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pRS episomal plasmids are widely used in Saccharomyces cerevisiae, owing to their
easy genetic manipulations and high plasmid copy numbers (PCNs). Nevertheless, their
broader application is hampered by the instability of the pRS plasmids. In this study,
we designed an episomal plasmid based on the endogenous 2µ plasmid with both
improved stability and increased PCN, naming it p2µM, a 2µ-modified plasmid. In the
p2µM plasmid, an insertion site between the REP1 promoter and RAF1 promoter was
identified, where the replication (ori) of Escherichia coli and a selection marker gene of
S. cerevisiae were inserted. As a proof of concept, the tyrosol biosynthetic pathway
was constructed in the p2µM plasmid and in a pRS plasmid (pRS423). As a result, the
p2µM plasmid presented lower plasmid loss rate than that of pRS423. Furthermore,
higher tyrosol titers were achieved in S. cerevisiae harboring p2µM plasmid carrying the
tyrosol pathway-related genes. Our study provided an improved genetic manipulation
tool in S. cerevisiae for metabolic engineering applications, which may be widely applied
for valuable product biosynthesis in yeast.
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INTRODUCTION

Yeast, especially Saccharomyces cerevisiae (S. cerevisiae), has been developed as a host organism
for the heterologous production of high-value compounds (Luo et al., 2015; Suastegui and Shao,
2016; Gao et al., 2017; Cao M. et al., 2020; Cao X. et al., 2020; Liu H. et al., 2020; Liu Q. et al.,
2020; Ren et al., 2020), free fatty acid (Zhang et al., 2019), soluble cytosolic proteins (Boulet et al.,
2017; González et al., 2018; Huang et al., 2018; Zhang et al., 2019), and biofuels (Zhang et al., 2021).
Many genetic manipulations of S. cerevisiae rely on the utilization of plasmids (Romanos et al.,
1992). There are three commonly used plasmids: (1) yeast-integrating plasmid (YIp) lacks the yeast
replication initiation site and can only be stabilized when integrated into the yeast chromosome
(Jensen et al., 2014). However, YIp brings only one copy of target sequences to the chromosome.
(2) Yeast centromere plasmid (YCp) contains an autonomously replicating sequence (ARS) and a
yeast centromere (CEN) (Chlebowicz-Śledziewska and Śledziewski, 1985; Lee et al., 2016), which
has high mitotic stability but low copy number. (3) Yeast episomal plasmid (YEp) harbors a 2µ

plasmid replication origin and a partitioning locus (STB or REP3) (Murray and Cesareni, 1986),
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which has high copy numbers but low stability (Hohnholz et al.,
2017). In summary, plasmids with stable expression usually
cannot provide high copy number, while plasmids with high copy
number will be easily lost after long-term fermentation in the
nutrient medium. Therefore, a stable plasmid system with high
copy number is urgently needed.

Yeast endogenous 2µ plasmid is a cryptic nuclear plasmid
(Stevens and Moustacchi, 1971; Petes and Williamson, 1975),
which confers no phenotype beyond the ability to maintain itself
a high copy number at 60–330 copies per cell with the help of
FLP-mediated recombination (Gerbaud et al., 1979; Murray and
Cesareni, 1986; Reider Apel et al., 2017). The 2µ plasmid is a
circular DNA plasmid with a size of 6,318 bp and a circumference
of about 2 µm (Hartley and Donelson, 1980).

In the 2µ plasmid, there is an ∼600-bp DNA sequence
essential for the faithful partitioning of the 2µ plasmid
along with the trans-acting ORFs REP1 and REP2 (Kikuchi,
1983), named STB (Murray and Cesareni, 1986). In the
absence of STB, the 2µ-based plasmids are rapidly lost due
to extreme mother bias during mitosis. In addition, the
2µ plasmid codes for four proteins (REP1, REP2, RAF1,
and FLP) that are vital for its own survival. REP1 and
REP2 are the primary factors responsible for the 2µ plasmid
stability (Jayaram et al., 1983). RAF1 interacts with both
REP1 and REP2 independently and blocks their interaction,
thus reducing the cellular concentration of the REP1–REP2
complex that acts as a repressor of REP1, FLP, and RAF1
genes. This blockage resulted in reduced plasmid stability and
increased plasmid copy number (PCN). Both the deletion
and overexpression of RAF1 have a similar effect on the
plasmid stability and copy number, resulting in an increased
PCN and decreased plasmid stability (Rizvi et al., 2018). FLP
is a conservative site-specific recombinase (Sadowski, 1995).
The flip of one half of the 2µ plasmid with respect to the
other is predominantly FLP dependent (Gerbaud et al., 1979;
Broach and Hicks, 1980). The FLP-mediated recombination is
also believed to be responsible for the interconversion of the
plasmid replication between the theta and the rolling circle
modes of replication.

Many researchers took advantage of the high PCN and stable
inheritance of the 2µ plasmid to directly transform 2µ plasmid
as an expression tool. Ludwig et al. selected the HPAI restriction
site of STB as the insertion site (Ludwig and Bruschi, 1991),
but the loss of STB led to a high loss rate of the plasmid
(Murray and Szostak, 1983; McQuaid et al., 2019). Misumi et al.
(2018) inserted the yeast promoter, terminator, and nutritional
deficiency marker gene leu2 between RAF1 and STB and called
this plasmid YHp. The application of YHp was restricted in [cir0]
strains (Misumi et al., 2018). Zeng et al. (2021) chose two sites as
the targets for insertion of heterogeneous DNA fragment: one is
at the downstream of the RAF1, while the other is at the end of
REP2. The derivative plasmids generated by inserting the same
target gene at these two sites have lower plasmid loss rates and
better expression level than the conventional 2µ-based plasmid
pRS425 (Zeng et al., 2021). To our knowledge, no commonly
used methods have been developed in laboratory strains with the
wild-type (WT) 2µ plasmid (Supplementary Figure 1A).

Based on these previous studies described above (Hartley and
Donelson, 1980; Jayaram et al., 1983; Rizvi et al., 2018; McQuaid
et al., 2019), we identified a new insertion site between the REP1
promoter and RAF1 promoter (Supplementary Figure 1B).
The pBR322ori, KanMX selection marker gene, and three
endonuclease sites XhoI/PmeI/NotI were inserted in this site.
The 2µ-modified plasmid was named p2µM. In plasmid stability
measurement, the p2µM plasmid system was more stable than
the pRS423 plasmid system. To test the application of p2µM
in the biosynthesis of natural products, the tyrosol [a phenethyl
alcohol derivative that has antioxidant and anti-inflammatory
effects (Choe et al., 2012)] pathway-related genes were introduced
into p2µM. The results confirmed that the stability and property
of the p2µM were better than those of the pRS423M plasmid.
Our study provided an improved genetic manipulation tool in
S. cerevisiae for metabolic engineering applications, and it may be
widely applied in valuable natural product biosynthesis in yeast.

DESIGN AND CONSTRUCTION OF
ENDOGENOUS 2µ-BASED PLASMIDS
IN VITRO

In order to construct a stable endogenous 2µ-based plasmid
and apply it for DNA expression and pathway construction,
the proper insertion site should be selected to insert essential
elements and heterogeneous DNA fragments. Besides the known
genes and sequences, there are still uncharacterized transcripts
transcribed from the 2µ plasmid (Rizvi et al., 2017). It was found
that the promoters of RAF1 and REP1 on the endogenous 2µ

plasmid were adjacent and there was no other element between
them by analyzing the elements related to stability. Thus, this site
was selected as the insertion site (Supplementary Figure 1A). To
edit the endogenous 2µ plasmid for a better genetic manipulation
tool, the origin replication of Escherichia coli, combined with
G418 resistance marker, was chosen to be inserted to construct
p2µM (Supplementary Figure 1B).

To characterize the property of the p2µM plasmid, plasmid
pRS423 with G418 resistance was chosen as a control to generate
plasmid pRS423M (Supplementary Figure 1C). Plasmid pRS423
is also commonly used in yeast among the YEp pRS42 series
plasmids due to its relatively high stability and copy number
(Christianson et al., 1992).

Tyrosol is mainly extracted from olive oil, wine, and plant
tissues. It has proven to be an effective cellular antioxidant
and is widely used in food and medicine industries (Benedetto
et al., 2007; Karković Marković et al., 2019). Taking into
account the impact of the size of inserted fragment on the
p2µM plasmid, we constructed three modules of different sizes
using genes of the tyrosol biosynthetic pathway (Supplementary
Figure 1D). The small module (mutation module, 3.8 kb) of
ARO4K229L and ARO7G141S could efficiently relieve feedback
inhibition and increase the production of tyrosol in S. cerevisiae
(Liu H. et al., 2020), which was introduced to generate
plasmid p2µM-ARO4K229L-ARO7G141S (p2µM-small-module).
The rewiring module containing pentose phosphate pathway
genes TKL1 and RKI1 could tune the flux of the precursor
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pathway (Walfridsson et al., 1996; Kondo et al., 2004; Bera
et al., 2011). The adjustment module that contains ARO2 and
ARO10 could adjust the shikimate pathway and L-tyrosine
branch by catalyzing the conversion of chorismate from EPSP
and the decarboxylation of 4-HPP to 4-HPPA (Liu H. et al.,
2020), respectively. The medium module (9.8 kb) composed
of the rewiring module and the adjustment module was
overexpressed by p2µM plasmid, resulting in plasmid p2µM-
TKL1-RKI1-ARO10-ARO2 (p2µM-medium-module). Finally,
the medium module was introduced into plasmid p2µ-small-
module, resulting in plasmid p2µM-TKL1-RKI1-ARO10-ARO2-
ARO4K229L-ARO7G141S (p2µM-large-module, the size of the
large module was 13.6 kb). Then, these three modules were also
inserted into the multiple cloning sites of plasmid pRS423M to
generate pRS423M-small-module, pRS423M-medium-module,
and pRS423M-large-module, collectively called pRS423M-based
plasmids (Supplementary Figure 1F). The structures of the three
modules are shown in Supplementary Figure 2.

DETERMINATION OF PLASMID
STABILITY

Since the yeast endogenous 2µ plasmid showed high stability and
copy number, we assumed that our p2µM plasmid could be more
stable than the pRS423M plasmid. To test this hypothesis, the
influences of the size of the inserted fragment on the stability
of the p2µM plasmid were explored via measuring the plasmid
loss rate. As shown in Supplementary Tables 1, 2, the stabilities
of the p2µM-based plasmids were significantly higher than
those of the pRS423M-based plasmids. First, plasmid p2µM and
pRS423M were transformed to S. cerevisiae strain CEN.PK2-1C,
respectively. Then, the plasmid loss rates of the 10th, 20th, 40th,
and 50th generation strains were tested in YPD without G418
and in YPD + G418 medium (Figures 1A,B). When the size of
the inserted fragment was 0, the plasmid loss rates of plasmid
p2µM in non-selective medium were 36.3 ± 6.0% for the 10th
generation, 62.4 ± 3.3% for the 20th generation, 72.5 ± 7.9% for
the 40th generation, and 85.7 ± 1.4% for the 50th generation,
lower than those of the pRS423M plasmid (90.4 ± 2.9, 98.8 ± 0.9,
99.3 ± 0.2, and 99.9 ± 0.2%). Plasmid loss rates of p2µM in
selective medium were 5.7 ± 1.3, 7.2 ± 0.7, 12.4 ± 0.8, and
27.1 ± 1.4% for each generation, which were much lower than
those of pRS423M (17.8 ± 1.1, 31.4 ± 1.8, 74.8 ± 0.9, and
85.1 ± 2.2%).

Furthermore, three p2µM-based plasmids of the experimental
group and three pRS423M-based plasmids of the control group
mentioned above were transformed to strain CEN.PK2-1C,
respectively. The results showed that the stabilities of p2µM-
based plasmids were higher than those of pRS423M-based
plasmids both in non-selective medium and selective medium
(Figures 1A,B). For non-selective medium, when the sizes of
the inserted fragments were 3,842 and 9,821 bp, the plasmid loss
rates of p2µM-based plasmids were 54.3 ± 8.5 and 71.4 ± 5.6%
(the 10th generation), 87.9 ± 2.4 and 95.8 ± 1.3% (the 20th
generation), 91.9 ± 1.0 and 96.9 ± 0.8% (the 40th generation),
and 96.4 ± 0.9 and 98.7 ± 0.3% (the 50th generation), while the

FIGURE 1 | Plasmid loss rates of the p2µM-based plasmids with different
sizes of inserted fragments compared with that of pRS423M-based plasmids.
(A) Plasmid loss rates of the p2µM-based plasmids and the pRS423M-based
plasmids after cultivation in YPD medium. (B) Plasmid loss rates of the
p2µM-based plasmids and the pRS423M-based plasmids after cultivation in
YPD + G418 medium. (C) Plasmid loss rates of p2µM-based plasmids and
pRS423M-based plasmids in YPD + G418 medium supplemented with G418
every 10 generations. (D) Plasmid loss rates of p2µM-based plasmids and
pRS423M-based plasmids in YPD + G418 medium supplemented with G418
at the 38th generation.

plasmid loss rates of pRS423M-based plasmids were 98.1 ± 1.3
and 97.2 ± 1.1% for the 10th generation, and the plasmids were
all lost at the 20th generation (99.7 ± 0.4 and 100.0%). Until the
size of the inserted fragment increased to about 14 kb, the plasmid
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loss rate of the experimental group was 94.3 ± 1.2% for the 10th
generation, but plasmids of the control group were almost all
lost. For cultures that were grown in selective medium, when
the fragment of 9,821 bp was introduced, 49.3 ± 2.5% strains
lost their plasmid p2µM-medium-module, but almost all strains
lost the plasmid pRS423M-medium-module after fermentation
for 50 generations (94.9 ± 1.3%). All strains lost the plasmid
pRS423M-large-module at the 40th generation (98.6 ± 1.2%);
however, the plasmid loss rate of the p2µM-large-module was
merely 57.0 ± 1.9%. The amounts of plasmid loss in YPD + G418
medium were less than those in YPD medium without G418.

As shown in Figure 1C, supplementing antibiotics to
YPD + G418 medium every 10 generations could maintain lower
plasmid loss rates. Plasmid loss rates of the 40th generation
were greatly decreased after G418 was supplemented at the 38th
generation (Figure 1D). The plasmid loss rates of the 40th
generation were lower than those of the 20th generation, and the
plasmid loss rates of p2µ-derived plasmids were still much lower
than those of pRS423-derived plasmids.

PLASMID p2µM APPLIED IN TYROSOL
PRODUCTION

To demonstrate that p2µM could be applied for the optimization
of natural product biosynthesis, the tyrosol biosynthetic pathway
was chosen as an example. The WT strain CEN.PK2-1C was
fermented in YPD medium. Engineered strains containing
individual p2µM-based plasmids and pRS423M-based plasmids
with different sizes of tyrosol biosynthesis-related modules were
simultaneously fermented in both non-selective medium and
selective medium.

As demonstrated in Figure 2A, after fermentation in
YPD medium, tyrosol productions of the WT strain were
45.11 ± 0.85 mg/L at the 20th generation and 48.53 ± 0.98 mg/L
at the 40th generation. In non-selective YPD medium, strain
CEN.PK2-1C with p2µM produced 39.39 ± 0.97 mg/L tyrosol
after 20 generations and 44.78 ± 0.64 mg/L tyrosol after 40
generations (Figure 2B), which were lower than those of the WT
strain. When the plasmid p2µM-small-module was transformed
into the strain CEN.PK2-1C, the tyrosol production was
47.79 ± 0.64 mg/L at the 20th generation and 54.46 ± 0.21 mg/L
at the 40th generation, 12.2% greater than that of the WT
strain and 9.7% greater than that of the strain with pRS423M-
small-module. The strain CEN.PK2-1C carrying plasmid p2µM-
medium-module accumulated 50.59 ± 1.12 mg/L tyrosol after
40 generations of fermentation. In the strain CEN.PK2-1C with
p2µM-large-module, the tyrosol titer of 48.03 ± 0.45 mg/L was
obtained, which was not as good as the WT strain but 7.3%
higher than that of CEN.PK2-1C carrying p2µM. CEN.PK2-1C
carrying plasmid pRS423M produced 35.99 ± 0.35 mg/L tyrosol
at the 20th generation and 43.41 ± 0.94 mg/L tyrosol at the 40th
generation, which were lower than those of the strain with p2µM
and the WT strain. Tyrosol productions in strain CEN.PK2-1C
with pRS423M-medium-module and pRS423M-large-module at
each generation were all much lower than those of the strains
carrying p2µM-based plasmids.

According to Figure 2C, after shake flask cultivation in
YPD + G418 medium, the strain harboring p2µM generated
tyrosol titer of 44.75 ± 0.83 mg/L at the 20th generation. At
the 40th generation, tyrosol production was 49.05 ± 0.90 mg/L,
which was higher than that of the WT strain and CEN.PK2-1C
with p2µM fermented in non-selective medium; 71.11 ± 0.71
and 98.39 ± 0.41 mg/L tyrosol was produced in the strain
containing p2µM-small-module after fermentation for 20 and 40
generations, respectively, which were much higher than that of
CEN.PK2-1C with pRS423M-small-module (59.55 ± 0.16 mg/L).
Tyrosol productions accumulated in the strain with p2µM-
medium-module (47.71 ± 0.72 and 54.95 ± 0.50 mg/L) and
p2µM-large-module (46.44 ± 0.65 and 50.20 ± 0.34 mg/L) after
fermentation for 20 and 40 generations in selective medium
were lower than those of the strain containing p2µM-small-
module, but they were higher than those of CEN.PK2-1C with
pRS423M-based plasmids. Strains carrying pRS423M produced
47.72 ± 0.18 mg/L tyrosol at the 40th generation, 2.8% lower
than that of the strain with p2µM and 1.7% lower than that
of the WT strain. The tyrosol yields of the strain containing
plasmids pRS423M-small-module (59.55 ± 0.13 mg/L),
pRS423M-medium-module (44.65 ± 1.46 mg/L), and pRS423M-
large-module (25.64 ± 0.80 mg/L) at the 40th generation were
all lower than those of the strains of p2µM-based plasmids with
modules of the same size.

All results showed that the tyrosol yields of the strains with
p2µM-based plasmids were higher than those of the strains
with pRS423M-based plasmids both in non-selective medium
and selective medium, which could be due to the instability
of plasmid pRS423.

DISCUSSION

In this study, an endogenous 2µ-based expression vector with
enhanced stability was developed in S. cerevisiae. The site between
the RAF1 promoter and REP1 promoter on this plasmid was
chosen as the insertion site for the gene of interest, which would
not affect the functional elements and stability of the plasmid.

The plasmid loss rates were calculated on the strains harboring
plasmids with inserted fragments of different sizes by culturing
in non-selective YPD medium and YPD medium with selective
pressure. After culturing without selective pressure for 40
generations, the loss rates of p2µM and pRS423M were about
73 and 100%, respectively. For plasmids containing modules
of about 4 kb, the plasmid loss rates of p2µM-small-module
and pRS423M-small-module in non-selective YPD medium
were about 90 and 100%, respectively. All strains lost their
plasmids by fermentation in YPD medium for 50 generations.
Culturing in YPD + G418 medium for 50 generations, plasmid
loss rate of p2µM was about 27% and that of pRS423M was
about 85%. Plasmid pRS423M-large-module was all lost after
40 generations of cultivation, while merely 57% of the plasmid
p2µM-large-module was lost. Continuous supplementation of
G418 in YPD + G418 medium could help maintain the stability of
plasmids, especially for p2µM-based plasmids. The plasmid loss
rate of p2µM-large-module after 40 generations of cultivation
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FIGURE 2 | Tyrosol production of strains containing a single plasmid with modules of different sizes after fermentation for 20 and 40 generations. (A) Tyrosol
production of the WT strain CEN.PK2-1C. (B) Tyrosol production of strains CEN.PK2-1C with p2µM-based plasmids and CEN.PK2-1C with pRS423M-based
plasmids after fermentation in YPD medium. (C) Tyrosol production of strains CEN.PK2-1C with p2µM-based plasmids and CEN.PK2-1C with pRS423M-based
plasmids after fermentation in YPD medium with 200 µg/ml G418.

was about 31%, which was much lower than that of pRS423M-
large-module (about 82%). Although the selection pressure was
conducive to the stable existence and inheritance of plasmids,
a large number of pRS423M-based plasmids were lost during
long-time fermentation. The results showed that the stabilities
of the p2µM-based plasmids were higher than those of the

pRS423M-based plasmids. It is estimated that an inserted
fragment of 10 kb is acceptable for p2µM when there is no
selection in the medium, and the inserted fragment of 14 kb
is acceptable for p2µM under condition with selection. Zeng
et al. (2021) moved the essential gene TPI1 from chromosome
to p2µ plasmid. With auxotrophic complementation of TPI1,

Frontiers in Microbiology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 679665

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-679665 June 12, 2021 Time: 16:1 # 6

Yang et al. Yeast Endogenous 2µ Plasmid Modification

the resulting plasmid pE2µRT could undergo cultivation of 90
generations without loss under non-selective conditions.

Tyrosol biosynthetic pathway was introduced to demonstrate
that the expression level of the p2µM-based plasmids was
superior to that of the controls. After 40 generations of
shake flask cultivation in YPD medium, the tyrosol yield
of strain CEN.PK2-1C carrying plasmid p2µM-small-module
was 54.46 ± 0.21 mg/L, about 9.7% higher than that of
CEN.PK2-1C with pRS423M-small-module (49.64 ± 0.71 mg/L).
The tyrosol titer of CEN.PK2-1C with p2µM-medium-module
was 82.0% higher than that of strains carrying pRS423M-
medium-module. The yield of tyrosol harvested from strains
with p2µM-large-module was about threefold higher than that
from strains with pRS423M-large-module. However, strains
containing large module accumulated less tyrosol than strains
containing small module and medium module, which was
probably due to the instability of p2µM containing large
module. Tyrosol production of the strain with p2µM-small-
module at the 40th generation was 98.39 ± 0.41 mg/L
with selective pressure, which was 80.7% greater than the
strain with p2µM-small-module in non-selective medium and
65.2% higher than that of the strain with pRS423M-small-
module in selective medium. The tyrosol yields of the strain
containing plasmids pRS423M-medium-module and pRS423M-
large-module at the 40th generation were all lower than
those of the strains of p2µM-based plasmids with modules
of the same size.

Taking these results into account, in order to improve the
stability of endogenous 2µ-based expression vector in yeast,
an essential gene could be introduced into the plasmid while
knocking out the same essential gene in the genome to ensure
the existence of engineered endogenous 2µ plasmid in yeast
(Zeng et al., 2021). In the future, researchers could apply the
CRISPR/Cas9 system to directly integrate metabolic pathways
into the endogenous 2µ plasmid with an essential gene in vivo
(Dean-Johnson and Henry, 1989; Zheng et al., 1993; Wang
et al., 2020; Yang et al., 2021). In summary, our endogenous

2µ-based expression vector p2µM has improved stability than
the commonly used YEp pRS423, so it could be applied in
S. cerevisiae for genetic manipulations.
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