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Purpose: Accurate prediction of the progression to severe stroke in initially diagnosed

nonsevere patients with acute–subacute anterior circulation nonlacuna ischemic

infarction (ASACNLII) is important in making clinical decision. This study aimed to apply

a machine learning method to predict if the initially diagnosed nonsevere patients with

ASACNLII would progress to severe stroke by using diffusion-weighted images and

clinical information on admission.

Methods: This retrospective study enrolled 344 patients with ASACNLII from June

2017 to August 2020 on admission, and 108 cases progressed to severe stroke

during hospitalization within 3–21 days. The entire data were randomized into a

training set (n = 271) and an independent test set (n = 73). A U-Net neural network

was employed for automatic segmentation and volume measurement of the ischemic

lesions. Predictive models were developed and used for evaluating the progression to

severe stroke using different feature sets (the volume data, the clinical data, and the

combination) and machine learning methods (random forest, support vector machine,

and logistic regression).

Results: The U-Net showed high correlation with manual segmentation in terms of Dice

coefficient of 0.806 and R2 value of the volume measurements of 0.960 in the test set.

The random forest classifier of the volume + clinical combination achieved the best area

under the receiver operating characteristic curve of 0.8358 (95%CI 0.7321–0.9269), and

the accuracy, sensitivity, and specificity were 0.7780 (0.7397–0.7945), 0.7695 (0.6102–

0.9074), and 0.8686 (0.6923–1.0), respectively. The Shapley additive explanation

diagram showed the volume variable as the most important predictor.

Conclusion: The U-Net was fully automatic and showed a high correlation with manual

segmentation. An integrated approach combining clinical variables and stroke lesion

volumes that were derived from the advanced machine learning algorithms had high

accuracy in predicting the progression to severe stroke in ASACNLII patients.
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INTRODUCTION

Cerebral ischemic infarction leads to approximately 80% of
stroke. The mortality rate in patients with cerebral ischemic
infarction, which is one of the major causes of long-term
disability globally, is increasing year by year (1, 2). Magnetic
resonance imaging (MRI) is one of the most effective methods
for assessing patients with ischemic stroke, and diffusion-
weighted imaging (DWI), in particular, has the advantages
of diagnosing acute ischemic lesion in the early stage (3,
4). It is necessary to analyze multidimensional information
including imaging examination, clinical history, and laboratory
tests to make an objective and comprehensive assessment of a
patient’s condition and provide accurate diagnostic evaluations
and treatment plans to reduce disabilities and deaths. It is
clinically common that part of the acute cerebral infarction
progressed to severe stroke during hospitalization. Therefore,
it is meaningful to predict the severity progress of patients
with acute ischemic stroke, as it might be quite useful in
treatment decision-making and management of prognostic
expectations (5).

At present, the critical assessment of patients with acute
cerebral infarction often depends on the experiences of
physicians, in reference of clinical information (general
information, medical history, neurological scores, laboratory
examinations), and imaging examinations, but such assessment
can be subjective. Artificial intelligence (AI) algorithms can
effectively process multidimensional medical data (6, 7),
and machine learning, which is one of the most popular
techniques in the AI area, has been increasingly adopted in
the diagnosis and prognosis of stroke (8–11), such as the
automatic segmentation of cerebral infarction lesions, the
quantitative analysis of perfusion, and the prediction of stroke
prognosis on computed tomography and MRI images. The
calculation and prediction results of AI are more reproducible
and objective.

Cerebral ischemic stroke is a complicated condition that
involves different brain regions and vessels, while anterior
circulation ischemic infarction is more common in clinical
practice and lacunar infarcts are rare in severe disease condition.
Lacunar infarction is small and eventually forms a softened
cyst cavity structure, which is often difficult to distinguish from
Virchow–Robin spaces. Larger than 15mm is a giant cavity and
even up to 25mm. The predictive endpoint in our study was the
progression to severe stroke, and therefore, we used the following
exclusion standard: maximum diameter of infarct ≤25 mm.

Therefore, in this study, the initially diagnosed non-
severe patients with acute–subacute anterior circulation
nonlacuna ischemic infarction (ASACNLII) were included,
and machine learning algorithms were employed to predict if
non-severe ASACNLII patients would progress to severe stroke
during hospitalization.

Abbreviations: ASACNLII, acute–subacute anterior circulation nonlacuna

ischemic infarction; SHAP, shapley additive explanation; RF, random forest; SVM,

support vector machine; LR, logistic regression.

METHODS

Study Population
The initially diagnosed patients with ASACNLII who were
admitted to the Tongji Hospital, Shanghai, between June 1,
2017, and August 31, 2020 were retrospectively reviewed. The
inclusion criteria were as follows: (1) patients who had brain
MRI (including MRI-DWI sequence) within 7 days after the
onset of symptoms, (2) patients who underwent DWI imaging for
depicting lesions with a maximum diameter of >2.5 cm, and (3)
initially diagnosed non-severe patients who were admitted to the
hospital for treatment. The criteria for non-severe stroke were as
follows: National Institutes of Health Stroke Scale (NIHSS) <17;
Glasgow Coma Scale (GCS) >8; no hemodynamic instability,
no systemic organ dysfunction, no epilepsy, and no mechanical
ventilation; and patients with good quality images without any
severe artifacts. A total of 1,237 patients with acute–subacute
cerebral infarction were included, and 893 patients were excluded
due to posterior cerebral infarction (n = 110), anterior and
posterior cerebral infarction (n = 62), anterior lacunar cerebral
infarction (n = 534), image artifacts (n = 12), and severe stroke
on admission (n = 175). Finally, 344 cases met the enrollment
criteria. According to electronic medical records, 108 cases
progressed to severe stroke during hospitalization within 3–21
days (Figure 1). The criteria for severe stroke were as follows:
NIHSS ≥17, GCS ≤8, hemodynamic instability, systemic organ
dysfunction, epilepsy, and mechanical ventilation. This study
was approved by the institutional review board, and informed
consent was exempted due to the retrospective nature of the
study. The procedures were performed in accordance with all
relevant guidelines and regulations. The subjects were randomly
assigned to a training set (n = 271) and a test set (n = 73). The
training set was used for training the AI model and the test set
for independent evaluation. The training set was also used for
5-fold cross-validation.

Data Collection
The MRI-DWI images were obtained using three different MRI
scanners. The acquisition parameters were as follows: (1) Philips
Ingenia 3.0 T: TR = 2,584ms, TE = 96.7ms, slice thickness =
6mm, slice spacing = 7mm, field of view = 23 cm × 23 cm,
matrix = 256 × 256, excitation times = 2, echo gap = 0.75ms,
b value = 1,000 s/mm2; (2) Siemens Verio 3.0 T: TR = 4,600ms,
TE = 89ms, slice thickness = 5mm, scanning without spacing,
field of view = 24 cm × 24 cm, matrix = 256 × 256, echo gap
= 0.75ms, b value = 1,000 s/mm2; and (3) uMR 1.5 T: TR =

5,400ms, TE = 94ms, slice thickness = 5mm, layer spacing =

6mm, field of view= 23 cm× 23 cm, echo gap= 0.75ms, b value
= 1,000 s/mm2.

The following clinical data were collected: (1) general
information: sex and age; (2) medical history: history of
smoking, alcohol, diabetes, myocardial infarction, coronary
atherosclerosis, atrial fibrillation, hypertension, and stroke; (3)
neurological score scale: NIHSS and GCS on admission; and
(4) laboratory tests on admission: prothrombin time (PT),
fibrinogen, D-dimer, serum troponin I, blood glucose, blood
lipids, and plasma brain natriuretic peptide (BNP).
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FIGURE 1 | Flow chart illustrating patients selection.

Lesion Segmentation and Volume
Measurement on MRI-DWI
Image Segmentation and Labeling
The segmentation task was completed by three junior radiologists
(Lai Wei 144 cases; Kangwei Zhang 100 cases; Yun Xu 100 cases),
and two senior radiologists refined the segmentation results
(Aijun Shen 124 cases; Jiong Ni 120 cases). The radiologists
segmented and refined the ischemic lesions onMRI-DWI images
with ITK-SNAP software (Version 3.8.0, http://www.itksnap.
org). Manual labeling was used as the supervisor or teacher of
the AI-based automatic segmentation model.

Image Preprocessing and Augmentation
The DWI image with a b value of 1,000 s/mm2 was normalized to
the grayscale range, which was defined by the window width and
window level. The images at each cross-section were resampled
to a size of 256 × 256 pixels. As the amount of data used to
train the model was relatively limited, this study used online
data augmentation, which included two parts: (1) morphological
transformation:−10◦∼10◦ rotation around the z-axis, 0.95∼1.05
scaling, −0.1∼0.1 times translation along the x and y directions,
respectively, and left and right mirror transform with 50%

probability; and (2) grayscale transformation: linear contrast
transformation of 0.8∼1.2 times, brightness change of 0.8∼1.2
times, and Gaussian blur with a sigma of 0.5.

U-Net Model and Training
A convolutional neural network model called the U-Net was
designed to accomplish the automatic segmentation of cerebral
infarction on MRI-DWI images. The U-Net is a popular AI
segmentation model in the medical field. Each DWI image was
scaled to a size of 256× 256, and the U-Net has yielded the lesion
masks of the same size. The 3D segmentation mask of a lesion
was obtained by stacking the masks of all slices.

The U-Net model had a total of four down-sampling
convolutional layers and four up-sampling transposed
convolutional layers (Figure 2). The feature maps of the
same resolution were connected by concatenation to integrate
the shallow features and deep features. Cosine annealing
scheduler was set as the learning rate strategy, with a period of
50 epochs. The minimal learning rate was set to 0.00001 and the
initial learning rate was set as 0.01. Stochastic gradient descent
was used as the optimizer in the model, and it had a weight
attenuation coefficient of 1e−8 to prevent overfitting. The batch
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FIGURE 2 | The architecture of the proposed U-net model.

size of the model training was 4, and a total of 200 epochs were
adopted for training.

Predictive Model
Predictive Task
The predictive task included those initially diagnosed non-severe
patients with ASACNLII who progressed to severe stroke during
hospitalization. In this retrospective study, the information
with regard to patients who were initially diagnosed and their
treatment records were obtained from the electronic medical
record system. The enrolled patients were divided into a group
of patients who progressed to severe stroke (n = 236) and a
group of patients who did not progress to severe stroke (n= 108)
according to their medical history. The patients who progressed
to severe stroke were all transferred to the neurology intensive
care unit (N-ICU) for further treatment according to medical
history record.

Development and Validation of the Predictive Model
Based on the patients’ clinical data and/or AI-derived volume
data, three machine learning models were constructed for binary
classification (yes/no for progressing to severe stroke) by using
three classifiers, namely, random forest (RF), support vector
machine (SVM), and logistic regression (LR).

The input data of the prediction model were one of the three
feature sets: (1) AI-derived volume data (1 variable), (2) clinical
data (19 variables), and (3) volume + clinical combination
(20 variables).

The training phase consisted of two stages. In the first
stage, the whole training set was separated into training
and validation subsets, in a 5-fold cross-validation manner.

The hyperparameters were optimized according to the cross-
validation experiments. In the second stage, we applied the
optimal hyperparameters on the whole training set to train
the models, and the computed metrics on the test set were
reported. The procedure was similar to traditional training,
validation, and test set separation. The test set did not help on
hyperparameter optimization.

Statistical Analysis
Unpaired Student’s t-test and chi-square test were used for
evaluating significant differences in the variables (such as age,
NIHSS score, etc.) between the training set and the test set.
The Dice coefficient was used to evaluate the performance
of AI-based automatic segmentation. The squared Spearman
correlation coefficient (R2) was used to assess the consistency
between the lesion volume obtained by AI and the gold standard
volume as measured by the radiologists. The receiver operating
characteristic curve (ROC) was drawn, and the sensitivity (SEN),
specificity (SPE), accuracy (ACC), Youden’s index (YI), and the
area under the curve (AUC) were calculated for evaluating the
model performance.

In addition to the independent evaluation on the test set, the 5-
fold cross-validation was also performed on the training set (12).
The Shapley additive explanation (SHAP) diagram for the test
set was drawn for model explanation. Bootstrapping was used to
compute the confidence intervals in the test set. DeLong’s method
was used to compare the ROCs of different predictive models.
A p-value lower than 0.05 was considered to be statistically
significant. The segmentation task, the training and validation of
the predictive model, as well as the statistical analysis, were all
programmed by Python (version 3.6).
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RESULTS

Basic Characteristics
As shown in Table 1, the basic variables of most of the patients
showed no statistical differences (p > 0.05) between the training
set and the test set, such as general conditions (gender and age),
medical history (hypertension, diabetes, etc.), neurological score
scales (NIHSS and GCS), and laboratory tests (BNP, etc.).

Performance of U-Net
The U-Net achieved highly consistent results of segmentation in
the test set when compared with the manual labeling (Figure 3),
and the Dice coefficient was 0.806. The correlation coefficient
R2 between AI-derived volumes and the manual segmentation
volumes was 0.960 (p < 0.0001) (Figure 4A). The grouping by
lesion sizes (<100,000 and <30,000 mm3) yielded the R2 values
of 0.930 and 0.860, respectively (Figures 4B,C).

Comparison of Predictive Models
Predictivemodels were constructed by using the three feature sets
(volume data, clinical data, and volume + clinical combination)
and the three classifiers (RF, SVM, and LR). The RF classifier-
based model using the volume + clinical combination achieved
the best predictive classification with an AUC of 0.8358 (95%
CI 0.7321–0.9269). Therefore, a comparative analysis was made
as follows: (1) fixing the RF classifier and comparing the three
feature sets and (2) fixing the combination and comparing the
three classifiers.

Comparison Between Different Feature Sets
The AUCs of the models using the RF classifier with the clinical
data, the volume data, and the combination on the test set
were 0.7686 (0.6474–0.8717), 0.6929 (0.5434–0.8262), and 0.8358
(0.7321–0.9269), respectively (Table 2), which were close to the
out-of-bag AUCs of 0.7829, 0.6147, and 0.8110 and the 5-fold
cross-validation AUCs of 0.8113, 0.7105, and 0.8291 for the
clinical data, the volume data, and the combination, respectively.
The predictivemodel of the combination data showed the highest
AUC on the test set when compared with the clinical data (p =

0.036) and AI-derived volume data (p = 0.048) by the DeLong
test (Figure 5). The SEN, SPE, and YI of the combination data on
the test set have reached 0.7695 (0.6102–0.9074), 0.8686 (0.6923–
1.0), and 0.6380 (0.4475–0.8182), respectively.

Comparison Between Different Classifiers
As shown in Table 3, when fixing the clinical + volume
combination, the AUCs of RF, SVM, and LR on the test set
were 0.8358 (0.7321–0.9269), 0.8165 (0.6854–0.9344), and 0.8104
(0.6952–0.0.9113), respectively. The ROCs between different
classifiers on the test set were compared in pairs, and the
results showed no statistical differences (all p > 0.05). The
hyperparameter optimization of the three machine learning
models was searched out in a cross-validation way, and thus, the
hyperparameters were finally set as follows: (1) for SVM, C =

0.01, kernel = “rbf,” degree = 3, gamma = “scale,” probability
= True, random_state = 1, decision_function_shape = “ovo,”
max_iter = −1, verbose = 1, tol = 0.0001, and class_weight
= {0:2, 1:1}; (2) for LR, C = 1, random_state = 1, solver =

“lbfgs,” multi_class = “multinomial,” max_iter = 5,000, penalty
= “l2,” verbose = 1, and class_weight = {0:181, 1:90}; and (3)
for RF, criterion = “entropy,” bootstrap = True, random_state
= 1, oob_score = True, n_estimators = 100, max_features = 1,
max_depth = 6, min_samples_split = 3, min_samples_leaf = 1,
and class_weight= {0:181, 1:90}.

Model Interpretability
As shown in Figure 6, the SHAP diagram of the above
optimal predictive model, namely, the RF classifier with the
clinical + volume combination, showed that cerebral infarction
volume was the most important predictor in severe stroke
progression. The NIHSS and GCS on admission also played an
important role in this predictive model, and BNP acted as an
important biochemical indicator of severe stroke progression
for ASACNLII. In addition, other conventional biochemical
indicators and age contributed to the predictive model. However,
gender and medical history factors showed slight significance in
this predictive model. Moreover, SHAP values for all 73 patients
in the test set were shown in Figure 7A. The detailed SHAP
values of the most important variables for one typical patient in
the positive group (progression to severe stroke) and one in the
negative group (non-progression to severe stroke) are illustrated
in Figures 7B,C. These figures further demonstrated that the AI-
derived volume serves as an essential risk factor for prediction of
progression to severe stroke.

DISCUSSION

Our study used a U-Net deep learning model for lesion
segmentation. The Dice coefficient was boosted from 0.680
to 0.790 by diverse data augmentation, and cosine annealing
learning rate scheduler was used to further improve the Dice
coefficient to 0.806, indicating that the data augmentation
method was essential for enhancing the segmentation
performance. The high quality of automatic segmentation
led to high accuracy of subsequent lesion volume measurement
with an R2 value of 0.960. The infarction volumes on DWI were
combined with the multidimensional clinical information for
more accurate prediction of progression to severe stroke. The
results of this study revealed that the lesion volume of ASACNLII
was the most important predictor as illustrated in the SHAP
diagram and this was consistent with the literature and clinical
practice (12, 13). The predictive model of clinical information
(AUC= 0.7686) also showed good performance, and the AUC of
the predictive model on volume+ clinical combination using RF
was as high as 0.8358, which was better than the model that used
the volume data or clinical data alone (p < 0.05). The difference
of AUCwas very small between using the AI-predicted volume as
a predictor (0.8358) and using the radiologist’s volume (0.8387).
It was not surprising because the AI-predicted volume was very
close to the radiologist’s volume (squared correlation coefficient
R2 = 0.960).

The three factors that contributed the most were the lesion
volume, NIHSS on admission, and GCS on admission, and this
was in concordance with the current consensus (14–16).
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TABLE 1 | Basic patient information.

Training set (n = 271) Test set (n = 73) p-values

Basic characteristics

Age, median (IQR) 71 (63, 82.5) 75 (66, 84) 0.093

Male (percentile: %) 179 (66.1%) 25 (53.4%) 0.064

Neurological score scale, median (IQR)

NIHSS on admission 6 (3, 12) 8 (4.5, 12) 0.062

GCS on admission 15 (13, 15) 15 (14, 15) 0.338

History (percentile: %)

Alcohol 91 (34.2%) 15 (20.55%) 0.036

Smoking 132 (49.6%) 21 (28.8%) 0.002

Myocardial infarction 9 (3.4%) 1 (0.0%) 0.610

Coronary atherosclerosis 54 (20.3%) 15 (20.5%) 0.906

Atrial fibrillation 43 (16.2%) 17 (23.3%) 0.215

Hypertension 188 (70.7%) 52 (71.2%) 0.958

Stroke 73 (27.4%) 22 (30.1%) 0.759

Diabetes 95 (35.7%) 23 (31.5%) 0.596

Laboratory test, median (IQR)

Prothrombin time 11.0 (10.6, 11.6) 11.1 (10.7, 11.6) 0.090

Fibrinogen 2.83 (2.43, 3.56) 2.75 (2.35, 3.76) 0.278

D-dimer 0.66 (0.34, 1.67) 0.75 (0.33, 1.81) 0.494

Serum troponin I 0.01 (0.01, 0.03) 0.01 (0.01, 0.03) 0.222

Blood sugar 6.46 (5.41, 9.01) 7.65 (5.54, 10.11) 0.051

Blood lipids 1.25 (0.94, 1.75) 1.27 (0.92, 1.62) 0.346

Brain natriuretic peptide 83.7 (38.1, 231.8) 131.6 (49.9, 286.9) 0.070

Severe progress

Progress to severe stroke (percentile: %) 89 (33.0%) 19 (26.0%) 0.322

IQR, interquartile range; NIHSS, national institute of health stroke scale; GCS, glasgow coma scale.

FIGURE 3 | Comparison between artificial intelligence (AI)-based segmentation and manual segmentation in three cases of ASACNLII. (A) DWI images. (B)

Segmentation results, in which red represents manual labeling results, green the AI output results, and yellow the consistent areas.

Frontiers in Neurology | www.frontiersin.org 6 June 2021 | Volume 12 | Article 652757

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wei et al. Prediction of Severe Stroke Progress

FIGURE 4 | The correlation between AI-derived volumes and the manually segmented volumes. The squared correlation coefficients R2 were calculated for all

patients (A), patients with lesion sizes <100,000 mm3 (B), and those with lesion sizes <30,000 mm3 (C).

TABLE 2 | Comparison between different feature sets.

Clinical data Volume data Clinical + volume combination

AUC* 0.7686 (0.6474–0.8717) 0.6929 (0.5434–0.8262) 0.8358 (0.7321–0.9269)

Sensitivity 0.6022 (0.3607–0.9630) 0.8735 (0.7636–1.0) 0.7695 (0.6102–0.9074)

Specificity 0.8891 (0.5217–1.0) 0.5612 (0.3000–0.7857) 0.8686 (0.6923–1.0)

Youden’s index 0.4913 (0.3494–0.6522) 0.4347 (0.1897–0.6628) 0.6380 (0.4475–0.8182)

Accuracy 0.6386 (0.5753–0.7945) 0.7846 (0.7808–0.7945) 0.7780 (0.7397–0.7945)

*AUC, area under the receiver operating characteristic curve.

FIGURE 5 | Performances of machine learning models for the prediction of

progression to severe stroke: receiver operating characteristic (ROC) curves of

three feature sets when using the random forest classifier.

The AI-based segmentation methods of cerebral infarction
areas on DWI images were divided into two main categories:
(1) the thresholding methods: Lee et al. have reported that the

correlation coefficient between the thresholding method of the
infarct core area and the gold standard of manual segmentation
was 0.62± 0.18 (17); Boldsen et al. have developed a thresholding
method on DWI for acute anterior circulation stroke with
a median Dice coefficient of 0.3951 (18). (2) Deep learning
methods: Nishi et al. have reported that the Dice coefficient of
the U-Net model of the core infarct area was 0.58 ± 0.01 (19);
Kim et al. have reported that the average Dice coefficients of
infarct region segmentation based on U-Net for DWI + ADC
and DWI were 0.60 and 0.57, respectively (20); and Wu et al.
have reported that a deep learning segmentation model achieved
a Dice coefficient of 0.86 (0.79–0.89) (9). These previous studies
have indicated that the AI methods have increased popularity in
DWI lesion segmentation, and the AI algorithms, especially the
deep learning approaches, can accurately and automatically trace
the lesion border of ischemic stroke.

Imaging findings can be used as an input feature, as well as a
supplement to clinical features, for predicting stroke prognosis
or outcome. Vogt et al. have reported that the initial lesion
volume of cerebral infarction acted as an independent predictor
of prognosis (90d-Rankin score) (13). Heo et al. have built a
deep learning model of clinical information including general
information, medical history, and laboratory tests to predict the
prognosis of patients with acute cerebral infarction (yes/no 90d
mRS: 0–2), and the area under the ROC curve has reached to
0.81 ± 0.06 (21). Lee et al. have revealed that the prediction
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TABLE 3 | Comparison between different classifiers.

Logistic regression Support vector machine Random forest

AUC* 0.8104 (0.6952–0.9113) 0.8165 (0.6854–0.9344) 0.8358 (0.7321–0.9269)

Sensitivity 0.7226 (0.4074–0.9815) 0.8631 (0.6471–0.9608) 0.7695 (0.6102–0.9074)

Specificity 0.8200 (0.5000–1.0) 0.8013 (0.6000–1.0) 0.8686 (0.6923–1.0)

Youden’s index 0.5426 (0.3680–0.7363) 0.6644 (0.4657–0.8644) 0.6380 (0.4475–0.8182)

Accuracy 0.7103 (0.5616–0.8219) 0.8334 (0.6849–0.8493) 0.7780 (0.7397–0.7945)

*AUC, area under the receiver operating characteristic curve.

FIGURE 6 | Shapley additive explanation (SHAP) diagram of variable contributions for the optimal predictive model, i.e., the random forest classifier with volume +

clinical data. (A) The relative contributions of AI-derived volumes and clinical variables for progression prediction. Features on the right of the risk explanation bar

pushed the risk higher, and features on the left pushed the risk lower: a patient with a larger volume, higher NIHSS, and lower GCS is at a higher risk. (B) The relative

contributions of variables for progression prediction quantified with the mean of the absolute SHAP values.

of 6-month swallowing recovery was feasible based on clinical
and radiological factors using the Bayesian network model,
and their study also emphasized the importance of bilateral
subcortical lesions as prognostic factors as these could be utilized
to develop prediction models for long-term swallowing recovery
(22). However, combining both lesion volumes and clinical data
for predicting the progression to severe stroke has not yet
been reported.

Our study has built a machine learning model to accurately
predict the progression to severe stroke in initially diagnosed
nonsevere patients with ASACNLII. It is quite essential for
treatment planning, preparing transfer to the N-ICU, and
effective communication between doctors and patients. A meta-
analysis study has shown that the transfer to N-ICU has
significantly reduced the mortality and improved the prognosis
of stroke patients, while not all patients required transfer to the
N-ICU from the perspective of health economics (14). Accurate

prediction of progression to severe stroke can provide clinical
evidence and help prepare for transfer to the N-ICU in order
to obtain better therapeutic efficacy for patients with high risks.
In addition, the AI-based predictive model provides a more
objective reference for treatment decision, and it would be
particularly helpful for the medical staff who do not specialize
in stroke.

The data were randomly partitioned into training and test
sets in a ratio of 3:1. There were 19 variables in the basic
patient information, and it was very difficult to generate
random sets which had no significant differences in any of
the 19 variables between the training and test sets. Finally,
we chose a partition which had no significant differences
in 17 of the variables (p > 0.05) and only the history
of smoking and the history of alcohol exhibited significant
differences (p < 0.05). Previous studies showed that smoking
and alcohol use were complicated epidemiological risk factors
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FIGURE 7 | Shapley additive explanation (SHAP) values to show interpretability of the effects of AI-derived volumes and clinical variables as the input risk factors for

the prediction of progression to severe stroke. (A) SHAP values for all 73 patients in the test set. Samples from left to right are ordered by the sum of the SHAP values

from all variables, and the bottom bar shows the true labels of each sample, namely, red for the positive group (progression to severe stroke) and blue for the negative

group (non-progression to severe stroke). The 27 samples on the left are predicted as positive samples by the random forest model. (B, C) SHAP values of two typical

patients from the positive group (B) and the negative group (C), illustrated with their most important variables.

of stroke. Smoking increased the risk proportionally with
the number of cigarettes smoked per day (23), and heavy
alcohol use and acute alcohol ingestion increased the risk of
stroke, especially hemorrhagic stroke (24). In these studies,
the behaviors of smoking and alcohol use were quantified
or semiquantified, but in our study, we only retrospectively
collected the history of smoking or alcohol as binary variables
of medical history information without quantification. Hence,
we speculated that these two variables of patient history should
have a minor effect on our results of prediction of severe
stroke progression.

This study has some limitations. Firstly, the data collection
had a single-center geographic limitation, which cannot
represent the overall distribution of the disease in a wide range
of population. The predictive model was trained and fitted

based on the data generated by this particular center. Data
from other sources should be collected for external validation.
Secondly, this study collected multidimensional data, such as
basic information, image information, and clinical information,
and this was time-consuming, resulting in a small sample
size. However, compared with previous studies with regard
to the diagnosis and prediction of cerebral infarction using
deep learning technology, the sample size is basically the same
(25–27). Thirdly, despite high average AUCs, the confidence
intervals were relatively large, which showed model instability
and needed further fine-tuning on larger datasets to improve its
stability. Lastly, when collecting data, lacunar cerebral infarction
patients with good prognosis were excluded, which meant
that this study did not include all clinically common cases of
cerebral infarction.
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CONCLUSIONS

The U-Net for infarction lesion segmentation is fully automatic
and shows a high correlation with manual segmentation. A
machine learning approach using both clinical and volume
feature sets has demonstrated a high accuracy for the prediction
of the progression to severe stroke in initially diagnosed non-
severe patients with ASACNLII, and hence, it has good potential
for clinical application and guarantees further clinical validation
in larger samples.
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