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Campylobacter jejuni is one of the leading causes of gastrointestinal illness worldwide

and is mainly transmitted from chicken through the food chain. Previous studies have

provided increasing evidence that this pathogen can colonize and replicate in broiler

chicken during its breeding; however, its temporal kinetics in laying hen are poorly

understood. Considering the possible interaction between C. jejuni and gut microbiota,

the current study was conducted to address the temporal dynamics of C. jejuni in the

cecum of laying hen over 40 weeks, with possible alteration of the gut microbiota and fatty

acid (FA) components. Following oral infection with C. jejuni 81-176, inocula were stably

recovered from ceca for up to 8weeks post-infection (p.i.). From 16weeks p.i., most birds

became negative for C. jejuni and remained negative up to 40 weeks p.i. 16S rRNA gene

sequencing analyses revealed that most of the altered relative rRNA gene abundances

occurred in the order Clostridiales, in which increased relative rRNA gene abundances

were observed at >16 weeks p.i. in the families Clostridiaceae, Ruminococcaceae,

Lachnospiraceae, and Peptococcaceae. Lipidome analyses revealed increased levels

of sterols associated with bile acid metabolisms in the cecum at 16 and/or 24 weeks p.i.

compared with those detected at 8 weeks p.i., suggesting that altered microbiota and

bile acid metabolism might underlie the decreased colonization fitness of C. jejuni in the

gut of laying hens.

Keywords: Campylobacter jejuni, laying hen, long-term breeding, gut microbiota, lipidome

INTRODUCTION

Campylobacter jejuni is one of the most reported foodborne pathogens to cause gastrointestinal
illness worldwide (1, 2). Similar to the western countries, foodborne campylobacteriosis accounted
for 27.0% of the total cases of foodborne gastrointestinal illness reported in 2019 in Japan (3).
Several source attribution studies have provided increasing evidence that poultry and poultry
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products are among the main sources of human
campylobacteriosis (4–6), which highlights the necessity to
control this pathogen in poultry and poultry products.

The prevention of C. jejuni invasion and spread in poultry
farms is recognized as one of the key issues for reducing the
incidence of human campylobacteriosis because this pathogen
can achieve stable and asymptomatic chicken colonization
as commensal microbiota, thereby leading to bird-to-bird
horizontal transmission after the invasion of farms (7). Despite
the amount of research that has been performed on this subject,
it is likely that the source and transmission routes of C. jejuni
invasion in broiler farms have farm-to-farm variations (8).
Comparatively, many attempts have been made to reduce this
pathogen in the broilers during farm rearing using phage therapy
(9), feed and/or water supplementation with short- or medium-
chain fatty acids (FAs) (10–12), essential oils (13), organic acids
(14), and probiotics (15), as practical control measures. These
possible effectors are thought to have either direct or indirect
bactericidal effects; however, further study would be required to
clarify molecular basis of these approaches in terms of reducing
Campylobacter in the field.

Chickens as a food source are largely divided into broiler
chickens and laying hens. Broiler chickens are rapidly grown to
slaughter weight, which is mainly affected by genetic background,
digestive efficiency, and energy-use efficiency (16). During broiler
chicken breeding, C. jejuni starts to colonize the gut at around
3–4 weeks of age, and then spread in the flocks, thereby
becoming a burden at slaughter age (17–19). Similarly, in laying
hens, which are used mainly for egg production, C. jejuni also
exhibits increased colonization fitness between 0 and 4 weeks
post-infection (p.i.) after experimental oral administration (20);
moreover, both broilers and laying hens harbor C. jejuni at high
percentages in the gut at slaughter age (21). Although laying hens
are generally raised for longer periods compared with broiler
chickens, the temporal dynamics of C. jejuni colonization in
laying hens is not well-understood.

The recent advancements in the application of next-
generation sequencing have allowed the investigation of the
microbiome in specific organs of various animals. A recent
study reported an association between Campylobacter burden
and the microbiome in the cecum of broiler chickens (22); i.e.,
the authors reported a possible association between the decreased
abundance of Lactobacillus spp. and high Campylobacter loads,
raising questions pertaining to temporality and causation. In
addition, Videnska and co-workers found different compositions
of fecal microbiota between broiler chickens and laying hens at
30 or 61 weeks of age (23). However, they used chickens bred
at different ages under different environments and using distinct
feeds. It is likely that the fecal microbiota composition of laying
hens varies according to their age; the gut microbiota of young
hens are quite complex, whereas those of older hens are simpler
and consist mainly of the phyla Bacteroidetes and Firmicutes (24).
These observations suggest the alteration of the gut microbiota
in laying hens during long-term growth, thus underscoring the
need to monitor the temporal characteristics of gut microbiota
in laying hens during breeding under similar environmental and
feed conditions.

Based on this background, here we examined the dynamics
of C. jejuni and microbiota compositions in the cecum of
laying hens after experimental infection. After observing the
time-to-time differences in the colonization fitness of C. jejuni
and microbiota composition between 8 and 16 weeks p.i., we
performed comparative lipidome analyses between these time
points. Finally, we discussed their possible associations.

MATERIALS AND METHODS

Bacterial Strain and Media
The C. jejuni 81-176 strain was employed as the inoculum in the
chicken infection experiment. Bacteria were grown on Mueller-
Hinton agar (MHA) or in Mueller-Hinton broth (MHB) (Merck,
Darmstadt, Germany) at 42◦C for 20 h under microaerophilic
conditions using AnaeroPack-MicroAero system (Mitsubishi
Gas Chemicals, Tokyo, Japan), unless otherwise indicated.

Chicken Infection Experiment
Two-week-old female specific-pathogen-free (SPF) white leghorn
(Line-M) chickens (n= 38 in total) were obtained fromNisseiken
(Yamanashi, Japan) and introduced into our animal facility
at the ABSL2 level. Animals were fed in sterilized cages ad
libitum with sterile water and antibiotic-free pellet diets (CR,
Nisseiken) at 25◦Cwith lighting from 9 a.m. to 5 p.m. in biosafety
level 2 room. To prepare the bacterial inoculum, C. jejuni 81-
176 was microaerobically grown in MHB at 42◦C for 20 h
using AnaeroPack-Microaero (Mitsubishi Gas Chemicals, Tokyo,
Japan). The bacterial culture was then washed twice with PBS,
and adjusted to 6.84 log CFU per 1ml of PBS. One milliliter
aliquots of the bacterial suspensions was orally inoculated into
each bird via 18G-feeding gavage (Thermo Fisher Scientific,
Waltham, MA, USA). At 0, 2, 8, 16, 24, 32, and 40 weeks p.i., five
each animals were sacrificed per time point and samples of at least
1 g of cecum content were aseptically collected. Simultaneously,
whole blood was collected from animals at 2, 8, 16, and 24 weeks
p.i. (two each birds per time point), followed by centrifugation at
3,000 rpm for 5min, to collect sera. For the control, three animals
were fed for 2 weeks after their introduction, and their cecal and
serum samples were collected in a similar manner. The numbers
of C. jejuni from the cecum samples were enumerated according
to the method of ISO 10272-2: 2017 (25).

Experiments utilizing animals were approved by the board of
Animal Welfare and Ethical Committee of the National Institute
of Health Science with the approval number of 680.

Enumeration of C. jejuni in Chicken Ceca
Campylobacter jejuni 81-176 was enumerated in chicken ceca
essentially as described previously (20). Briefly, 1 g samples
of fresh cecum were suspended in 9ml of sterile buffered
peptone water (BPW; Merck, Darmstadt, Germany); 1ml
aliquots of the BPW suspension and its serial dilutions were
then spread on mCCDA agar plates (Oxoid, Hampshire, UK)
and microaerobically incubated at 42◦C for 48 h. The number of
typical colonies was counted, and at least five suspected colonies
per plate were subjected to real-time PCR to confirm C. jejuni, as
described previously (26). Fisher’s extract test was used to assess
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the statistical significance of the differences in the number of
bacteria between the groups (2 and 8 vs. 16–40 weeks p.i.).

DNA Extraction
Three representative chicken cecum samples were selected
at each time point, to exclude the samples with maximum
and minimum bacterial counts, and subjected to 16S rRNA
sequencing analysis. Aliquots of the BPW suspensions (1ml)
were centrifuged at 21,500 × g for 10min at 4◦C. The pellets
were then resuspended in 400 µl of homogenization solution
containing 2 µl of proteinase K (Promega, Madison, WI, USA).
After incubation at 37◦C for 10min, the samples were vortexed
for 5min with Zirconia beads (ZircoPrepMini; Nippon Genetics,
Tokyo, Japan) on a Disruptor Genie instrument (Scientific
Industries, Bohemia, NY, USA). After centrifugation at 11,000
× g for 5min, 100 µl of each supernatant were transferred
into 300 µl of lysis buffer (Promega). DNA extraction was then
carried out using a Maxwell Blood DNA kit in a Maxwell RSC
instrument (Promega). The concentration and quality of the
extracted DNA were measured on a Tape Station 4150 system
(Agilent Technologies, Santa Clara, CA, USA), and the samples
were stored at−80◦C until use.

16S rRNA Gene Sequencing
Barcoded semi-conductor sequencing analysis was performed
essentially as described previously (27). Briefly, the 16S rRNA
V5–V6 region sequences were amplified from 2 to 4 ng of
DNA from each sample by PCR using the primers 799f and
1115r (27). The PCR amplicons were purified using E-gel Size
Select 2% (Thermo Fisher Scientific) and Agencourt AMPure XP
magnetic beads (Beckman Coulter, Brea, CA). After measuring
DNA concentration using the Ion library quantification kit
(Thermo Fisher Scientific), equal quantities of tagged amplicons
were pooled. The pooled DNA samples (5 pM per sample)
were then subjected to the Ion Chef and Ion PGM (400
bases) sequencing platform using a 318v2 chip (Thermo Fisher
Scientific), according to the manufacturer’s instructions.

Analysis of Microbiome Composition Data
FASTAQ files generated here were processed using the CLC
Genomic Workbench ver. 20 (CLC-Qiagen, Aarhus, Denmark)
to remove barcode sequences and low-quality sequences, which
were defined as sequences with <275 bases, with ambiguous
bases and homopolymers >6 bases, or without a barcode and
a primer sequence. The 16S gene copy numbers were adjusted
to 100,000 per a sample and taxonomical classification was
carried out using the RDP pipeline (28) with an 80% confidence
threshold. Operational taxonomy units (OTUs) were assigned
using the average neighbor algorithm at 99% similarity on
the RDP program, and the obtained OTUs which was then
subjected to Permutational multivariate analysis of variance
(PERMANOVA) test to calculate the statistical significance
between three groups (group 1: 0 w p.i., group 2: 2 w and
8w p.i., group 3: ≥16w p.i.) by Bray-Curtis dissimilarity
index under 10,000 times permutation using in-house program.
Calculation of Shannon diversity indexes and Simpson indexes,
and principle coordinate analysis (PCoA) were performed

using Metagenome@KIN program (World Fusion, Tokyo,
Japan) accordingly. All raw sequences were deposited into the
DDBJ/GenBank database with accession number DRA009061 in
BioProject PRJDB8861.

Cytokine Assay
Semi-quantitative cytokine assays were performed using the
RayBio R© C-Series Gallus (Chicken) Cytokine Array C1 kit
(Raybiotech, Peachtree Corners, GA, USA), according to the
manufacturer’s instructions. For this assay, two representative
serum samples collected from laying hens at 2, 8, 16, and 24 weeks
p.i. were used in duplicate sets. Chemiluminescence detection
was performed using an ImageQuant LAS 500 system (Cytiva,
Marlborough, MA, USA). Densitometrical data analyses were
performed according to the guidelines of the manufacturer.

Lipidome Analysis
Sample Preparation
Each pair of cecum samples collected at 8 weeks p.i. (samples
8-1 and 8-2), 16 weeks p.i. (16-1 and 16-2), and 24 weeks p.i.
(24-1 and 24-2) (two samples per the time point) was subjected
to a lipidome analysis. To extract lipids, 0.5mg from each
sample were sonicated in 300 µl of homogenization solution
(CHCl3:methanol, = 1:2), followed by vortexing for 20min at
20◦C. The homogenate was then mixed with 20 µl of distilled
water and vortexed again prior to centrifugation at 1,670 × g for
10min at 20◦C. The resultant supernatant was used as a sample
in the subsequent analysis.

Analytical Equipment and Conditions
Three-microliter aliquots of the above-mentioned supernatants
were injected for non-biased lipidome analysis using UPLC
(Waters) in combination with Triple TOF 6600 (AB Sciex,
Framingham, MA, USA) essentially as described previously (29).
Mobile phase A consisted of 1:1:3 acetonitrile:methanol:water
(v/v/v) with 5mM ammonium acetate and 10 nM EDTA. Mobile
phase B was 100% isopropanol with 5mM ammonium acetate
and 10 nM EDTA. The LC column was an Acquity UPLC Peptide
BEH C18 column (50 × 2.1mm; 1.7µm; 130 Å). The gradient
was 0min, 0% B; 1min, 0% B; 5min, 40% B; 7.5min, 64% B;
12.0min, 64% B; 12.5min, 82.5% B; 19min, 85% B; 20min,
95% B; 20.1min, 0% B; and 25min, 0% B. The column flow
rate was 0.3 ml/min and the autosampler temperature was
5◦C. The column temperature was 45◦C. MS was performed
on a TripleTOF 6600 system equipped with a DuoSpray ion
source. All analyses were performed in the high sensitivity
mode for both TOF–MS and product ion scanning. Data-
dependent MS/MS acquisition (DDA) was used. The common
parameters in both positive and negative ion mode were as
follows: collision energy, 45V; collision energy spread, 15V;mass
range, m/z 140–1,700; temperature, 300◦C; and declustering
potential, 80 V.

Statistical Analysis
The statistical differences of bacterial numbers among the
different age groups (2, 8, 16, 24, 32, and 40 weeks p.i.) were
calculated by Steel-Dwass test, and P < 0.05 were considered
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FIGURE 1 | Temporal colonization fitness of C. jejuni 81-176 in the caecum of

laying hens. Each dot (gray) represents bacterial numbers detected per a gram

of caecum. Dotted line represents median at each sampling time point.

Statistical significance of the differences in the number of bacteria between the

groups (2 and 8 weeks p.i. vs. 16–40 weeks p.i.) by Fisher’s extract test.

to be significant. To compare 16S rRNA gene DNA sequence
data between 2/8 and 16/24/32/40 weeks p.i., relative abundances
were comparatively analyzed by a non-parametric joint ranked
Dunn test, and P < 0.05 were considered to be significant. The
MS/MS spectra of each fragment ranged from 70 to 1,700 m/z
obtained by lipidome analyses were analyzed using the MS-DIAL
program and MS-FINDER software (30) to identify and classify
lipids. The statistical significance of the differences among the
different age groups (8, 16, and 24 weeks p.i.) was calculated
by Bonferroni test and P-value of <0.05 were considered to
be significant.

RESULTS

Colonization Fitness of C. jejuni in the
Cecum of Laying Hens Over a Period of 40
Weeks
After oral infection with C. jejuni 81-176, the inocula were stably
recovered from the cecum of laying hens for up to 8 weeks
p.i.; the number of pathogens recovered was 7.08 and 6.90 log
CFU/g at 2 and 8 weeks p.i., respectively (Figure 1). At 16 weeks
p.i., C. jejuni were recovered only from two chickens (40%, 2/5
birds), with average means of 5.18 log CFU/g (Figure 1). At
24, 32, and 40 weeks p.i., C. jejuni was recovered from one
out of five birds, at 5.02, 5.65, and 4.30 log CFU/g, respectively
(Figure 1). Statistically, there was a significant difference (P =

0.0002) in the recovered bacterial burden between 2 and 8 weeks
p.i. (defined as C. jejuni colonizer) and 16–40 weeks p.i. (C.
jejuni excluser) (Figure 1). Thus, these data indicate thatC. jejuni
retained colonization at an early stage, but tended to have a
reduced colonization fitness after 16 weeks p.i. in the gut of
laying hens.

Alteration of the Cecum Microbiome of the
Laying Hens
After confirming the alteration in the colonization fitness of
C. jejuni in the cecum of the SPF laying hens, their bacterial
community structures (n = 3 each at 0, 2, 8, 16, 24, 32, and 40
weeks p.i.) were analyzed using a 16S rRNA gene sequencing
approach. The Ion Torrent sequencer output 217,473–333,238
reads, and after filtering, 160,209–235,614 reads were remained
(Supplementary Table 1). After normalization to 100,000 valid
reads per a sample, a total of 446, 160, 76, 43, and 27
taxa were finally detected at the genus, family, order, class,
and phylum levels, respectively, by RDP program. Shannon
diversity index showed the increased trend at >16 weeks p.i.
(Supplementary Table 1). In contrast, Simpson index resulted
in the decreased trends in the means at >16 weeks p.i.
(Supplementary Table 1). Permutational multivariate analysis
of variance analysis showed the significant differences of the
bacterial community between three groups (group 1: 0 w p.i.,
group 2: 2 and 8w p.i., group 3: ≥16w p.i.) at R2 of 0.375 and
P-value of 0.0001.

Phylum Level Comparison
Overall, the main bacterial phyla detected in the cecum of laying
hens were represented by Firmicutes, followed by Actinobacteria,
Bacteroidetes, and Proteobacteria, with means ± SD of 99.05 ±

0.65, 0.69 ± 0.59, 0.14 ± 0.14, and 0.07 ± 0.07%, respectively
(Figure 2A). Compared with 0 weeks p.i., the results obtained
at >16 weeks p.i. showed significant differences in the relative
abundance of Firmicutes (z=−2.36, P= 0.036) and Bacteroidetes
(z= 2.96, P= 0.006), while the abundance of C. jejuni colonizers
was not significantly different (Figure 2A), as assessed using the
non-parametric Dunn test. The Firmicutes/Bacteroidetes (F/B)
ratio, which is related to age in humans (31), was decreased in
a time-dependent manner, from 0 weeks p.i. (mean, 12,104) to
16 weeks p.i. (340), and gradually increased thereafter (mean
= 439, 535, and 648 at 24, 32, and 40 weeks p.i., respectively)
(Figure 2B).

Family-Level Comparison
Throughout the experimental periods, the family
Lachnospiraceae was predominant (41.20 ± 3.76%), followed
by Ruminococcaceae (34.63 ± 4.99%), and Carnobacteriaceae
(4.80 ± 3.77%) (Figure 2C and Supplementary Figure 1).
According to time point, the family Lachnospiraceae showed a
temporal decrease in relative abundance from 0 to 16 weeks p.i.;
in turn, it increased thereafter, up to 32 weeks p.i. (Figure 2C
and Supplementary Figure 1). The families Ruminococcaceae
and Erysipelotrichaceae showed an increased relative abundance
at 16 weeks p.i., as a plateau, thereby stably existing in
these samples (Figure 2C and Supplementary Figure 1). In
contrast, the families Carnobacteriaceae and Lactobacillaceae
exhibited an initial (up to 8 weeks p.i.) increase in their
relative abundance, to then decrease after 16 weeks p.i.
(Figure 2C and Supplementary Figure 1). Finally, the families
Peptostreptococcaceae and Clostridiales Incertae Sedis XII showed
a time-dependent increase in relative abundance (Figure 2C and
Supplementary Figure 1), whereas the family Enterococcaceae
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FIGURE 2 | Altered microbiome in the caecum of laying hens during infection experiments. (A) Time-dependent dynamics of representative bacterial phylum as

detected in caecal samples of laying hens. (B) Time-dependent dynamics of the Firmicutes/Bacteroidetes (F/B) ratio of the caecal microbiomes. (C) Time-dependent

(Continued)
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FIGURE 2 | dynamics of representative bacterial family as detected in caecal samples of laying hens. (D) Time-dependent dynamics of representative bacterial genera

as detected in caecal samples of laying hens. (E) Principle coordinate analysis (PCoA) plot of representative bacterial phylum as detected in caecal samples of laying

hens. Dots are shown in different colors by time points (0 weeks p.i., orange; 2 weeks and 8 weeks p.i., blue; >16 weeks p.i., green). (F) Fold changes in the relative

abundances of representative bacterial genera between >16 weeks p.i. and <8 weeks p.i. Bacterial genera exhibiting the increased relative abundance at >16 weeks

p.i. compared with 2/8 weeks p.i. are shown with green color, and those exhibiting the decreased relative abundances at >16 weeks p.i. compared with 2/8 weeks

p.i. are shown with red color, respectively.

showed a time-dependent decrease in relative abundance
(Figure 2C and Supplementary Figure 1).

Genus-Level Comparison
Among all tested samples, the genus Blautia was predominant
(7.08 ± 1.16%), followed by Clostridium IV (5.57 ± 1.85%),
Lactobacillus (4.80 ± 3.77%), and Gemmiger (4.72 ± 1.42%)
(Table 1, Figure 2D). According to sampling time point, before
C. jejuni infection (0 weeks p.i.), Blautia was the predominant
genus (7.65 ± 0.13%), followed by Gemmiger (6.46 ± 1.10%),
Weissella (4.63 ± 1.34%), and Faecalibacterium (4.52 ± 0.73%)
(Table 1, Figure 2D, and Supplementary Figure 2). At 2 and
8 weeks p.i., the predominant genera were Lactobacillus (8.98
± 4.25%), Blautia (8.30 ± 1.01%), Desemzia (5.76 ± 1.30%),
and Gemmiger (5.57 ± 1.21%) (Table 1, Figure 2D, and
Supplementary Figure 2). At>16 weeks p.i., Clostridium IV was
the predominant genus (6.96± 1.04%), followed by Blautia (6.33
± 0.68%), Ruminococcus (3.88 ± 0.69%), and Gemmiger (3.86 ±
0.87%) (Table 1, Figure 2D, and Supplementary Figure 2).

Characterization of the Time-Dependent Dynamics of

Cecal Microbiota
The principal coordinate analysis illustrated a distinct
distribution of the samples at >16 weeks p.i. compared
with those observed at 0, 2, and 8 weeks p.i. (Figure 2E).
A comparison of the relative abundance of each bacterial
genus between the groups (2 and 8 vs. >16 weeks p.i.) revealed a
significant alteration in the relative abundance of several bacterial
genera: a total of 12 and 9 genera exhibited a significant increase
or decrease in their relative abundance between the groups,
respectively (Table 1, Figure 2F). The 12 genera that showed an
increased relative abundance at >16 weeks p.i. were Clostridium
IV, Sporobacter (family Clostridiaceae), Acetanaerobacterium,
Ruminococcus, Subdoligranulum, Ethanoligenens,Anaerotruncus,
Papillibacter (family Ruminococcaceae), Shuttleworthia (family
Lachnospiraceae), Dehalobacter (family Peptococcaceae), and
Guggenheimella (family Clostridiales incertae sedis), all of
which were classified in the order Clostridiales (Table 1,
Figure 2F). In contrast, among the nine genera exhibiting
a time-dependent decrease in relative abundance, five
genera were in the order Clostridiales (Blautia, Gemmiger,
Fusicatenibacter, Clostridium XIVa, and Oscillibacter), whereas
the remaining genera (Lactobacillus, Desemzia, Bavariicoccus,
and Lacticigenium) were in the order Lactobacillales (Figure 2F
and Supplementary Figure 2). Thus, these data clearly suggest
time-dependent alterations of the chicken gut microbiota
composition throughout the experimental period.

Time-Course Dynamics of Cytokine
Production in the Serum of Laying Hens
The levels of representative chicken cytokines [IFN-γ, IL-10, IL-
12p40, IL-16, IL-21, IL-6, netlin-2, pentraxin-3 (PTX-3), and
RANTES (CCL5)] in the serum samples were comparatively
examined using a semi-quantitative membrane array. Compared
with the serum samples collected at 8 weeks p.i., the samples
obtained at 24 and 40 weeks p.i. exhibited no apparent differences
in all target molecules (Figure 3). In contrast, the samples
collected at 16 weeks p.i. exhibited a reduced level of cytokines,
with the exception of IL-21 (Figure 3). Thus, these data indicate
the presence of altered cytokine production at 16 weeks p.i.
compared with the other time points of the experimental period.

Lipid Metabolic Profiles in the Cecum of
Laying Hens
Untargeted LC-MS/MS analyses were conducted to
comparatively measure chick cecum lipids and lipid metabolites
in a total of six cecum samples collected at 8, 16, and 24 weeks
p.i. These comparative analyses revealed that 22 or 36 lipids were
significantly increased or decreased in the samples collected at
16/24 weeks p.i., respectively, compared with those obtained
at 8 weeks p.i. (Table 2 and Supplementary Figure 2). These
dynamics between the time courses were explained as follows.

Fatty Acids
Fatty acids (FAs), such as 27:1 and 28:0, as well as the FA ester
of hydroxy fatty acid (AH2FA) 4:0/25:0 and acyl α-hydroxy fatty
acid (AAHFA) 5:0/26:0, the latter of which was recently identified
as a gut-microbiota-specific lipid (30), were present at higher
levels at 24 weeks p.i. compared with 8 weeks p.i. (Table 2). In
contrast, FAs 17:0, 18:0, 19:1, 20:3, 24:1, and 24:2, as well as α-
hydroxy fatty acids [FA(aOH)] (18:0, 19:0, 24:1, 22:1, and 19:0),
and FA(O) 18:0, showed decreased levels in the samples collected
at 16 and/or 24 weeks p.i. compared with those obtained at
8 weeks p.i. (Table 2). Moreover, FAs 16:0 and 18:0 showed a
continued decrease at 24 weeks p.i. compared with 16 weeks p.i.
(Table 2).

Glycerolipids
Among the glycerolipids, triacylglycerolipid (TG) (C45:1),
and monoglycosyl diacylglycerol (MGDG) (18:0/20:2) were
increased at 24 or 16 weeks p.i. compared with 8 weeks p.i.,
although the increase of the latter was temporally detected
only at 16 weeks p.i. (Table 2). Other glycerolipids, such as
monogalactosyldiacylglycerol (MGDG) (sn2+O) (16:0/16:0),
acylmonoglycosyl diacylglycerol (AMGDG) (16:1e/17:0/18:1),
AMGDG (18:1e/14:0/18:1), glycerophosphomonoglycosyl
monoacylglycerol (GPMGDG) (34:1e), GPMGDG (34:3e),
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TABLE 1 | Relative abundance of bacterial genera (%) in the cecum of laying hens.

Genus 0 weeks p.i. 2/8 weeks p.i. 16/24/32/40 weeks p.i.

Mean ± SD (%) Mean ± SD (%) P-value to Mean ± SD (%) P-value to *

0w p.i. 0w p.i. 2/8w p.i.

INCREASED RELATIVE ABUNDANCE AT >16 WEEKS P.I. COMPARED WITH 2/8 WEEKS P.I.

Clostridium IV 3.91 ± 0.80 3.61 ± 0.37 1.0000 6.96 ± 1.04 0.0488 0.0017

Sporobacter 0.49 ± 0.35 0.58 ± 0.40 1.0000 3.66 ± 0.96 0.0239 0.0030

Acetanaerobacterium 0.83 ± 0.18 1.22 ± 0.26 1.0000 2.37 ± 0.40 0.0036 0.0107

Ruminococcus 0.89 ± 0.16 0.86 ± 0.13 1.0000 1.62 ± 0.21 0.0488 0.0017

Saccharofermentans 0.79 ± 0.13 0.89 ± 0.23 1.0000 1.44 ± 0.34 0.0255 0.0138

Subdoligranulum 1.08 ± 0.19 0.91 ± 0.17 0.8886 1.27 ± 0.25 0.9690 0.0127

Shuttleworthia 0.64 ± 0.09 0.76 ± 0.12 1.0000 1.11 ± 0.21 0.0085 0.0208

Ethanoligenens 0.53 ± 0.16 0.62 ± 0.16 1.0000 1.14 ± 0.35 0.0225 0.0265

Anaerotruncus 0.41 ± 0.08 0.39 ± 0.10 1.0000 1.03 ± 0.14 0.0488 0.0017

Papillibacter 0.40 ± 0.18 0.42 ± 0.06 1.0000 0.84 ± 0.17 0.0144 0.0044

Dehalobacter 0.16 ± 0.03 0.21 ± 0.08 1.0000 0.85 ± 0.29 0.0085 0.0063

Guggenheimella 0.15 ± 0.02 0.37 ± 0.31 1.0000 0.76 ± 0.13 0.0344 0.0452

DECREASED RELATIVE ABUNDANCE AT >16 WEEKS P.I. COMPARED WITH 2/8 WEEKS P.I.

Blautia 7.65 ± 0.13 8.30 ± 1.01 1.0000 6.33 ± 0.68 0.0989 0.0048

Lactobacillus 4.37 ± 3.03 8.98 ± 4.25 0.5700 2.81 ± 1.43 1.0000 0.0226

Gemmiger 6.46 ± 1.10 5.57 ± 1.21 1.0000 3.86 ± 0.87 0.0324 0.0361

Desemzia 4.19 ± 2.19 5.76 ± 1.30 0.4308 3.54 ± 1.16 1.0000 0.0265

Fusicatenibacter 3.60 ± 0.39 3.78 ± 0.54 1.0000 2.89 ± 0.41 0.1791 0.0095

Clostridium XlVa 2.31 ± 0.40 2.39 ± 0.39 1.0000 1.63 ± 0.24 0.0939 0.0036

Oscillibacter 2.30 ± 0.66 2.18 ± 0.34 1.0000 1.64 ± 0.26 0.1408 0.0286

Bavariicoccus 1.24 ± 0.30 1.00 ± 0.16 1.0000 0.45 ± 0.08 0.0111 0.0053

Lacticigenium 1.24 ± 0.32 0.79 ± 0.26 1.0000 0.25 ± 0.06 0.0085 0.0063

Bacterial genera exhibiting >0.50% of relative abundance on average in total are listed. p.i., post-infection.
*P-values were calculated using a non-parametric joint ranked Dunn test.

Bold values represent P-values of <0.05.

diglycosyldiacylglycerol (DGDG) (16:0/18:2), DGDG (18:0/18:1),
diglycosyl 1-alkyl, 2-acylglycerol [DGDG(e)] (18:1e/18:1),
DGDG(e) (17:1e/18:1), TG (51:4), TG (60:4), and diacylglycerol
(DG) (16:0/19:1), were decreased at 16 and/or 24 weeks p.i.
compared with 8 weeks p.i. (Table 2).

Phospholipids
Among the phospholipids, monolysocardiolipin (MLCL)
(16:0/16:0/18:2), cardiopin (CL) (28:1e/30:1e), CL (30:1e/33:3e),
CL (30:1e/30:3e), dilysocardiolipin (DLCL) (16:0/16:0),
DLCL (16:0/18:2), hemi bis (monoacylglycero) phosphate
(HBMP) (18:0/18:1/g18:1), HBMP (14:0/16:0/18:0), and
phosphatidyl glycerol (PG) (18:2/18:2) were increased at
16 or 24 weeks p.i. compared with 8 weeks p.i. (Table 2).
Conversely, phosphatidyl ethanolamine (PE) (14:0/16:0/18:0),
monoacylglycerophosphocholine (LysoPC) (20:0), and
diacylglycerophosphoethanol (PE) (18:0) were decreased in
the samples at 16 or 24 weeks p.i. compared with 8 weeks p.i.
(Table 2).

Sphingolipids
Phytoceramide and acyl phosphoglycerol were increased at
24 weeks p.i. compared with 8 weeks p.i. (Table 2). In

turn, acyl ceramide (AcylCer) (phyto_aOH) (t18:1/24:0/2:0)
and N-palmitoyl-D-erythro-sphingosylphosphorylcholine were
decreased at 24 weeks p.i. compared with 8 weeks p.i. (Table 2).

Sterol Lipids, Prenol Lipids, and Others
Sterol ester (StE) (18:0), StE (18:1), sitosterol (SISL) G1, and
stigmasterol G1 were increased in the samples at 16 or 24 weeks
p.i. compared with 8 weeks p.i. (Table 2). Conversely, 2-amino
ethanesulfonic acid, taurine (19:1), and dehydro cholesterol were
decreased in the samples at 16 and/or 24 weeks p.i. compared
with 8 weeks p.i. (Table 2). Among the prenol lipids, coenzymes
Q9H2, Q11, and Q11H2 exhibited decreased levels at 16 and/or
24 weeks p.i. compared with 8 weeks p.i. (Table 2). Finally,
tocopherol was decreased at and 24 weeks p.i. compared with 8
weeks p.i. (Table 2).

DISCUSSION

The current study investigated the temporal colonization fitness
of C. jejuni in the cecum of laying hens after experimental
infection. In parallel with the decreased bacterial colonization
fitness observed after 16 weeks p.i., compositional changes in
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FIGURE 3 | Cytokine production in the sera of laying hens after experimental C. jejuni infection.

the gut microbiota and lipids were observed, suggesting their
possible correlations.

After invasion, C. jejuni initializes and prolongs gut
colonization in the gut of broiler chicken up to the slaughter age
(generally <8 weeks) (17–21). At <2 weeks of age, this pathogen
is rarely detected in commercial chicken flocks, regardless of
the production system (32, 33), which implies that a biological
mechanism to resist colonization may be present in young
chicks. As a possible explanation for this phenomenon, maternal
antibodies might be partly responsible for the absence of
Campylobacter in young chicks (34).

It is noteworthy that C. jejuni could maintain the colonization
for up to 8 weeks p.i., which is the general time point for
the slaughter of broiler chickens; however, C. jejuni exhibited
a decrease in its colonization ability thereafter and up to
40 weeks p.i. As the feed and water supplied in this study
contained no antibiotics and no compositional changes, it could
be considered that such a decreased colonization ability might
be triggered by the maturation of the host immune response
or certain interactions with gut microbiota occurring during
the experimental period. Further studies would be required
to clarify that all laying hens might exhibit similar trends
for Campylobacter colonization, throughout the quantitative
detection of this pathogen.

Our data revealed a temporal decrease in the production
of IFN-γ, IL-10, IL-12p40, IL-16, IL-6, netrin-2, PTX-3, and

RANTES (CCL5) at 16 weeks p.i., and constant production of
IL-21 in the serum. This host immune response is considered to
be one of the imperative factors affecting C. jejuni colonization,
although it remains controversial; Pielsticker et al. reported that
triggering an innate and acquired immune response, especially
in the very early phase, affected bacterial colonization (35).
However, in most experimental studies, contradictory data
regarding the immune response in chickens following C. jejuni
colonization were reported; one study contended that the chicken
immune system is inefficiently activated, which might contribute
to the persistent colonization of C. jejuni in the chicken gut
(36, 37). In contrast, another study showed the presence of
an inflammatory response following Campylobacter infection in
chickens (38). The occurrence of such immune responses upon
C. jejuni colonization might be due to the supposed genetic
heterogeneity of both the chicken hosts and C. jejuni (39).
Our data suggest that the laying hens used in this study might
not represent an animal with a significant immunomodulatory
response against C. jejuni infection during long-term grow-
out. It remains unknown why the laying hens showed temporal
decreases in the production of most cytokines at 16 weeks p.i.
It is possible that, at this stage, certain physiological shifts occur
in laying hens, as reflected in the visual observation of coloring
of combs and male–female discrimination (data not shown). In
contrast, IL-21, which is a T-cell-derived cytokine that modulates
T cell, B cell, and natural killer cell responses and regulates the
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TABLE 2 | Summary of altered lipids in the gut of laying hens between 8, 16, and 24 weeks p.i.

Category Lipid component1* Average P-value1,2

Blank 8 w 16 w 24 w 8w vs. 16 w 8w vs. 24 w 16w vs. 24 w

INCREASED AT 16 WEEKS AND/OR 24 WEEKS P.I. (16 W/24W) COMPARED WITH 8 WEEKS P.I. (8W)

Fatty acid

metabolite

FA (27:1) 21 2,905 11,031 12,297.5 0.123 0.003 0.594

FA (28:0) 64 1,220.5 4,682.5 4,289.5 0.012 0.026 0.186

AAHFA (5:0/26:0) 59 560.5 2,532.5 4,867 0.426 0.032 0.371

AH2FA (4:0/25:0) 22 713.5 1,605 2,449 0.411 0.036 0.432

CmpE (26:0) 53 335.5 1,167 1,462 0.249 0.010 0.549

Glycerolipid TG (45:1) 203 336.5 800 798.5 0.370 0.049 0.997

MGDG (18:0/20:2) 11 439 1,652.5 596 0.041 0.316 0.044

Phospholipid MLCL (16:0/16:0/18:2) 0 237 892.5 452.5 0.006 0.069 0.038

CL (e/e)(28:1e/30:1e) 11 2,024.5 2,591.5 5,378.5 0.568 0.038 0.099

CL (e/e)(30:1e/33:3e) 0 1,178.5 1,298.5 2,452.5 0.835 0.024 0.222

CL (30:1e/30:3e) 0 125 219 296.5 0.140 0.013 0.198

DLCL (16:0/16:0) 16 3,637.5 17,440 10,366 0.175 0.045 0.327

DLCL (16:0/18:2) 0 1,853 5,436 2,487 0.002 0.628 0.200

HBMP (18:0/18:1/g18:1) 11 100 237 331.5 0.017 0.240 0.496

HBMP (14:0/16:0/18:0) 0 158.5 341.5 424.5 0.081 0.047 0.289

PG (18:2/18:2) 16 1,353.5 2,083.5 2,179 0.007 0.620 0.950

Sphingolipid CerPI (d44:0) 0 158 700.5 990 0.056 0.039 0.060

AcylCerPG (t18:0/16:0/15:0) 0 361 2,758.5 2,101 0.052 0.041 0.324

Sterol lipids StE (18:1) 930 50,481.5 79,812.5 118,907.5 0.286 0.030 0.200

StE (18:0) 236 4,940 9,740.5 11,280 0.298 0.007 0.646

SISL G1 157 30,164.5 64,382 49,213 0.049 0.067 0.181

Stigmasterol G1 91 5,295 8,517 7,433 0.275 0.047 0.603

DECREASED AT 16 WEEKS AND/OR 24 WEEKS P.I. (16 W/24W) COMPARED WITH 8 WEEKS P.I. (8W)

Fatty acid

metabolite

FA (17:0) 2,265 1,335,104 909,822.5 368,852.5 0.619 0.038 0.543

FA (18:0) 151,628 6,089,247 4,739,226.5 2,362,394.5 0.711 0.036 0.546

FA (19:1) 0 555,886 95,071.5 64,656.5 0.018 0.004 0.246

FA (20:3) 23 10,567.5 2,823.5 2,095 0.123 0.039 0.717

FA (24:1) 348 246,110.5 127,115 94,823.5 0.088 0.009 0.309

FA (24:2) 35 21,430 13,737.5 12,986 0.298 0.044 0.887

FA(O) (18:0) 67 93,970 20,635 16,832 0.067 0.043 0.862

FA(aOH)(16:0) 164 1,059,824.5 315,401 86,486 0.173 0.135 0.034

FA(aOH)(18:0) 241 270,228 175,671 65,140.5 0.098 0.025 0.020

FA(aOH)(19:0) 40 29,623.5 23,000 12,582.5 0.120 0.020 0.059

FA(aOH)(22:1) 21 35,900.5 22,324.5 20,211.5 0.061 0.015 0.252

FA(aOH)(24:1) 66 389,587.5 212,609.5 181,281 0.060 0.046 0.515

Glycerolipid MGDG(sn2+O)(16:0/16:0) 44 24,594.5 8,656.5 11,126 0.018 0.033 0.301

AMGDGM(e) (16:1e/17:0/18:1) 0 1,169.5 467 344.5 0.037 0.045 0.146

AMGDG(e)(18:1e/14:0/18:1) 0 972.5 538.5 417.5 0.043 0.020 0.244

GPMGDG(e)(34:1e) 34 23,957 11,863.5 10,900 0.189 0.044 0.870

GPMGDG(e)(34:3e) 75 5,551 3,790 4,866 0.041 0.768 0.655

DGDG(16:0/18:2) 21 1,161 1,267 728.5 0.705 0.023 0.228

DGDG(18:0/18:1) 0 643.5 442 308 0.421 0.018 0.554

DGDG(e)(18:1e/18:1) 0 6,650 2,918 1,610 0.244 0.015 0.563

DGDG(e)(17:1e/18:1) 0 712.5 337.5 170.5 0.172 0.025 0.391

ADGDG(16:0/18:1/g16:0) 0 746.5 630 415.5 0.457 0.048 0.255

TG(51:4) 51 3,101 4,343.5 1,829 0.702 0.037 0.492

TG(60:4) 0 1,959 1,898.5 1,046 0.934 0.035 0.372

(Continued)
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TABLE 2 | Continued

Category Lipid component1* Average P-value1,2

Blank 8 w 16 w 24 w 8w vs. 16 w 8w vs. 24 w 16w vs. 24 w

DG (16:0/19:1) 338 68,852.5 38,753.5 31,749 0.025 0.117 0.571

Phospholipid PE(16:0/16:1) 11 364.5 262.5 765.5 0.016 0.531 0.459

Lyso PC (20:0) 190 2,531.5 2,373.5 427 0.893 0.014 0.284

PE (18:0) 134 1,619.5 1,485 373 0.844 0.014 0.286

Sphingolipid AcylCer(phyto_aOH)(t18:1/24:0/2:0) 0 4,412.5 2,732 708.5 0.281 0.010 0.226

3-O-AcylSM (d36:1/16:0) 0 579 427 188 0.210 0.082 0.006

Sterol lipid Taurin (19:1) 16 962.5 532.5 157.5 0.049 0.041 0.133

dehydro cholesterol 856 2,425.5 3,853.5 1,408.5 0.212 0.007 0.127

Prenol lipid Coenzyme Q9H2 155 78,620.5 11,985.5 14,275.5 0.049 0.031 0.747

Coenzyme Q11 88 17,740 7,237.5 3,685 0.089 0.014 0.299

Coenzyme Q11H2 0 3,928.5 952.5 757.5 0.077 0.035 0.805

Others Tocopherol 76 16,937 6,859.5 5,661.5 0.003 0.040 0.459

p.i., post-infection.

*1 The abbreviation of each lipid component is defined in Supplementary Table 2.

*2 P < 0.05, indicated in bold.

Th17/Treg balance in mice (40), exhibited no clear alteration at
16 weeks p.i. Further studies are required to evaluate the possible
role of T-cell-mediated immunity in the colonization of C. jejuni
in laying hens.

Gut microbiota play a pivotal role in conferring resistance to,
or promoting, infection by pathogenic microorganisms (41). In
fact, the administration of a large dose of streptomycin disrupted
normal gut microbiota, thereby increasing susceptibility to
Salmonella infection (42). Similarly, germ-free chickens were
more susceptible to C. jejuni colonization compared with
chickens possessing conventional intestinal microbiota (43).
Campylobacter jejuni is likely to cooperate and compete with
diverse commensal microbiota, thus becoming part of a well-
balanced gut microbial community (44). Johansen and colleagues
also found that C. jejuni colonization affected the development
and complexity of the microbial communities in the ceca of
chicken up to 17 days of age (45). A more recent study
revealed that the experimental inoculation of C. jejuni into 1-
day-old broiler chicks modulated the cecal microbial community
structure, with a higher abundance of Firmicutes at the expense
of the phylum Bacteroidetes and other taxa at 3–4 weeks p.i. (46).
Accordingly, our data also showed that the phylum Firmicutes
predominated at 0 weeks p.i. (2 weeks age), but was replaced
thereafter with the representatives of Bacteroidetes at 8–16
weeks p.i. (10–18 weeks of age). At >16 weeks p.i., among
the phylum Bacteroidetes, the genus Blautia showed negative
associations with C. jejuni colonization. Including the genus
Blautia, all genera in the phylum Bacteroidetes are likely to
express enzymes for the biosynthesis of propionate, one of the
main short-chain fatty acids (SCFAs) in the chicken cecum
(47), which suggests a possible alteration of lipid metabolism
in the cecum of laying hens during the experimental period.
Referring to a recent study that demonstrated the age-dependent
dynamics of cecal microbiota in laying hens (24), our data
provided the idea that experimental infection with C. jejuni

might not affect the age-dependent dynamics of cecal microbiota
composition drastically during the experimental period, whereas
age-dependent shifts in the gut microbiota might affect the C.
jejuni colonization properties. To clarify this issue, our future
study would be performed to include unchallenged control
groups at different ages, in same animal lot.

Regarding the bacterium-to-bacterium interplay, a positive
correlation between the relative abundance of the genus
Clostridium and C. jejuni colonization in the gut of broiler
chickens has been reported (48). Thismight be due to the fact that
C. jejuni acts as a hydrogen sink, thus leading to improved growth
conditions for some Clostridia through increased fermentation
(49) and organic acid production, which can be used by C.
jejuni as an energy source. As a consequence, C. jejuni infection
affects the metabolic end products derived from the intestinal
microbiota of chickens. In support of this notion, a recent study
showed that butyrate, one of the SCFAs that are biosynthesized
by a series of Clostridium species (50), is directly sensed by C.
jejuni through the BumSR two-component signal transduction
system (51).

It is likely that gut microbiota affect intestinal lipid
metabolism, including microbiota-dependent changes in bile
acid metabolism (52). To obtain further information on the
altered microbiota dynamics and C. jejuni colonization fitness,
we performed comparative lipidome analyses using samples
collected at three different time points (8, 16, and 24 weeks p.i.).

Among the elevated lipids at >16 weeks p.i., we found
increased levels of phytosterols, such as stigmasterol and
sitosterol, which can reduce the reabsorption of bile acids and
cholesterol in the gut, thereby increasing fecal lipid levels (53),
at 16 weeks p.i. compared with 8 weeks p.i. Considering that
bile acids are steroid acids that are synthesized in the liver
and then conjugated with a taurine residue to give anions
called bile salts (54), our data demonstrating the decreased
levels of sterol lipids (i.e., taurine and dehydro cholesterol) and
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sphingolipids (i.e., phytoceramide), which are components of
bile acids (55, 56), at 16/24 weeks p.i. compared with 8 weeks
p.i. suggest that bile acid reabsorption might be altered at these
time points. In cecal digesta of goats that were fed a high-
grain diet, the level of stigmasterol was negatively correlated with
the abundance of the genus Clostridium, Turicibacter, SMB53,
and Pseudoramibacter (41). Together with our microbiome
data, potential negative associations between phytosterols and
Clostridium/C. jejuni colonization in laying hens should be
considered. The temporal quantification of bile acids in the gut
and gallbladder would clarify the kinetics of bile acid synthesis
and absorption and provide a link with their impact on gut
microbiota in a future study.

Among the glycerolipids, the cecum samples collected at
16/24 weeks p.i. showed increased levels of TG (45:1) and
MGDG (18:0/20:2), while an additional 13 glycerolipids were
decreased compared with those obtained at 8 weeks p.i. MGDG
is metabolized by Streptococcus pneumoniae, with conversion
between DGDG and MGDG (57). It could be considered that
certain enzymatic reaction processes in S. pneumoniaemight also
be present in other bacterial genera; thus, lipid characterization
in representative gut microbiota might contribute to the
deciphering of the bacteria associated with the glycerolipid
alteration observed here. Moreover, PE, which was decreased at
16/24 weeks p.i., was distributed in the representative human gut
microbeAlistipes finegoldii in the phylum Bacteroidetes (58). This
is not surprising because of the age-dependent decrease in F/B
ratio observed.

Among other lipids, coenzymes (i.e., coenzyme Q9H2)
showed decreased levels at 16 weeks p.i. compared with 8
weeks p.i. Considering the age-dependent reduction in plasma
glucose detected in broiler chickens (59), the decreased levels of
coenzymes might be part of the age-dependent dynamics.

In summary, we demonstrated that the long-term breeding of
laying hens decreased C. jejuni colonization in the cecum after
experimental infection. Comparative analyses of the alterations
of gut microbiota and lipid components at 16 weeks p.i. or later
unveiled possible negative associations between C. jejuni and
several gut microbiota, such as those in the genera Blautia and
Clostridium at younger or older age, respectively. It is likely that
the chicken generally reachesmaturity and starts laying eggs from
21 weeks old on average (60), which is close to the age at 16
weeks p.i. (18 weeks of age) when we observed the alterations
in C. jejuni colonization, microbiota, and lipid compositions
in the gut of laying hens. Thus, it could be considered that
the altered phenomenon’s observed in this study might be
mainly due to certain host physiological change(s) accompanied
with the host maturation. Our future study of the interplay

between these gut microbiota and bile acid metabolism, as well
as C. jejuni colonization, in laying hens is expected to improve
our understanding of the possible interactions between these
parameters, thereby leading to the discovery and establishment of
control strategies for the reduction of C. jejuni intestinal carriage
at poultry-production stages.
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