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Demand response (DR) is a powerful tool to maintain the stability of the power system and
maximize the profit of the electricity market, where the customers engage in the pricing
scheme and adjust their electricity demand proactively based on the price. In DR
programs, most existing works are based on the assumption that the prediction of the
electricity demand from customers is always accurate and trustworthy, which will lead to
high cost and fluctuation of the electricity market once the prediction is obeyed. In this
paper, we design a reward and punishment mechanism to constrain customers’ dishonest
behaviors and propose a novel pricing algorithm based on the reward and punishment
mechanism to relax the assumption, which guarantees the total electricity demands of all
customers are within a secure range and obtain the maximum profit of the supplier.
Meanwhile, we obtain the optimal demand and provide a upper and lower bound of the
proposed price for the electricity market. In addition to a single type of customer, we also
consider multiple types of customers, each of whom has different characteristics to prices.
Extensive simulation results are constructed to demonstrate the effectiveness of the
proposed algorithm compared with other pricing algorithms. It also shows that the
average electricity consumption of a whole community is mostly affected by the
residents’ electricity consumption and the balance of the supply and all types of
customers is achieved under the proposed pricing algorithm.

Keywords: smart grid, supply and demand balancing, reward and punishment mechanism, optimization, pricing
algorithm

1 INTRODUCTION

Demand-side resource management (DSM) is a newmeans to explore and solve the balance between
the supply and demand of electricity at the customer end (Gellings, 1985). Demand response (DR), as
one of the important and powerful solutions to DSM, can achieve win-win results for both the
supplier and the customers where the customers are stimulated by the price to participate in the
maintenance of the electricity balance proactively and adjust its electricity consumption (Albadi and
El-Saadany, 2007; Deng et al., 2017; Paterakis et al., 2017; Wang et al., 2020). Therefore, it is
meaningful and promising to consider how to reasonably schedule the enthusiasm of customers to
participate in the power market supply and demand balance and avoid power waste.

Numerous efforts have been devoted to design price-based demand response, which can be
divided into three categories, including time-of-use pricing (TOU) (Celebi and Fuller, 2012; Wang
and Li, 2015; He et al., 2018; Cui and Yang, 2019), real-time pricing (RTP) (Mohsenian-Rad and
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Leon-Garcia, 2010; Roozbehani et al., 2012; Tsui and Chan, 2012;
Finck et al., 2020) and critical peak pricing (Herter, 2007; Herter
andWayland, 2010; Jang et al., 2015; Li et al., 2018). TOU pricing
scheme, where the price is designed by the time splintered into
multiple time-slots, is more widely used because it can reduce the
inefficiency of the single pricing scheme while being more
practical for customers than real-time pricing. In DR, the
control platform needs to design reasonable and effective
pricing schemes to reach certain objectives, such as profit
maximization and user utility maximization. For example,
under the TOU pricing scheme, Cheng et al. (2019) solved an
energy cost optimization problem in two-machine Bernoulli
serial line, and Zhou and Li( 2015) researched the
optimization problem of residential load scheduling and
achieved the minimization of electricity cost of the customers
and peak-valley difference of the supplier. To minimize the mean
price paid by the customers, Hung and Michailidis (2018)
discussed a general stochastic modeling framework for
customer’s power demand based on which TOU contract
characteristics can be selected.

Most existing pricing schemes are designed based on the
consideration of two sides (Li et al., 2011; Paschalidis et al.,
2012; Kii et al., 2014; Wang and Paranjape 2017). One is the
supply side that the fluctuation of the total electricity demand is
small and control platform designs the pricing scheme to achieve
the maximization of the profit based on the demand prediction.
The other is the demand side that the customers adjust their
electricity demand flexibly to minimize their cost with the given
pricing. Connecting two sides, there exists a tradeoff in achieving
profit maximization and keeping the balance of the supply and
the demand between the supplier and the customers. Meanwhile,
it is worth noting that the accurate prediction of the electricity
demand is critical to the design of the pricing scheme on the
above existing pricing schemes. Once the prediction is not right
or the customers obey their pre-committed electricity demand,
the cost will be higher if the pricing scheme is still fixed and there
exists lots of waste of the power.

Based on above problem, we consider to design a reward and
punishment mechanism (RPM) to constrain the behavior of the
customers such that all customers will reach their pre-set
electricity demand rigorously. Then, the dynamic pricing
scheme is proposed to achieve the win-win results of both the
supplier and the customers. The main contribution of this paper
is summarized as follows.

• We consider the problem of supply and demand balancing
from the perspective of the customer demand side rather
than the supply side and construct a novel and practical
balancing framework where the customers can adjust their
electricity demand proactively.

• We design a heuristic reward and punishment mechanism
(RPM) to stimulate the customers to participate in the
demand response scheduling spontaneously where the
phenomenon of breaking promises is avoided. Then, the
pricing algorithm is proposed such that the power tension is
relieved and the win-win result for both the supplier and the
customers is achieved.

• Extensive simulations are conducted to demonstrate the
effectiveness of the proposed algorithm. It shows that RPM
can decrease the cost of suppliers and customers
simultaneously than that without the involvement of
customers.

The rest of the paper is organized as follows. Section 2
introduces the system model and customer demand model in
smart grid. In Section 3, the heuristic pricing algorithm based on
RPM is proposed. Section 4 shows the simulation results. Finally,
we summarize our work in Section 5.

2 MODELING AND PROBLEM SETUP

2.1 System Modeling
Considering the potential customers with peak clipping demand
response in the community, the load reduction mode of such the
customers participating in demand response scheduling is
studied. There exist three characters including electricity
supplier (supply side), customers (demand side), and a control
platform in smart grid, as shown in Figure 1. For the supplier, it
generates the electricity for the customers and makes money. For
each customer, it purchases the electricity from the supplier to
complete its electricity requirement of production. The control
platform is an organization that designs responsible pricing and
relevant measures to balance the supply and demand Roozbehani
et al. (2010).

Assume that both the supplier and the customers can interact
with the control platform to exchange the price and the demand
information. In this paper, we divide the time of each day into N
periods where N � 24 for hourly based pricing. To achieve the
balance of the supply and the demand, the control platform
introduces the customers’ demand bidding behavior, i.e., the
customers send the pre-committed electricity demand to the
control platform and constrain its electricity consumption to
attain extra reward. At the same time, the reward and punishment
mechanism is designed to normalize the behaviors of the
customers such that the supply and the demand balancing can
be reached and the profit can be maximized.

2.2 Customer Demand Modeling
Due to different load properties and production requirements for
different typical customers, the electricity demand of customers
will differ from each other. Consider that there are mainly five
typical types of customers in a residential power system, which
include residents, charging pile, storage battery, illumination, and
elevators on the demand side. For each type of customer, we
model the random demand of a single type of customer i as di in
the next period. Since the demand is affected by the price, actual
load di ∈ R+ is a function of the price pk, which satisfies

di(pk) � zi(pk) + ei(pk), i � 1, 2,/, n, (1)

where pk is the unit price of electricity in k time period with
k � 1, 2,/,N , zi(pk) is the minimum electricity demand that
promises the normal production process, and ei(pk) is the flexible
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electricity demand including transferable load, interruptible load
and adjustable load. The flexible electricity demand is sensitive to
the electricity price, i.e., the electricity demand will fluctuate
alertly as the price varies.

In the electricity market, the customers engage in the
electricity demand response scheduling by clipping the
electricity peak to maintain the supply and demand in
balance, such as changing electricity usage patterns and
controlling electrical equipment. Assume that the customer i
sends its pre-committed electricity demand �di(k) to the control
platform at k time period. Let Jci be the profit function of the
customer i, which is given by

Jci � −∑N
k�1

pkdi(pk) − g[�di(k) − di(pk)], (2)

where convex function g(·) is a reward and punishment
function denoting the reward or cost of customers caused
by the pre-setting promise and its functional form will be
designed later. Herein, we use dollar value to evaluate
the consumption of practical electricity demand di(pk).
Without the involvement of customers in the adjustment of
electricity demand, di(pk) is fixed and the profit function is
decreased with the price pk. Once the flat price p*0 is set by the
control platform from the view of supply side, the less
incentive there is for customers to participate in the
demand response.

On the supply side, the supplier can generate a certain amount
of electricity s(k) in each time period, which is the maximum
demand that the supplier can provide. Through a two-way
interaction between the supplier and the customers in the
electricity market, the supplier provides the agreed electricity
demand �d

s
to serve in practice, which satisfies

�d
s � ∑n

i�1∑N
k�1�di(k)≤∑N

k�1s(k). The profit model of the

supplier, Js : R+ →R+, is modeled as

Js � ∑n
i�1
⎡⎣∑N

k�1
pkdi(pk)⎤⎦ − h⎡⎣�ds −∑n

i�1
∑N
k�1

di(pk)⎤⎦,
� �pd(p) − h[�ds − d(p)]

(3)

where �p is the average electricity price in a day, d(p) �∑n
i�1∑N

k�1di(pk) is the actual total load of the customers, and h :

R+ →R+ is a function denoting the cost caused by the deviation
between planning electricity demand �d

s
and actual load d(p) in

the community. It can be known that the profit of the supplier is
increasing with the payment of the customers while decreasing
with the electricity waste. There are many approaches to
modeling the profit of the supplier, e.g., considering the power
generation cost, and the modeling form will not influence the
basic design of the pricing algorithm based on the reward and
punishment mechanism in this paper.

2.3 Problem Formulation
The control platform, as a not-profit character who balances the
electricity market, determines how to design the reward and
punishment mechanism such that the electricity demand of the
customers is close to the pre-committed value and the win-win
results of the supplier and the customers are achieved, which are
also our objectives in this paper.We set the profit function of both
the supplier and the customers as the objective function. Let
E(·) � ∫+∞

−∞ f(·)(τ)τdτ denote the expectation of random
variables, where f(·) is the Probability Density Function (PDF)
of the random variable (·). The optimization problem in this
paper is formulated as follows

max
p

J(p) � E
⎧⎨⎩∑n

i�1
Jci + Js

⎫⎬⎭
� −E⎧⎨⎩h[�ds − d(p)] +∑n

i�1
∑N
k�1

g[�di(k) − di(pk)]⎫⎬⎭,

(4)

FIGURE 1 | A diagram of the power system model of the community.
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Note that the profit of the supplier should include the payment
of all types of customers because there are mainly five typical
types of customers in the community, i.e., the residential power
system, including residents, charging pile, storage battery,
illumination, and elevators. Furthermore, considering the
pricing depends on the total guaranteed demand �d

s
of all

customers, the pricing will be affected by the individual
customers. In fact, not all customer will obey their promised
power consumption, which will lead to the waste of electricity and
generate power fluctuations. Therefore, relevant policies are
urgently needed to balance the supply and the demand even
though there are customers who break their promises. Designing
the reward and punishment mechanism is a good method to
constrain the behavior of the customers. Then, the objective of
keeping the supply and demand balance while maximizing the
profit of supplier and customers can be achieved by designing the
reward and punishment mechanism. Some important notions in
this paper are shown in Table 1.

When the profit of the customers is maximized, the
optimization problem in this paper can also be simply
formulated as follows

max
p

Js � max
p

{�pd(p) − h[�ds − d(p)]}

3 THE DESIGN OF HEURISTIC PRICING
ALGORITHM

In this section, we first analyze the weakness of the lack of
customer involvement. Then, the reward and punishment
mechanism is designed to encourage the customers to adjust
their flexible demands to sustain the balance of the supply and
demand. Finally, we propose the pricing algorithm to maximize
the profit of the supplier and the customers.

3.1 High Cost Without Involvement of
Customers
Without the involvement of the customers, the profit function 2)
is rewritten as

Jci � −∑N
k�1

pkdi(pk). (5)

Then, the objective function ~J(p) without customers
involvement is obtained as

~J(p) � −E{h[�ds − d(p)]}
� −∫

∞

0
f cp(τ)h(�ds − z − τ)dτ, (6)

where z � ∑n
i�1∑N

k�1zi(pk) is the minimum total electricity
demand and f cp(τ) can be obtained by the historical data in
electricity market. On demand side, once the pricing is fixed,
f cp(τ) basically remains unchanged.

Compared with the involvement of customers, there exist two
problems deserving attention from the perspective of the supply
and demand balancing. One is that the profit function Jci (p) is not
sensitive to the price due to the large range of demand intervals,
which leads to the inaction of customers in terms of cutting
electricity computation. The other is that the supplier cannot
predict the total actual demand accurately owing to the
randomness of flexible demand, which causes the situation
that power is in short supply at peak times and wasted at
valley times. No matter from the view of customers or the
supplier, it is not conducive to the balance of supply and
demand and will produce high costs. Let J(p) − ~J(p) be the
profit gain with customers’ involvement compared to that
without customers’ involvement. Then, we have

J(p) − ~J(p) � −∫ ∞

0
f cp(τ)∑n

i�1
g[�di(k) − di(pk)]dτ.

Note that the difference of the profit gain with/without
customers’ involvement partly depends on the convex function
g(·), i.e., the reward and punishment mechanism. If all
customers keep their promises, the profit gain will be
maximized due to the reward. Otherwise, the more
customers break their promises, the lower the profit. Hence,
to overcome these problems, the reward and punishment
mechanism is designed in this paper to incentive the
customers such that the flexible total demand is constrained
by the supplier, i.e., the power demand is maintained within the
range of the power supply provided by the supplier and the
balance of the supply and demand is reached.

3.2 The Design of RPM With Involvement of
Customers
In this part, we design the dynamic reward and punishment
mechanism (RPM) by introducing convex function g(·) where
the flexible demand of the customers is affected by the setting of
g(·) and constrained in the allowable range provided by the
supplier.

The basic idea of RPM is that the control platform will give
certain rewards to those customers who keep their promise,
i.e., the practical demand is up to the pre-committed demand.
Otherwise, the punishment will be added to them so that the
behavior of the customers will be normalized in a controllable

TABLE 1 | Important Notations.

Symbol Definition

di The practical demand of customer i
�di The pre-committed demand of customer i
R+ The set of positive real number
�d
s

The optimal demand that the supplier wishes to serve
s The maximum demand that the supplier can support
Jci The profit function of customer i
Js The profit function of the supplier
g The reward and punishment function for customers
h The cost function for the supplier
E The expectation of random variables
f op The PDF of flexible demands under open-loop pricing
f cp The PDF of flexible demands under closed-loop pricing
p*
o The flat price under open-loop pricing
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range. As described earlier, the customers send the pre-
committed demand �di(k) to the control platform. Then, the
total flexible electricity demand δi(pk) for customer i satisfies

δi(pk) � �di(k) − di(pk), (7)

where di(pk) ∈ [zi(pk), s(k)], i.e., the actual load for customer i is
between the minimum electricity demand to meet production
and the maximum one that the supplier can provide in each time
slot, and δi(pk) is the deviation of actual electricity demand from
the guaranteed electricity demand.

According to the reward and punishment rule, the convex
function g(·) should meet the following conditions:

(1) If ∑N
k�1di(pk)< �di(k), g(·)≠ 0.

(2) If ∑N
k�1di(pk) � �di(k), g(·) � 0.

(3) If ∑N
k�1di(pk)> �di(k), g(·)> 0.

Therefore, the structure of RPM is established as follows

g[δi(pk)] � μδi(pk)2 − p*0δi(pk), (8)

where μ ∈ R+ is the reward and punitive weight parameter and p*0
is the optimal price set at the beginning. Taking the first-order
derivatives of Eq. 8, it follow that

zg[δi(pk)]
zδi(pk) � 2μδi(pk) − p*0, (9)

If δi(pk) ∈ [0, p*0/2μ], we have g[δi(pk)]< 0 and the customer i
has the maximum reward when δi(pk) � p*0/2μ. Taking the first-
order derivatives of Eq. 2 with respect to {di(pk)}Nk�1, one infers
that

zJci
zdi(pk) � −pk + 2μ[�di(k) − di(pk)] + p*0. (10)

Making Eq. 10 equal to zero, we determine that

di(pk)* � −pk − p*0
2μ

+ �di(k). (11)

The second-order derivative of Jci is

z2Jci
zdi(pk)zdi(pk’) � {−2μ, when k � k′,

0, when k≠ k′, (12)

where k′ is also the time-slot. Since μ ∈ R+, the diagonal elements
of the Hessian matrix are all negative, and the off-diagonal
elements are all zero. The Hessian matrix is negative definite,
meaning that {di(pk)*}Nk�1 is the optimal electricity demand for
customer i.

3.3 The Pricing Algorithm With RPM
Making full use of the knowledge including elasticity matrix of
electricity price, customer psychology and principle of statistics,
we can obtain an optimal pricing structure given by the certain
index. Based on the previous investigation and pertinent
literature, the existing pricing structure in He et al. (2018) is
shown as follows

pk �
⎧⎪⎨⎪⎩

pl, guaranteed demand,
pm, flexible demand,
ph, exceed demand.

(13)

where pl is a lower price set for the demand that the customers has
committed to use (i.e., �d

s
); pm is an intermediate price set for the

flexible electricity usage, which is in a given flexible interval,
where the flexible ratio of the interval is defined as ρ(ρ≥ 0); and
ph is a much higher price set for the electricity usage exceeding the
flexible interval. Specifically, the price of customers is always pl if
the electricity demand of customers is lower than the guaranteed
demand. In order to decrease the price so that the actual load
increases when the electricity demand of the customers is not up
to the planning value, we design a heuristic pricing algorithm
based on the reward and punishment mechanism and the above
pricing structure. The specific idea is as follows.

With Eq. 11, the profit of the supplier 3) is transformed as

Js � ∑n
i�1
⎡⎣∑N

k�1
pkdi(pk)*⎤⎦ − h⎡⎣�ds −∑n

i�1
∑N
k�1

di(pk)*⎤⎦. (14)

Given the optimal customer electricity demand as the function
of electricity price, we obtain the different price with respect to
actual load. The optimal price can be attained by optimizing the
following optimization problem

max
pk

Js(pk)
subject to pk,min ≤ pk ≤ pk,max

(15)

The constraints on prices result from the optimal electricity
demand. From Eq. 11, the price is also denoted by

pk � p*0 − 2μ[di(pk) − �di(k)]. (16)

Furthermore, the constraints on customer electricity demand
and price can be written as

zi(pk)≤ di(pk)≤ s(k), (17)

and

pk,min ≤ pk ≤ pk,max, (18)

where pk,min � max{pc, pp0 − 2μ[δi(pk)]max} and pk,max �
min{ph, pp0 − 2μ[δi(pk)]min}.

4 SIMULATION RESULTS

In this section, we conduct extensive simulations in MATLAB to
evaluate the performance of the proposed algorithm, and
compare it with the flat pricing algorithm, TOU block pricing
algorithm and real-time pricing algorithm (Samadi et al., 2010).

4.1 Example With a Single Type of Customer
In this part, we consider a single type of customer, i.e., residents,
where the characteristic of electricity demand for all residents is
almost identical. The electricity consumption of residents is
sensitive to the electricity price since they are more willing to
adjust their electricity demands to attain the maximum profit and
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decrease the cost. We adopt hourly based pricing and divide a day
into four time blocks. The time block division for TOU pricing is
shown in Table 2 (Yang et al., 2013). For different pricing
algorithm, their electricity demand differs from each other.
The comparison of price between flat price and TOU block
price is shown in Figure 2, and the pre-committed customers’
electricity demand {�di(k)}Nk�1 and the actual electricity demand
with flat price, TOU block price are shown in Figure 3. The
parameter of cost function of the supplier is set as

h[�ds − d(p)] � 0.1
∣∣∣∣∣∣�ds −∑n

i�1
∑N
k�1

di(pk)∣∣∣∣∣∣
� 0.1∑N

k�1

∣∣∣∣�di(k) − di(pk)∣∣∣∣
(19)

In real applications, the cost function is carefully estimated
based on historical data. The optimal price is set as p*0 � 0.110
assuming all residents obey the pre-committed electricity
demand at the beginning. Based on Eq. 15, the actual price is
adjusted dynamically by optimizing Eq. 15, which is influenced
by the deviation of actual electricity demand from the pre-
committed electricity demand. Through our proposed pricing
algorithm, the actual electricity demand of residents is almost
close to the planning electricity demand, and the difference
between actual load and pre-committed load is smaller than
that with the real-time pricing, which is shown in Figure 4.
Compared with the load at the flat price, TOU block price and
real-time price, the proposed pricing algorithm is effective to
stimulate the residents engaging in demand response to comply
with the pre-committed electricity demand. The pre-committed
electricity demand of all customers on average is 13.1KWh.
Furthermore, we compute the total load and the profit of the
supplier per household in a day, shown in Table 3. We find that
the actual load is close to the pre-committed electricity demand
while the profit of the supplier is maximized under the proposed
pricing algorithm compared to the TOU price at which the

TABLE 2 | The time block division for TOU pricing.

Period Hours Price ($)

Peak 2 : 00p.m. − 7 : 00p.m. 0.130
Semi-peak 5 : 00 a.m. − 2 : 00p.m., 7 : 00p.m. − 12 : 00 a.m. 0.130
Off-peak 12 : 00 a.m. − 5 : 00 a.m. 0.500

FIGURE 2 | Comparison of prices between the flat price and TOU price.

FIGURE 3 | Comparison of load between the flat price and TOU price.

FIGURE 4 | Comparison between the actual and pre-committed load
with different pricing algorithms.

TABLE 3 | Comparison of three pricing algorithm.

Pricing algorithm Total load (KWh) Profit ($)

Flat 14.600 1.673
TOU 14.480 1.433
Real-time 13.190 1.191
Proposed 13.115 1.443
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deviation of the load is bigger and the profit is lower.
Furthermore, the profit is higher under the proposed
algorithm although the total load is smaller than that with the
real-time price.

4.2 Example With Multiple Types of
Customers
Herein, we take the five types of customers mentioned earlier into
account. Besides residents, there are mainly charging piles,
storage batteries, illumination, and elevators on the demand
side in a residential power system. The above four types of
customers belong to the common electricity scope. However,
they have different characteristics of electricity demand, which is
worth further considering.

4.2.1 Charging Pile
For each charging pile, it takes 10 h to charge electric vehicles and
consumes a maximum of 1.5 kWh. The actual electricity demand
of the charging piles is sensitive to the number of rechargeable
electric vehicles. Moreover, the influence of the number of electric
vehicles charging on the electricity consumption of charging pile
is much greater than that of the change of electricity price. From
Figure 5, we can know that the change of electricity price does not
affect on the change of electricity consumption of the charging
pile. Considering charging is a long and necessary process for
those residents who have electric vehicles, the flexibility of
electricity demand is relatively low, as they have limited ability
to reduce or increase their total use of electricity. But they can
reschedule their use of electricity to reduce their electricity costs.

4.2.2 Storage Battery
Storage battery can be utilized when the electricity consumption
of all types of customers is not consistent with the pre-committed
electricity demand �di(k). Specifically, if the actual load is lower
than the planning value, the storage battery will store the
substandard amount of electricity to meet total demand so

that the required electricity consumption is achieved. If the
actual load is higher than the planning value, the storage
battery will release a portion of the power to residents to
ensure the safety of residents’ electricity consumption in
addition to the previously specified power consumption. From
Figure 6, the change of electricity price has a certain impact on
the electricity consumption of the storage battery. It is worth
noting that the ability to store and release electricity is limited.

4.2.3 Illumination
In public areas, the demand for electricity for lighting is
indispensable in the day, especially in the evening. For most
communities, the electricity consumption of lighting is less
during the day and more at night. Based on the property, we
can adjust the electricity demand properly by limiting the number
of electric lights in use. Moreover, the electricity demand is

FIGURE 5 | Load of charging pile between the flat price and TOU price. FIGURE 6 | Load of storage battery between the flat price and
TOU price.

FIGURE 7 | Load of illustration between the flat price and TOU price.
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affected by the price relatively low. Compared with the flexible
electricity consumption of the whole community, the proportion
of the flexible electricity consumption in the electricity demand of
illumination is too small, shown in Figure 7.

4.2.4 The Elevator
As for the elevator, it consumes 3kWh of power when it stands by
if no one uses the elevator during the day. Objectively speaking,
the electricity consumption depends on the number and density
of flow of residents. As long as residents need them, the elevator
must operate, and the electricity consumption is relatively
unaffected by electricity prices unless residents are aware of
decreasing the load. Therefore, as we can see in Figure 8, the
electricity demand of the elevator is also sensitive to the price
when residents are willing to control their behavior of using an
elevator.

In summary, the electricity consumption behavior of different
types of customers will affect the power consumption of the
whole community, but it only differs from the degree of influence.
As shown in Figure 9, it is the average electricity consumption
per household in a neighborhood with a flat price and a simple
TOU price. We can conclude that the average electricity
consumption of the whole community is mostly affected by
the residents’ electricity consumption, and the electricity
consumption of the elevator controlled by the residents’
artificial consciousness occupies second place on the total
power consumption of the community. However, customers
with more fixed electricity demand and little flexible power
consumption, such as charging pile and lighting, have little
influence on the composite power consumption characteristics
of the whole community, and their influence can hardly be
considered. In accordance with the storage battery whose
electricity demand is influenced by the sum of power
consumption of all types of customers, its flexible electricity
demand can be dynamically adjusted by the process of
charging and discharging and keeps within a tolerable range

(i.e., the difference between the sum of total power consumption
and the promised power consumption in a community).

From the above research results in a community, we know that
the customers, especially for residents, will proactively adjust
their actual demand such that the difference between pre-
committed demand and actual demand is limited in a
tolerable range under the proposed pricing algorithm. When
we consider the power consumption for industrial users, the
proposed algorithm is also applicable since the industrial users
are more sensitive to electricity prices. Thus, whether the
customers in the community or in the industry, all customers
will be normalized to keep their promises and the stability of
power system will be achieved with small tolerable fluctuation as
well as the profit maximization for the supplier.

5 CONCLUSION

In this paper, we relax the condition that all customers will reach
their pre-committed electricity demands and design a reward and
punishment mechanism to restrict the opportunistic behavior of
customers. Based on the reward and punishment mechanism, a
heuristic pricing algorithm is proposed, which guarantees the
total electricity demand is within a secure range and the stability
of the power system is achieved. With our proposed pricing
algorithm, the price motivates customers to adjust their electricity
demand so that the actual load is close to the pre-committed
electricity demand and the profit maximization of the supplier is
obtained. Meanwhile, we calculate the optimal demand for the
supplier to provide and find the upper and lower bound of the
proposed price so that the balance of the supply and demand is
maintained. Furthermore, considering multiple types of
customers, we find that the change of electricity prices does
have a huge impact on the electricity demands of the residents
while the electricity demand of the other four types of customers
including charging pile, storage battery, illumination and

FIGURE 8 | Load of the elevator between the flat price and TOU price.

FIGURE 9 | Average load of the community between the flat price and
TOU price.
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elevators are not sensitive to the prices. In the future, we will
continue to explore how to adjust all types of customers dynamically
to guarantee the pre-committed electricity demand so that the profit
of the supplier is maximized.Moreover, the demand responsemodel
needs to be further optimized.
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