPat_t * countWords2 (fSeqt *seq, int numSeq, int L, int *numWords)

Detailed Description

This file defines functions that are used in the processing of string based sequences.
There are a number of functions defined in this file better used for hashing strings so
that the comparison phase can be sped up by only comparing unique words. Heuristi-
cally, we have noticed that for sequences in which there is a large degree of redundancy
these hashing functions can significantly speed up the comparison phase.

Definition in file words.c.

Define Documentation

C.22.0.276 #define SHASH_MAXKEY_SIZE 1000

Definition at line 192 of file words.c.

Referenced by printSHash(), and searchSHash().

Function Documentation

C.22.0.277 sPatt* countWords2 (fSeqt * seq, int numSeq, int L, int
num Words)

Counts words of size L in the input FastA sequences, hashes all of the words, and
returns an array of sPat_t objects.

Definition at line 373 of file words.c.

References sHashEntryt::data, destroySHash(), sHashEntryt::idx, initSHash(), s-
HashEntry_t::key, sHashEntry_t::L, sPat_t::length, sOffsett::next, sPat_t::offset, s-
Offset_t::pos, sOffset_t::prev, searchSHash(), sOffset_t::seq, sieve3(), sPatt::string,
and sPatt: :support.

Referenced by main().

374 {
375 int i, j;
376 int totalChars = 0;
377 int hashSize;
378 sHashEntry_t nevEntry;
379 sHashEntry_t *ep;
380 sHash-t wordHash;
381 sPatt *words = NULL;
382 int wc = 0;
383 int prey = -1;
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384 int 1;
385
386
387 // Count the total number of characters. This
388 // is the upper limit on how many words we can have
389 for (i = 0; i < numSeq; i++)
390 {
391 totalChars += strlen (seq[i).seq);
392 }
393
394 // Get a prime number for the size of the hash table
395 hashSize = sieve3 ((long) (2 * totalChars));
396 wordHash = initSHash (hashSize);
397
398 // Chop up each sequence and hash out the words of size L
399 for (i = 0; i < numSeq; i++)
400 {
401 prey = -1;
402
403 // skip sequences that are too short to have
404 // a pattern
405 if (strlen (seq[i].seq) < L)
406 {
407 continue;
408 }
409 for (j = 0; j < strlen (seq[i).seq) - L + 1; j++)
410 {
411
412 // Make a hash table entry for this word
413 newEntry.key = &(seq[il.seqCj]);
414 newEntry.data = 1;
415 newEntry.idx = wc;
416 newEntry.L = L;
417
418 // Check to see if it's already in the hash table
419 ep = searchSHash (&newEntry, &wordHash, 0);
420 if (ep == NULL)
421 {
422
423 // If it's not, create an entry for it
424 ep = searchSHash (&newEntry, &wordHash, 1);
425
426 // Increase the size of our word array
427 words = (sPat_t *) realloc (words, (wc + 1) * sizeof (sPat_t));
428 if (words == NULL)
429 C
430 fprintf (stderr, "Error!\n");
431 fflush (stderr);
432
433 // Add the new word
434 words[wc] .string = &(seq[i .seq[j]);
435 words[wc].length = L;
436 words [wc. support = 1;
437 words[wc].offset =
438 (sOffset_t *) malloc (1 * sizeof (sOffset_t));
439 if (words[wc].offset == NULL)
440 {
441 fprintf (stderr, "\nMemory Error\n/s\n", strerror (errno));
442 fflush (stderr);
443 exit (0);
444
445 words[wc].offset(0].seq = i;
446 words[wc].offset[0].pos = j;
447 words [wc] .offset [0) .prev = prev;
448 words[wc .offset0] .next = -1;
449
450 if (prey != -1)
451 {
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452 words [prev] .offset [words [prevy. support - 13 .next = wc;
453
454 prey = wc;
455 wc++;
456
457 }
458 else
459 {
460
461 // If it is, increase the count for this word
462 ep->data++;
463
464 // add a new offset to the word array
465 1 = words [ep->idx] . support;
466 words[ep->idx. offset =
467 (sOffsett *) realloc (words[ep->idx).offset,
468 (1 + 1) * sizeof (sOffset-t));
469 words[ep->idx].offsetset [. seq = i;
470 words[ep->idx. offset[ll.pos = j;
471 words[ep->idxl.offset [l.prey = prev;
472 words [ep->idx]. offset [ll .next = -1;
473
474 // Update the next/prey
475 if (prey != -1)
476 {
477 words [prev. offset [words [prev. support - 13 .next = ep->idx;
478 }
479 prey = ep->idx;
480
481 // Have to put this down here for cases when we create
482 // a word and it is immeadiately followed by itself!!
483 words[ep->idx. support += 1;
484
485 }
486 }
487
488
489 destroySHash (&wordHash);
490 *numWords = wc;
491 return words;
492 }

C.22.0.278 int destroySHash (sHasht * thisHash)

Destroy a hash table, freeing the memory.

Definition at line 272 of file words.c.

References sHash_t::hash, sHash_t::hashSize, and sHash_t::iHashSize.

Referenced by countWords2().

273 {

274 int i;
275 free (thisHash->iHashSize);
276 free (thisHash->hashSize);
277 for (i = O; i < thisHash->totalSize; i++)
278 {
279 if (thisHash->hash[i] != NULL)
280 {
281 free (thisHash->hash[i));
282 thisHash->hash[i] = NULL;
283 }
284 }
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285 if (thisHash->hash != NULL)
286 {
287 free (thisHash->hash);
288 thisHash->hash = NULL;
289 }
290 return 0;
291 }

C.22.0.279 int destroySPatA (sPatt * words, int wc)

This function is used to free up the memory allocated in an array of sPatt space
objects. The function returns a null pointer.

Definition at line 352 of file words.c.

References sPat_t::offset.

353 {
354 int i;
355 for (i = 0; i < wc; i++)
356 {
357 if (words[i].offset != NULL)
358 {
359 free (words[i].offset);
360 words[i].offset = NULL;
361 }
362 }
363 free (words);
364 words = NULL;
365 return 0;
366 }

C.22.0.280 unsigned long hash1 (unsigned char * str)

A hashing function that returns an integer, given a pointer to a null charactertermi-
nated string.

Definition at line 73 of file words.c.

Referenced by searchSHash().

74 {
75 unsigned long hash = 5381;
76 int c;
77

while ((c = *str++))
hash = ((hash << 5) + hash) + c; /* hash * 33 + c */

81 return hash;
82 }

C.22.0.281 int hashpjw (char * s)

A hashing function that returns an integer, given a pointer to a null charactertermi-
nated string.

Definition at line 89 of file words.c.
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char *p;
unsigned int h, g;

h = 0;
for (p = s; *p != '\0'; p++)

h = (h << 4) + *p;
if ((g = h & OxF0000000))

h -= g >> 24;
h ^= g;

90 {
91

92

93
94
95
96
97

98
99

100
101

102
103
104

105 }

C.22.0.282 sHash_t initSHash (int n)

Allocates the memory for a sHash table and initializes some of the elements.

Definition at line 155 of file words.c.

References sHash-t::totalSize.

Referenced by countWords2().

156 {
157 int i = 0;
158 int step = 0;
159 sHash_t this;

this.totalSize = n;
this.hashSize = (int *) malloc
if (this.hashSize == NULL)

fprintf (stderr,
fflush (stderr);
exit (0);

(n * sizeof (int));

"\nMemory Error\ns\n", strerror (errno));

this.iHashSize = (int *) malloc (n * sizeof (int));
if (this.iHashSize == NULL)

fprintf (stderr, "\nMemory Error\ns\n", strerror (errno));
fflush (stderr);
exit (0);

this.hash = (sHashEntryt **) malloc (n * sizeof (sHashEntryt *));
if (this.hash == NULL)

fprintf (stderr, "\nMemory Error\n%s\n", strerror (errno));
fflush (stderr);
exit (0);

for (i = 0; i < n; i++)

this.hash(i) = NULL;
this.hashSize[i] = 0;
this.iHashSize i) = step;

return this;
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163
164
165
166
167
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182

183
184
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C.22.0.283 int printSHash (sHasht * thisHash, FILE * FH)

This function is used to print the hash out and is generally only used for error checking.

Definition at line 298 of file words.c.

References sHashEntryt::data, sHash_t::hash, sHashEntryt::key, sHashEntryt::L,
and SHASH_MAXKEY_SIZE.

299 {
300 int i, j;
301 char string[SHASHMAXKEY_SIZE];
302
303 for (i = 0; i < thisHash->totalSize; i++)
304 {
305 for (j = 0; j < thisHash->hashSize[i]; j++)
306 {
307
308 strncpy (string, thisHash->hash [i [j] .key, thisHash->hash [i) [j]. L);
309 string [thisHash->hashi] [j] .L] = '\0;
310 fprintf (FH, "%s %d\n", string, thisHash->hash[i] [jJ.data);
311
312 }
313 }
314 return 0;

315 }

C.22.0.284 int printSPats (sPatt * a, int n)

This function is used to print out an array of sPatt objects and is generally only
used for error checking.

Definition at line 321 of file words.c.

References sPat t::length.

322 {
323 char *s = NULL;
324 int i, j;
325 int size = 0;
326 for (i = O; i < n; i++)
327 {
328 if (a[i].length > size)
329 {
330 s = (char *) realloc (s, a[i].length * sizeof (char));
331 }
332 strncpy (s, a[i].string, a[i).length);
333 s[a[i).length] = '\0';
334 printf ("%d: %s\n", i, s);
335 for (j = 0; j < a[i).support; j++)
336 {
337 printf ("\td %d -> (Xd, %d)\n", a(i .offset[j].seq,
338 a(i].offset[j].pos, a[i].offset[j].prev,
339 a[i] .offset(j] .next);
340
341 printf ("\n");
342 }
343 free (s);
344 return 0;
345 }
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C.22.0.285 sHashEntryt* searchSHash (sHashEntryt * newEntry,
sHash_t * thisHash, int create)

This function has two purposes. It searches for entries in the hash table and it puts
new entries in.

Definition at line 198 of file words.c.

References sHash_t::hash, hashl(), sHash_t::hashSize, sHash_t::iHashSize, sHash-
Entryt::key, sHashEntry_t::L, SHASHMAXXEY_SIZE, and sHasht::totalSize.

Referenced by countWords2().

199 {
200 char string [SHASH_MAX_KEY_SIZE];
201 unsigned long (*hashFunction) () = &hashl;
202 int i, thisIndex;
203 int status = 0;
204
205 // A string to store the key
206 strncpy (string, newEntry->key, newEntry->L);
207 string[newEntry->L] = '\0';
208
209 // The index that this key hashes to
210 thisIndex = hashFunction ((unsigned char *) string) % thisHash->totalSize;
211
212 // For each member that has this index, check to see
213 // if the key is the same
214 for (i = O; i < thisHash->hashSize[thisIndex]; i++)
215 {
216 if (strncmp (thisHash->hash[thislndex] [i] .key, string, newEntry->L) ==
217 0)
218 {
219
220 // We found a match
221 /*
222 printf("\t%s already in hash table!\n");
223 */
224 status = 1;
225 return &(thisHash->hash[thisIndex] [i);
226 break;
227
228 }
229 }
230
231 // If we didn't find the key and we're told to create it,
232 // then allocate new memory for the hashEntry and put it in
233 if (status == 0 && create != 0)
234 {
235
236 // Allocate space for the new entry at this index
237 if (thisHash->iHashSize[thisIndex] == 0)
238 {
239 thisHash->hash[thisIndex] =
240 (sHashEntryt *) malloc (sizeof (sHashEntry_t));
241 }
242 else
243 {
244 thisHash->hash[thisIndex] =
245 (sHashEntry_t *) realloc (thisHash->hash[thisIndex),
246 (thisHash->iHashSize [thisIndex] +
247 1) * sizeof (sHashEntry_t));
248 }
249 if (thisHash->hash[thisIndex] == NULL)
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250

251
252
253
254

fprintf (stderr, "\nMemory Error\n/s\n", strerror (errno));

fflush (stderr);

exit (0);

255 // Increase our record of the size

256 i =- thisHash->hashSize thisIndex];

257 thi.sHash->hash[thisIndex] [i] = *newEntry;

258 thisHash->iHashSize [thisIndex]++;

259 thisHash->hashSize [this Index]++;
260
261
262 // Return a pointer to this entry

263 return &(thisHash->hash[thisIndex] [il );
264
265 return NULL;

266 }

C.22.0.286 int sieve3 (long n)

Prime number generator: returns first prime number equal or less than

Parameters:
n.

Definition at line 27 of file words.c.

Referenced by countWords2().

int i, p:, j;
int *a;
a = (int *) malloc ((n + 1) * sizeof (int));
if (a == NULL)

fprintf (stderr, "\nMemory Error\ns\n", strerror (errno));
fflush (stderr);
exit (0);

a [O] = 0;
a[1] = 0;
for (i = 2; i < n; i++)

{
a[i] = 1;

p 2;
do

{
j = 2 *p;

a[j] = 0;

j = j + p;

while (j <= n);

p = p + 1;

while (p * p < 2 * n);

for (i = n; i > 2; i--)

if (a[i])
<
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29

30
31
32
33

34
35
36
37

38
39
40
41
42
43
44
45
46
47
48

49
50
51

52
53

54
55
56
57
58
59
60



free (a);
return i;

}
}

free (a);
return 0;

61
62
63

64
65
66

67 }
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Appendix D

Gemoda data structure

documentation

D.1 Introduction

This appendix describes in detail the data structures used in our software imple-

mentation of Gemoda, which is described in Chapter 3. We have implemented an

object-oriented approach in our program; in this way, we tried to capture some of

the benefits of C++ while mainting the easy portability of C. More details and doc-

umentation of the files that constitute our implementation of Gemoda can be found

in Appendix C.

D.2 bitGraph_t Struct Reference

#include <bitSet.h>

Collaboration diagram for bitGrapht:
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bitSet6t

praph

Data Fields

* int size
* bitSett ** graph

Detailed Description

A bit graph is an array of bit sets. The graph must be of size size x size. This data
structure is used to store adjacency matrices. In particular, a bit graph is used in the
clustering step. It can easily be considered a set of sets.

Definition at line 48 of file bitSet.h.

Field Documentation

D.2.0.287 bitSet_t** bitGraph_t::graph

A pointer used to store an array of bitSet_t space objects.

Definition at line 56 of file bitSet.h.

Referenced by bitGraphCheckBit(), bitGraphRowIntersection(), bitGraphRow-
Union(), bitGraphSetFalse(), bitGraphSetFalseDiagonal(), bitGraphSetFalseSym(),
bitGraphSetTrue(), bitGraphSetTrueDiagonal(), bitGraphSetTrueSym(), copyBit-
Graph(), countBitGraphNonZero(), deleteBitGraph(), emptyBitGraph(), empty-
BitGraphRow(), fillBitGraph(), filterIter(), findCliques(), getStatMat(), maskBit-
Graph(), newBitGraph(), printBitGraph(), pruneBitGraph(), and singleLinkage().

D.2.0.288 int bitGraph_t::size

The total size of a bit graph, which is assumed to be symmetric. There are size bit
sets in a bit graph, each of size size.

Definition at line 53 of file bitSet.h.

Referenced by convolve(), copyBitGraph(), filterGraph(), findCliques(), getStat-
Mat(), main(), newBitGraph(), and oldGetStatMat().

The documentation for this struct was generated from the following file:
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* bitSet.h
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D.3 bitSett Struct Reference

#include <bitSet.h>

Data Fields

* int max
* int slots
* int bytes
* bitt * tf

Detailed Description

A bit set is a data structure for storing set objects that allows for quick set opera-
tions such as intersections, unions, differences, and so forth. On a standard 32-bit
architecture, 32 operations can be performed at the same time, greatly speeding the
clique finding stage of the algorithm.

Definition at line 24 of file bitSet.h.

Field Documentation

D.3.0.289 int bitSet_t::bytes

This variable actually holds the total number of bits, rather than the number of bytes.
However, we chose to keep this name rather than make a variety of changes.

Definition at line 37 of file bitSet.h.

Referenced by emptySet(), fillSet(), and newBitSet().

D.3.0.290 int bitSet_::max

The maximum integer that can be set to true or false.

Definition at line 28 of file bitSet.h.

Referenced by newBitSet(), nextBitBitSet(), setFalse(), and setTrue().

D.3.0.291 int bitSet_t::slots

The total number of slots, where a slot holds a number of bits equal to the size of a
bit_t space object.

Definition at line 32 of file bitSet.h.
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Referenced by bitSet3WayIntersection(), bitSetDifference(), bitSetIntersection(), bit-
SetSum(), bitSetUnion(), copySet(), and newBitSet().

D.3.0.292 bit_t* bitSet_t::tf

A pointer to a bit_t, which is used to store an array of these objects.

Definition at line 40 of file bitSet.h.

Referenced by bitSet3WayIntersection(), bitSetDifference(), bitSetIntersection(), bit-
SetSum(), bitSetUnion(), checkBit(), copySet(), countSet(), deleteBitSet(), empty-
Set(), fillSet(), flipBits(), newBitSet(), nextBitBitSet(), printBinaryBitSet(), set-
False(), and setTrue().

The documentation for this struct was generated from the following file:

* bitSet.h
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D.4 cnode Struct Reference

#include <convll.h>

Collaboration diagram for cnode:

set

dnext

Data Fields

* cSett * set

* int id
* int length
* cnode * next

* double stat

Detailed Description

This data structure is a linked list for storing cliques. Each member of the linked
list has a set, an ID number, a length (which gives the number of characters in the
motif), a pointer to the next member of the linked list, and a floating-point number
for storing statistical information.

Definition at line 35 of file convll.h.

Field Documentation

D.4.0.293 int cnode::id

Identification number for this member.

Definition at line 38 of file convll.h.

Referenced by addToStacks(), printCll(), printCllPattern(), pushCll(), remove-
Supers(), singleCliqueConv(), sortByStats(), swapNodecSet(), uniqClique(), whole-
CliqueConv(), wholeRoundConv(), and yankCll().

D.4.0.294 int cnode::length

Length of this motif.
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Definition at line 41 of file convll.h.

Referenced by calcStatCliq(), getLargestLength(), main(), outputRealPats(), output-
RealPatsWCentroid(), printCll(), and pushCll().

D.4.0.295 struct cnode* cnode::next

A pointer to the next member, or the next motif.

Definition at line 42 of file convll.h.

Referenced by calcStatAllCliqs(), fillMemberStacks(), getLargestLength(), get-
LargestSupport(), main(), outputRealPats(), outputRealPatsWCentroid(), popCll(),
printCll(), pruneCll(), pushCll(), removeSupers(), singleCliqueConv(), sortByStats(),
swapNodecSet(), uniqClique(), wholeRoundConv(), and yankCll().

D.4.0.296 cSett cnode::set

The set for this member of the linked list.

Definition at line 37 of file convll.h.

Referenced by addToStacks(), calcStatCliq(), findCliqueCentroid(), getLargest-
Support(), initheadCll(), main(), makeAlternateCentroid(), mergeIntersect(),
outputRealPats(), outputRealPatsWCentroid(), popCll(), printCll(), printCll-
Pattern(), pruneCll(), pushCll(), removeSupers(), singleCliqueConv(), swapNodec-
Set(), uniqClique(), and wholeCliqueConv().

D.4.0.297 double cnode::stat

Used to store the statistical store of a motif.

Definition at line 43 of file convll.h.

Referenced by calcStatAllCliqs(), main(), outputRealPats(), and pushCll().

The documentation for this struct was generated from the following file:

* convll.h
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D.5 cSet_t Struct Reference

#include <convll.h>

Data Fields

* int size
* int * members

Detailed Description

A cSett is used to hold a set of integers, in cases where the upper limit of integers
size is unknown. Or, in cases where using a bit set would be impractical. This data
structure is used throughout the convolution, where we have found heuristically that
intersections of this data type are much faster than those for bitSett's, which would
require a bit shift.

Definition at line 21 of file convll.h.

Field Documentation

D.5.0.298 int* cSet_t::members

Array of pointers to ints that holds the members of this set.

Definition at line 26 of file convll.h.

Referenced by addToStacks(), bitSetToCSet(), checkCliquecSet(), findClique-
Centroid(), main(), makeAlternateCentroid(), mergeIntersect(), mllToCSet(),
outputRealPats(), outputRealPatsWCentroid(), popCll(), printCll(), printCll-
Pattern(), printCSet(), pruneCll(), pushConvClique(), removeSupers(), swapNodec-
Set(), uniqClique(), and wholeCliqueConv().

D.5.0.299 int cSett::size

Number of members in this set.

Definition at line 24 of file convll.h.

Referenced by bitSetToCSet(), calcStatCliq(), checkCliquecSet(), findClique-
Centroid(), getLargestSupport(), main(), mllToCSet(), outputRealPats(), output-
RealPatsWCentroid(), printCll(), printCllPattern(), printCSet(), pruneCll(), remove-
Supers(), singleCliqueConv(), uniqClique(), and wholeCliqueConv().

The documentation for this struct was generated from the following file:
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* convll.h
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D.6 fSeqt Struct Reference

#include <fastaSeqIO.h>

Data Fields

* char * seq

* char * label

Detailed Description

Definition at line 12 of file fastaSeqIO.h.

Field Documentation

D.6.0.300 char* fSeqt::label

Definition at line 14 of file fastaSeqIO.h.

Referenced by FreeFSeqs(), initAofFSeqs(), and ReadFSeqs().

D.6.0.301 char* fSeq_t::seq

Definition at line 13 of file fastaSeqIO.h.

Referenced by FreeFSeqs(), initAofFSeqs(), printFSeqSubSeq(), ReadFSeqs(), and
ReadTxtSeqs().

The documentation for this struct was generated from the following file:

* FastaSeqIO/fastaSeqIO.h
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D.7 mnode Struct Reference

#include <convll.h>

Collaboration diagram for mnode:

l ext

Data Fields

* int cliqueMembership
* mnode * next

Detailed Description

This data structure is just a link to list of integers used for bookkeeping during the
convolution stage.

Definition at line 49 of file convll.h.

Field Documentation

D.7.0.302 int mnode::cliqueMembership

Clique to which this belongs.

Definition at line 52 of file convll.h.

Referenced by mllToCSet(), printMemberStacks(), pushMemStack(), and setStack-
True().

D.7.0.303 struct mnode* mnode::next

A pointer to the next member in the linked list of mllt space objects.

Definition at line 55 of file convll.h.

Referenced by mllToCSet(), popMemStack(), printMemberStacks(), pushMem-
Stack(), and setStackTrue().

The documentation for this struct was generated from the following file:

* convll.h
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D.8 rdh_t Struct Reference

#include <reallo.h>

Data Fields

* int size
* int indexSize
* char ** label

* gslmatrix ** seq

* int * indexToSeq
* int * indexToPos
* int ** offsetTolndex

Detailed Description

This is a data structure, which is used to store real valued data. Basically, this is an
array of gslmatrix objects, where each matrix represents a single, multidimensional
array that was read in from a FastA formatted file.

Definition at line 24 of file reallo.h.

Field Documentation

D.8.0.304 int rdh_t::indexSize

The size of the index, where the index is used to store pointers to the different
sequences in this object.

Definition at line 30 of file realIo.h.

Referenced by getRdhIndexSeqPos(), initRdh(), initRdhIndex(), realComparison(),
and setRdhIndex().

D.8.0.305 int* rdh_t::indexToPos

The array of integers that tell us to which position in a sequence each index in the
gslmatrix array corresponds.

Definition at line 40 of file realIo.h.

Referenced by freeRdh(), getRdhIndexSeqPos(), initRdh(), initRdhIndex(), and set-
RdhIndex().
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D.8.0.306 int* rdh_t::indexToSeq

The array of integers that will tell us to which sequence each index and the gsl_matrix
array corresponds.

Definition at line 37 of file reallo.h.

Referenced by freeRdh(), getRdhIndexSeqPos(), initRdh(), initRdhIndex(), main(),
and setRdhIndex().

D.8.0.307 char** rdh_t::label

The array of labels that store the names of each sequence.

Definition at line 32 of file realIo.h.

Referenced by freeRdh(), getRdhLabel(), initRdh(), and setRdhLabel().

D.8.0.308 int** rdht::offsetToIndex

The array that points from a particular offset to its index.

Definition at line 42 of file reallo.h.

Referenced by freeRdh(), initRdhIndex(), and main().

D.8.0.309 gslmatrix** rdh_t::seq

The array of matrices that store the data we read in.

Definition at line 34 of file realIo.h.

Referenced by freeRdh(), generalMatchFactor(), getRdhDim(), getRdhSeqLength(),
getRdhValue(), initRdh(), initRdhGslMat(), massSpecCompareWElut(), output-
RealPats(). rmsdCompare(), setRdhColFromString(), setRdhLabel(), and setRdh-
Value().

D.8.0.310 int rdh_t::size

The number of sequences stored in this data structure.

Definition at line 27 of file reallo.h.

Referenced by initRdh(), initRdhIndex(), and main().

The documentation for this struct was generated from the following file:

e reallo.h
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D.9 sHasht Struct Reference

Collaboration diagram for sHasht:

sHashEntryj

hash

Data Fields

* int * hashSize
* int * iHashSize

* int totalSize

* sHashEntryt ** hash

Detailed Description

A data structure for a hash table. At its root, this structure is just an array of hash
entry objects. As well, there are members used to track the size of the hash table.

Definition at line 132 of file words.c.

Field Documentation

D.9.0.311 sHashEntry_t** sHash_t::hash

An array sHashEntry_t space objects.

Definition at line 148 of file words.c.

Referenced by destroySHash(), printSHash(), and searchSHash().

D.9.0.312 int* sHash_t::hashSize

A pointer to an integer that is used to store an array of integers that keep track of
the number of sHashEntryt objects that are hashed to a particular integer.

Definition at line 138 of file words.c.

Referenced by destroySHash(), and searchSHash().
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D.9.0.313 int* sHash_t::iHashSize

A pointer to an integer that is used to store an array of integers that keep track of
the number of sHashEntryt objects that are hashed to a particular integer.

Definition at line 143 of file words.c.

Referenced by destroySHash(), and searchSHash().

D.9.0.314 int sHash_t::totalSize

An integer that stores the total number of slots available in our hash.

Definition at line 146 of file words.c.

Referenced by initSHash(), and searchSHash().

The documentation for this struct was generated from the following file:

* words.c
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D.10 sHashEntry_t Struct Reference

Data Fields

* char * key

* int L
* int data
* int idx

Detailed Description

Type for a hash table entry. This datatype is used to populate a hash table. The
most important members of this data structure are the string, or the key, and the
index to which that key hashes.

Definition at line 114 of file words.c.

Field Documentation

D.10.0.315 int sHashEntry_t::data

A throw away variable, used to store any necessary data

Definition at line 121 of file words.c.

Referenced by countWords2(), and printSHash().

D.10.0.316 int sHashEntry_t::idx

The integer to which the key of length L hashes

Definition at line 123 of file words.c.

Referenced by countWords2().

D.10.0.317 char* sHashEntry t::key

A pointer to a string

Definition at line 117 of file words.c.

Referenced by countWords2(), printSHash(), and searchSHash().

D.10.0.318 int sHashEntryt::L

The length of the string that should be used to compute the hash
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Definition at line 119 of file words.c.

Referenced by countWords2(), printSHash(), and searchSHash().

The documentation for this struct was generated from the following file:

* words.c
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D.11 sOffsett Struct Reference

#include <spat.h>

Data Fields

* int seq
* int pos
* int next
* int prey

Detailed Description

This object is used to store the location of a particular word and a set of sequences.
That is if we hash a word, we would like to know where it came from. This data
structure provides that information.

Definition at line 13 of file spat.h.

Field Documentation

D.11.0.319 int sOffset_t::next

The index of the word that follows this word at pos plus 1.

Definition at line 23 of file spat.h.

Referenced by countWords2().

D.11.0.320 int sOffset::pos

The position in the sequence where the word is located.

Definition at line 20 of file spat.h.

Referenced by countWords2(), and main().

D.11.0.321 int sOffset_t::prev

The index of the word that precedes this word at pos minus 1.

Definition at line 26 of file spat.h.

Referenced by countWords2().

432



D.11.0.322 int sOffset_t::seq

The sequence from which the word came.

Definition at line 17 of file spat.h.

Referenced by countWords2(), and main().

The documentation for this struct was generated from the following file:

* spat.h
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D.12 sPat_t Struct Reference

#include <spat.h>

Collaboration diagram for sPat_t:

sOffset t

offset

No

Data Fields

* char * string
* int length
* int support
* sOffset_t * offset

Detailed Description

This data structure is used to store the locations of all the instances of a particular
word of length length in a set of sequences. This data structure is used principally by
the string based version of Gemoda and is used to store words that are hashed before
the comparison phase.

Definition at line 36 of file spat.h.

Field Documentation

D.12.0.323 int sPat_t::length

The length of this word.

Definition at line 43 of file spat.h.

Referenced by countWords2(), and printSPats().

D.12.0.324 sOffsett* sPatt::offset

An array of sOffsett objects storing the loci, or offsets where this word occurs.

Definition at line 50 of file spat.h.

Referenced by countWords2(), destroySPatA(), and main().
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D.12.0.325 char* sPat_t::string

The pointer to the string for this word.

Definition at line 40 of file spat.h.

Referenced by countWords2().

D.12.0.326 int sPat_t::support

The number of times this word occurs in the sequence set.

Definition at line 46 of file spat.h.

Referenced by countWords2().

The documentation for this struct was generated from the following file:

* spat.h
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D.13 sSize_t Struct Reference

Data Fields

* int start
* int stop
* int size

Detailed Description

Definition at line 165 of file fastaSeqIO.c.

Field Documentation

D.13.0.327 int sSize_t::size

Definition at line 168 of file fastaSeqIO.c.

Referenced by ReadFSeqs().

D.13.0.328 int sSizet::start

Definition at line 166 of file fastaSeqIO.c.

Referenced by ReadFSeqs().

D.13.0.329 int sSize_t::stop

Definition at line 167 of file fastaSeqIO.c.

Referenced by ReadFSeqs().

The documentation for this struct was generated from the following file:

* FastaSeqIO/fastaSeqIO.c
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