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Genomic selection (GS) is a technology used for genetic improvement, and it has many
advantages over phenotype-based selection. There are several statistical models that
adequately approach the statistical challenges in GS, such as in linear mixed models
(LMMs). An active area of research is the development of software for fitting LMMs
mainly used to make genome-based predictions. The lme4 is the standard package for
fitting linear and generalized LMMs in the R-package, but its use for genetic analysis
is limited because it does not allow the correlation between individuals or groups of
individuals to be defined. This article describes the new lme4GS package for R, which
is focused on fitting LMMs with covariance structures defined by the user, bandwidth
selection, and genomic prediction. The new package is focused on genomic prediction
of the models used in GS and can fit LMMs using different variance–covariance matrices.
Several examples of GS models are presented using this package as well as the analysis
using real data.

Keywords: genomic selection, genomic prediction, linear mixed model, lme4, kernel

INTRODUCTION

With the new, low-cost, high-throughput genotyping technologies of the last decade, a breeding
selection paradigm called genomic selection (GS) has emerged (Meuwissen et al., 2001). GS
combines molecular and phenotypic data to obtain the genomic estimated breeding values (GEBVs)
of individuals that have been genotyped but not phenotyped (Bernardo and Yu, 2007; de los
Campos et al., 2009; Hayes et al., 2009; VanRaden et al., 2009; Crossa et al., 2010). The main
advantages of GS over family-based selection in breeding are that it reduces the cost per cycle and
the time required for variety development. However, several factors could impact the accuracy of
prediction; they occur at different levels and are influenced by several genetic, environmental, and
statistical factors.

Complications arise in GS when determining (i) the size and diversity of the training
population, (ii) the relationship between the training and testing sets, (iii) genetic complexity,
and (iv) the heritability of the traits to be predicted. Challenges in GS are related to the
high dimensionality of marker data, where, the number of markers is much larger than the
number of observations, the multi-collinearity among markers, the cryptic interaction between

Abbreviations: BGLR, Bayesian generalized linear regression; BLR, Bayesian linear regression; BLUP, best linear unbiased
prediction; GEBV, genomic estimated breeding value; GLMM, generalized linear mixed model; GS, genomic selection; LMM,
linear mixed model; REML, restricted maximum likelihood.
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markers, the complexity of the trait, sample size, correlation
among markers, and the ever-present genotype × environment
interaction. These complexities require parametric and semi-
parametric statistical models, especially mixed models, Bayesian
estimations, and, recently, deep machine learning methods that
can deal appropriately with the usually large datasets (Crossa
et al., 2017). This has led to computational challenges due to the
data size and statistical challenges that include model fitting and
parameter optimization. Therefore, the development of complete
and simple computer packages to estimate the GEBV of the
individuals to be selected under these complex scenarios is crucial
for an efficient application of GS.

The first R software (R Core Team, 2021) developed for
genome-based prediction was presented by de los Campos et al.
(2009). Shortly afterward, Pérez et al. (2010) formally described
the Bayesian linear regression (BLR) that allows fitting high-
dimensional linear regression models including dense molecular
markers, pedigree information, and several other covariates other
than markers. The BLR R-package described by Pérez et al.
(2010) allows including not only markers but also pedigree data
jointly. Furthermore, Pérez et al. (2010) explained the challenges
that arise when evaluating genomic-enabled prediction accuracy
through random cross-validation (CV), as well as how to select
the best choice of hyperparameters for the Bayesian models.

Linear mixed models play a fundamental role in GS
and genomic-enabled predictions. This kind of models is
widely used for predictions, although other models, such
as nonlinear models, neural networks, and other machine
learning models, could be used for this purpose. The standard
linear mixed model of the form y = Xβ+ Zu+ e, where,
y is a response vector of dimension n × 1; X and Z are
the design matrices for the fixed (β) and genotypic random
(u) effects, respectively; and two variance components are
estimated u ∼ MN(0, σ2

uK), with K being a known semidefinite
variance–covariance matrix and e ∼ MN(0, σ2

e I). In the context
of GS, K could be the additive relationship matrix derived
from the coefficient of co-ancestry (numerator relationship
matrix A), or it could be the genomic relationship matrix
obtained from markers (G). As shown below, there are
several alternative ways of expressing the incidence matrix
Z and the vector of random effects u when using the
numerical relationship matrix (A). Bayesian versions of
linear regression models have been extensively developed, and
their companion software largely distributed and used for
research and extended to more complicated cases, for example,
the introduction of genotype × environment interaction
incorporating pedigree and environmental covariables
(Jarquín et al., 2014).

Endelman (2011) developed the rrBLUP R-package, which
is able to fit the basic linear mixed model with two variance
components (σ2

u and σ2
e ) described before with the maximum

likelihood or restricted maximum likelihood (REML) methods.
As an extra facility, the rrBLUP computes the Gaussian kernel
and the exponential kernel that usually account for small cryptic
epistatic effects among the markers. The rrBLUP has a CV
algorithm to measure the prediction accuracy of the models
and shows rapid solutions of the mixed model equations for

moderate-to-intermediate data sizes. More specialized computer
software, such as the synbreed of Wimmer et al. (2012) and
GEMMA of Zhou and Stephens (2012), were later developed.

Although the previously mentioned genomic software
programs solve important genomic prediction problems (e.g.,
prediction in training and testing sets, CV, and estimation of
variance parameters), they are separate software pieces without a
unified statistical and computing framework. So from the user’s
perspective, having a single package implementing all the models
to be fitted will save data preparation time and data analysis time.
Thus, Pérez and de los Campos (2014) extended the original BLR
R-package developed by Pérez et al. (2010) to a more general
R-package, the Bayesian generalized linear regression (BGLR)
that offers users a great variety of genomic models and methods
in a unified computing software for data analysis. The BGLR is
available at CRAN. The BGLR package includes several Bayesian
regression models, including parametric variable selection and
shrinkage methods, and semi-parametric procedures [Bayesian
reproducing kernel Hilbert space (RKHS) regressions]. Many
non-genomic applications are implemented as well, and response
traits can be continuous or categorical (binary or ordinal).
The Bayesian algorithm is based on a Gibbs sampler with
scalar updates implemented in efficient routines written in C
programming language. Furthermore, the BGLR is the main
machinery for adapting other more complex genomic models, for
example, the complex phenomenon of genotype × environment
interaction including pedigree and environmental covariables
(Jarquín et al., 2014). The BGLR is also used for assessing the
marker effect × environment interaction of Lopez-Cruz et al.
(2015) and for fitting Bayesian ridge regression and the Bayes B,
as shown by Crossa et al. (2017), or for using the threshold model
for ordinal data as did Montesinos-López et al. (2016), and for
running all the Bayesian alphabet models.

Although linear mixed models are important tools for
fitting GS models, Covarrubias-Pazaran (2016) mentioned
like that current GS software includes only one random
effect; and therefore, using genomic prediction for more
complicated situations hybrid prediction using additive,
dominance, and epistatic effects is not possible under the
available models. The authors proposed likelihood-based
software for fitting mixed models with multiple random effects
that allow the user to specify the variance–covariance structure
of random effects. Covarrubias-Pazaran (2016) presented
an R-package called sommer for genomic prediction with
three algorithms for estimating variance components: average
information, expectation–maximization, and efficient mixed
model association. Results from sommer were comparable
with those of other software, and sommer was faster than its
Bayesian counterparts.

The development of software for fitting linear mixed models
is an active area of research. The use of pedigree and genomic-
enabled prediction linear mixed models is crucial for advancing
the application of genomic-assisted breeding. The lme4 package
(Bates et al., 2015) for R (R Core Team, 2021) has efficient
functions for analyzing linear mixed models and generalized
linear mixed models (GLMMs). Some of the main features of
lme4 are that (i) it is efficient for large dataset problems; (ii)
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it handles any number of grouping factors, nested or cross-
classified; and (iii) it can use a combination of sparse and dense
matrix representations to facilitate the processing of large datasets
at high computational speed.

However, the use of lme4 for genetic analysis has been
limited because it does not allow using the correlation between
individuals or groups of individuals. When individual lines or
animals are related, the marginal likelihood must allow using
this covariance between relatives. Vazquez et al. (2010) developed
a package called pedigreemm that uses the lme4 but allows for
correlations between levels of random effects, such as those due
to genetic relationships between relatives expressed as pedigree
relationships. The methodology of Vazquez et al. (2010) uses the
numerator relationship matrix A (a positive-definite matrix) and
subjects it to the Cholesky decomposition, where, the Cholesky
factor (L) can be obtained from the pedigree information.

Based on the above considerations and some limitations in
terms of the computing efficiency of some existing genomic-
enabled prediction models, in this research, we describe the new
lme4GS R-Package that is based on the lme4 software of Bates
et al. (2015) that is available in CRAN. The lme4GS is focused
on genomic-based prediction of GS and can fit mixed models
with several different variance–covariance matrices. The lme4GS
introduces fixed and random effects, and associated variance–
covariance matrices, from which matrices for fixed and random
effects (X, Z1, ..., Zq, respectively) are obtained. The original
variance–covariance matrices are introduced and transformed by
using the Cholesky factorization or the eigenvalue decomposition
of variance–covariance matrices and later used for defining
the objective function (deviance function). Once the objective
function has been defined, the optimization module optimizes
the objective function and provides REML estimates of the
parameters of interest.

MATERIALS AND METHODS

Consider the linear mixed model:

y = Xβ+ Zu+ e, (1)

where, y is a response vector of dimensions n × 1, X is a
matrix of fixed effects of dimensions n × p, β is a vector of
fixed effects of dimensions p × 1, Z is an incidence matrix
of dimensions n × r, and u is a vector of random effects.
We assume u ∼ MN(0, σ2

aK) and e ∼ MN(0, σ2
e I), with K a

known variance–covariance matrix, and σ2
a and σ2

e are variance
parameters associated with u and e, respectively; furthermore, we
assume that u and e are independently distributed. In the case of
GS, the variance–covariance matrix can be derived from markers
or from pedigree.

The linear mixed model (1) can be rewritten as;

y = Xβ+ Z∗u∗ + e, (2)

where, Z∗ = ZL, with L obtained from the Cholesky factorization
of K; alternatively, Z∗ = Z031/2 with 0 and 3 the matrices
of eigenvectors and eigenvalues, respectively, obtained from the

eigenvalue decomposition of K, and u∗ ∼ MN(0, σ2
uI). Note that

Z∗u∗ has the same distribution as Zu; that is, Z∗u∗=d Zu ∼
MN(0, σ2

aZKZ
′

).

Best Linear Unbiased Predictions
Once mixed model (2) is fitted, the conditional means of the
random effects can be obtained, that is, û∗.The best linear
unbiased predictions (BLUPs) for u∗ are obtained as follows:
û∗ = σ̂2

uZ∗
′

V̂∗−1(y−X̂β) where, V̂∗ = σ̂2
uZ∗Z∗

′

+ σ̂2
e I, with

σ̂2
e , σ̂2

u and β̂ REML estimates of variance parameters and vector
of fixed effects, respectively. The conditional means of random
effects for the model in equation (1) are obtained as follows:
û = L̂u∗ if the Cholesky factorization is used, or alternatively,
û = 031/2û∗ if the eigenvalue is used.

Prediction of New Observations
The main goal of GS is to predict new observations (phenotypic
values) or simply obtain the BLUPs for random effects not present
in the observed data but drawn from the same population as u
and e (Gilmour et al., 2004). Assume that the random vector u
and matrix K are partitioned as follows:

u =
[

u1
u2

]
, K =

[
K11 K12
K21 K22

]
,

the BLUPs for u2 are obtained as:

E
(
u2
∣∣ y1

)
= K21K−1

11 u1. (3)

In a more general case, model (1) can be extended to include more
random effects, that is:

y = Xβ+

q∑
j = 1

Zjuj + e, (4)

where, Zj is a design matrix of random effects, and uj is a vector
of random effects, j = 1, ..., q, where, q corresponds to the
number of random terms included in the model. We assume
that uj ∼ MN(0, σ2

j Kj) is independently distributed. Note that
model (1) is a special case of model (4) obtained by setting
q = 1, Z = Z1, u = u1, K = K1, σ2

a = σ2
1. Based on

the same computational strategy used to rewrite model (1) as the
model in (2), model (4) can be rewritten as:

y = Xβ+

q∑
j = 1

Z∗j u
∗
j + e. (5)

Implementation
The lme4GS package is an extension of the lme4 R-package
(Bates et al., 2015); lme4GS development was inspired by existing
R-packages, pedigreemm (Vazquez et al., 2010) and lme4qtl
(Ziyatdinov et al., 2018), which are focused on quantitative
trait locus (QTL) mapping association and linkage studies,
whereas, lme4GS is focused on the problem of prediction
in GS (Meuwissen et al., 2001) with GBLUP-type models,
although the models can be applied in other research areas.
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lme4GS uses the computational engine provided by the well-
tested and widely used lme4 package to fit mixed models with
a variance–covariance matrix provided by the user. lme4GS
can be considered a generalization of existing package rrBLUP
(Endelman, 2011) because it is able to fit model (4), whereas,
rrBLUP is able to fit model (1). The package also implements
some of the models in the sommer package of Covarrubias-
Pazaran (2016). lme4GS uses the high-level modular structure of
lmer (formula module, objective function module, optimization
module, and output module) to fit the models with variance–
covariance matrices provided by the user. The formula module
allows the specification of fixed and random effects and associated
variance–covariance matrices, from which matrices for fixed
and random effects (X, Z1, ..., Zq, respectively) are obtained.
After that, the variance–covariance matrices are introduced by
computing transformed incidence matrices (Z∗j , j = 1, ..., q)
using the Cholesky or eigenvalue decomposition of variance–
covariance matrices provided by the user, which are taken as
inputs to define the objective function (deviance function). Once
the objective function has been defined, the optimization module
is used to optimize the objective function and provide REML
estimates of the parameters of interest. Finally, the output module
is used to provide an output that can be interpreted by the end
user. We developed three main R functions:

• lmerUvcov: Fits a linear mixed model with a variance–
covariance matrix provided by the user. This function takes
as input a formula to specify the response y, the fixed effects
(fixed) and the random effects (random), a data.frame, and
a list (Uvcov) to specify the variance–covariance matrix for
random effects. Once the model is fitted, the routine returns
an object of class merMod for which many methods are
available in R for further processing (e.g., summary, print,
predict, and VarCorr).
• ranefUvcov: Extracts the conditional means of random

effects. This function takes as input an object returned by the
lmerUvcov function. If the ranef function in the lme4 package
is used taking as input the object provided by the lmerUvcov
function, it will extract the conditional means for the random
effects in model (6); the conditional means for random effects
in model (5) are obtained as explained in the BLUPs section.
The ranef function in lme4 is overwritten with ranefUvcov,
so the user can call either of these two routines and obtain
the same results.
• ranefUvcovNew: Obtains BLUPs for new levels of random

effects with user-specified variance–covariance matrices. The
function takes as input an object provided by the lmerUvcov
function and a two-level list with variance–covariance
matrices that contains information of the genotype identifiers
(GIDs) to be predicted and those that were included when

BOX 1 | Loading wheat data.
1 library(lme4GS)

2 library(pedigreemm)

3 data(wheat599)

4 ls() #list objects

fitting the model. The BLUPs are obtained using partitions
similar to those used to derive equation (4).

The software is available in the github repository1.

EXAMPLES

In this section, we illustrate the use of the R-package lme4GS with
several examples using sample data included in the package. In
our examples, we consider only the prediction of random effects
and the estimation of variance parameters, although the package
is also able to estimate fixed effects.

Example 1: Genome-Wide Prediction
Using Markers and Pedigree
In this example, we analyze a set of 599 wheat lines developed by
the CIMMYT Global Wheat Breeding Program. The dataset has

1https://github.com/perpdgo/lme4GS

BOX 2 | Computing A and G matrices.
1 ## Complete and sort incomplete Pedigree using

editPed

2 PedEdit< editPed(sire = wheat.Pedigree$gpid1,

dam=wheat.Pedigree$gpid2,

3 label = wheat.Pedigree$progenie,

verbose = TRUE)

4

5 ## Converted the data frame PedEdit into an S4 object

of formal

6 ## class ‘Pedigree’

7 PedFinal<-with(PedEdit,pedigree(label=label,

sire=sire,dam=dam))

8

9 #A

10 AFull<-getA(PedFinal)

11 GID<-unique(wheat.Pheno$GID)

12 selected<-rownames(AFull)%in%GID

13 A<-AFull[selected,selected]

14 A<-matrix(A,599,599)

15 rownames(A)<-colnames(A)<-rownames(AFull

[selected,selected])

16

17 W<-scale(wheat.X,center=TRUE,scale=TRUE)

18 G<-tcrossprod(W)/ncol(W)

19

20 #Environment 1

21 e1<-which(wheat.Pheno$Env==1)

22 y<-wheat.Pheno[e1,]$Yield

23 GID<-as.character(wheat.Pheno[e1,]$GID)

24

25 wheat<-data.frame(y = y,mrk=GID,ped=GID)

26 random<-list(mrk=list(K=G),ped=list(K=A))

27 fmGA<-lmerUvcov(y∼(1| mrk)+(1|

ped),data = wheat,Uvcov = random)

28 summary(fmGA)

29

30 #BLUPs

31 ranefUvcov(fmGA)

32

33 #or equivalently

34 ranef(fmGA)
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been analyzed several times in the literature (e.g., de los Campos
et al., 2009; Crossa et al., 2010; Pérez et al., 2010). The dataset
includes grain yield information, a pedigree, and 1,477 markers
generated by Triticarte Pty., Ltd. (Canberra, Australia2). Here, we
present the raw phenotypic data, including the replicates in each
environment and the pedigree information, in order to show how
to use R tools to obtain the additive relationship matrix that is
later used as input for fitting the models. The dataset is loaded
into the R environment with the commands shown in Box 1.

Once the commands are executed, the following objects are
available:

• wheat.Pheno: A data.frame with four columns: Env for
environments, Rep for replicates, GID for genotype
identifiers, and Yield for grain yield.
• wheat.Pedigree: A data.frame with three columns: gpid1

and gpid2, which correspond to the GID of parents 1
and 2, respectively, and progeny, which correspond to the
GIDs of progeny.
• wheat.X: A matrix of dimensions 599 × 1,279, which

corresponds to Diversity Array Technology (DArT)
markers coded as 0 and 1.

A linear model to predict grain yield in one of the
environments using markers and pedigree is given by:

y = 1µ+ Z1u1 + Z2u2 + e, (6)

where, y is the response vector in one environment, 1 is a vector
of ones, µ is an intercept, u1 ∼ MN(0, σ2

mG), G = WW
′

/p
(see Lopez-Cruz et al., 2015) is a genomic relationship matrix,
W is the matrix of markers centered and standardized, p is the
number of markers, σ2

m is a variance parameter associated with
markers, u2 ∼ MN(0, σ2

aA), A is an additive relationship matrix
derived from pedigree, σ2

a is its associated variance parameter,
Z1, Z2 are matrices that connect phenotypes with genotypes,

2https://www.diversityarrays.com

BOX 3 | Partial output from Box 2.
1 Linear mixed model fit by REML [‘lmerUvcov’]

2 Formula: y ∼ (1 | mrk) + (1 | ped)

3 Data: wheat

4

5 REML criterion at convergence: 1103.5

6

7 Scaled residuals:

8 Min 1Q Median 3Q Max

9 -2.51852 -0.44430 0.00982 0.42390 2.60030

10

11 Random effects:

12 Groups Name Variance Std.Dev.

13 mrk (Intercept) 0.22189 0.4711

14 ped (Intercept) 0.21138 0.4598

15 Residual 0.03496 0.1870

16 Number of obs: 1198, groups: mrk, 599; ped, 599

17

18 Fixed effects:

19 Estimate Std. Error t value

20 (Intercept) 4.81719 0.08757 55.01

and e is a random term distributed as in model (1). The additive
relationship matrix A can be easily computed in R using the
pedigreemm package (Vazquez et al., 2010); the corresponding
Cholesky decomposition can be computed very efficiently, and
the package is able to store the result as a sparse matrix. The code
in Box 2 computes the A and G matrices and then fits the mixed
model using the lmerUvcov function. After that, it extracts the
BLUPs using the ranefUvcov function.

The model fitting time is about 81 s on a computer with
a 2.8-GHz Intel Core i7 processor. After the model is fitted,
the summary function can be used to show some of the
results. The estimates of variance parameters are σ̂2

m = 0.2218,

BOX 4A | Single training and testing partition.
1 set.seed(456)

2 trn<-sample(unique(GID),size=as.integer(0.80∗599))

3 tst<-setdiff(unique(GID),trn)

4

5 #Phenotypes in training and testing

6 y_trn<-y[GID%in%trn]

7 y_tst<-y[GID%in%tst]

8

9 A_trn<-A[rownames(A)%in%trn,colnames(A)%in%trn]

10 G_trn<-G[rownames(G)%in%trn,colnames(G)%in%trn]

11 GID_trn<-GID[GID%in%trn]

12 GID_tst<-GID[!(GID%in%trn)]

13

14 pheno_trn<-data.frame(y_trn=y_trn,mrk=GID_trn,

15 ped = GID_trn)

16

17 random<-list(mrk=list(K=G_trn),ped=list(K=A_trn))

18

19 fmGA_trn<-lmerUvcov(y_trn∼(1| mrk)+(1| ped),

data=pheno_trn,

20 Uvcov = random)

21

22 plot(pheno_trn$y_trn, predict(fmGA_trn),

23 xlab="Observed phenotype",ylab="Predicted

phenotype")

24

25 #Predict for new levels

26 blup_tst<-ranefUvcovNew(fmGA_trn,

27 Uvcov=list(mrk=list(K=G),

ped=list(K=A)))

28 i1<-match(GID_tst,rownames(blup_tst$mrk))

29 i2<-match(GID_tst,rownames(blup_tst$ped))

30 blup_mrk<-blup_tst$mrk[i1,1]

31 blup_ped<-blup_tst$ped[i2,1]

32 yHat_tst<-fixef(fmGA_trn)[1] + blup_mrk + blup_ped

33

34 points(y_tst,yHat_tst,col="red",pch=19)

35 legend("topleft",legend=c("Training","Testing"),

36 pch=c(1,19),col=c("black","red"),bty="n")

37

38 #Correlation in testing set

39 cor(y_tst,yHat_tst)

40

41 #MSE

42 var(y_tst-yHat_tst)

43

44 #Data frame with prediction for further processing

45 predictions<-data.frame(GID=GID_tst,y=y_tst,

yHat=yHat_tst)

46
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FIGURE 1 | Observed vs. predicted phenotypic values in the training and testing sets.

σ̂2
a = 0.2113, and σ̂2

e = 0.0349 (see Box 3). The functions
predict, residuals, etc., that are routinely used after fitting the
model with the lmer function; they can also be used with the
resulting object.

Example 2: Training and Testing Sets
In this example, we mimic the GS problem faced by breeders;
we evaluate the predictive ability of model (6) by CV, which
requires randomly partitioning the data into two disjoint sets,
assigning 80% of the lines to the training set and the remaining
20% to the testing set. The code in Box 4A partitions the data
into the training and testing sets and defines two vectors, y_trn
and y_tst, with the phenotypic values of both sets. Next, it creates
a list object with the random effects for the linear mixed model.
The linear mixed model is fitted using the training set of the
data, with the lmerUvcov function. In the next step, we define a
list of random effects including the variance–covariance matrices
G and A and the GIDs of the lines to be predicted; the row
and column names of the covariance matrices correspond to
the GIDs. The ranefUvcovNew function is used for prediction
and provides a list of BLUPs for each of the random terms as
a result. Finally, the predictions for individuals in the testing
set are obtained by simply adding up the intercepts to the
BLUPs. Observed and predicted values are stored in a data.frame
with three columns: GID, y (observed phenotypic values), and
yHat (predicted phenotypic values) used for graphical displays.
Figure 1 shows a scatter plot with observed and predicted
phenotypic values in both the training and testing sets. Pearson’s
correlation coefficient between the observed and predicted values
is 0.5638, and the mean squared error (MSE) is 0.2581.

Box 4B shows the R code to perform a five-fold CV that is
widely used to study prediction accuracy (e.g., Crossa et al., 2010).
We randomly divided the data into five disjoint sets based on the
GID, {S1, ..., S5}. Each set is used to measure prediction accuracy.
With the use of these sets, the data are divided into the training
and testing populations; for example, the data in {S2, ..., S5} are
the training data, and S1 are the testing data. The model is fitted
using the training data, then phenotypes for S1 are predicted,
and prediction accuracy is measured. The same exercise can be
carried out taking Sf as the testing data, f = 2, ..., 5. Table 1
shows the results of CV, column 1 corresponds to fold, column
2 shows Pearson’s correlation coefficient between observed and
predicted values for individuals in the training set, column 3
corresponds to the MSE in the training set, and columns 4 and
5 show the correlations and MSE for individuals in the testing
set. The average correlation in the training set is 0.9768, whereas,
the correlation in the testing set is 0.5192. The average MSE in
the training set is 0.0187, and that in the testing set is 0.2897. The
results are as expected: the correlation in the training set is higher
than in the testing set, and the MSE is higher in the testing set
than in the training set.

Example 3: Hybrid Prediction
The prediction of hybrid performance is very important in
agricultural breeding programs. Technow et al. (2014) and
Acosta-Pech et al. (2017) employed G-BLUP type models to
predict the performance of maize hybrids. The linear model used
to that end is given by:

y = 1µ+Wθ+ Z1u1 + Z2u2 + Z3u3 + e, (7)
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BOX 4B | Cross-validation.
1 set.seed(789)

2 uGID<-unique(GID)

3 nFolds<-5

4 sets<-sample(1:nFolds,size=length(uGID),replace=TRUE)

5 resultsCV<-matrix(NA,nrow=nFolds,ncol=4)

6 colnames(resultsCV)=c("r_trn","MSE_trn",

"r_tst","MSE_tst")

7

8 for(f in 1:nFolds)

9 {
10 #Training and testing

11 trn<-(uGID[sets!=f])

12 tst<-(uGID[sets==f])

13

14 #Phenotypes in training and testing

15 y_trn<-y[GID%in%trn]

16 y_tst<-y[GID%in%tst]

17

18 A_trn<-A[rownames(A)%in%trn,

colnames(A)%in%trn]

19 G_trn<-G[rownames(G)%in%trn,

colnames(G)%in%trn]

20 GID_trn<-GID[GID%in%trn]

21 GID_tst<-GID[!(GID%in%trn)]

22

23 pheno_trn<-data.frame(y_trn=y_trn,

mrk=GID_trn,

24 ped=GID_trn)

25

26 random<-list(mrk=list(K=G_trn),

ped=list(K=A_trn))

27

28 fmGA_trn<-lmerUvcov(y_trn∼(1| mrk)+(1|

ped), data=pheno_trn,

29 Uvcov=random)

30

31 yHat_trn<-predict(fmGA_trn)

32

33 #Correlation in training set

34 resultsCV[f,1]<-cor(y_trn,yHat_trn)

35

36 #MSE in training set

37 resultsCV[f,2]<-var(y_trn-yHat_trn)

38

39

40 #Predict for new levels

41 blup_tst<-ranefUvcovNew(fmGA_trn,

Uvcov=list(mrk=list(K=G),

42 ped=list(K=A)))

43 i1<-match(GID_tst,rownames(blup_tst$mrk))

44 i2<-match(GID_tst,rownames(blup_tst$ped))

45 blup_mrk<-blup_tst$mrk[i1,1]

46 blup_ped<-blup_tst$ped[i2,1]

47 yHat_tst<-fixef(fmGA_trn)[1] + blup_mrk +

blup_ped

48 #Correlation in testing set

49 resultsCV[f,3]<-cor(y_tst,yHat_tst)

50 #MSE

51 resultsCV[f,4]<-var(y_tst-yHat_tst)

52 }

53 resultsCV

where, y is the response vector; 1 is a vector of ones; µ is
an intercept; W is the design matrix for environments; θ is
the vector of environmental effects (fixed); Z1, Z2, and Z3

TABLE 1 | Results from five-fold cross-validation.

Fold Training Testing

r MSE r MSE

1 0.9752 0.0201 0.5290 0.2778

2 0.9775 0.0181 0.5680 0.2729

3 0.9755 0.0197 0.5096 0.3035

4 0.9786 0.0173 0.4179 0.3280

5 0.9775 0.0182 0.5714 0.2663

avg 0.9769 0.0187 0.5192 0.2897

sd 0.0015 0.0012 0.0624 0.0256

MSE, mean squared error.

BOX 5 | Loading maize data.
1 library(lme4GS)

2 data(cornHybrids)

3 ls() #List objects

BOX 6 | Fitting model for hybrid prediction.
1 maize.Pheno$GCA1<-as.character(maize.Pheno$GCA1)

2 maize.Pheno$GCA2<-as.character(maize.Pheno$GCA2)

3 maize.Pheno$SCA<-as.character(maize.Pheno$SCA)

4

5 #Genomic relationship matrix for parent 1

6 GCA1<-unique(maize.Pheno$GCA1)

7 selected<-rownames(maize.G)%in%GCA1

8 K1<-maize.G[selected,selected]

9

10 #Genomic relationship matrix for parent 2

11 GCA2<-unique(maize.Pheno$GCA2)

12 selected<-rownames(maize.G)%in%GCA2

13 K2<-maize.G[selected,selected]

14

15 #kronecker, make.dimmanes is necessary to identify

the hybrids

16 #with the label Parent 1:Parent 2

17 K3<-kronecker(K1,K2,make.dimnames=TRUE)

18

19 #Training set

20 trn<-which(!is.na(maize.Pheno$PlantHeight))

21

22 hybrid<-data.frame(y=maize.Pheno$PlantHeight[trn],

23 loc=maize.Pheno$Location[trn],

24 P1=maize.Pheno$GCA1[trn],

25 P2=maize.Pheno$GCA2[trn],

26 H=maize.Pheno$SCA[trn])

27

28 random<-list(P1=list(K=K1),

29 P2=list(K=K2),

30 H=list(K=K3))

31

32 #Fit the model

33 fm<-lmerUvcov(y∼loc+(1|P1)+(1|P2)+(1|H),

data=hybrid, Uvcov=random)

34

35 summary(fm)

are incidence matrices for paternal, maternal, and hybrids,
respectively; u1 and u2 are vectors of general combining abilities
for parental and maternal lines, respectively; u1 ∼ MN(0, σ2

1K1),
u2 ∼ MN(0, σ2

2K2) with K1 and K2 relationship matrices for
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BOX 7 | Output from Box 6.
1 #...

2 Random effects:

3 Groups Name Variance Std.Dev.

4 H (Intercept) 0.016385 0.12800

5 P2 (Intercept) 0.000841 0.02900

6 P1 (Intercept) 0.002047 0.04525

7 Residual 0.001182 0.03438

8 Number of obs: 400, groups: H, 100; P2, 20; P1, 20

9 #...

BOX 8 | Predicting hybrid’s performance.
1 #Unobserved hybrid performance

2 blup_tst<-ranefUvcovNew(fm,Uvcov=list(H=list(K=K3)))

3 blup_tst$H

4

5 #variance parameters

6 vc<-VarCorr(fm)

7 print(vc,comp=c("Variance","Std.Dev."),digits=4)

8 variances<-as.data.frame(vc)$vcov

9 variances

10

11 #Heritability

12 h2<-sum(variances[2:3])/sum(variances[2:4])

13 h2

paternal and maternal lines σ2
1, σ2

2 associated variance parameters,
u3 ∼ MN(0, σ2

3K3), with K3 = K1 ⊗ K2, σ2
3 variance parameter

associated with hybrids, and e ∼ MN(0, σ2
e I). Note that model

(7) can be rewritten as y = Xβ+ Z1u1 + Z2u2 + Z3u3 + e,
where, X = [1W] and β = (µ, θ′)′, which corresponds to model
(4) discussed before. To exemplify how to fit this model in the
lme4GS package, we used the DT_cornHybrids dataset included
in the R-package sommer (Covarrubias-Pazaran, 2016), and we
included a copy of the original data in the package (cornHybrids).
The dataset contains phenotypic data for grain yield and plant
height for 100 out of 400 possible crosses that originated from 40
inbred lines belonging to two heterotic groups, with 20 lines in
each. Only 100 hybrids were evaluated in four locations, and then
the problem was to estimate their general combining abilities and
specific combining abilities and to predict the performance of
untested hybrids at each location. The dataset can be loaded in
R using the commands shown in Box 5:

The dataset contains the following R objects:

• maize.Pheno: A data.frame with six columns: Location,
GCA1 (Parent 1), GCA2 (Parent 2), SCA (hybrid), Yield,
and PlantHeight. Records with missing values in the last
two columns correspond to hybrids (identified with the
Parent 1:Parent 2 label) that were not evaluated in the field
and that we need to predict.
• maize.G: A matrix with relationships between individuals

for parents of both heterotic groups (K1 and K2).
The matrix was computed using 511 single-nucleotide
polymorphisms (SNPs) using the A.mat function included
in the rrBLUP package (Endelman, 2011). The row names
and column names of this matrix correspond to the GIDs
for Parent 1 and Parent 2.

BOX 9 | Gaussian and exponential kernel.
1 #Box 9: Gaussian and exponential kernel

2 library(lme4GS)

3 library(pedigreemm)

4

5 #Load data

6 data(wheat599)

7

8 ## Complete and sort incomplete Pedigree using

editPed

9 PedEdit<-editPed(sire=wheat.Pedigree$gpid1,

dam=wheat.Pedigree$gpid2,

10 label=wheat.Pedigree$progenie,

verbose=TRUE)

11

12 ## Converted the data frame PedEdit into an S4

object of formal

13 ## class ’Pedigree’

14 PedFinal<-with(PedEdit,pedigree(label=label,

sire=sire,dam=dam))

15

16 #A

17 AFull<-getA(PedFinal)

18 GID<-unique(wheat.Pheno$GID)

19 selected<-rownames(AFull)%in%GID

20 A<-AFull[selected,selected]

21 A<-matrix(A,599,599)

22 rownames(A)<-colnames(A)<-rownames(AFull

[selected,selected])

23

24 #X (markers)

25 X<-scale(wheat.X,center=TRUE,scale=TRUE)

26

27 #Phenotypes environment 1

28 e1<-which(wheat.Pheno$Env==1)

29 y<-wheat.Pheno[e1,]$Yield

30 GID<-as.character(wheat.Pheno[e1,]$GID)

31

32 wheat<- data.frame(y=y, ped=GID,k_id=GID)

33

34 fm1<-theta_optim(y∼(1| k_id)+(1| ped),

Uvcov=list(ped=list(K=A)),

35 kernel=list(kernel_type=

"gaussian",MRK=X),

36 data=wheat)

37

38 fm2<-theta_optim(y∼(1| k_id)+(1| ped),

Uvcov=list(ped=list(K=A)),

39 kernel=list(kernel_type=

"exponential",MRK=X),

40 data=wheat)

41

42 par(mfrow=c(1,2))

43 plot(fm1$theta,fm1$LL,xlab=expression(theta),

ylab="Log-Likelihood",

44 type="b",pch=19,main="a)")

45 plot(fm2$theta,fm2$LL,xlab=expression(theta),

ylab="Log-Likelihood",

46 type="b",pch=19,main="b)")

The code in Box 6 computes matrices K1, K2, and K3 in
model (7) and fits the model using the lmerUvcov function using
only observed phenotypic values for plant height.

The model fitting takes about 1 s to complete on a computer
with a 2.8-GHz Intel Core i7 processor. Once the model is
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FIGURE 2 | The values of the bandwidth parameter vs. the log-likelihood. (A) Gaussian kernel. (B) Exponential kernel.

BOX 10 | Summary of fitted models.
1 summary(fm1$fm)

2 #Output (edited)

3 Random effects:

4 Groups Name Variance Std.Dev.

5 k_id (Intercept) 0.29043 0.5389

6 ped (Intercept) 0.07751 0.2784

7 Residual 0.03434 0.1853

8 Number of obs: 1198, groups: k_id, 599; ped, 599

9

10 Fixed effects:

11 Estimate Std. Error t value

12 (Intercept) 4.6510 0.1314 35.4

13

14 summary(fm2$fm)

15 #Output (edited)

16 Random effects:

17 Groups Name Variance Std.Dev.

18 ped (Intercept) 0.05154 0.2270

19 k_id (Intercept) 0.62952 0.7934

20 Residual 0.03408 0.1846

21 Number of obs: 1198, groups: k_id, 599; ped, 599

22 Fixed effects:

23 Estimate Std. Error t value

24 (Intercept) 4.5311 0.5599 8.093

fitted, the summary function can be used to display some
relevant information. The summary output is displayed in Box 7,
which shows estimates for general combining ability, and specific
combining ability and the variance parameter associated with
residuals, σ̂2

1 = 0.016385, σ̂2
2 = 0.000841, σ̂2

3 = 0.002047, and
σ̂2
e = 0.001182.

The expected hybrid performance of individuals not evaluated
in field can be obtained by combining the outputs from the
ranefUvcov and ranefUvcovNew functions. Box 8 shows the
instructions to compute the BLUPs for the specific combining
ability of hybrids. The ranefUVcov function is called internally

in ranefUvcovNew. Box 8 also shows how to extract variance
parameters using the VarCorr function and then compute
heritability using the results. Following Covarrubias-Pazaran
(2016), h2

= (σ2
1 + σ2

2)/(σ
2
1 + σ2

2 + σ2
e ), which leads to an

estimated heritability of 0.70.

Example 4: Selection of the Bandwidth
Parameter With a Gaussian Kernel
Gianola et al. (2006) introduced the Gaussian kernel into
quantitative genetics with the idea of capturing the total genetic
effects in the problem of genomic prediction. The Gaussian
kernel is defined as (e.g., Morota and Gianola, 2014; Pérez and
de los Campos, 2014)

K
(
xi,xj

)
= exp

{
−θ

d2
ij

m

}
= exp

{
−θ

∑m
k = 1

(
xik − xjk

)2

m

}
,(8)

where, θ is a positive bandwidth parameter; dij is the Euclidean
distance; and xik (i, j = 1, ..., n, k = 1, ...,m) is the marker
genotype code for individual i at marker k, and m is the number
of markers. The bandwidth parameter may be chosen by CV,
REML, or maximum likelihood or with Bayesian methods. The
Gaussian kernel has been used by many authors for genomic
prediction (e.g., de los Campos et al., 2010; Endelman, 2011;
Pérez-Elizalde et al., 2015). The selection of the bandwidth is
not an easy problem due to high computational cost; de los
Campos et al. (2010) and Endelman (2011) proposed evaluating
the performance of the model, which includes the Gaussian
kernel over a grid of values of θ. Given that θ > 0, if we
set ρ = exp(−θ), then ρ ∈ (0, 1), so we can define a grid of
values for ρ and then, using these values, set the values for θ,
that is, θ = − log ρ, so that equation (8) can be rewritten as
K
(
xi,xj

)
= exp

{
log ρd2

ij/m
}

. Another kernel that is also used in
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TABLE 2 | Time comparison (seconds) among different software for models fitted in the work.

Software Version Examples

Model (6) Model (7) Model (10) Gaussian Model (10) exponential

lme4GS 0.1 81.5 1.3 1,608.8 1,701.1

BGLR 0.8 0.8 143.0 20.2 – –

sommer 4.1.3 4.1.3 46.0 2.7 – –

genomic prediction is the exponential kernel (e.g., Piepho, 2009;
Endelman, 2011):

K
(
xi,xj

)
= exp

{
−θdij/

√
m
}
, (9)

where, all the terms have been described previously. Similar to the
case of the Gaussian kernel, the model can be reparametrized in
terms of parameter ρ ∈ (0, 1).

We developed the function theta_optim that fits model (5)
when one of the random terms (uj,j = 1, ..., q) includes
as the variance–covariance matrix a Gaussian or exponential
kernel. This function takes as input the same objects as the
lmerUvcov function and a list (kernel) containing (i) a matrix
with distances ({dij/

√
m}, i, j = 1, ..., n) or the marker matrix

(
{
xij
}
, i = 1, ..., n, j = 1, ...,m), (ii) the kernel type (either

“gaussian” or “exponential”), and (iii) a sequence of values for
θ; the IDs for the individuals are taken directly from the row
names of matrices that provide the distances or the markers. If
the sequence of values for θ is not provided, then it is generated
automatically. The software then fits the mixed model in (5) using
the lmerUvcov function for each of the distinct values of θ. The
value of θ that maximizes the log-likelihood is chosen as the
optimum. The function returns a list with the following elements:
a vector of values of the log-likelihood, the maximum value of
the log-likelihood, the values of θ used for fitting the model, the
optimum value of θ, the fitted model, and the kernel computed
with the optimum value of θ .

In the following example, we show how to predict grain
yield using a relationship matrix derived from a Gaussian or
exponential kernel and a relationship matrix derived from a
pedigree. A linear model to predict grain yield for environment
one is analogous to model (1):

y = 1µ+ Z1u1 + Z2u2 + e, (10)

where, y is the grain yield; 1 is a vector of ones; µ is an intercept,
u1 ∼ MN(0, σ2

mK), with K a kernel, which can be either Gaussian
or exponential, and σ2

m is a variance parameter associated with
markers; u2 ∼ MN(0, σ2

aA), where, A is an additive relationship
matrix derived from pedigree, and σ2

a its associated variance
parameter; Z1, Z2 are matrices that connect phenotypes with
genotypes; and e is a random term distributed as in model (1).

The code in Box 9 is used to fit model (10) for Gaussian
and exponential kernels. Figure 2 shows the profile of the log-
likelihood for different θ values. For the Gaussian kernel, the
maximum of the log-likelihood is equal to -513.0865, attained at
θ̂ = 1.1779, whereas, for the exponential kernel, the maximum
of the log-likelihood is equal to -511.585, attained at θ̂ = 0.4107.

The code in Box 10 shows how to summarize parameter
estimates for the fitted model with the optimum value of the
bandwidths from, where, estimates of the variance parameters
can be obtained. The model fitting time is about 1,608 s for
the model with Gaussian kernel and 1,701 s for the model
with exponential kernel using the same processor described
before. Note that the selection of bandwidth parameter is a very
computer intensive task, but several authors (e.g., Endelman,
2011; Pérez-Elizalde et al., 2015) have reported that the prediction
accuracy with nonadditive kernels is higher than the prediction
accuracy of ridge regression (or equivalently GBLUP).

Computational Times and Comparison
With Other Software
We fitted models (6) and (7) in sommer (Covarrubias-Pazaran,
2016) and BGLR (Pérez and de los Campos, 2014). In the case
of BGLR, the number of iterations for the Gibbs sampler was
set to 30,000. We were unable to fit the models in rrBLUP
(Endelman, 2011) because it is not possible to include more than
one covariance matrix in the software; that is also the reason
that we were unable to fit model (10) with this software. The
predictions from the different software programs were about
the same. Here, we present a small comparison of running
times for model (6) fitted in Box 2, model (7) fitted in Box 6,
and model (10) fitted in Box 9 with Gaussian and exponential
kernels. Covarrubias-Pazaran (2016) also included a benchmark
of sommer against other packages. Models were fitted using a
2.8-GHz Intel Core i7 processor in R-4.0.5 (R Core Team, 2021).
Table 2 presents the resulting time (in seconds) it takes to fit the
different models. Some entries in the Table 2 are empty because
the corresponding models cannot be fitted in the corresponding
software package. From this Table 2, we conclude that sommer is
the fastest software, followed by lme4GS and BGLR.

CONCLUSION

We developed an R software package that can be used to
fit mixed models with user-defined covariance structures for
random effects. The software was developed with applications of
GS in mind, mainly for applications in plant breeding with small
to moderately sized datasets. However, given the omnipresence
of mixed models, the package can be used in other research
areas. The software fits the model using well-known and widely
tested computational routines available in the lme4 package.
The software provides a user-friendly and intuitive interface that
allows users to fit a wide variety of classic linear mixed models.
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