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The development of accurate and efficient potential energy functions for the molecular
dynamics simulation of metalloproteins has long been a great challenge for the theoretical
chemistry community. An artificial neural network provides the possibility to develop
potential energy functions with both the efficiency of the classical force fields and the
accuracy of the quantum chemical methods. In this work, neural network potentials were
automatically constructed by using the ESOINN-DP method for typical zinc proteins. For
the four most common zinc coordination modes in proteins, the potential energy, atomic
forces, and atomic charges predicted by neural network models show great agreement
with quantum mechanics calculations and the neural network potential can maintain the
coordination geometry correctly. In addition, MD simulation and energy optimization with
the neural network potential can be readily used for structural refinement. The neural
network potential is not limited by the function form and complex parameterization
process, and important quantum effects such as polarization and charge transfer can
be accurately considered. The algorithm proposed in this work can also be directly applied
to proteins containing other metal ions.
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INTRODUCTION

Zinc ions are important protein cofactors and play important roles in maintaining the structural
stability of proteins, signal transduction, and enzyme catalysis. There is plenty of evidence that shows
that zinc-containing proteins are associated with many human diseases, such as cancer, rheumatism,
and Alzheimer’s disease. Since the d-orbital of Zn2+ is fulfilled with electrons, its coordination mode
is very flexible. In aqueous solutions, Zn2+ and water molecules can form an octahedral six-
coordinated complex. In proteins, Zn2+ usually forms a tetrahedral four-coordinate complex with
cysteine, histidine, and aspartic/glutamic acids. Molecular dynamics simulation based on empirical
potential energy functions (force fields) is one of the main theoretical methods to study the structure
and dynamic properties of zinc-containing proteins. Unfortunately, most existing force fields are
generally incapable of properly describing the interactions between metal ions and proteins. In most
cases, one uses a charged ball to represent zinc ions. Its interaction with other molecules is described
by electrostatic and van der Waals potentials. However, a series of works have found that this
treatment is problematic. In a recent study of Ahlstrand et al. (Ahlstrand et al., 2017), 2ns MD
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simulation for a zinc-protein S100A12 was performed with the
CHARMM27 force field. After simulation, the coordination
mode of Zn2+ changed from a tetrahedral structure
composed of three imidazole rings and a carboxyl group in
the crystal structure to a six-coordinate structure with two water
molecules squeezed into the metal binding group. The same
phenomenon was also found when we simulated the matrix
metalloproteinase three using the Amber ff99SB force field. It
looked like these two force fields overestimated the interaction
between Zn2+ and negatively charged groups in protein.
Ahlstrand et al. also evaluated the interaction energies
between Zn and its ligands in complexes that mimic protein
binding sites using quantum mechanics (QM) and several force
fields. The calculated results show that non-polarizable force
fields cannot reproduce even the relative order of the QM
interaction energies. Nowadays, it has been widely accepted
that it is impossible to use only electrostatic and van der Waals
terms to correctly simulate the interaction between Zn2+ and
proteins. Quantum effects, especially polarization and charge
transfer must be considered. In the past two decades, several
polarizable force fields for zinc proteins were developed, such as
the SIBFAmodel of Gresh et al. (Gresh, 1995; Gresh et al., 2011),
the CTPOL model of Lim et al. (Sakharov and Lim, 2005;
Sakharov and Lim, 2009), the SLEF model of Wu et al. (Li
and Merz, 2014), the AMOEBA model of Ren et al. (Wu et al.,
2010; Wu et al., 2011), the 12–6–4 LJ-type non-bonded model of
Li and Merz (Li and Merz, 2014), the ABEEM of Yang et al.
(Yang and Cui, 2007), the Drude oscillator model of Roux et al.
(Lemkul et al., 2016), a new CTmodel by Rick et al. (Soniat et al.,
2015), and the QPCT model developed in our previous work.
(Zhu et al., 2013) Some of these force field also consider the
charge transfer effect, which can be seen from their names.
However, although the performance of these force fields clearly
improved, (Li and Merz, 2017) this improvement is not always
guaranteed.

Compared with force fields, the QM method is undoubtedly
more rigorous and accurate, but its computational cost severely
limits its application in large systems such as proteins. Although
one can use a hybrid QM/molecular mechanics (MM) method
(Cauët et al., 2010), linear-scaling and/or fragmentation QM
methods (Dahlke and Truhlar, 2007a; Dahlke and Truhlar,
2007b; Dahlke and Truhlar, 2008; Liu et al., 2018) to treat
larger molecular systems, the efficiency of these methods still
cannot meet the needs of long-term MD simulations.
Fortunately, machine learning methods, especially artificial
neural networks (NNs) provide the possibility to develop
molecular potentials with both the efficiency of the MM
method and the accuracy of the QM method (Hansen et al.,
2013). NNs constitute a very flexible and unbiased class of
mathematical functions, which in principle is able to
approximate any real-valued function to arbitrary accuracy.
In 2007, Behler and Parrinello firstly proposed the high-
dimensional neural network (HDNN) (Behler and Parrinello,
2007; Behler, 2011a; Behler, 2011b; Morawietz et al., 2012;
Behler, 2017). Since then, many neural network-based force
fields have been developed to simulate the dynamic properties of
water, small organic molecules, and metal materials. For

example, the GDML and DTNN models developed by Müller
et al. (Chmiela et al., 2017; Schutt et al., 2017; Sauceda et al.,
2019), the kCON model of Hammer et al. (Chen et al., 2018),
and the Deep Potential method of E and co-workers (Zhang
et al., 2018). Yang et al. also proposed a novel NN force field for
a water system based on an electrostatically embedded two-body
expansion scheme. (Wang and Yang, 2018) Currently there are
several open-source packages like DeepMD-kit (Wang et al.,
2018), TensorMol (Yao et al., 2017; Yao et al., 2018), and
TorchMD (Doerr et al., 2021) which can train neural
network potentials for specific molecular systems in a
straightforward manner.

In our previous study, we also proposed a neural network
potential model (NN/MM-RESP) for the hydration of zinc ion
(Xu et al., 2019). This model describes the interactions between
Zn2+ and water accurately and can reproduce the hydration
structure of Zn2+ well in MD simulations. Recently, we
proposed an ESOINN-DP (enhanced self-organizing
incremental high dimensional neural network—deep potential)
method that can construct a reference dataset and NN potentials
for molecular systems automatically (Mingyuan et al., 2021). In
this study, on the basis of these two works, we developed NN
potentials specifically for zinc-containing proteins, and
systematically benchmarked them, demonstrating their
accuracy and efficiency. The paper is organized as follows. In
The ESOINN-DP Method the basic algorithms of the ESOINN-
DP method are briefly introduced. Then, MD simulations with
NN potentials were performed for zinc proteins with four
common coordination modes, and the accuracy of these
models was analyzed. Finally, brief conclusions and outlooks
are given in the last section.

THEORY AND METHOD

The NN Potential
In this work, if the distance between any atom of a residue that
forms a coordination bond with Zn2+ is less than 2.8 Å, the side
chain or main chain which contains the coordinated atom of this
particular residue is treated as a member of the metal binding
group (MBG). For example, there are three cysteine and one
histidine residues that coordinate to the zinc ion in a CCCH-type
zinc finger (PDB ID: 2L30) as shown in Figure 1. All the atoms
shown by the ball or stick model within the dotted circle are
defined as the metal binding group. According to the statistical
data of MBG geometries in the PDB database, the cut-off distance
of 2.8 Å was chosen because it covers metal-ligand bond distance
in most common metalloproteins. Hydrogen atoms are added to
saturated the MBG at the position of broken bonds.

Here, a strategy similar to the QM/MMmethod is used for the
calculation of the total energy of a given system, which we simply
named NN/MM-RESP-MBG. The potential energy and atomic
forces of the entire MBG region will be predicted by the neural
network, while the rest of the system is described by the classical
force field. The interaction between the MBG and the other parts
is described by the electrostatic and van der Waals interactions.
To better describe polarization and charge transfer effects in
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MBG, the RESP (restrained electrostatic potential atomic partial
charges) method is employed to fit the atomic charge of MBG,
and then these charges are learned by the neural network model
to achieve efficient prediction in the MD simulation. The total
energy of the protein can then be expressed as follows:

Etotal � ENN
MBG + EMM + ∑

i∈MBG

∑
j∉MBG

(Eele
i,j + Evdw

i,j ) (1)

The ESOINN-DP Method
To automatically train the NN potential and NN charge model,
we employed the ESOINN-DPmethod developed in our previous
work. (Xu et al., 2021) Its framework is shown in Figure 2.

In ESOINN-DP, each MBG structure is represented by two set
of molecular descriptors: the regularized sorted eigen spectrum of
the Coulomb matrix (RSES) and the ANI-1 symmetry functions.
The definition of the Coulomb matrix is

Cij �
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.5Z2.4
i ∀i � j

ZiZj∣∣∣∣Ri − Rj
∀i≠ jandi ∉ virtualatoms 0

∀i≠ jandi ∈ virtualatoms

(2)

The RSESs are used as input by ESOINN to automatically
construct the reference dataset, and ESOINN can ensure that the
dataset has minimal redundancy while covering the target
chemical space (Furao et al., 2007; Mingyuan et al., 2021). In
addition, the final dataset will be divided into several subsets
according to the similarity between the MBG structure after
passing through the ESOINN layer. The ANI-1 symmetry
functions Sα developed by Isayev and co-workers (Smith et al.,
2017) are used as descriptors to fit energy, atomic forces, and
RESP charges in the DP layer. Sα consist of radial and angular
parts as shown in Eqs. 3, 4.

Sα(radial) � ∑
j≠ i
e−η(Rij−Rs)2 fc(Rij) (3)

Sα(angular) � 21−ζ ∑
j≠ i,j≠ k

(1 + cos(θijk − θs))ζ

× e−η(Rij+Rik
2 −Rs)2 fc(Rij)fc(Rik) (4)

The DP layer consists of a set of neural networks (which are
called meta-NNs). Each meta-NN corresponds to a subset of the
reference dataset and is trained to predict potential energy,
atomic force, and RESP charges of the corresponding subset
and two subsets that are closest to it.

By using ESOINN-DP, we developed NN potentials for four
most common Zn2+ coordinationmodes (CCCC, CCCH, CCHH,
HHHD) in zinc proteins. The training process of the NN
potential is shown in Figure 3.

Take the CCCH coordination mode as an example. A typical
protein which contains the CCCH-type MBG was firstly selected
from the protein data bank (PDB ID: 2L30). Then a short (100 fs)
MD simulation was performed, and MBGs were taken out from
the trajectory every 5 fs. Potential energy, atomic forces, and
RESP charges of these MBGs were calculated and taken as the
initial dataset. After passing through the ESOINN layer, the initial
training set is divided into several subsets, which are then learned
by different meta-NNs. Then we use the current NN potential to
re-run the MD simulation of the target system (starting from the

FIGURE 2 | Framework of the ESOINN-DP method.

FIGURE 1 | Definition of the metal binding group in a CCCH-type zinc
finger protein.
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initial structure) and extend the simulation time appropriately.
As mentioned above, for each MBG in the training set, we have
used three meta-NNs to learn its properties. When running MD,
only one of them was used to drive the motion of atoms. But
during the simulation, all of these three meta-NNs were used to
predict the properties of MBG in each snapshot. In order to
characterize the consistency of the three models, an error
indicator χt was defined:

χt � max
����Fneti ,j(Rt) − 〈Fneti ,j(Rt)〉

���� (5)

where Rt denotes the given MBG and j is the index of atoms in
MBG. On this basis, we can divide MBGs in the trajectory into
three categories according to the value of χt :

Rt �
⎧⎪⎨
⎪⎩

known if 0< χt ≤ δ
questionable if δ < χt ≤ 2δ
unknown if χt > 2δ

(6)

Here δ is a pre-defined value, which represents the maximum
error of NN potential we can tolerate. For the CCCH
coordination mode, δ was set to 3.0 kcal/(mol · Å) The
questionable MBGs will be sent to the ESOINN layer for de-
redundancy, and their potential energy, atomic forces, and RESP
charges will also be calculated and added to the reference dataset.
It is worth mentioning that in the ESOINN-DP method, genetic
algorithms will be used to re-adjust the hyper-parameters of

meta-NN to save computing resources as much as possible while
ensuring accuracy. Next, the ESOINN layer andmeta-NNs will be
retrained, and a new round of MD simulation will be performed.
Using such an iterative process, we can gradually explore the
target chemical space and keep the reference dataset as
streamlined as possible. Finally, when the target length of MD
is reached or no new questionable structure is detected, we get the
final NN potential. Details of the ESOINN-DP method can be
found in Ref 37.

Computational Details
In this work, all QM calculations are performed with Gaussian
16at the M06-2X/SDD level. The M06-2X/SDD level was chosen
because it has been proven be the most accurate one over other
combinations of DFT functional and basis sets (Grauffel et al.,
2018) in reproducing the structure of the zinc complex. The
interaction between the MBG group and the rest of the protein is
described by the electrostatic and van der Waals interaction with
parameters obtained from the Amber ff14SB force field. To be
consistent with Amber ff14SB, the electrostatic potential used to
fit the RESP charge of MBG was obtained at the HF/6-31G* level.
In the training of ESOINN, the maximum age of nodes was set to
10 and every 500 times inputs were defined as a learning cycle.
The initial structural parameter of meta-NNs was set to
[200,200,200]. We selected four different representative
proteins for four coordination modes whose PDB ID are 1ZIN

FIGURE 3 | The training process of the NN potential.
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(CCCC), 2L30 (CCCH), 1AAY (CCHH), and 1HFS (HHHO).
Before the MD simulations, we optimized the protein structure
with the Amber ff14SB force field in a water ball with a radius of
25 Å. Then a 500ps heating simulation and a 5ns relaxation
simulation were performed to fully relax a given protein structure.
During the MD simulations with the Amber force field, structural
constrains were added to the metal binding group to prevent the
coordination geometry from being destroyed. After the
pretreatment discussed above, the optimized system was used
as the initial structure of MD simulations with NN potential.

RESULT AND DISCUSSION

Performance of the NN Potential
The performance of the NN potential on zinc-containing
proteins with four coordination modes can be checked from
Table 1. It can be seen that on both the training and test sets, the
root mean square error (RMSE) of the potential energy for the
CCHH type is the largest, which is only 1.78 kcal/mol. The
RMSE of atomic forces for all systems are smaller than
1.8 kcal/(mol · Å). The good accuracy of NN potentials
indicates that it can be readily used in the MD simulation.
Then, a 1 ns MD simulation for each system was performed.
During the simulation, the error indicator of the MBG was
monitored. It should be pointed out that the error indicator
represents the atomic force with the largest prediction error in
each MBG. As shown in Figure 4, the error indicator of all the
structures is within the range of (0, 2δ), which means that there
are nearly no unknown structures in simulations and the
trajectories are accurate. In fact, the maximum value of χt in
all of these four trajectories is only 4.68 kcal/(mol · Å).
Therefore, we can confidently conclude that the reference
dataset has covered the target chemical space, and the NN
potential is reliable.

Charge Distribution of Zinc Ion and Its
Coordinated Atoms
In classical force fields such as Amber ff14SB, the charge of Zn is
fixed at +2e. Thus, the electrostatic interactions between Zn2+ and
the protein environment are very strong. However, it can be seen
from the coordination field theory that after obtaining electrons
shared by the ligand, the charge of the zinc ion cannot be so large.
The positive divalent charge will cause the interaction between
the zinc ions and other charged or polar groups in the protein to

be seriously overestimated, resulting in unreliable MD simulation
results. In NN/MM-RESP-MBG, the short-range polarization
and charge transfer effects between Zn2+ and its ligands in
MBG are fully considered by the neural network model.
Meanwhile, we refitted the atomic charges of MBG, thereby
avoiding the unphysical high charge of zinc ion, and making
the interaction between MBG and MM regions more reasonable.
Table 2 shows the average charge of zinc ion and its ligated atoms
during the simulation.

In the CCCC coordination mode, the average RESP charge of
zinc ion (1.25 e) is the highest, which is still obviously lower than
+2. The average RESP charge of the S atom is almost the same as
the Amber charge. In the CCCH mode, the charge of zinc is
0.98 e, and it is clear that the charge of the coordinated N atom on
histidine is obviously larger than the Amber charge. In the CCHH
coordination mode, the average RESP charge of zinc ion is further
reduced to 0.83 e. Finally, we analyze the protein contained in the

TABLE 1 | The performance of NN potentials on four zinc-containing proteins with different coordination modes.

MBG type PDB ID Number of subsets
in the ESOINN

layer

Training set/test set

Size RMSE of E (kcal/mol) RMSE
of F (kcal/(mol·Å))

RMSE of Q (e)

CCCC 1ZIN 7 11,900/1,200 1.43/1.29 1.53/1.43 0.04/0.05
CCCH 2L30 12 28,156/3,200 1.38/1.34 1.68/1.75 0.03/0.04
CCHH 1AAY 14 45,328/5,100 1.78/1.64 1.41/1.52 0.02/0.03
HHHO 1HFS 11 27,100/3,000 1.30/1.26 1.63/1.72 0.04/0.03

FIGURE 4 | The distribution of error indicator χt in the four representative
systems. The unit of δ is kcal/(mol · Å)
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HHHO coordination mode. In this system, one zinc ion forms
coordination bonds with an aspartic residue and three histidine
residues. Generally, when the carboxyl group coordinates with
zinc ion, they can form either bidentate or single-dentate
coordination modes, which depends on the interaction
between the carboxyl group and the protein environment. In
the 1HFS system, the coordination mode between the carboxyl
group (E64) and zinc ion is single-dentate as the Oδ1 atom of E66
forms a hydrogen bond with Y68. The refitted RESP charge
reflects this difference. The charge of the Oδ2 atom coordinated
with zinc is significantly weakened due to the charge transfer, but
the charge of the Oδ1 atom is still relatively large, which is

necessary to maintain the hydrogen bond interaction.
Furthermore, the charge of the zinc ion is reduced to 1.12 e. If
we use the Amber charge to simulate this system, the carboxyl
group will trend to form a bidentate coordination mode with the
zinc ion, which will distort the protein structure. It should be
pointed out that although the RESP charge is more suitable for
calculating electrostatic interactions, its physical meaning cannot
be guaranteed. The discussion of charge values here should be
qualitative rather than quantitative. In future work, we will
consider switching to a charge model that has more rigorous
physical meaning and can accurately calculate the electrostatic
interaction energy.

TABLE 2 | The averaged RESP charge of zinc ion and its ligated atoms in the MD simulation. The unit of charge is e.

1ZIN (CCCC) Coordinated atoms Zn2+ Sγ@C5 Sγ@C8 Sγ@C25 Sγ@C28
NN/MM-RESP-MBG 1.25 −0.85 −0.87 −0.86 −0.84
Amber 2 −0.88 −0.88 −0.88 −0.88

2L30 (CCCH) Coordinated atoms Zn2+ Sγ@C5 Sγ@C8 Nδ@H37 Sγ@C40
NN/MM-RESP-MBG 0.98 −0.87 −0.95 −0.41 −0.81
Amber 2 −0.88 −0.88 −0.57 −0.88

1AAY (CCHH) Coordinated atoms Zn2+ Sγ@C5 Sγ@C10 Nε@H23 Nε@H27
NN/MM-RESP-MBG 0.83 −0.82 −0.81 −0.37 −0.42
Amber 2 −0.88 −0.88 −0.57 −0.57

1HFS (HHHO) Coordinated atoms Zn2+ Nε@H64 Oδ1/Oδ2@D66 Nε@H78 Nδ@H92
NN/MM-RESP-MBG 0.98 −0.51 −0.64/−0.87 −0.43 −0.38
Amber 2 −0.57 −0.88 −0.57 −0.57

FIGURE 5 | Typical structures of four different proteins with different MBGs after the MD simulations with NN/MM-RESP-MBG models. (A) CCCC type (PDB ID:
1ZIN), (B) CCHH type (PDB ID: 1AAY), (C) CCCH type (PDB ID: 2L30), and (D) HHHO (PDB ID: 1HFS).
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Coordinate Geometry of MBGs
Four typical MBG structures extracted from the MD simulation
of four zinc proteins with the NN potential are shown in Figure 5.
Detail coordination geometry parameters can found in
Supplementary Figures S1–S8. Firstly, we analyzed the
coordinate geometry of the MBG in protein 1ZIN. Table 3
shows the average value of coordinate bonds and angles in the
MD trajectory along with the experimental values in the X-ray
structure and value from the statistics of the same coordination
modes in PDB. The distribution of bond length and angle can also
be found in Supplementary Figures S1, S2. It can be seen that
although the values obtained by MD simulation deviate slightly
from the X-ray structure, they are all within the range of statistical
values. Considering that the resolution of the experiment cannot
reach the sub-Angstrom level, and the QM calculation itself still
has room to be improved, the accuracy of the existing results has
been very encouraging.

The calculated coordination geometry data and corresponding
experimental values of the other three modes can be found in
Table 3 and the supplementary materials. In most cases, the
coordinate bond length and angle obtained from the MD
trajectory are in good agreement with the experiment.
However, for the N-Zn-N angle in the CCHH system, there is
an obvious deviation. As can be seen from Supplementary Figure
S4 and Table 3, the average value obtained from the trajectory is

about 10° smaller than the value in the crystal structure and the
statistical data. To further check the source of the error, we also
compared current values with the QM/MM calculation of the
same system in the previous work (Zhu et al., 2013), and
unexpectedly found that they are very close to each other. The
QM/MM calculation also employed the DFT method (B3LYP).
However, it should be pointed out that when compared with the
high-precision zinc complexes in the Cambridge structural
database, the M06-2X/SDD level shows excellent accuracy
(Grauffel et al., 2018). This has brought us certain difficulties
in determining the source of the error. Although we will consider
benchmarking higher-precision QM methods in future work, it
cannot be ruled out that the experimental structure is
problematic, after all, in the structural refinement process of
both NMR and crystal diffraction experiments, anMD simulation
with a traditional force field is employed. In addition, we also
compared our results with that given by the QPCT force field. In
most cases, the two are consistent. For the CCHH and HHHO
geometries, the coordination bond length distribution obtained
with NN/MM-RESP-MBG are closer to PDB bank statistic values
than QPCT results as shown in Table 3.

To further test the ability of NN potentials, we also used it to
refine two ill structures of zinc protein. The ill structure was
produced by an MD simulation with an Amber ff14SB force field
at 400 K. The first system is the 2L30 protein with an excessively

TABLE 3 | Comparison of computed average distances and angles between zinc and its ligated atoms of different zinc proteins with experimental measurements, statistical
values (Alberts et al., 1998), and results from MD simulations with the QPCT (Zhu et al., 2013) force field and QM/MM13 (all the bond lengths are in Angstroms and bond
angles in degrees).

PDB ID Zinc-ligand geometry PDB survey NN/MM-RESP-MBG X-ray QPCT Zhu et al. (2013) QM/MM (50 ps)
Zhu et al.
(2013)

1ZIN (CCCC) Zn-Sγ@C5 2.35 ± 0.09 2.41 2.33 2.37 ± 0.06 2.39 ± 0.08
Zn-Sγ@C8 2.35 ± 0.09 2.39 2.3 2.36 ± 0.07 2.39 ± 0.09
Zn-Sγ@C25 2.35 ± 0.09 2.4 2.32 2.37 ± 0.06 2.42 ± 0.09
Zn-Sγ@C28 2.35 ± 0.09 2.41 2.33 2.36 ± 0.06 2.42 ± 0.08
∠Sγ@C5-Zn-Sγ@C8 111 ± 8 107 114 N/A N/A
∠Sγ@C5-Zn-Sγ@C25 111 ± 8 116 106 114 ± 11 109 ± 6
∠Sγ@C25-Zn-Sγ@C28 111 ± 8 111 112 N/A N/A

1AAY (CCHH) Zn-Sγ@C5 2.35 ± 0.09 2.35 2.29 2.29 ± 0.07 2.32 ± 0.06
Zn-Sγ@C10 2.35 ± 0.09 2.34 2.29 2.30 ± 0.08 2.34 ± 0.07
Zn-Nε@H23 2.05 ± 0.12 2.07 2.04 2.07 ± 0.12 2.12 ± 0.07
Zn-Nε@H27 2.05 ± 0.12 2.09 2.04 2.08 ± 0.12 2.13 ± 0.07
∠Nε@H23-Zn-Nε@H27 107 ± 8 97 105 101 ± 13 99 ± 7
∠Nε@H23-Zn-Sγ@C5 109 ± 8 108 109 110 ± 13 108 ± 7
∠Sγ@C5-Zn-Sγ@C10 111 ± 8 116 113 114 ± 10 114 ± 6

2L30 (CCCH) Zn-Sγ@C5 2.35 ± 0.09 2.4 2.34 2.34 ± 0.07 2.34 ± 0.07
Zn-Sγ@C8 2.35 ± 0.09 2.39 2.34 2.34 ± 0.08 2.34 ± 0.08
Zn-Nδ@H37 2.14 ± 0.09 2.15 2.01 2.17 ± 0.08 2.17 ± 0.08
Zn-Sγ@C40 2.35 ± 0.09 2.35 2.34 2.34 ± 0.07 2.31 ± 0.08
∠Nδ@H37-Zn-Sγ@C40 109 ± 8 113 114 112 ± 7 108 ± 5
∠Sγ@C5-Zn-Sγ@C8 111 ± 8 108 109 N/A N/A
∠Sγ@C8-Zn-Sγ@C40 111 ± 8 114 113 112 ± 7 114 ± 4

1HFS (HHHO) Zn-Nε@H64 2.05 ± 0.12 2.02 1.83 1.94 ± 0.05 2.01 ± 0.08
Zn-Oδ2@D66 1.95 ± 0.08 1.97 2 1.97 ± 0.11 2.07 ± 0.09
Zn-Nε@H79 2.05 ± 0.12 2.01 1.78 1.93 ± 0.09 1.98 ± 0.09
Zn-Nδ@H93 2.14 ± 0.09 2.06 2.01 1.95 ± 0.10 2.03 ± 0.09
∠Nε@H64-Zn-Oδ2@D66 107 ± 12 111 105 113 ± 6 107 ± 6
∠Nε@H64-Zn-Nδ@H79 112 ± 7 116 119 108 ± 7 111 ± 7
∠Nε@H79-Zn-Nδ@H93 112 ± 7 112 113 N/A N/A
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long Zn-S bond. As shown in Figure 6, before optimization, the
bond length of zinc ion and the Sc atom of C8 is almost 3.00 Å.
Using this structure as the initial structure, we carried out a 50 ps
MD simulation in combination with the NN potential. After the

simulation, the length of this bond was restored to 2.40 Å and the
regular tetrahedral coordination is well maintained. Another
system is protein 1HFS with an excessively large N-Zn-O
coordination angle and a distorted tetrahedral geometry. As

FIGURE 6 | Structure refinement with NN potential for an ill structure of the 2L30 protein. (A) The ill structure, (B) the refined structure, and (C) the time evolution of
the Zn-S distance.

FIGURE 7 | The RMSD of the MBGs in ill and optimized structures of the 1ZIN protein. The MBG of the X-ray structure was taken as the reference.
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can be seen from Supplementary Figure S9, MD with NN
potential successfully repaired the structure within 5 ps.

In addition, we randomly selected 20 structures of the 1ZIN
protein with ill MBGs and optimized them with NN potentials
and the conjugate gradient algorithm. The results are shown in
Figure 7. Although the RMSD of the MBG structure before
optimization does not look large, the actual structure is still very
problematic due to the small number of atoms in the MBG.
However, after simple optimization, the RMSD of all MBG
structures is obviously reduced, with an average value of
around 0.20 Å, which shows the great potential of NN
potential for structural optimization.

To further demonstrate the transferability of the NN/MM-
RESP-MBG method, 200 ps MD simulations were performed for
other 14 zinc proteins with the CCHH and CCCC-type MBGs.
Detailed MBG structures in the simulation are listed in
Supplementary Tables S1, S2 and Supplementary Figures
S10, S11. It can be seen clearly that all the results are in good
agreement with the experimental values. This is predictable
because the neural network models are trained for different
MBGs and are not protein-specific.

CONCLUSION AND OUTLOOK

In this work, NN potentials were automatically constructed by
using the ESOINN-DP (https://github.com/tongzhugroup/
ESOINN-DP) method for typical zinc proteins. For a given
protein, the potential energy, atomic forces, and atomic charges
of the metal-binding group are predicted by the neural network,
while the interaction between MBG and the rest of the protein is
treated by the classical force field. For the four most common zinc
coordination modes in the protein, the NN predictions show great
agreement with QM calculations. In addition, MD simulation and
energy optimization with NN potential can be readily used for the
structural refinement of MBG. Compared with classical molecular
force fields, the neural network potential is not limited by the
function form and complex parameterization process. All local
quantum effects, especially the polarization and charge transfer can
be accurately described. In addition, the computational efficiency
of the NN potential is much faster than the QM and QM/MM
calculations. For the zinc proteins studied in this work, it takes no
more than 0.1 s for a single MD step on a common Linux server
with a 16-core CPU and an NVIDIA GTX1080Ti GPU card. In
fact, the efficiency still has great room to be improved as we did not
optimize the code of MD simulation deeply.

Although the NN potential proposed in this work has the
advantages of accuracy and efficiency over MM and QM
methods, respectively, there are still some shortcomings. First,
the polarization effect of the protein environment on MBG is not
considered, and only the short-range polarization effect between
the Zn2+ and the coordinated residue is included. Secondly, the
neural network potential function model used in this work is
trained with reference to the DFT calculation results. There is still
room to improve the performance of DFT calculations. If the data
can be labeled at a higher level, the accuracy of the NN potential
will be further improved. Related research is being carried out in
our laboratory. Despite these shortcomings, the current NN/
MM-RESP-MBG models can be readily used to perform
nanosecond-level MD simulations and structural optimization
for zinc proteins. The algorithm proposed in this work can also be
directly applied to proteins containing other metal ions.
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