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The retina is among the most metabolically active tissues with high-energy demands.
The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure
the appropriate energy supply for the transmission of the light signal. Photoreceptor cells
(PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great
concentration of mitochondria, which makes them particularly sensitive to mitochondrial
dysfunction. To date, visual loss has been extensively correlated to defective
mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-
ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover,
abnormal mitochondrial functions are frequently found in the most common retinal
pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic
retinopathy (DR), that share clinical similarities with the hereditary primary MDs.
MicroRNAs (miRNAs) are established as key regulators of several developmental,
physiological, and pathological processes. Dysregulated miRNA expression profiles
in retinal degeneration models and in patients underline the potentiality of miRNA
modulation as a possible gene/mutation-independent strategy in retinal diseases and
highlight their promising role as disease predictive or prognostic biomarkers. In this
review, we will summarize the current knowledge about the participation of miRNAs
in both rare and common mitochondria-mediated eye diseases. Definitely, given the
involvement of miRNAs in retina pathologies and therapy as well as their use as
molecular biomarkers, they represent a determining target for clinical applications.

Keywords: microRNA, retina, mitochondria, mitochondrial diseases, glaucoma, AMD, diabetic retinopathy,
MitomiR

INTRODUCTION

Mitochondria are key players in different cellular processes, and their dysfunction contributes
to the pathogenesis of neurodegenerative disorders (NDs), including many retinal diseases. To
date, a connection between vision and defective mitochondrial functions has been extensively
described (Yu-Wai-Man et al., 2011; Gueven et al., 2017). Mitochondrial diseases (MDs) are a
heterogeneous group of rare disorders caused by mutations in nuclear or mitochondrial genes
that affect proteins essential for mitochondrial structure and function. Although they are highly
genetically and clinically heterogeneous, several MDs, such as Leber hereditary optic neuropathy
(LHON), autosomal dominant optic atrophy (ADOA), and neuropathy, ataxia, and retinitis
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pigmentosa (NARP), show some form of vision impairment
and can be classified as primary mitochondrial eye diseases
(PMEDs). Moreover, mitochondrial dysfunctions represent a
common denominator and a common cause of neuronal death
involved in the pathogenesis of many NDs due to mutations in
genes encoding non-mitochondrial proteins or characterized by
more complex pathogenetic events (Niyazov et al., 2016).

The great concentration of mitochondria in metabolically
active tissues with high-energy demands, such as the retina,
makes them particularly sensitive to mitochondrial dysfunction.
The retina comprises different cell types organized in layers that
form neuronal circuits working in parallel and in combination to
produce a complex visual output (Figure 1) (Carrella et al., 2020).
The outer nuclear layer (ONL) is composed of photoreceptor
cells (PRs), subdivided into rods and cones. They synapse
with interneurons of the inner nuclear layer (INL), namely,
bipolar cells, amacrine cells, and horizontal cells, which in turn
contact RGCs in the RGC layer. Retinal layers show a peculiar
distribution of mitochondria to guarantee the energy supply for
the conversion and propagation of the light signal (Figure 1).
PRs, which capture photons and generate electrophysiological
signals, display many mitochondria in the inner segment. In
RPE, mitochondria are located at the basal region, that is, in
contact with PRs. Instead, in the inner retina, mitochondria are
predominantly concentrated in the unmyelinated proximal axons
of RGCs, which transmit visual information to the brain. It is
thus not surprising that the most common retinal disorders,
i.e., glaucoma, age-related macular degeneration (AMD), and
diabetic retinopathy (DR), show mitochondrial dysfunction
and share some clinical similarities with PMEDs (Carelli
et al., 2004; Yu-Wai-Man et al., 2011; Gueven et al., 2017;
Ferrington et al., 2020). Interestingly, many studies also reported
vision impairment and retinal abnormalities in the majority of
Alzheimer’s and Parkinson’s disease patients and animal models,
highlighting the involvement of mitochondrial anomalies in the
development of visual defects (Colligris et al., 2018; Indrieri et al.,
2020b; Marrocco et al., 2020; Mirzaei et al., 2020).

MicroRNAs (miRNAs) are a class of non-coding RNAs
able to post-transcriptionally regulate gene expression through
a powerful mechanism of sequence-specific recognition.
Each miRNA is predicted to recognize about 200 mRNA
targets, guaranteeing a pleiotropic fine-tuning of correlated
transcripts that confers robustness to pathway regulation
(Bartel, 2018).

Soon, their relevant role in different retina pathologies (Karali
and Banfi, 2019; Zuzic et al., 2019) and the possibility to exploit
their modulation as a possible gene/mutation-independent
strategy for these disorders became evident (Carrella et al., 2020).
The extensive genetic heterogeneity of many inherited retinal
disorders, including PMEDs, indeed represents a significant
limitation to the development and application of gene-
replacement therapy in most of patients. Moreover, gene
replacement cannot be applied in disorders caused by gain-of-
function mutations and too complex multifactorial diseases such
as AMD, glaucoma, and DR (Carrella et al., 2020). In this respect,
miRNAs represent interesting therapeutic targets able to regulate
common dysregulated pathways underlying retinal damage.

Moreover, dysregulated miRNA expression profiles in retinal
degeneration models and in patients indicate that they may
represent reliable biomarkers for the diagnosis of these disorders
or to predict the onset and the progression of the disease, and the
evaluation of the response to treatments. Circulating miRNAs
and exosomal miRNAs can be indeed easily detected, thus
representing promising disease predictive/diagnostic/prognostic
biomarkers (Saxena et al., 2015; Palfi et al., 2016;
Anasagasti et al., 2018).

MicroRNAs can localize to different subcellular compartments
(i.e., mitochondria, endoplasmic reticulum, and exosomes)
(Leung, 2015); and an increasing interest is growing about
miRNAs, called MitomiRs, that regulate mitochondrial
function. MitomiRs can be divided into two subgroups: those
binding to nuclear-transcribed mRNA encoding mitochondrial
proteins and those imported into mitochondria targeting
mitochondrial-encoded mRNAs (Purohit and Saini, 2021).
Moreover, some MitomiRs (i.e., miR-1974, miR-1977, and miR-
1978) may be transcribed by the mitochondrial DNA (mtDNA)
(Bandiera et al., 2011); however, more data are necessary to
validate these findings.

Modulation of miRNAs has been recently applied as therapy
to different disorders reaching preclinical and clinical stages
(Bajan and Hutvagner, 2020). However, investigations on the
role of miRNAs, and specifically MitomiRs, in mitochondrial-
mediated disorders are few. In this review, we will summarize
the current knowledge about the involvement of miRNAs
in mitochondria-mediated eye diseases, including both rare
PMEDs and the most common retinal disorders, i.e., glaucoma,
AMD, and DR. In particular, their role in retina pathologies
and therapy, as well as their role as biomarkers in these
disorders, will be analyzed, highlighting their huge potential in
clinical medicine.

MITOCHONDRIA-MEDIATED EYE
DISEASES

Primary Mitochondrial Eye Diseases
Leber Hereditary Optic Neuropathy
Leber hereditary optic neuropathy is one of the most frequent
PMEDs with a prevalence of between 1/15,000 and 1/50,000
people worldwide. LHON is an organ-specific disease,
characterized by death of RGCs leading to degeneration of
the optic nerve (ON) and bilateral or unilateral loss of vision,
which typically occurs between the ages of 20 and 40 (Meyerson
et al., 2015). It shows maternal inheritance, and it results
more commonly in men, with variable disease penetrance.
Approximately 95% of LHON cases are associated with three
mtDNA point mutations (m.11778G > A, m.3460G > A,
and m.14484T > C) that primarily affect mitochondrial
respiratory chain (MRC) complex I genes (ND1, ND4, and ND6)
(Yu-Wai-Man et al., 2002; Newman, 2005).

The molecular mechanism underlying death of RGCs is still
not clear, even if it has been correlated to a reduction of
ATP, an increase of reactive oxygen species (ROS) production
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FIGURE 1 | Schematic representation of retinal layers, mitochondrial distribution, and related retinal pathologies and miRNAs. (A) Schematic representation of the
human eye. The box identifies the position of the retinal layers in the posterior part of the eye. (B) Magnification of the retina and retinal layers in healthy conditions.
(C) A peculiar distribution of mitochondria is graphically represented: in RPE, which overlays the PRs, mitochondria are located at the basal region; in PRs, a high
number of mitochondria are present in the inner segment; in the inner retina, mitochondria are predominantly concentrated in the unmyelinated proximal axons of
RGCs. (D) Primary or secondary defect in mitochondrial functionality in RPE and PRs has been linked to AMD, NARP, and other forms of visual loss, such as DR.
Primary or secondary impairment in mitochondrial function leading to RGC degeneration is considered a major cause of retinal diseases such as LHON, ADOA,
glaucoma, and DR. (E) List of miRNAs expressed in specific cell retinal layers whose function or alteration in expression has been linked to mitochondrial dysfunction
and retinal diseases. Yellow box shows relevant miRNAs related to AMD and DR; green box, LHON and glaucoma-related miRNAs. RPE, retinal pigment epithelium;
PRs, photoreceptors; RGCs, retinal ganglion cells; AMD, age-related macular degeneration; NARP, neuropathy, ataxia, and retinitis pigmentosa; DR, diabetic
retinopathy; LHON, Leber hereditary optic neuropathy; ADOA, autosomal dominant optic atrophy.

due to defective MRC, and a significantly impaired mitophagy
(Sharma et al., 2019).

Autosomal Dominant Optic Atrophy
With a prevalence of 1/10,000–1/35,000, ADOA is the most
common form of PMEDs due to nuclear DNA mutations.
Bilaterally symmetric progressive deterioration of the central
visual acuity, ON pallor, dyschromatopsia, and blindness are
the main symptoms, usually beginning in childhood (Fraser
et al., 2010; Yu-Wai-Man et al., 2014). As in LHON, the disease
primarily affects the RGCs and their axons, even if the ADOA
progression with age is highly variable (Lenaers et al., 2012). In
about 50–60% of the cases, patients harbor mutations in theOPA1
(Alexander et al., 2000; Ferre et al., 2005). In addition, other
mutated genes include OPA2, OPA3, OPA4, OPA5, OPA8, WFS1,
and SSBP1 (Finsterer et al., 2018; Piro-Megy et al., 2020).

OPA1 is a crucial component of the mitochondrial fusion
machinery and also controls crista biogenesis and remodeling,
impacting apoptosis and mitochondrial respiration (Cogliati
et al., 2016). In accordance, Opa1 deficiency induces a significant
fragmentation of the mitochondrial network and impairs ON
structure and visual function in a mouse model of ADOA
(Davies et al., 2007).

Recently, the role of autophagy in the regulation of
mitochondrial distribution in axons of RGC and in visual loss
in an ADOA mouse model (Zaninello et al., 2020) has also
been demonstrated, indicating an important patho-mechanism
contribution of mitophagy.

Neuropathy, Ataxia, and Retinitis Pigmentosa
Neuropathy, ataxia, and retinitis pigmentosa is an inherited
neurologic/metabolic syndrome whose clinical hallmarks are (i)
sensory neuropathy including progressive motor weakness and
lethargy, (ii) ataxia, which affects the balance and coordination,
and (iii) ophthalmologic findings including retinitis pigmentosa,
optic atrophy, and eye movement disorders. Usually, the
retina defects worsen over time, leading to severe vision loss
and blindness. NARP typically begins in childhood or early
adulthood. The clinical expression of the NARP syndrome is
very variable, and the predominant ocular manifestation is
characterized by an initial RPE degeneration and a rod/cone
dysfunction in different families (Gelfand et al., 2011).

neuropathy, ataxia, and retinitis pigmentosa results from
mtDNA heteroplasmic mutations in ATP6 gene (predominantly
m.8993T > G/C), coding for the mitochondrial ATP synthase
subunit 6 (Holt et al., 1990; Duno et al., 2013; Miyawaki
et al., 2015). ATP synthase impairment affects oxidative
phosphorylation, causing energy deprivation and overproduction
of ROS (Nijtmans et al., 2001; Baracca et al., 2007).

Eye Diseases Associated With
Mitochondrial Dysfunctions
Glaucoma
With about 70 million patients worldwide, glaucoma is the
leading cause of blindness and a major economic burden (Quigley
and Broman, 2006). The term glaucoma describes a group of
complex multifactorial diseases characterized by ON damage and
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loss of RGCs resulting in progressive loss of vision. Age, genetics,
and elevated intraocular pressure (IOP) are prominent risk
factors; however, about one-third of cases have ON degeneration
despite IOP in the normal range (Almasieh and Levin, 2017).

Interestingly, similarities between glaucoma and PMEDs
have been described, and defects in mitochondria have been
connected to glaucomatous neurodegeneration (Kong et al.,
2009; Sundaresan et al., 2015; Shim et al., 2016; Williams
et al., 2017; Singh et al., 2018; Tribble et al., 2019). Moreover,
mutations in OPTN encoding for the mitophagy adaptor protein
optineurin (Rezaie et al., 2002; Wong and Holzbaur, 2014), TBK1
encoding the serine threonine protein kinase TANK-binding
kinase 1 involved in autophagy (Sears et al., 2019), and OPA1
(Aung et al., 2002; Yu-Wai-Man et al., 2010; Guo et al., 2012)
have been associated with glaucoma, thus highlighting a crucial
role for mitochondrial dynamics and mitophagy pathways in
glaucoma pathogenesis (Ito and Di Polo, 2017). In addition,
numerous studies reported mtDNA mutations, decrease in
the mitochondrial respiratory activity, and oxidative stress in
glaucoma patients and in animal models of this disease (Lee et al.,
2011; Tseng et al., 2015; Hondur et al., 2017; Williams et al.,
2017; Tribble et al., 2019). Notably, mitochondrial dysfunction
can be detected before RGC death occurs in glaucoma animal
models (Kong et al., 2009; Williams et al., 2017; Singh et al., 2018),
suggesting a primary effect for mitochondrial abnormalities
in glaucoma onset.

Age-Related Macular Degeneration
Mitochondrial dysfunction has been implicated in the
pathophysiology of several age-related diseases including
those that involve PRs and RPE cells (Lukiw et al., 2012; Lefevere
et al., 2017; Ferrington et al., 2020). Aging and oxidative stress
have been recognized as primary risk factors for AMD (Liang
and Godley, 2003; Jarrett and Boulton, 2012; Lefevere et al.,
2017), a complex degenerative and progressive disease.

There are two forms of AMD: the “wet” form that is associated
with abnormal growth of blood vessels into the retina and
the “dry” form with primary pathogenic event involving RPE
degeneration causing PR cell death (Liang and Godley, 2003).
RPE cells engulf photoreceptor outer segments (POSs) that
are shed daily during renewal of PRs. RPE accumulation of
lipofuscin, a product of POS turnover, has been hypothesized to
be the primary source of ROS responsible for oxidative damage
of the RPE resulting in impaired metabolism and apoptosis
(Liang and Godley, 2003; Vives-Bauza et al., 2008; Jarrett and
Boulton, 2012). Several studies have provided evidence that
impaired autophagy (Mitter et al., 2014; Hyttinen et al., 2017) and
mitochondrial dysfunction (Barron et al., 2001; Feher et al., 2006),
in both RPE and PRs, exacerbate oxidative stress and contribute
to the pathogenesis of AMD.

Diabetic Retinopathy
Diabetic retinopathy represents one of the most common slow-
progressing microvascular complications of diabetes. In diabetic
patients, damaged blood vessel of the retina leads to retinal
detachment and reduction in the visual field and blindness
(Frank, 2004). The retinal neurodegeneration is associated

with retinal electrophysiological dysfunction and thinning of
RGC and PR layers (Carbonell et al., 2019). Accelerated
apoptosis of both neuronal and vascular cells (Mizutani et al.,
1996; Barber et al., 2011) indicates apoptotic cell death as a
contributing process to DR.

Although the detailed mechanisms of action in the
development of DR are still unknown, involvement of
mitochondrial dysfunctions with ROS formation and a decrease
of the mitochondrial fusion protein mitofusin 2 (Mfn2) have
been found in experimental models of this retinopathy (Eshaq
et al., 2014; Duraisamy et al., 2019).

MicroRNAs IN
MITOCHONDRIA-MEDIATED EYE
DISEASES

As reported before, an increasing number of miRNAs have
been shown to be involved in the regulation of mitochondrial
metabolism, although there is no evidence, to date, that
mitochondrial disorders affect their expression or are directly
caused by their dysregulation. Recently, miR-181a and miR-
181b (miR-181a/b) were shown to directly target genes
involved in mitochondrial biogenesis and function, and ROS
detoxification (Indrieri et al., 2019). Inactivation of miR-
181a/b leads to increased levels of mitochondrial biogenesis
and mitophagy leading to a significant amelioration of the
disease phenotype in LHON mouse models. These data suggest
that miR−181a/b may represent gene−independent therapeutic
targets for mitochondrial-related eye diseases (Indrieri et al.,
2019). In accordance with the pervasive and pleiotropic roles of
the miR-181 family (Indrieri et al., 2020a), miR-181c might be
associated with vascular proliferation in high glucose diabetic-
like environment (Qing et al., 2014; Zitman-Gal et al., 2014).

Large-scale studies have been performed to identify glaucoma-
relevant miRNAs (Li et al., 2009; Liu et al., 2018; Hindle
et al., 2019). Among the 159 miRNAs identified, many were
differentially expressed in the aqueous humor (AH) and/or tear
of glaucoma patients and controls. MiRNA-29 family controls
extracellular matrix (ECM) homeostasis in trabecular meshwork
(TM) cells, by negatively regulating collagens, fibrillins, and
elastin (Luna et al., 2009; Villarreal et al., 2011). Moreover,
a specific crosstalk between TGFβ, whose alteration are often
observed in glaucoma, and miR-29 levels highlighted miR-
29-family implication in glaucoma (Luna et al., 2011). The
expression profile of miR-8/miR-200 family is upregulated in
transgenic mice carrying a mutation in OPTN (Chi et al., 2010;
Gao et al., 2016). Moreover, miR-200c can decrease trabecular
contraction and IOP by regulating genes associated with TM cell
contraction regulation (Luna et al., 2012). The miR-183/96/182
cluster is highly expressed in retina and implicated in several
aspects of retinal cell development and maintenance (Amini-
Farsani and Asgharzade, 2020). In particular, miR-182 was
found to be the most abundant miRNA also in the axons of
developing RGC where it regulates axon guidance (Bellon et al.,
2017). Interestingly, a case–control study conducted on patients
with primary open-angle glaucoma (POAG) concludes that the
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TABLE 1 | Summary of miRNAs involved in mitochondria-mediated eye diseases.

Pathology Etiology Mitochondrial
dysfunction

Related miRNAs as
biomarkers

Related miRNAs as
therapeutic target

References

PMEDS
Leber hereditary optic
neuropathy (LHON)
(OMIM #535000)

Mutations in MRC
complex I genes (ND1,
ND4, and ND6 of
mtDNA)

– Reduction in ATP
production

– Increase of free radical
production

– Impaired mitophagy

Mir-181a;
miR-181b

Indrieri et al., 2019

Autosomal dominant
optic atrophy (ADOA)
(OMIM #165500)

nDNA mutations
(OPA1, OPA2, OPA3,
OPA4, OPA5, OPA8,
WFS1, and SSBP1)

– Disorganized cristae
– Fragmentation of

mitochondrial network
– Apoptosis
– Impaired respiratory

functions
– Abnormal mitophagy

NARP (OMIM
#551500)

MtDNA mutations in
ATP6 gene

– Malfunctioning of ATP
synthase

– Energy deprivation
– Overproduction of ROS

EDAMDs
Glaucoma Age, genetics (Optn,

Opa1, and Tbk1), and
elevated IOP

– Decreased
mitochondrial
respiratory activity

– Oxidative stress
– Impaired mitochondrial

dynamics
– Defective mitophagy

MiR-8/200 family;
miR-16;
miR-21;
miR-25;
miR-27a;
miR-29 family;
miR-106b;
miR-107;
miR-149;
miR-181c;
miR-183/96/182;
miR-204;
miR-450;
miR-497;
let-7a;

MiR-19a;
miR-21;
miR-204

Luna et al., 2009; Chi
et al., 2010; Luna et al.,
2011; Villarreal et al.,
2011; Huang et al.,
2013; Izzotti et al.,
2015; Jayaram et al.,
2015; Gao et al., 2016;
Bellon et al., 2017;
Wang et al., 2018;
Moschos et al., 2020

Age-related macular
degeneration (AMD)

Aging and oxidative
stress

– Increased ROS
production

– Oxidative damage
resulting in impaired
metabolism

MiR-17;
miR-125b;
miR-146a;
miR-155

MiR-9;
miR-146a;
miR-155

Lukiw et al., 2012; Yan
et al., 2015; Berber
et al., 2017; Natoli and
Fernando, 2018; Pogue
and Lukiw, 2018;
Martinez and Peplow,
2021

Diabetic retinopathy
(DR)

Diabetes-caused
damage of retinal blood
vessel leads to retinal
detachment

– Mitochondrial
dysfunctions with ROS
formation

– Decreased
mitochondrial fusion
protein Mfn2

MiR-8/200 family;
miR-19a;
miR-21;
miR-27;
miR-31;
miR-34a/c;
miR-100;
miR-126;
miR-132;
miR-145;
miR-146;
miR-155;
miR-181c;
miR-1179

MiR-34a;
miR-195;
miR-383;
miR-451a

Sugioka et al., 2004;
Zheng and Xiao, 2010;
Wu et al., 2012; Li
et al., 2013; Ragusa
et al., 2013; Kong et al.,
2014; Mastropasqua
et al., 2014; Qing et al.,
2014; Wang Y. G. et al.,
2014; Zitman-Gal et al.,
2014; Wang et al.,
2017; Li J. et al., 2018;
Shafabakhsh et al.,
2019; Shao et al.,
2019; Thounaojam
et al., 2019

MitomiRs are highlighted in red. The most promising miRNAs for clinical development are in bold.
mtDNA, mitochondrial DNA; ATP, adenosine triphosphate; nDNA, nuclear DNA; ROS, reactive oxygen species; IOP, intraocular pressure; Mfn2, mitofusin 2; PMEDs,
primary mitochondrial eye diseases; NARP, neuropathy, ataxia, and retinitis pigmentosa; EDAMDs, eye diseases associated with mitochondria dysfunctions.

carriers of polymorphism in miR-182 and CDKN2B genes have
an increased risk of developing POAG (Moschos et al., 2020).
MiR-204 caused reduced expression of FOXC1, implicated in

glaucoma development, and its target genes (Paylakhi et al.,
2013). Moreover, it has been shown that in ON injury, miR-
204 can downregulate GAP43, which plays an important role
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TABLE 2 | Mitochondrial-related targets and pathways modulated by MitomiR.

MiRNA Targets Mitochondria-related pathways References

MiR-8/miR-200 family MFF Mitochondrial dynamics Eades et al., 2011; Zhu et al., 2012; Yao et al.,
2014; Lee et al., 2017TFAM Mitochondrial biogenesis

KEAP1 Oxidative stress response

BCL2 and XIAP Mitochondria-mediated apoptosis

MiR-9 BCL2L11 Mitochondria-mediated apoptosis Wei et al., 2016

MiR-16 BCL2 Mitochondria-mediated apoptosis Cimmino et al., 2005; Nishi et al., 2010

ARL2 Mitochondrial ADP/ATP

MiR-17 SOD2, TRXR2, and GPX2 Antioxidant response Xu et al., 2010; Weng et al., 2014; Lu et al., 2016

BIM-S Mitochondria-mediated apoptosis

MFN2 Mitochondrial dynamics

MiR-19a PTEN Mitochondria-mediated apoptosis Zhao et al., 2017

MiR-21 BCL2 Mitochondria-mediated apoptosis Dong et al., 2011

MiR-25 MCU Mitochondrial Ca2+ uptake Zhang et al., 2012; Marchi et al., 2013; Wu et al.,
2015, 2017; Feng et al., 2016MOAP1; PTEN; BIM Mitochondria-mediated apoptosis

NCOA3 Release of mitochondrial DNA

MiR-27 PHB Mitochondrial dynamics Kang et al., 2013; Kim et al., 2016; Shen et al.,
2016; Li H. et al., 2017PINK Mitophagy

FOXJ3 Mitochondrial biogenesis

BAX Mitochondria-mediated apoptosis

MiR-29 family MCL 1 and BAX Mitochondria-mediated apoptosis Mott et al., 2007; Garzon et al., 2009; Xue et al.,
2016; Muluhngwi et al., 2017; Caravia et al., 2018;
Jing et al., 2018

PGC1α Mitochondrial biogenesis

ATP5G1 and ATPIF1 Mitochondrial bioenergetics

MiR-31 SIRT3 Oxidative stress response Lee et al., 2016; Kao et al., 2019

SDHA Mitochondrial metabolism

MiR-34a/c BMF; CYC Mitochondria-mediated apoptosis Catuogno et al., 2013; Hu et al., 2020

TXNRD2; SOD2 Antioxidant response Bai et al., 2011; Fan et al., 2017; Zhu et al., 2017;
Thounaojam et al., 2019SIRT1 Mitochondrial biogenesis

Notch2 Mitochondria-mediated apoptosis

MiR-96 CASP9 Mitochondria-mediated apoptosis Iwai et al., 2018

MiR-106b MFN2 Mitochondrial dynamics Wu H. et al., 2016; Li P. et al., 2017; Xu et al., 2017;
Zhang C. et al., 2021OPTN, MFN2, and NDP52 Mitophagy

MCL1; DR4 Mitochondria-mediated apoptosis

MiR-125b BIK Mitochondrial metabolism Xie et al., 2015; Duroux-Richard et al., 2016; Hu
et al., 2018MTP18 Mitochondrial dynamics

MCL1; HAX1 Mitochondria-mediated apoptosis

MiR-145 BNIP3 Mitochondria-mediated apoptosis Li et al., 2012

MiR-146a CypD Mitochondria-mediated apoptosis Su et al., 2021; Heggermont et al., 2017

DLST Oxidative metabolism

MiR-149 PARP-2 NAD+ content and mitochondrial biogenesis Mohamed et al., 2014

MiR-155 TFAM Mitochondrial biogenesis Quinones-Lombrana and Blanco, 2015; Tsujimoto
et al., 2020BAG5 Mitophagy

MiR-181a/b/c PINK1 and Parkin Mitophagy Cheng et al., 2016

Indrieri et al., 2019

Das et al., 2012; Ouyang et al., 2012; Rivetti di Val
Cervo et al., 2012; Wang L. et al., 2014; Wang
et al., 2015; Barbato et al., 2021

BCL2, MCL1, BCL2L11, and XIAP Mitochondria-mediated apoptosis

SIRT1, TFAM, and NRF1 Mitochondrial biogenesis

MT-COI, COX11, and COQ10B OXPHOS

SIRT1 and PRDX3 Antioxidant response

GPX1 Oxidative stress

MiR-183 IDH2 TCA cycle Tanaka et al., 2013

MiR-195 MICU1 Mitochondrial Ca2+ uptake Singh and Saini, 2012; Zhou et al., 2013; Zhang
et al., 2018; Rao et al., 2020ARL2 Mitochondria-mediated apoptosis

MFN2 Mitochondrial dynamics

BCL2 Mitochondria-mediated apoptosis

SIRT3 Mitochondrial energy metabolism

(Continued)
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TABLE 2 | Continued

MiRNA Targets Mitochondria-related pathways References

MiR-204 PGC1a Mitochondrial biogenesis Hwang et al., 2016; Houzelle et al., 2020; Zhang L.
et al., 2021BCL2 Mitochondria-mediated apoptosis

TRPML1 Mitophagy and ROS production

MiR-383 PRDX3 Antioxidant response Li et al., 2013

MiR-497 BCL2 Mitochondria-mediated apoptosis Yadav et al., 2011; Wu R. et al., 2016

TCA, tricarboxylic acid; ROS, reactive oxygen species.

in axonal growth and in experimental chronic glaucomatous
injury (Huang et al., 2013; Wang et al., 2018). Moreover,
overexpression of miR-19a augments axon regeneration via miR-
19a–PTEN axis, underscoring the therapeutic potential of local
administration of miRNAs via intravitreal injection (Mak et al.,
2020). Another interesting miRNA is miR-21, whose inhibition
in a model of ON crush promotes axonal regeneration and RGC
survival and function (Li H. J. et al., 2018; Li et al., 2019).
In the retina of rats with advanced nerve damage induced by
elevated IOP, eight miRNAs were significantly downregulated
as compared with those in controls (miR-181c, miR-497, miR-
204, let-7a, miR-29b, miR-16, miR-106b, and miR-25) and
miR-27a was significantly upregulated. Observed miRNA level
alterations caused enrichment of targets associated with ECM/cell
proliferation, immune system, and regulation of apoptosis
(Jayaram et al., 2015). Several miRNAs have been also found to
be released in extracellular space in glaucomatous AH. Released
miRNAs include miR-21 (apoptosis), miR-450 (cell aging and
maintenance of contractile tone), miR-107 (nestin expression
and apoptosis), and miR-149 (endothelia and ECM homeostasis)
(Tanaka et al., 2014; Izzotti et al., 2015).

Few dysregulated miRNAs in multiple studies have been
identified in the blood and vitreous humor of AMD patients.
The serum profiles of patients with both wet and dry AMD
have shown differences and partial overlap in several miRNAs
(Szemraj et al., 2015; Berber et al., 2017), reflecting the
difficulty of reducing biomarkers for AMD to one common
group (Natoli and Fernando, 2018). A group of dysregulated
miRNAs were reported in mouse models of distinct AMD
features and demonstrated some similarities with the human
AMD findings, including miR-146a, miR-9, miR-17, miR-125b,
and miR-155 (Lukiw et al., 2012; Berber et al., 2017; Natoli
and Fernando, 2018; Pogue and Lukiw, 2018; Martinez and
Peplow, 2021). Those miRNAs can be considered as potential
biomarkers and as possible therapeutic targets for AMD. MiR-
146a has been found in the plasma (Ertekin et al., 2014; Menard
et al., 2016) and retinas (Bhattacharjee et al., 2016) of AMD
patients and was modulated in human monocytes stimulated
with lipopolysaccharide (Taganov et al., 2006). MiR-146a and
miR-9 are upregulated by NF-κB and present indirect correlation
with complement factor H (CFH) levels, a key repressor of the
innate immune response and a key player in AMD pathogenesis,
indicating their modulation as a therapeutic strategy (Lukiw et al.,
2012). MiR-17, a regulator of angiogenesis (Doebele et al., 2010)
and anti-apoptotic genes as well (Song et al., 2015), is upregulated
in an oxidative-induced retina model, an oxidative stress model

in RPE cells, and neovascularization AMD plasma. MiR-155 has
a role in angiogenesis, complement activation, and inflammation,
making it a candidate for therapeutic interventions for AMD.
The expression of miR-155 is also induced by AMD-related
inflammatory cytokines (O’Connell et al., 2007). In an animal
model of AMD, miR-155 has been shown to be upregulated
in correlation with increased cell death and inflammation
(Saxena et al., 2015), and its downregulation reduced retinal
neovascularization (Zhuang et al., 2015). In addition, miR-155
depletion correlates with decreased levels of the mitochondrial
translocator protein (TSPO), a selective marker of microglia in
their highly reactive state (Yan et al., 2015). Interestingly, miR-
146a and miR-155 recognize an overlapping 3′ UTR in CFH, to
which both miRNAs may interact (Lukiw et al., 2012).

Several miRNAs, related to DR, are involved in vasculature
regulation (miR-126, miR-200b, and miR-31), chronic
inflammation pathway (miR-146, miR-155, miR-132, and
miR-21), and oxidative stress (miR-21, miR-181c, miR-1179,
and miR-8/miR-200 family); other miRNAs present altered
expression in DR, but their role is not yet defined (Wu et al.,
2012; Andreeva and Cooper, 2014; Mastropasqua et al., 2014;
Pusparajah et al., 2016; Shafabakhsh et al., 2019). MiR-383
presents an increased expression in hyperglycemic conditions
and targets the mitochondrial peroxiredoxin 3 involved in
ROS detoxification and apoptosis (Li et al., 2013). Indeed,
miR-383 inhibition diminished ROS and cell death in RPE
treated with high glucose (Jiang et al., 2017), representing one
of the major keys for the treatment of DR. The expression of
miR-451a was found downregulated in diabetic conditions.
MiR-451a mimic overexpression showed a protective effect on
mitochondrial function in diabetic conditions, probably via the
downregulation of activating transcription factor 2 (ATF2) and
its downstream target genes CyclinA1, CyclinD1, and MMP2,
providing new perspectives for developing effective therapies
for proliferative DR (Shao et al., 2019). In both experimental
and human diabetes, miR-34a showed increased expression. It
promotes mitochondrial dysfunction and retinal microvascular
endothelial cell senescence by suppressing the SIRT1–PGC-1α

axis as well as the mitochondrial antioxidants TrxR2 and SOD2
(Thounaojam et al., 2019). MiR-195 acts as a regulator for
Mfn2, which is reduced in the retina of diabetic patients and is
involved in maintaining mitochondrial morphology, fusion, and
ROS metabolism (Sugioka et al., 2004; Zheng and Xiao, 2010).
Oxidative stress-induced overexpression of miR-195 can result
in the downregulation of Mfn2 leading to tube formation and
to increased blood–retinal barrier permeability, which are two
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common pathogenic events of DR (Zhang et al., 2017). Therefore,
miR-195 could be considered as a potential therapeutic target
for DR (Zhong and Kowluru, 2011). Another miRNA increased
upon oxidative stress is miR-100, able to downregulate AKT
pathway, extracellular-signal regulated kinase pathway, and
TrkB pathway (Kong et al., 2014). MiR-145 overexpression
reduced ROS production and increased the activity of SOD
(Hui and Yin, 2018). Finally, miR-27 reduces ROS generation
and downregulates the P13K/AKT/mTOR signaling pathway by
inhibition of Nox2 (Li J. et al., 2018) implicated in ROS induction
and neovascularization (Chan et al., 2013, 2015).

Overall, the positive effect of miR-19a, miR-204, and miR-
21 modulation on glaucoma murine models, as well as
downregulation of miR-155 in AMD mice, highlights the
possibility of their rapid translation into clinical application as
therapeutic molecules for these eye diseases (bold miRNAs in
Table 1). However, other preclinical validation steps are required
for most of the previously mentioned miRNAs, thus underlining
the need and importance of this emerging field of research.

Systematic expression profiling of miRNAs in retinal cells
could be of benefit to identify possible involvement of
their function in specific retinal cell types, in physiological
and pathological conditions. Although novel strategies are
under development to study miRNA expression in single-cell
transcriptomic conditions (Liu and Shomron, 2021), there are
no data reported for such analysis in the retina. However,
systematic analysis of miRNA expression and variability in the
mouse (Soundara Pandi et al., 2013) and human neural retina
and RPE/choroid tissues (Karali et al., 2016) have been reported.
Interestingly, among the top 30 expressed miRNAs in retina are
reported several miRNAs that present a role in mitochondrial-
mediated eye diseases (i.e., miR-181a/b, miR-182, miR-183, miR-
204, let-7a, miR-9, miR-96, miR-125b, miR-100, and miR-181c;
see Table 1). Notably, many of the miRNAs here described
and associated with mitochondria-mediated eye diseases can
be classified as MitomiR (Purohit and Saini, 2021) (Table 1)
since they regulate important transcripts impacting different
mitochondrial pathways (Table 2), thus suggesting an additional
possible role of these miRNAs in the pathogenesis and therapy of
these disorders.

CONCLUSION

MicroRNAs are promising therapeutic tools due to their
capability to simultaneously modulate multiple pathways
involved in disease pathogenesis and progression. Moreover,

they also represent a class of interesting molecules useful
as disease predictive/prognostic biomarkers. Indeed, several
miRNAs (let-7a, miR-450, miR-107, miR-204, miR-21, and
miR-149 for glaucoma; miR-17 and miR-125b for AMD; miR-
126, miR-146a, miR-155, miR-132, miR-21, and miR-34a/c for
DR) differentially expressed in body fluids (i.e., serum, plasma,
and vitreous liquid or tears) of eye diseases associated with
mitochondria dysfunctions (EDAMDs) human patients may
be already considered as clinically relevant biomarkers (bold
miRNAs in Table 1).

Recently, an increasing interest is growing about MitomiRs,
which regulate mitochondrial function. As described before,
many MitomiRs have been linked to mitochondria-mediated
eye diseases, including both rare PMEDs and common retinal
diseases (Tables 1, 2). Due to the genetic heterogeneity that
characterizes PMEDs and to the big complexity that underlies
the most common retinal disorders (e.g., glaucoma, AMD, and
DR), no effective treatments are still available. For the above-
mentioned reasons, miRNA-based gene/mutation-independent
therapeutic strategies may represent a great promise. By targeting
common dysregulated pathways that play a key effector role in
retinal damage (e.g., mitochondrial dysfunction, oxidative stress,
inflammation, and neovascularization), miRNA modulation can
protect retinal cells regardless of the primary etiology of the
addressed disorder. Considering that the retina is an easily
accessible tissue, we believe that the potential application
of miRNA therapeutics in retinal disorders could rapidly
move to the clinic.
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