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End-stage neurogenic bladder usually results in the insufficiency of upper urinary

tract, requiring bladder augmentation with intestinal tissue. To avoid complications of

augmentation cystoplasty, tissue-engineering technique could offer a new approach to

bladder reconstruction. This work reviews the current state of bioengineering progress

and barriers in bladder augmentation or reconstruction and proposes an innovative

method to address the obstacles of bladder augmentation. The ideal tissue-engineered

bladder has the characteristics of high biocompatibility, compliance, and specialized

urothelium to protect the upper urinary tract and prevent extravasation of urine. Despite

that many reports have demonstrated that bioengineered bladder possessed a similar

structure to native bladder, few large animal experiments, and clinical applications have

been performed successfully. The lack of satisfactory outcomes over the past decades

may have become an important factor hindering the development in this field. More

studies should be warranted to promote the use of tissue-engineered bladders in

clinical practice.
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INTRODUCTION

The clinical manifestation of urinary incontinence or upper urinary tract impairment due to
gradual decline in bladder function can be caused by congenital and acquired conditions (1) (such
as bladder exstrophy, neurogenic bladder, and malignancies). Bladder augmentation is a feasible
method to prevent renal impairment for patients with low compliance and/or high bladder pressure
resulting in vesicoureteral reflux, hydronephrosis, and impaired upper urinary tract function when
conservative treatment fails.

Currently, the augmentation or replacement of bladder with intestinal tissue is the gold standard
method for end-stage neurogenic bladder with upper urinary tract damage (2). However, various
complications, such as metabolic disturbance, mucus production, urolithiasis, infections (3), and
even malignancy (4), are associated with bladder augmentation with intestinal tissue. For the
purpose of avoiding complications and encouraging extensive surgical applications, there is an
urgent need for alternative and innovative therapeutic approaches of tissue engineering.

Over the last two decades, the accumulated knowledge of bladder histology and function
(Figure 1) as well as the progress we made in tissue-engineering technology have promoted the
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FIGURE 1 | Bladder structural anatomy and histologic characteristics. The bladder walls consist of four layers: urothelium; lamina propria; muscular layer and serosal

layer. The urothelium, composed of umbrella cells, intermediate cells, basal cells, basal membrane lines the bladder lumen and forms the urine-body barrier. The

lamina propria is a connective tissue layer that contains nerves and vessels. The detrusor muscle layer consisted of longitudinal and transverse muscles that provides

structural support to the bladder and facilitates its physiological functions of filling and emptying. The serosal layer covering the external surface is the outermost layer.

development of bladder regeneration. Tissue-engineering
technology for bladder augmentation or regeneration holds
strong potential in patients with neurogenic bladder who
developed renal impairment by decreasing surgical time
and reducing complications compared with conventional
enterocystoplasty. Tissue-engineering technology could
provide novel treatment options for bladder augmentation
by regenerating epithelium and muscle using a variety of
biomaterial scaffolds, along with autologous, or allogeneic
cells and growth factors. This approach might lead to the
regeneration of partial bladder tissue or construction of a
neo-bladder (5).

Despite that tissue engineering appears promising for
bladder augmentation, there has been limited application
in clinical settings. In this review, we discussed the current
status of bioengineered bladder with particular emphasis
on the biomaterials and cells being used. Furthermore,
we highlighted the current problems of bioengineered
bladders and suggested future research directions of
bioengineering approaches for bladder augmentation
and reconstruction.

METHODS

A literature search was performed in PubMed on December
1, 2020, with the following search terms used: (“bladder” [All
Fields] AND “tissue engineering” [All Fields]) OR (“printing”
[All Fields] AND “bladder” [All Fields]) OR (“3D printing”
[All Fields]). Initial screening using titles and abstracts was
performed to identify relevant studies. Selected records were
further categorized into clinical studies, animal experiments, and
review articles, in order to identify the status and problems of
tissue-engineered bladder augmentation or reconstruction. We
also proposed an innovative method of bioengineered bladder by
combining the available tissue engineering technologies.

Bladder Augmentation by Tissue
Engineering
In recent years, tissue-engineering technology has been
dedicated to the fabrication of functional bladder and has
achieved remarkable achievements. Two main determinants
of augmentation or reconstruction of bioengineered bladder
include the growth and maturation of cells on the matrix and the
formation of temporary or applicable scaffolds to achieve vesical
functions (6). Scaffolds support cell growth and interaction,
nutrient and oxygen transport, and metabolic wastes discharge.
Besides, biomaterials can hold adequate mechanical properties at
the preliminary stage of tissue engineering bladder augmentation
and degrade at the later stage.

Acellular scaffolds and cellular scaffolds, two major methods
of tissue engineering, are most widely used in experiments to
induce bladder regeneration (7). Acellular scaffolds, composed
of natural or synthetic biomaterials, can act as a temporary
support for cells to activate spontaneous regenerative mechanism
in bladder. Cellular scaffolds, including biomaterials and cells,
correspond to the histology structure of bladder. Both cellular
and acellular scaffolds in vitro and in vivo (8) have revealed
excellent biocompatibility.

(1) Natural Bladder Scaffolds
Natural acellular scaffolds are typically derived from bladder
acellular matrix (BAM) (9) or small intestine submucosa
(SIS) (10). The composition, microstructure, and mechanical
properties of these materials are similar to the native tissues
(11). Furthermore, these collagen-rich scaffolds maintain cell
ingrowth and differentiation to accomplish the regeneration of
bladder wall, and slowly degrade after the implantation without
immunogenic rejection (12).

Up to now, the promising SIS scaffolds for urinary bladder
augmentation have been widely applied in bladder augmentation
both pre-clinically and clinically with different outcomes. The
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study of bladder augmentation in patients with exstrophy
showed that acellular scaffolds acting as the temporary support
could allow spontaneous regeneration of urothelial cells (UCs).
However, smoothmuscle cells (SMCs) (13), which were incapable
of regeneration, could only be generated by a cell-based
approach. Lu et al. (14) compared muscle-derived cells (MDCs)-
SIS to SIS for tissue-engineered bladder reconstruction. The
results indicated that MDCs migrated throughout SIS, which
developed to muscle layers, and the areal strain of MDCs-
SIS were significantly increased compared with SIS alone. The
comparison of SIS acting as a 3D scaffold with and without
SMCs and UCs were carried out by Zhang et al. (15). The study
demonstrated that both groups presented moderate-to-heavy
adhesion and shrinkage in grafts, calcification, and formation
of bone. BAM, derived from bladder submucosa, is another
great biomaterial for bladder regeneration. BAMwas first applied
to bladder regeneration in vivo rat model study in 1997 (16).
The study results suggested that all bladder wall components
involving UCs and SMCs facilitated BAM scaffold ingrowth and
obtained normal bladder capacities. Coutu et al. (17) compared
the outcomes of bladder replacement or augmentation using
SMCs-seeded and SMCs-unseeded BAM and reported normal
bladder capacity in SMCs-seeded BAM. Based on the results
of existing literature, researchers believed that SIS and BAM
implanted with cells, an ideal option for bladder augmentation,
acquired better functional outcomes than scaffolds without cells
in animal studies. Therefore, both materials were used in initial
human bladder augmentations.

Naturally derived biodegradable materials, such as hyaluronic
acid (HA) (18) and alginate (19), have also been used for
bladder regeneration. However, infection, stone formation,
rupture, and graft fibrosis caused by long-term invasion of
urine have prevented their widespread clinical application. In
the last 5 years, matrix self-assembled by mesenchymal cells (20)
and anchored mesenchymal cell-seeded collagen gels (21) have
been proved to improve the normal urothelial differentiation.
However, these results need to be confirmed in vivo.

(2) Synthetic Bladder Scaffolds
Bladder synthetic scaffold composed of polymers, which
regulates the physical and chemical properties through
material and synthetic reactions, is also one of the most
hopeful bioengineering approaches to bladder regeneration.
Synthetic scaffolds can provide better mechanical endurance
and dimensional stability compared with biological scaffolds.
Biocompatible, degradable, and non-toxic tissue engineering
grafts have been certified by the Food and Drug Administration
(FDA) for human subjects (22, 23).

It has been shown that the use of synthetic materials
alone for urinary bladder regeneration was associated with a
certain degree of complications, such as graft shrinkage, leakage
urine (24), collapse, and cicatrization (24). Jayo et al. (25)
reported that poly (lactic-co-glycolic acid) (PLGA) biodegradable
scaffolds have been successfully seeded with UCs and SMCs
for bladder reconstruction. This study clearly showed that
tissue-engineered neo-bladder, which delivered autologous UCs
and SMCs to biodegradable polymer, was able to approach

or even exceed the pre-cystectomy bladder capacities at 6
months after transplantation. Furthermore, the compliance
of neo-bladders was similar to the pre-cystectomy values,
and a normal cellular organization, including a trilayer of
urothelium, submucosa, and muscle, was reported by the bladder
biopsy (25).

Other potential synthetic materials of bladder scaffolds
include polyanhcydride, polyester, and silk fibroin (26). However,
the lack of bioactive factors of natural biological tissue is one
of the obvious disadvantages of synthetic bladder scaffolds.
Bioactive factors play important roles in proliferation, migration,
and differentiation of several types of cell (27). Furthermore, the
acidic by-products produced by the degradation process may
reduce the pH value around synthetic scaffolds and provoke
minor foreign body rejection.

(3) Composite Bladder Scaffolds
Composite biomaterials that combined the merits of at least two
biomaterials with different properties have distinct advantages
in many physical and chemical properties. Integrating the
characteristics of biomaterials from different sources into
composite bladder scaffolds not only revealed the limitation
of applying one particular biomaterial, but also exploited the
benefits of composite biomaterials.

Composite scaffolds with properties of natural acellular
collagen matrix and PGA polymer have set the expectation
in tissue engineering of hollow organs and tissues (28).
The mechanical strength similar to the native bladder
and the biological environment suitable for tissue growth
were achieved through the creation of the hybrid construct.
Acellular matrix, the inner side of bladder cavity supporting
UCs ingrowth, acts as a barrier. On the outside, synthetic
polymer, designed with large pores, accommodates SMCs and
maintains the structure. It has been reported that plastic-
compressed collagen-poly (lactic acid-co-ε-caprolactone)
(PLAC) hybrids could be a possible material for engineered
bladder scaffolds without inflammatory reaction, suggesting
that SMCs and UCs proliferate well in composite bladder
scaffolds (29). Recently, BAM coated with electrospun
PLGA has been used as a unique biomaterial for tissue
engineering (30). The PLGA material boosted the mechanical
tension of BAM and reduced the shrinkage of grafts. Normal
bladder capacity was maintained due to the mixture of two
material properties.

Notably, composite scaffolds used for tissue-engineered
bladder are in their early development. Composite scaffolds
carrying several cell types seem to be a potential option for tissue
engineering of hollow organs such as bladders. Future studies will
focus on safety evaluations and efficacy assessments in animal
models (31).

In addition, nanotechnology can transform the surface
energy of implanted materials to alter initial protein adsorption
events important for promoting tissue regeneration (32). Due
to the small nanometer surface sizes as well as excellent
biocompatibility properties, the study of bladder regeneration
materials based on nanosurface features has become a hotspot.
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(4) Cells and Environment
As mentioned above, studies have demonstrated that cell-
seeded scaffolds could activate self-regeneration of bladder tissue
and were ideal for inducing urinary bladder wall regeneration
compared to cell-free scaffolds. Currently, major approaches to
tissue engineered bladder augmentation with implanted cells
involve in the use of stem cells and urothelial cells.

Autologous urothelial cell implantation is one of the ideal
options for tissue engineering since it prevents inflammation
and rejection associated with non-autologous tissue. As shown
in Figure 2A, urothelial cells obtained from the biopsy material
first proliferate in the cell culture incubator; the proliferated
cells are subsequently reseeded into a tissue-engineered scaffold;
eventually, the scaffold with cells was reimplanted into the
same host (33). The first clinical study of tissue engineered
autologous UCs and SMCs in patients needing cystoplasty was
performed by Atala et al. (5). Over the last decades, several
studies of urothelium seeded in various types of scaffolds, such
as natural scaffolds (15), synthetic scaffolds (25), and composite
scaffolds (34), have been conducted. However, tissue engineering
seeded with cells derived from autologous bladder is probably
not suitable for patients with cancer or neurogenic bladder.
Cells from neurogenic bladder could alter genetic or pathologic
phenotypes of the cultured grafts, including proliferation,
adhesion, or decreased cell contractility (35). Moreover, the
problem that UCs from urologic patients have a very few
proliferative potential can not be ignored (36).

In addition to autologous urothelial cells, stem cells may
be an alternative for tissue engineering bladder augmentation
(Figure 2B). Mesenchymal stem cells (MSCs), originating from
bone marrow or adipose tissue, have been shown to have positive
effects on tissue engineering in experimental animals (37–39)
and safety and feasibility in clinical practice (40). Additionally,
induced pluripotent stem cells (iPSCs), which were generated
artificially by reprogramming somatic cells, can differentiate
into urothelial cells or smooth muscle cells under specific
microenvironment (41). However, embryonic stem cells (ESCs),
which are able to self-renew and differentiate into any type of
cell, have been shown to transdifferentiate into teratomas, thus
still remain intense medical and ethical controversies for human
application (42).

Microenvironment plays an important role in proliferation,
migration and differentiation of several cell types. Cells
implanted on scaffolds are strongly impacted by different
microenvironment factors, including extracellularmatrix (ECM),
growth factors, and chemical and physical stimuli (6). ECM
with structural proteins as the main component acts as a
repository for growth factors and other nutrients, in order to
distribute bioactive components. Growth factors and nutrients
promote the regeneration of bladder tissue, resulting in enhanced
angiogenesis and better ingrowth of UCs and SMCs (43).
Another novel approach to simulate the microenvironment
of cell growth is to combine bioengineered structures with
bioreactors in vivo or in vitro. Bioreactors can promote
tissue maturation and enhance mechanical properties by
controlling microenvironment, such as pH, temperature, oxygen
concentration, and mechanical environment.

(5) Bladder Tissue Engineering in Clinical
Settings
In our review of clinical studies regarding tissue engineering for
bladder regeneration to date, none of the results was satisfactory.
The initial clinical trials of bladder reconstruction using plastic
molds were considered as the prototype for tissue-engineered
bladder research. However, the outcomes of clinical trials in the
past decades indicated that plastic molds (44), gelatin sponges
(45), preserved dog bladders (46), and lyophilized human dura
(47) used in bladder reconstruction were associated with varying
degrees of complications. The generated new-bladders have
developed obvious fibrosis and underwent shrinkage over time
(1). Other common complications were vesicoureteric reflux,
upper urinary tract dilatation, recurrent infections, and urine
leakage. As a result, the high rates of complications and mortality
have led to the abandonment of these trials. Despite that
gelatin sponges and Japanese paper sprayed with nobecutane
have obtained satisfactory results in the initial phase of bladder
augmentation, further clinical trials should be warranted in order
to confirm their efficacy and safety (1).

From 2012 to 2014, several studies utilized porcine SIS for
bladder augmentation. The pilot experience in 5 exstrophic
patients showed that bladder capacity and compliance increased
30% at 6 months and remained stable at 18 months (48).
The study of Liao for bladder augmentation reported there
were modest increases in bladder capacity at 6 months of
postoperative follow-up, and about 40% of the patients indicated
low satisfaction for the new-bladder function (49, 50). In another
Phase II study in children and adolescents with spina bifida,
the results also showed that implantation of biodegradable
scaffolds with autologous cells did not significantly improve
the bladder compliance or capacity, and reported serious
adverse events exceeding an acceptable safety criterion (51).
In consequence, the long-term follow-up demonstrated that
bladder capacity and compliance was poorly increased to obtain
significant clinical benefit, and most of authors suggested
that enterocystoplasty could not be substituted by SIS or
biodegradable scaffolds (48–52).

Challenges
The goal of tissue engineering is to create a bioengineered
bladder as a substitute for the natural one in vitro. Tissue
engineering applications in partial bladder reconstruction or
augmentation seem to be a promising way. However, clinical
applications of bladder tissue engineering have not been
established currently. Clinical studies still face serious challenges
due to technical limitations and unstable results. According to
previous studies, several factors of tissue engineering used in
bladder augmentation remain to be further resolved:

(1) Mechanical Properties
The mechanical behavior of the graft, which is similar to the
native one, is particularly important in bladder regeneration
process (53). Tissue engineering technique used for bladder
augmentation is designed to prevent progressive renal disease
by increasing bladder volume, decreasing bladder pressure, and
improving compliance and continence (50). The mechanical
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FIGURE 2 | Tissue engineering strategies for autologous urothelial cells and stem cells. (A) UCs and SMCs obtained from the biopsy material first proliferate in the cell

culture incubator; then the proliferated cells are subsequently reseeded into a tissue-engineered scaffold; eventually, the scaffold with cells was reimplanted into the

same host. (B) Firstly, stem cells proliferate in the cell culture incubator; subsequently, the proliferated cells are seeded into a tissue-engineered scaffold; eventually,

the scaffold with cells was implanted into the host. UCs, urothelial cells; SMCs, smooth muscle cells.

properties of bowel wall, the gold standard for bladder
reconstruction, are considered to be the basis of ongoing research
(13). Accordingly, creating a graft that can mimic the mechanical
and functional properties of bladder wall becomes the core of
tissue engineering. Current biotechnology struggles to explore an
ideal biomaterial that canmimic the structure, biomechanics, and
physiology of natural bladder.

(2) Small Graft Size
Clinical applications of bladder augmentation with tissue-
engineering technology have not been determined due to the
inconsistent functional results of bladder grafts. Atala et al. (5)
and Zhang and Liao (49), used tissue-engineered grafts of 70–
150 cm2, reported positive outcomes. Graft size in other studies
was either smaller or missing. Five-year follow-up of the above
studies showed an average increase of 275.6 (275.6 ± 159.5)
ml in maximum bladder volume, but not enough to mitigate
the progression of upper urinary tract disease (50). Although a
larger area of tissue-engineered grafts for bladder augmentation
may yield satisfactory results, for a large bladder graft, extensive
cell regeneration occurs in the peripheral area of the graft,
while the center is lack of organized smooth muscle bundles
and urinary epithelium (54). In a rabbit bladder augmentation
model with 70% partial cystectomy, neither normal bladder
capacity nor organized smooth muscle bundles was restored by
SIS with or without autologous SMC seeding (55). The efficacy of
large tissue-engineered grafts for bladder augmentation surgery
remains to be further explored.

(3) Vascularization
Rapid neovascularization is essential for graft survival and organ
structure and function. However, a major obstacle for tissue
engineering lies in the formation of post-implantation vascular
network being capable of perfusing the regenerated tissue (56).

Similarly, one of the major barriers for large graft survival
is vascularization. Tissue regeneration may be hampered by
deficient oxygen and nutrition and inadequate removal of waste
products, leading to the loss of bladder function and necrosis. It
was reported that spontaneous angiogenesis, omental coverage,
or application of exogenous angiogenic factors could enhance
capillary growth of the graft, but these processes were still not
reliable to maintain the blood supply of large grafts (7). In order
to overcome this obstacle, one of the available choices is to
use 3D bio-printing technology to design and generate vascular
network (57, 58). In addition, it is also a promising option to
use the reseeded stroma technology to form a 3D capillary-like
network (59).

(4) Fibrotic Reaction of the Graft
Implantation of bladder scaffolds with different biomaterials
typically triggers fibrotic reaction of the graft to varying degrees
in vivo (60). Urine was considered to be one of hazard
factors made the urinary bladder unfavorable for induced
regeneration. In the early stages of urothelium regeneration
when the epithelial protective barrier was dysfunctional, urine
developed a deleterious effect on the cellular components of the
tissue-engineered bladder. Local fibrosis primarily occurred in
urinary bladder and gradually develop to abdomen, eventually
causing abdominal adhesion or even mechanical obstruction
and intestinal necrosis. Thus, suppressing fibrotic reaction and
transplant rejection of the bioengineered new-bladder are major
tasks. Previous studies have also demonstrated that it was
necessary to synergistically inhibit multiple pro-fibrotic cascade
reactions (61, 62). According to current results, cells and anti-
fibrotic agents incorporated within the scaffold would be effective
options to overcome graft with fibrosis (7, 13). Beside, urine-
derived stem cells, which are more resistant to urine than other
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FIGURE 3 | Schematic of in situ in vivo bioprinting taking the case of bladder augmentation. (A) UCs and SMCs were harvested from biopsy material; (B) UCs and

SMCs proliferated in vitro; (C) Bioinks containing UCs and SMCs; (D) in situ in vivo bioprinting after bladder augmentation with biomaterial. UCs, urothelial cells;

SMCs, smooth muscle cells.

FIGURE 4 | Schematic of in situ in vivo bioprinting inside a bladder.

types of cells, may be an ideal candidate for tissue-engineered
bladders (63).

(5) Innervation
Restoration of the bioengineered new-bladder innervation is
one of the most challenging issues (64). Innervation of the
bioengineered neobladder is essential for graft function (normal
urine storage and urination) and long-term survival. It should
be noted, however, that patients with neurogenic bladder
undergo bladder augmentation, in order to expand urinary
bladder capacity and decrease bladder pressure. Patients can
maintain the remaining renal function by emptying their
bladder regularly with intermittent catheterization (65). In this
context, it is necessary to maintain normal shape and sufficient
volume of tissue-engineered bladder, without reconstructing the
innervation of urinary bladder.

Future Prospects
Bioprinting is an encouraging technology for organ and
tissue manufacturing, compared with other tissue engineering
techniques, because it theoretically allows the close mimic of
the anatomic structure. Several factors may predict the expected
success of 3D bioprinting as follows:

(1) Compared with traditional bioengineered manufacturing
methods, 3D bio-printing can provide structures with scaffold
microstructures and cell arrangements that have been prepared
by designers. The scaffold offers a more suitable growth
environment for seed cells by strengthening cells contact
and cell–cell and cell–matrix interaction (66); (2) Bioprinting
scaffolds possess suitable pore size, porosity, and interpore
connectivity (67), which is conducive to adhesion, growth, and
differentiation of seed cells; (3) Bioprinting technology is likely
to resolve the problem of angiogenesis in bioengineered tissues.
Ten years ago, the application of improved thermal inkjet printer
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has demonstrated the ability to print capillaries (68). Generating a
network with hollow structure with sacrificial filaments becomes
another feasible method (69), which can be obtained by injecting
vascular endothelial cells into the hollow network. Up to now,
there aremany types of tissue and organ, apart from cardiac tissue
and liver, which are trying to vascularize.

Currently, the major trend of clinical treatments includes
minimally invasive and natural orifice transluminal endoscopic
surgery. In recent years, in situ bioprinting technology as
a hot spot has received worldwide attention (70). Albanna
et al. (71) reported that printing autogenous skin cells into
skin wounds could speed up the healing of large wounds.
The concept of living bioprinting in situ in vivo proposed by
Xu et al. (72) makes up for the shortcomings of traditional
biological printing technology. The miniature 3D bioprinting
device they developed, which is similar to a gastroscope, can be
mounted on the endoscope and perform in situ inkjet printing
at the injured spot of stomach wall after being inserted into
gastral cavity. This technique provides a new idea for the
diagnosis and treatment of gastric wall injury. In situ bioprinting
may have several advantages: (1) Compared with bioprinting
in vitro, this bioprinting approach may be more compatible
with the microenvironment in which the seed cells grow (70).
Suitable microenvironment in vivo is beneficial to cell adhesion,
proliferation and differentiation; (2) In situ in vivo bioprinting
may obviate the necessity of bioreactors, a group of sophisticated
engineering simulation biosystems. The peritoneal cavity and
bladder wall, as the bioreactors to create a natural environment
for cellular growth and differentiation, can also prevent graft
inflammation and fibrosis caused by ischemic injury, as the graft
is transferred from the bioreactor system to the surgical location
(73, 74).

Based on the above benefits, the combination of 3D
bioprinting technology and in situ in vivo bioprinting may
be the main research direction in the future. This emerging
technology would undoubtedly make substantial progress in
tissue engineering for clinical application (72). Inspired by
the study of bioprinting in situ at the gastric wound site,
we hypothesize that micro-intravesical 3D bioprinting is a
promising option for bladder augmentation surgery. After
screening for the appropriate biomaterial of scaffolds for bladder

augmentation, a novel micro bioprinting platform will be used
for in situ in vivo bioprinting at the implant location through
urethra (Figures 3, 4). This approach takes the advantage of
internal environment, with the pelvic cavity serving as a natural
bioreactor to promote angiogenesis and reduce fibrotic reaction
(73). Moreover, we consider that transurethral bioprinting can
print repeatedly to repair the damaged and detached cells,
thereby promoting the growth of new bladder and reducing
the associated complications, such as atrophy, perforation,
and rupture.

CONCLUSION

Tissue engineered grafts aimed to substitute enterocystoplasty
will become in future new gold standard of reconstructive
urology. However, the application of tissue-engineered bladder
augementation in clinical practice remains a great challenge. This
work presents an innovative method for tissue engineering of
bladder augmentation, but the conclusions of this scheme remain
to be further confirmed. We are confident that, step by step,
bioprinting will eventually be an effective clinical protocol for
bladder amplification in the near future.
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