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Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy

syndrome, characterized by sleep-activated epileptiform spikes and seizures and

cognitive deficits in school age children. Recent evidence suggests that this disease

may be caused by disruptions to the Rolandic thalamocortical circuit, resulting in

both an abundance of epileptiform spikes and a paucity of sleep spindles in the

Rolandic cortex during non-rapid eye movement sleep (NREM); electrographic features

linked to seizures and cognitive symptoms, respectively. The neuronal mechanisms

that support the competitive shared thalamocortical circuitry between pathological

epileptiform spikes and physiological sleep spindles are not well-understood. In this study

we introduce a computational thalamocortical model for the sleep-activated epileptiform

spikes observed in RE. The cellular and neuronal circuits of this model incorporate

recent experimental observations in RE, and replicate the electrophysiological features

of RE. Using this model, we demonstrate that: (1) epileptiform spikes can be triggered

and promoted by either a reduced NMDA current or h-type current; and (2) changes

in inhibitory transmission in the thalamic reticular nucleus mediates an antagonistic

dynamic between epileptiform spikes and spindles. This work provides the first

computational model that both recapitulates electrophysiological features and provides

a mechanistic explanation for the thalamocortical switch between the pathological and

physiological electrophysiological rhythms observed during NREM sleep in this common

epileptic encephalopathy.

Keywords: BECTS, benign epilepsy with centrotemporal spikes, CECTS, childhood epilepsy, neural mass model,

electroencephalogram, Costa neural mass model

1. INTRODUCTION

Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy, characterized by a
transient period of spontaneous seizures and cognitive deficits in school age children. Clinically RE
is now recognized as a mild epileptic encephalopathy, characterized by the emergence of seizures
and cognitive deficits during school age years (Lee et al., 2017; Ross et al., 2020). Electrographically,
RE is characterized by distinctive high-voltage spikes in the Rolandic region. Both the seizures
and epileptiform spikes in RE are most prominent during non-rapid eye movement (NREM) sleep
(Pavlou et al., 2012). Although the genetic, electrophysiologic, and neurological features of RE have
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been studied in detail (Kellaway, 2000; Archer et al., 2003; Lemke
et al., 2013; Mirandola et al., 2013; Lal et al., 2014; Li et al., 2017;
Dryżałowski et al., 2018), the neural mechanisms underlying
the stereotyped electrophysiologic features of this disease are
poorly understood.

Converging evidence suggests that RE results from focal
dysfunction in the Rolandic thalamocortical circuit. In support
of this hypothesis, macrostructural and microstructural white
matter abnormalities have been identified adjacent to the
Rolandic cortex in RE (Ciumas et al., 2014; Ostrowski et al.,
2019; Thorn et al., 2020). Thalamic abnormalities have also been
observed in related developmental epilepsies characterized by
NREM sleep-activated spikes (Fernández et al., 2012, 2017). Most
recently, children with RE were reported to have focal spindle
deficits in the Rolandic cortex that predicted their cognitive
deficits (Kramer et al., 2021). Consistent with experimental
observations in rodent models (Clementeperez et al., 2017)
and cell culture (Beenhakker and Huguenard, 2009) that
pathologic spikes competitively “hijack” the thalamocortical
circuit that normally generates NREM sleep spindles, spindle
rate anticorrelates with spike rate in RE patients (Kramer et al.,
2021). As sleep spindles originate from a well-characterized
thalamocortical circuit (Beenhakker andHuguenard, 2009), these
findings provide a concrete pathophysiological model for RE.
The potential neural mechanisms responsible for the competitive
electrophysiological dynamics between the sleep activated spikes
and spindles observed in RE remain unknown.

Neural computational modeling provides a tool to investigate
the underlying dynamics of observed electrophysiological
phenomena, test mechanistic hypotheses, and provide
predictions for further experiments. Neural mass models
(NMMs) describe the dynamics of a neural population through
an averaged representation of specific cell types. A variety
of NMMs have been developed to simulate several types
of oscillatory and epileptiform patterns of brain activity in
epilepsy, including high frequency oscillations, spike-wave
complexes, and polyspike and wave discharges (Wendling et al.,
2002; Suffczynski et al., 2004; Marten et al., 2009; Goodfellow
et al., 2011; Helling et al., 2015). Similarly, NMMs have been
constructed to reproduce typical rhythms during sleep, such as
K-complexes, slow oscillations and spindles (Steynross et al.,
2005; Cona et al., 2014; Weigenand et al., 2014; Costa et al.,
2016a). Costa et al. developed a thalamocortical modeling
framework to produce realistic time courses of EEG signals
during NREM sleep, accurately replicating well-characterized
NREM sleep architecture, including K-complexes and spindles
(Costa et al., 2016b). However, for the sleep-activated epilepsies,
such as RE, theoretical modeling to demonstrate the neural
mechanisms underlying epileptiform spikes during NREM sleep,
has not been explored.

In this study, we introduce a new neural mass model for
Rolandic epilepsy (RE-NMM) incorporating the thalamocortical
circuit underlying spikes and spindles in recent human and
rodent studies (Clementeperez et al., 2017; Kramer et al., 2021)
and genetic findings in RE (Lemke et al., 2013; Xiong and Zhou,
2017). This model extends the existing Costa model in Costa et al.
(2016b) in three ways: (1) to target the dynamics of the Rolandic

thalamocortical system, we include excitatory cells from the
ventroposteriomedial (VPM) and ventroposteriolateral (VPL)
thalamic nuclei and two types of inhibitory cells (parvocellular,
PV; and somatostatin, SOM) from the reticular nucleus of the
thalamus (TRN); (2) consistent with recent genetic studies in
RE and idiopathic focal epilepsies (Lemke et al., 2013; Xiong
and Zhou, 2017), an extra NMDA receptor-mediated current
(NMDA current) is introduced in PV and SOM populations;
(3) to reflect the role of ion channels mutations in idiopathic
epilepsies (Poolos, 2004; Difrancesco and Difrancesco, 2015;
Brennan et al., 2016), an h-type ionic current is included in the
VPL and VPM populations.

We then use the model to propose the neuronal mechanisms
that give rise to epileptiform spikes in NREM sleep in RE. Finally,
we use the model to characterize the neuronal mechanisms
responsible for the competitive dynamics observed between
spikes and spindles in this disease. This work provides a new
computational model to better study RE and related sleep-
activated epilepsies and proposes testable hypotheses of the
neuronal mechanisms underlying this common disease.

2. METHODS

2.1. The Costa NMM
We start with the thalamocortical model in Costa et al. (2016b)
which contains four neural populations: excitatory pyramidal
cells (PY) and inhibitory interneurons (IN) in the cortical
module, and excitatory thalamocortical cells (TC) and inhibitory
thalamic reticular cells (TRN) in the thalamic module. The
model’s topological structure is shown in Figure 1.

In each population the dynamical evolution of neural activity
is formulated by two computational operators: a sigmoid
operator and a convolution operator. The sigmoid operator
transforms the average membrane potential V(t) into the average
firing rate Q(t), that is (Jansen et al., 1993),

Q(t) = Qmax

1+ e−(V(t)−θ) /σ
, (1)

where Qmax, θ , σ represent the maximal firing rate, the firing
threshold, and the neural gain, respectively. The convolution
operator maps the firing rate Q(t) into the proportion of open
synaptic channels rξ (t). The membrane potential V(t) is then
given by

τ ˙V(t) = −IL(t)−
∑

ξ

Iξ (t)

= −gL · (V(t)− EL)−
∑

ξ

gξ rξ · (V(t)− Eξ ).

(2)

In (2), the proportion of open synaptic channels is given by

rξ (t) = hξ (t)⊗ (N · Q(t)), (3)

where hξ (t) is the impulse response function, denoted by

hξ (t) = γ 2
ξ · t · exp−γξ t , t ≥ 0. (4)
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FIGURE 1 | The topological structure of Costa model.

Here, ξ ∈ {e, i} denotes the type of synapse with e standing for
AMPAergic synapses type for excitation and i for GABAergic
type for inhibition. In Equations (2)–(4), EL and Eξ represent
the reversal potential of the leak current and synaptic current,
respectively, gL is the maximal conductivity of the leak current
conductance, gξ stands for the synaptic input rate that scales rξ ,
τ is the membrane time constant, N denotes the connectivity
constant, and γξ is the rate constant of synaptic response. The
dynamics of each population can be illustrated as in Figure 2.

Note that several types of currents play important roles in the
Costa model. Specifically, IL and Iξ in Equation (2) represent
the leak and synaptic current, respectively. In addition, several
intrinsic currents are also incorporated into the calculation
of V(t), including the sodium dependent potassium current
IKNa, potassium leak current ILK , h-type current Ih and T-type
calcium current IT .

2.2. Building the Rolandic NMM
2.2.1. Rolandic Thalamocortical Neural Circuit
Somatosensory thalamocortical neurons from the ventrobasal
(VB) thalamus process sensory information delivered between
the periphery and the cortex, and also modulate thalamocortical
states including sleep and seizures (Kramer et al., 2021). The
VB consists of the ventral posteromedial nucleus (VPM) and
the ventral posterolateral nucleus (VPL) (Jones, 2007). VPL
neurons relay somatosensory, proprioceptive, and nociceptive
information from the body to the somatosensory cortex (Francis
et al., 2008). The VPM transmits similar information for
the face (Iavarone et al., 2019). Neurons in VPL and VPM

receive glutamatergic input from the somatosensory cortex, and
inhibitory input from the thalamic reticular nucleus (TRN).

The TRN serves as a gate for information flow between the
cortex and thalamus, which is important for supporting sleep
regulation and seizure disruption. The TRN is entirely composed
of GABAergic neurons and is the main source of inhibition for
the VB (Gentet and Ulrich, 2003). The TRN conversely receives
excitatory input from relay cells of VB, as well as from pyramidal
cortical neurons. The TRN includes primarily parvalbumin-
expressing neurons (PV) (Csillik et al., 2005), but somatostatin-
positive neurons (SOM) have also been reported (Ahrens et al.,
2015). Recently, PV and SOM were shown to coexist in the
human TRN and have distinct electrophysiological properties,
segregate into different anatomical locations, and participate
in predominantly non-overlapping anatomical pathways that
distinctly modulate somatosensory thalamocortical circuits both
in vitro and in vivo (Clementeperez et al., 2017).

2.2.2. Rolandic Thalamocortical Cellular Circuit
Recent evidence supports a genetic basis for Rolandic epilepsy
(Lemke et al., 2013; Lal et al., 2014; Xiong and Zhou, 2017),
with alterations of the gene encoding for α2 subunit of NMDARs
(GRIN2A) as a major genetic risk factor for RE and related severe
epileptic encephalopathies. The NMDAR is a glutamate-bound
excitatory receptor with important roles in the discharge activity
of neurons (Paoletti, 2011). Mutations in GRIN2A are thought to
affect the NMDAR properties, including Mg2+ block levels and
channel gating kinetics, giving rise to sleep-activated epileptic
encephalopathies, including RE, continuous spike and wave
of sleep with encephalopathy, and Landau Kleffner syndrome
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FIGURE 2 | The dynamical evolution in each population in Costa model.

(Lemke et al., 2013; Reif et al., 2017; Xu and Luo, 2018).
In addition, numerous studies have also suggested that other
idiopathic epilepsies may be linked to a variety of ion channel
mutations, which can lead to a change in the corresponding ionic
current, such as the h-type current (Poolos, 2004; Difrancesco
and Difrancesco, 2015; Brennan et al., 2016).

2.2.3. A Neural Mass Model of Rolandic Epilepsy

(RE-NMM)
We introduce a new computational model RE-NMM based
on the Costa NMM updated with features to reflect the
somatosensory thalamocortical circuit and recent genetic
findings in RE. First, we modify the Costa NMM to
replicate features of RE by adding reticular nucleus cells and
ventrobasal thalamus cells, populations present in that Rolandic
thalamocortical circuit and implicated in the generation of
spikes and spindles. These consist of one population in the
cortical module (pyramidal cells, PY) and four populations in the
thalamic module (PV, SOM, VPM, and VPL). Based on known
neuroanatomical circuitry, the cortical PY population sends
excitatory projection to inhibitory thalamic PV cells in the TRN
and interacts mutually with excitatory thalamic VPM and VPL.
Within the thalamic module, each pair of populations among
PV, VPM, and VPL have excitatory or inhibitory projections;
the SOM population in the TRN sends inhibitory projections
to the VPL and the PV, and receives excitatory input from
the VPL (Clementeperez et al., 2017). In addition, there are
self-connections within PY, PV, and SOM populations, and
external inputs to PY, SOM, and VPM. Note that the excitatory
projections are mediated by AMPA or NMDA receptors, and
inhibitory projections are mediated by GABA receptors in our
model. The topological structure of our proposed RE-NMM is
illustrated in Figure 3.

Motivated by the discovery that the excitatory NMDA
receptors contribute to RE, we next add an additional NMDA

current (INMDA) involving two inhibitory populations PV and
SOM in thalamus, formulated by (Zador et al., 1990; Li and
Cleland, 2017).

INMDA = gN · r · B(Vk(t)) · (Vk(t)− EN). (5)

Here, k ∈ {PV , SOM}, Vk is the membrane potential of PV or
SOM. The function B(V) implements the Mg2+ block for the
NMDA current, denoted by

B(V) = 1

1+ [Mg2+]e(−µ ·0.062·V)/3.57
. (6)

To characterize the effects of GRIN2A mutations on NMDA
receptor, a new parameter µ is added in the expression of B(V).

Finally, the h-type current in ventrobasal thalamus neurons
is a potential regulation factor for spike activities. Therefore,
both VPM and VPL are equipped with the h-type current Ih, as
described in Destexhe et al. (1996)

Ih = gh · (Vt − Eh) · (mh1(t)+ ginc ·mh2(t)), (7)

where t ∈ {VPM,VPL}, Vt is the membrane potential of VPL
or VPM. The value of the conductance gh is assumed to be
affected by ion channel mutations. Eh is the reversal potential, ginc
denotes the conductivity scaling. The details of functions mh1(t)
andmh2(t) can be found in Destexhe et al. (1993).

We model the conduction delay between the cortical and

thalamic modules as a convolution with an alpha function h̃(t)
(Costa et al., 2016b). That is, Equation (3) is reformulated as

rξ (t) = hξ (t)⊗ (N · h̃(t)⊗ Q(t)) (8)

during five transmissions “PY → PV”, “PY → VPM/VPL,”
and “VPM/VPL→ PY.”

Equations (9)–(29) present the full mathematical expression
of the RE-NMM (see page 5–6). Note that the model output is
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FIGURE 3 | Schematic representation of model RE-NMM.

Vp, which is viewed as the simulated EEG signal (Hocepied et al.,
2013; Costa et al., 2016b). The parameters used in RE-NMM
are listed in Table 1, whose values and ranges are set based on
previous studies (Zador et al., 1990; Traub et al., 1991; Destexhe
et al., 1993, 1996; Costa et al., 2016b; Clementeperez et al., 2017;
Li and Cleland, 2017; Iavarone et al., 2019).

τpV̇p = −I
p
L − I

p
AMPA(r

p
e ), (9)

τpvV̇pv = −I
pv
L − I

pv
AMPA(r

pv
e )− I

pv
NMDA(r

pv
en)− I

pv
GABA(r

pv
i )

−C−1
m τpv(I

pv
LK + I

pv
T ), (10)

τsom ˙Vsom = −IsomL − IsomAMPA(r
som
e )− IsomNMDA(r

som
en )− IsomGABA(r

som
i )

−C−1
m τsom(I

som
LK + IsomT ), (11)

τvpm ˙Vvpm = −I
vpm
L − I

vpm
AMPA(r

vpm
e )− I

vpm
GABA(r

vpm
i )

−C−1
m τvpm(I

vpm
LK + I

vpm
T + I

vpm

h
), (12)

τvpl ˙Vvpl = −I
vpl
L − I

vpl
AMPA(r

vpl
e )− I

vpl
GABA(r

vpl
i )

−C−1
m τvpl(I

vpl
LK + I

vpl
T + I

vpl

h
), (13)

IαLK = gLK · (Vα − ELK),α ∈ {pv, som, vpm, vpl}, (14)

I
β

T = g
β

Tm
2h · (Vβ − ECa),β ∈ {pv, som, vpm, vpl}, (15)

r̈
p
e = γ 2

e (NppQp + Npt1ηt1 + Npt2ηt2 + φp − r
p
e )

−2γeṙ
p
e , (16)

r̈
vpm
e = γ 2

e (Nt1pηp + Nt1t2Qvpl + φt − r
vpm
e )

−2γeṙ
vpm
e , (17)

r̈
vpl
e = γ 2

e (Nt2pηp + Nt2t1Qvpm − r
vpl
e )− 2γeṙ

vpl
e , (18)

r̈
pv
e = γ 2

e (Nr1pηp + Nr1t1Qvpm + Nr1t2Qvpl − r
pv
e )

−2γeṙ
pv
e , (19)

r̈some = γ 2
e (Nr2t2Qvpl + φn − rsome )− 2γeṙ

som
e , (20)

r̈
pv
en = γgγn(Nr1pηp + Nr1t1Qvpm + Nr1t2Qvpl − r

pv
en)

−2γnṙ
pv
en , (21)

r̈somen = γgγn(Nr2t2Qvpl − rsomen )− 2γnṙ
som
en , (22)

r̈
vpm
i = γ 2

N(Nt1r1Qpv − r
vpm
i )− 2γN ṙ

vpm
i , (23)
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TABLE 1 | The parameters and their values in RE-NMM.

Symbol Description Value Unit

Cm Membrane capacitance in the HH model 1 µF/cm2

Qmax
p

Maximal firing rate
30 · 10−3

ms
Qmax
y , y ∈ {r1, r2, t1, t2} 400 · 10−3

µ Mg2+ block factor 0.1− 3 mM

θy , y ∈ {r1, r2, t1, t2} Firing threshold −58.5 mV

σp
Inverse neural gain

4.7
mV

σy , y ∈ {r1, r2, t1, t2} 6

γe

Synaptic rate constant

70 · 10−3

ms−1
γg 100 · 10−3

γn 30 · 10−3

γN 100 · 10−3

Npp

Connectivity constant

70

/

Npt1,Npt2 3, 2

Nt1p,Nt1t2 3, 1

Nr1p,Nr1r2,Nr1t1,Nr1t2 2.6, 2.1, 4, 3

Nrr ,Nrr2 15, 25

Nr2t2 1.5

Nt2p,Nt2t1,Nt2r1,Nt2r2 2.1, 1, 1− 2

Nt1r1 1− 5.5

τp
Membrane time constant

30
ms

τz, z ∈ {r, t} 20

gx∈{AMPA,NMDA,GABA} Input rate of synaptic channel 1 ms

gLK

Conductivity of ion channel

0.042

mS/cm2
g
y

T , y ∈ {r1, r2, t1, t2} 1.6− 2.9

gh 0.046− 0.066

ginc Conductivity scaling of h-current 2 /

E
p
L

Nernst reversal potential

−64

mV

E
p
AMPA 0

E
p

GABA
−70

EtL −70

EtAMPA 0

EtNMDA 0

Et
GABA

−70

ELK −100

ECa 120

Eh −40

φ0 Mean background noise 0

ms−1
φs
pd Standard deviation of cortical background noise 120 · 10−3

φs
t d Standard deviation of thalamic background noise 20 · 10−3

φs
nd Standard deviation of thalamic background noise 10 · 10−3

The subscript r1, r2, t1 and t2 indicate pv, som, vpm, and vpl respectively.

r̈
vpl
i = γ 2

N(Nt2r1Qpv + Nt2r2Qsom − r
vpl
i )− 2γN ṙ

vpl
i , (24)

r̈
pv
i = γ 2

N(Nrr1Qpv + Nr2r1Qsom − r
pv
i )− 2γN ṙ

pv
i , (25)

r̈somi = γ 2
N(Nrr2Qsom − r

pv
i )− 2γN ṙ

som
i , (26)

η̈p = v2(Qp − ηp)− 2vη̇p, (27)

η̈t1 = v2(Qvpm − ηt1)− 2vη̇t1, (28)

η̈t2 = v2(Qvpl − ηt2)− 2vη̇t2. (29)

2.3. Empirical Fitting of Model Parameters
To reflect the abundant spike activity common in RE, we
utilized a dataset of EEGs collected from 5 children with active
RE during NREM sleep (ages 4.9–14.7, 5M) with a minimum
of 3 epileptiform spikes per minute during NREM sleep to
constrain the parameters of the model. Clinical EEG data were
referenced to the average reference. We then applied a second-
order Butterworth filter with a high pass of 1 Hz, a low pass of
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TABLE 2 | Detail information of RE-EEGs.

Patient Basic information EEG dataset Disease state

Gender Age Fs (Hz) No. of channels Duration (s) No. of spikes No. of spindles

1 M 4.9 256 125 610 336 1,839 Active

2 M 14.7 407 69 863 287 4,567 Active

3 M 8 407 70 2,673 2,159 1,643 Active

4 M 9 407 65 494 505 1,901 Active

5 M 11.3 407 77 753 59 56 Active

50 Hz, and a notch at 60 Hz to denoise RE-EEGs. To capture the
focal Rolandic features, we utilized data from six centrotemporal
channels: C3, C4, C5, C6, T3, and T4. Each EEG signal in the
selected channels was segmented into 1-min RE-EEG epochs.

For spike detection in each RE-EEG, we applied an automated
and validated spike detector, Persyst 13 (Persyst Development
Corporation, San Diego) (Scheuer et al., 2017). Only epochs
in which spike rates were equal to or larger than 3/min were
included (n = 85), denoted by Sspike. Table 2 summarizes
descriptive information about the clinical dataset.

We then extracted features from the EEG recordings to fit
the parameters of our model. Here we calculated two features:
the power spectra and the histogram of inter-spike intervals. To
compute the power spectra, given an EEG signal S with sampling
rate Fs, the power spectral of S is calculated using the multitaper
method (Babadi and Brown, 2014), denoted by

P = (P1, P2, · · · , PN). (30)

Here, Pi is the power spectral at the i frequency point with N =
[ Fs2 ]. To compute the histogram of inter spike intervals we sorted
the intervals into equal-sized binsM, denoted by

D = (D1,D2, · · · ,DM). (31)

Here, Dj denotes the probability of inter-spike intervals in the jth
bin. Figure 4 illustrates these data analysis steps on an example
clinical EEG epoch from one subject.

Next, we estimate the posterior distribution for the parameters
of our RE-NMM using the method in Hartoyo et al. (2019). Let θ
be a parameter of RE-NMM and π(θ) be the prior distribution of
θ , then the posterior distribution

p(θ |D,P) = p(D|θ)p(P|θ)π(θ)
p(D,P)

(32)

of θ is evaluated using the Markov chain Monte Carlo (MCMC)
approach. In (32), we apply the product of distributions of Pi to
compute p(P|θ) (Thomson andHaley, 2014; Hartoyo et al., 2019),
that is,

p(P|θ) = (
KKe−K

Ŵ(K)
)N(α)NK(

N∏

i=1

PK−1
i

P̄i(θ)K
). (33)

The likelihood function p(D|θ) is defined as

p(D|θ) =
H∏

i=1

1√
2πσ 2

e
(D̄i(θ)−Di)

2

2σ2 (34)

with the assumption that D̄ = D + ǫ. In this work, the
error ǫ is assumed to obey the Gaussian distribution [i.e., ǫ ∼
N(0, σ 2)]. Here, P̄ and D̄ stands for the extracted features from
the simulated EEG signals (say, the model output). A detailed
explanation of each symbol in Equations (33) and (34) can be
found in Moussaoui et al. (2006), Hartoyo et al. (2019).

The parameter value can be estimated by selecting the point
from the Markov chain with the largest value of the posterior
distribution, that is, θ̂ = argmax

θ

p(θ |D,P).

All numerical simulations are performed using MATLAB
R2017b using the stochastic Runge-Kutta method of 4th order
(Rosler, 2010) with step size of 0.1 ms.

3. RESULTS

3.1. Rolandic NREM Spike Rate Is
Influenced by NMDA Receptor Activity and
Ionic Channel Currents
We test two parameters to generate Rolandic spikes in our model:
µ and gh, reflecting the density of NMDA current activity and the
h-type current primarily influenced by ionic channel activity. All
other parameters in the model are set to their nominal values (see
Table 1).

We find that a range of dynamical spike activities in
the RE-NMM emerge by varying the values of µ and
gh respectively (for example, see Figure 5). Increasing µ

from 0.5 to 2 results in the emergence of spike events
(see Figures 5A,B). Decreasing gh from 0.066 to 0.056
also increases spike rate (Figures 5C,D). Decreasing
gh results in an increased spike rate (Figure 5D). The
histograms of inter-spike intervals from the simulated spikes
(Figures 5B–D) approximates that observed in the clinical EEGs
(Figure 4C).

To characterize how spike rate varies with adjustments to
parameters µ and gh, we simulated EEG signals across a range
of plausible values and computed the corresponding spike rates.
This allows us to observe the evolution of spikes in the parameter
space of µ and gh. Figure 6 shows the distribution of spike rates
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FIGURE 4 | Example data analysis pipeline. (A) NREM sleep data segment from one clinical EEG. The red circles represent detected spikes. (B) The power spectra

computed from a 60 s epoch. We note that in this epoch where spikes are abundant, the expected sigma bump reflecting sleep spindles is absent. (C) The histogram

of inter-spike intervals computed from the same data epoch.

FIGURE 5 | The simulated EEGs (i.e., the model output Vp) as well as the histogram of inter-spike intervals under different situations. (A) µ = 0.5 and gh = 0.066; (B)

µ = 2 and gh = 0.066; (C) µ = 0.5 and gh = 0.056; (D) µ = 2 and gh = 0.056.

with 41×41 grids in the space ofµ×gh ∈ [0.1, 3]× [0.046, 0.066].
We observe that higher spike rates occur for larger values of µ

and smaller values of gh, and lower spike rates occur with smaller
values of µ and larger values of gh. Note that larger values of

µ and smaller values of gh correspond to lower NMDA and h-
type currents respectively (see Figures 13A,C). Our simulations
indicate that reducing either the NMDA current or the h-type
current causes an increase in epileptiform spikes.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 June 2021 | Volume 15 | Article 680549

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Li et al. Competitive Model of Spikes and Spindles

3.2. Competition Between Rolandic Spikes
and Spindles Is Induced by TRN Inhibition
We note that spindles can be generated by the Costa model and
our RE-NMM by adjusting parameters gT , gh, and gLK , which
are the conductance of T-type Calcium current, h-type current
and potassium leak current. The dominant frequency of our
simulated spindles is around 11 Hz, consistent with the sigma
frequency range of human sleep spindles. An example simulated

FIGURE 6 | The evolution of spike rates in the parameter space µ × gh.

time series with a detected spindle (Wamsley et al., 2012) and
accompanying power spectra is shown in Figure 7.

Based on our observations in 3.1 and previous results
(Destexhe et al., 1996; Żygierewicz et al., 2001), we first fix the
values of the four parameters to be µ = 2, gh = 0.058,
gT = 2.9, and gLK = 0.042, to generate spikes and spindle
oscillations simultaneously in simulation signals. To test for
a competitive interaction between spikes and spindles during
NREM sleep in our model, we then focus on the inhibitory
outputs from reticular nucleus of the thalamus, which are
responsible for modulating spindles (Żygierewicz et al., 2001;
Beenhakker and Huguenard, 2009). Here, we compare spike
and spindle rates for three inhibitory projection strengths Nt1r1,
Nt2r1, and Nt2r2 (from population PV to VPM, PV to VPL, and
SOM to VPL).

We implement the simulation in parameter space Nt1r1 ×
Nt2r1×Nt2r2 ∈ [1, 5.5]×[1, 2]×[1, 2] with 41×41×41 grids. For
ease of visualization, spike rates and spindle rates are shown for
every fifth of the 41 points in Figure 8. We find that the spike
rates decrease (increase) as the inhibitory projection becomes
stronger (weaker), while there is the opposite relationship for
spindle rate under the same situations (Figures 8A,B). The
monotonously decreasing trend of the linear fit (red line) reveals
that spike rate decreases with rising spindle rate, and vice
versa, namely they are anticorrelated (Figure 9). Figures 9B,C
show details of two points A and B in Figure 9A (marked by
the square). The obtained result shows that the competitive
relationship between spikes and spindles can be induced by
changes of inhibitory transmission occurring in thalamus. This

FIGURE 7 | The simulated EEG signal and its power spectra. (A) 30s EEG segment; (B) power spectra (the red labeled part corresponds to the spindles).
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FIGURE 8 | The evolution of spike rate (A) and spindle rate (B) in parameter space Nt1r1 × Nt2r1 × Nt2r2 ∈ [1, 5.5]× [1, 2]× [1, 2].

FIGURE 9 | (A) The combinations of spike rate and spindle rate in the diagonal grids of the parameter space Nt1r1 × Nt2r1 × Nt2r2 ∈ [1, 5.5]× [1, 2]× [1, 2]. (B) 60s

simulated EEG segment with high spindle rate and low spike rate (corresponding to the point A); (C) 60s simulated EEG segment with high spike rate and low spindle

rate (corresponding to the point B) (the red labeled part represents the spindles, the green circle represents the spikes).

is consistent with the competitive relationship observed between

spikes and spindles in patients with Rolandic epilepsy (see

Figure 5 in Kramer et al., 2021).

To evaluate the impact of the NMDA currents on spindle rate,

we tested the µ values ranging from 0.1 to 3. We found that

spindle rate remained near constant at all values (4.5± 2.3).
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FIGURE 10 | (A) PV cells (top) have increased firing compared to SOM cells (bottom). Boxplots of Kruskal-Wallis test statistic for the spindle rate (B) and spike rate

(C) with respect to three cases (PV+SOM, only PV, only SOM).

3.3. PV and SOM Inhibitory Thalamic
Populations Differentially Modulate Spikes
and Spindle Activity
We included both PV and SOM neurons in our thalamic
inhibitory populations. These inhibitory thalamic neurons
have different pre- and post-synaptic connectivity, in that the
somatosensory cortex exclusively targets the PV neurons,
whereas subcortical structures preferentially target the
SOM cells, and PV and SOM neurons project to distinct
thalamic relay nuclei. In our model, we observed that the
PV neurons have much higher firing rates than the SOM
neurons (Figure 10A), consistent with Clementeperez et al.
(2017).

To evaluate the contributions of the PV and SOM neurons
to the model, we compared the output from the original model
including both PV and SOM populations, to models with only
the PV population and only the SOM inhibitory thalamic

populations. We found that models including only SOM neurons
had lower spindle rates (Figure 10B) and higher spike rates
(Figure 10C), suggesting that the PV neurons, but not the
SOM neurons, preferentially support sleep-spindles and reduce
epileptiform spikes.

3.4. Validation of Mechanisms Underlying
RE Using Real RE-EEGs
To observe how Rolandic spikes in real RE-EEGs evolve in the
parameter space µ × gh, we select 27 segments from dataset
Sspike in which all possibilities of spike rates (from 3 to 29) are
represented. Values of µ and gh were estimated using an MCMC-
based approach using the selected RE-EEG segments (Figure 11).
We observe that RE-EEG segments with higher spike rate localize
to the upper-left corner of the graph (corresponding to large
µ̂ and small ĝh), and RE-EEG segments at the bottom-right
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FIGURE 11 | The spike rate distribution of 27 real RE-EEG segments in the estimated parameter space µ̂ × ĝh.

FIGURE 12 | An example of the model fit to one real RE-EEG segment. (A) A 60s real RE-EEG segment from “patient 1”; (B) The simulated 60s EEG segment; (C,D)

Comparison between the features extracted from the real EEG and the simulated one.

corner of the graph (corresponding to small µ̂ and large ĝh) have
relatively lower spike rates.

Furthermore, we display more details implicated in Figure 11

taking one point as an example (marked by the circle). The
real RE-EEG segment at this point is shown in Figure 12A,
from“patient 1”. Figure 12B illustrates the simulated RE-EEG
segment, which is obtained as the model output Vp setting
values for µ, gh to their optimized values that µ̂ = 2.3411 and
ĝh = 0.0522 and using nominal values for other parameters. The
power spectra of simulated EEG is in good agreement with that
computed from the real data (Figure 12C) and the distribution
of inter-spike intervals (ISI) of both simulated EEG and real one
are mainly concentrated at lower inter-spike intervals, reflecting

the higher spike rate in simulated EEG and real RE-EEG
(Figure 12D).

These results are plausible from a physiological point of
view. Specifically, the larger the value of µ, the less the density
of excitatory current INMDA (see Figure 13A), thus the weaker
the inhibitory activity in the TRN (shown as the green dot
in Figure 13B), the stronger the excitatory activity in the VB
(shown as the red dot in Figure 13B); the reduced Ih (lower
value of gh, Figure 13C) causes VB to be more excitable, which
sends more excitation to TRN, and causes the TRN spike rates
to increase (Figure 13D),—leading to a higher spike rate (see
Figure 6). Notably, the firing rates of population VB decrease first
(Figure 13D) because the reduced Ih could result in the increase
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FIGURE 13 | The density of INMDA (A) and firing rate of population TRN and VB (B) with the increase of µ; The density of Ih (C) and firing rate of TRN and VB (D) with

the decrease of gh.

of the time course and amplitude of after hyperpolarization
potential. These observations provide new insights into how
alterations in the NMDA receptor and h-type currents can result
in Rolandic spikes.

4. SUMMARY AND DISCUSSION

In this study we introduce a computational thalamocortical
model of Rolandic epilepsy informed at both the neural circuit
and cellular levels by experimental observations. We validate
that the model generates spike dynamics comparable to that
observed in human EEG. We then use the model to demonstrate
that Rolandic spikes can be triggered and promoted by a
reduced NMDA current to the inhibitory thalamic cells or h-
type current in the excitatory thalamic cells; and that changes
in inhibitory transmission in thalamus lead to a dynamic
switch between epileptiform spikes and spindles in the shared
thalamocortical circuit.

Our modeling results highlight the pacemaker role of TRN,
the primary inhibitory nucleus in the thalamus, in producing
spike discharges and spindles during sleep or seizure processes.
Previous models- to study the spike-like activities and spindle
rhythms simultaneously have primarily focused on absence
epilepsy, not sleep activated syndromes. For example, Suffczynski
et al. (2004) developed a thalamocortical NMM to explain the
relation between mechanisms that generate spindle-like activity
and those that generate spike-wave activity. Zhao and Robinson
(2015) extended a thalamocortical model with bursting dynamics
to explore themechanisms underlying spike and wave seizures, as
well as sleep spindles etc. Fan et al. (2017) considered a single-
compartment thalamocortical model and spatially extended 3-
compartment coupled network to explore the role of TRN

in regulating spindles and spike-wave discharges. Knox et al.
(2018) introduced a thalamocortical model to understand the
mechanisms of the transformation of sleep spindles to spike and
wave discharges.

Our study provides the first computational model that
recapitulates thalamocortical circuit “competition” between
spikes and spindles in NREM sleep. That spikes may “hijack”
thalamocortical spindle circuits has been proposed in theoretical
papers based on experimental observations (Beenhakker and
Huguenard, 2009). We provide a mechanistic model to both test
and explain these observations in RE. For example, our model
suggests that decreased inhibition in the TRN may explain the
onset of sleep-activated spikes and seizures in these patients.
These findings are consistent with common empirical treatment
approaches to use GABAergic medications to treat sleep activated
spikes (Sánchez Fernández et al., 2013).

We found that reducing NMDA current and TRN output
increases spike rate. In contrast, reducing TRN output decreases
spindle rate, but changes to NMDA current do not impact
spindle rate. Thus, changes of inhibitory outputs from the
reticular nucleus can result in a competitive relationship between
epileptiform spikes and sleep spindles, but changes to NMDA
alone do not appear to impact this dynamic. As we tested only
a subset of potential mechanisms several other potential factors,
including changes to the excitatory output from thalamocortical
neurons (Żygierewicz et al., 2001) or slow currents (Zhao
and Robinson, 2015) could contribute to the generation of
epileptiform spikes and spindles, the competitive dynamics, or
their properties, such as the distribution of inter-spike intervals
or the waxing-and-waning structure of the spindle oscillation.

Previous electrophysiological studies indicate that enhancing
SK-channel activity promotes rhythmic bursting in TRN neurons
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(Wimmer et al., 2012) and the cyclical Ca-SK channel interaction
may be necessary for spindle generation (Cueni et al., 2008).
In contrast, we were able to produce spindles and replicate an
antagonistic relationship between spikes and spindles by without
including the SK-channel, but by tuning just three parameters
reflecting the potassium leak current, h-type current and T-
type calcium current (Destexhe et al., 1996; Costa et al., 2016b)
suggesting that the SK type current is not required for these
dynamics. However, SK channels may play an important role
in more subtle dynamics of thalamocortical rhythms, such as
bursting activity (Ritter-Makinson et al., 2019), that were not
explored here.

5. CONCLUSION

Our study provides the first computational model that both
recapitulates and provides a mechanistic explanation for the
thalamocortical “competition” between epileptiform spikes and
sleep spindles in the most common epileptic encephalopathy.
These data provide hypotheses for empirical testing of the
neural mechanisms underlying this disease and related sleep-
activated epilepsie.
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