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Aim: Alzheimer’s disease is a neurodegenerative disease that causes 60–70% of all

cases of dementia. This study is to provide a novel method that can identify AD

more accurately.

Methods: We first propose a VGG-inspired network (VIN) as the backbone network

and investigate the use of attention mechanisms. We proposed an Alzheimer’s Disease

VGG-Inspired Attention Network (ADVIAN), where we integrate convolutional block

attention modules on a VIN backbone. Also, 18-way data augmentation is proposed

to avoid overfitting. Ten runs of 10-fold cross-validation are carried out to report the

unbiased performance.

Results: The sensitivity and specificity reach 97.65 ± 1.36 and 97.86 ± 1.55,

respectively. Its precision and accuracy are 97.87± 1.53 and 97.76± 1.13, respectively.

The F1 score, MCC, and FMI are obtained as 97.75 ± 1.13, 95.53 ± 2.27, and

97.76 ± 1.13, respectively. The AUC is 0.9852.

Conclusion: The proposed ADVIAN gives better results than 11 state-of-the-art

methods. Besides, experimental results demonstrate the effectiveness of 18-way

data augmentation.

Keywords: Alzheimer‘s disease, convolutional block attention module, VGG, transfer learning, deep learning,

attention network, data augmentation

BACKGROUND

Alzheimer’s disease (AD) is a neurodegenerative disease, which affects 60%−70% of all cases of
dementia (Alhazzani et al., 2020). The main symptom of AD is difficulty in short-term memory.
As AD progressively worsens, patients exhibit symptoms such as mood and cognition (Lee et al.,
2019), motivation loss, speech and language problems (Petti et al., 2020), spatial disorientation
(Puthusseryppady et al., 2020), sleep behaviors (Mather et al., 2021), etc. These symptoms lead
to a significant decline in quality of life and an increase in care-taker burden (Scheltens et al.,
2016; Fulton et al., 2019). AD’s etiology is damage to brain cells observable on imaging scans
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FIGURE 1 | AI vs. ML vs. DL.

(Fulton et al., 2019) as the atrophy of anatomical structures like
the cerebral cortex. The atrophy is caused by amyloid plaque
(Ferreira et al., 2021) formation and neurofibrillary tangles
(Kumari and Deshmukh, 2021). Manual differential diagnosis
of AD is lab-intense, onerous, and expensive due to various
mental and physical tests, laboratory and neurological tests, and
neuroimaging scans (Senova et al., 2021) [computed tomography
(CT), positron emission tomography (PET), or magnetic
resonance imaging (MRI)] which requires professional experts.

Therefore, scholars tend to use artificial intelligence (AI)
approaches to create automatic models to identify AD. AI enables
machines to mimic human behaviors. Machine learning (ML) is
a subset of AI, which uses statistical methods to enable machines
to improve. Deep learning (DL) is a subset of ML. DL makes the
computation of deep neural networks feasible. Their relationship
is displayed in Figure 1.

For instance, Plant et al. (2010) used brain region cluster
(BRC) as a feature extractor. The authors tested three
classifiers and found Bayesian classifier (BC) achieved the
best performance. Their average accuracy of BRC-BC reached
92.00%. Savio and Grana (2013) employed the trace of Jacobian
matrix (TJM) approach. Their method’s average accuracy reached
92.83 ± 0.91% over the Open Access Series of Imaging
Studies (OASIS) dataset. Gray et al. (2013) presented a random
forest (RF)-based similarity measures for multiple modality
classification of AD. The authors included CSF biomarker
measures, regional MRI volumes, voxel-based FDG-PET signal
intensities, and categorical genetic information. Lahmiri and

Abbreviations:AD, Alzheimer’s disease; ADNI, Alzheimer’s disease neuroimaging

initiative; AI, artificial intelligence; AP, average pooling; AUC, area under the

curve; CAM, channel attention module; CBAM, convolutional block attention

module; CDR, clinical dementia rating; CH, configuration of hyperparameters;

CT, computed tomography; CV, cross-validation; DL, deep learning; FCL, fully

connected layer; FM, feature map; FMI, Fowlkes–Mallows index; GF, gain field;

HS, histogram stretching; HVS, human visual system; MC, motion correction;

MCC, matthews correlation coefficient; ML, machine learning; MLP, multilayer

perceptron; MMSE, mini-mental state exam; MP, max pooling; MRI, magnetic

resonance imaging; MSD, mean and standard deviation; NWL, number of

weighted layers; OASIS, open access series of imaging studies; OI, original image;

PDNN, pretrained deep neural network; PET, positron emission tomography;

ReLU, rectified linear unit; ROC, receiver operating characteristic; SAM, spatial

attention module; SES, socioeconomic status; SN, speckle noise; TL, transfer

learning; VGG, visual geometry group.

Boukadoum (2014) used fractal multiscale analysis (FMSA) to
extract features. However, their dataset is small, with only 33
images. Zhang (2015) mingled displacement field (DF) with
three different support vector machines, and they observed that
the twin support vector machine yielded the best performance.
Gorji and Haddadnia (2015) combined pseudo-Zernike moment
(PZM) with a scaled conjugate gradient (SCG) algorithm. The
experimental outcomes showcased that PZM with the order of
30 gave the paramount performance. Li (2018) presented a novel
method to combine wavelet entropy (WE) with biogeography-
based optimization (BBO). The interclass variance criterion was
employed to pick out the single slice from the 3D image. Du
(2017) reused PZM for feature extraction. They extracted 256
features from each brain image and substituted SCG with a
linear regression classifier (LRC). Sui (2018) presented an eight-
layer convolutional neural network (CNN). In traditional CNN,
rectified linear unit (ReLU) is the default activation function. The
authors replaced ReLU with a new activation function—leaky
ReLU (LReLU). They tested three different pooling methods
and found that max pooling gave the best performance. Jiang
and Chang (2020) further improved the CNN structure and
included batch normalization and dropout (BND) technique.
Their method is abbreviated as CNN-BND in this paper. Dua
et al. (2020) suggested a combination of DL models, which
chose some primary models as CNN, recurrent neural networks
(RNNs), and long short-termmemory (LSTM). Its amalgamation
achieved an accuracy of 92.22%. Sutoko et al. (2021) utilized a
deep neural network with optimized stepwise feature selection
and cross-validation method.

From previous studies, we can observe DL methods can have
better performance than traditional ML methods. As mentioned
before, DL is a subfield of ML (see Figure 1), but DL powers
itself by using a human-like artificial deep neural network to learn
and make decisions by itself from given data (Saood and Hatem,
2021).

To further improve the performance of DL, there are three
possible ways: (i) depth, (ii) width, and (iii) cardinality of the deep
neural networks. We try to improve the performance from the
fourth way—the attention mechanism. In all, we propose a novel
DL model termed Alzheimer’s Disease VGG-Inspired Attention
Network (ADVIAN). The contributions of our paper are listed as
following four points:

1. A VGG-inspired network (VIN) is particularly designed as the
backbone model to identify AD.

2. Convolutional block attention modules are integrated to
introduce attention to the VIN.

3. Multiple-way data augmentation is introduced to make test
performance more reliable.

4. The test results prove our ADVIAN model is better than 11
state-of-the-art methods.

SUBJECTS

The dataset we used is already reported in the work of Sui
(2018), where 28 AD patients and 98 healthy control (HC)
subjects were selected from the OASIS-1 dataset (Ardekani et al.,
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TABLE 1 | Demographics of dataset in this study.

Trait OASIS Local hospitals

AD (28) HC (98) AD (70)

Gender (M/F) 9/19 26/72 24/46

Age 77.75 ± 6.99 75.91 ± 8.98 76.34 ± 7.81

SES 2.87 ± 1.29 2.51 ± 1.09 2.89 ± 1.16

Education 2.57 ± 1.31 3.26 ± 1.31 2.63 ± 1.42

MMSE 21.67 ± 3.75 28.95 ± 1.20 21.12 ± 4.62

CDR 1 0 1

SES, socioeconomic status; CDR, clinical dementia rating; MMSE, mini-mental

state exam.

2013). The selection criterion is to remove individuals under 60
and incomplete observations. Meanwhile, 70 AD subjects were
enrolled from local hospitals. Hence, we have a balanced dataset,
of which the demographics are itemized in Table 1, where SES
means Socioeconomic Status, MMSE Mini-Mental State Exam,
and CDR Clinical Dementia Rating.

There are AD researchers favoring Alzheimer’s disease
neuroimaging initiative (ADNI) (Abuhmed et al., 2021), and
many others use OASIS, which is freely accessible, grants sensible
demographics for proof of concept, and generalizes easily for
forthcoming longitudinal studies.

PREPROCESSING

The same preprocessing procedure (shown in Figure 2) applies
to all the images in this dataset. First, 1 ≤ n ≤ 4 multiple raw
scans of the same structural protocol within a single session of
the same person is carried out; we obtain n volumetric images
as VR (n ).

Second, motion correction (MC) is performed over all the
n raw images. The motion-corrected images are symbolized
as VMC (n ).

Third, an average image VA is obtained by averaging all the n
motion-corrected images, i.e.,

VA =
1

n

∑
n
i=1VMC (n) (1)

Fourth, gain field (GF) correction is performed. The GF
is intensity variations irrelated to the subject’s anatomical
information. GF may relate to movement, nearly static fields,
radiofrequency turbulence, or additional nonsubject causes
(Hou, 2006). The image is now symbolized as VG.

Fifth, atlas registration will spatially normalize the image VG

to Talairach atlas (Saletin et al., 2019) and obtain the image VT .
Sixth, a masked image VM is obtained by removing all the

nonbrain voxels. We do not do gray matter/white matter/CSF
segmentation at this stage.

Seventh, a key slice is selected IK from the masked volumetric
imageVM . There are three view angles: axial, sagittal, and coronal
view angles, as shown in Figure 3. In this study, we chose the 80th

FIGURE 2 | Pipeline of preprocessing.

axial IK out of 176 slices. The key slice is considered the original
image (OI).

Eighth, data harmonization is performed via histogram
stretching (HS) (Luo et al., 2021) to counter intersource
variability from the difference between our dataset’s two sources.
The HS is indispensable to normalize the interscan images by
increasing the difference between the maximum intensity value
and the minimum one in an image. Mathematically, HS (Luo
et al., 2021) altered OI x to an different image y as:

y(i, j) =
x(i, j)− xmin

xmax − xmin
(2)

where xmin and xmax stand for the minimum and maximum
intensity values of OI, respectively.

Traditionally, the minimum and maximum correspond to 0
and 100% of the whole grayscale range. In this study, 5 and 95%
are employed to replace 0 and 100%, respectively. Themotivation
is the pixels with the least (0%) and the greatest (100%) values are
more susceptible to noises. Using the 95−5% = 90% interval can
make HS more dependable than using the 100% interval. After
this step, we get harmonized image IH .

Finally, the image IH is cropped. The cropped image I has the
size of [176× 176]. Two key slices of one AD sample and one HC
sample are displayed in Figure 4.

METHODOLOGY

Background of VGG-16
Transfer learning (TL) stores knowledge gained while solving one
problem and applies it to solve a different but related problem
(Santana and Silva, 2021). Most pretrained deep neural networks
(PDNNs) are trained on a subset of ImageNet database. Those
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FIGURE 3 | Slices with different views. (A) Axial view, (B) Sagittal view, (C) Coronal view.

FIGURE 4 | Samples of our dataset. (A) AD, (B) HC.

PDNNs could classify images into 1,000 object categories. Hence,
using PDNNs for TL is easier and faster than training networks
from scratch.

VGG stands for Visual Geometry Group, an academic group
at Oxford University. This team presented two famous networks:
VGG-16 (Jahangeer and Rajkumar, 2021) and VGG-19 (Sudha
and Ganeshbabu, 2021), which are included as library packages of
popular programming languages such as Python and MATLAB.
This study chooses VGG-16 because it is easier to implement
and has less layers, while VGG-16 has similar performance
of VGG-19.

Figure 5A displays the structure of VGG-16, which is
composed of five conv blocks and three fully connected layers
(FCLs). The input of VGG-16 is 224 × 224 × 3. After the 1st
convolution block (CB), the output is 112×112×64. Components
of 1st CB are shown in Table 2. The 1st CB can be written as

“2× (64 3× 3) /2,” which means “2 repetitions of 64 kernels with
sizes of 3 × 3 followed by a max pooling with a kernel size of
2×2.” Note that (i) ReLU layers are skipped in the following texts
as default. (ii) Stride and padding are not included since they can
be calculated easily.

The 2nd CB “2× (128 3× 3) / 2,” 3rd CB “3×( 256 3× 3) / 2,”
4th CB “3 ×( 512 3 × 3) / 2,” and 5th CB “3 ×( 512 3 × 3) / 2”
produce the feature maps (FMs) with sizes of 56 × 56 × 128,
28 × 28 × 256, 14 × 14 × 512, and 7 × 7 × 512, respectively.
Afterward, FM is compressed into a column vector of 25,088
neurons and sent into three FCLs with 4,096, 4,096, and 1,000
neurons, respectively.

VGG-Inspired Network
A VIN is designed, shown in Figure 5B, as our task’s backbone
network. The VIN is inspired by VGG-16. The VIN contains four
CBs and three FCLs. The first CB “2 × [3 × 3, 32] / 2” contains
two repetitions of 32 kernels with sizes of 3× 3 followed by amax
pooling with a kernel size of 2× 2. After four CBs, the size of FM
becomes 11 × 11 × 128. The flattening layer vectorizes the FM
into a vector with a size of 1× 1× 15,488. After three consecutive
FCLs, we output a binary code that represents either AD or HC.
The structure of the proposed 13-layer VIN is depicted inTable 3,
where NWI represents the number of weighted layers, and CH
configuration of hyperparameters.

The similarities between the proposed VIN and VGG-
16 are itemized in Table 4. Apart from those six similarity
aspects (Fernandes, 2021), there are several differences between
the proposed VIN and VGG-16. The input of VGG-16 is
224 × 224 × 3, while the input of VIN is 176 × 176 × 1.
The output of VGG-16 is 1,000 neurons corresponding to 1,000
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FIGURE 5 | Structures of three networks. (A) VGG-16, (B) VIN (Ours), (C) ADVIAN (Ours).

categories to be classified, while the output of VIN is 2 neurons
because our task is a binary-coded problem. Also, some structural
differences exist between those two networks, which can be
observed from Figure 5 and Table 4.

Human Visual System and Attention
Mechanism
To increase the functioning of the recent deep neural
networks, numerous investigations are carried out in terms
of either width, or depth, or cardinality. For examples,
(i) the network structures reported in recent ResNet (He
et al., 2016) and DenseNet (Huang et al., 2017) show
that deeper network (over 1,000 weighted layers) will have
better performance in general; (ii) GoogleNet demonstrates

that width (Szegedy et al., 2015) is another critical factor
to improve the implementation; Zagoruyko and Komodakis
(2016) present wide residual networks, in which the authors
reduce the depth and enlarge the width of residual networks;
(iii) Xie et al. (2017) expose a new dimension “cardinality”
defined as the size of the set of transformations and proves
increasing cardinality is more effective than going wider or
going deeper.

“Attention” is the fourth possible way to improve the
network’s performance. There are many papers using attention
to improve their networks. Lee et al. (2021) proposed an
attention recurrent neural network to estimate severity. Song
et al. (2021) presented a coarse-to-fine dual-view attention
network for click-through rate prediction. Arora et al. (2021)
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TABLE 2 | Components of 1st CB “2× (64 3× 3) /2” in VGG_16.

Layer Component

1 1 convolutional layer with 64 kernels with sizes of 3× 3 and stride [1, 1]

and padding [1, 1, 1, 1]

2 1 ReLU layer

3 1 convolutional layer with 64 kernels with sizes of 3× 3 and stride [1, 1]

and padding [1, 1, 1, 1]

4 1 ReLU layer

5 1 max pooling layer with a kernel size of 2× 2

TABLE 3 | Arrangement of our 13-layer VIN.

Index Tag NWL CH Size of FM

1 Input 0 0 176 × 176 × 1

2 CB-1 2 2 × [3 × 3, 32] / 2 88 × 88 × 32

3 CB-2 2 2 × [3 × 3, 64] / 2 44 × 44 × 64

4 CB-3 3 3 × [3 × 3, 128] / 2 22 × 22 × 128

5 CB-4 3 3 × [3 × 3, 128] / 2 11 × 11 × 128

6 Flatten 0 0 15,488

7 FCL-1 1 200 × 15,488, 200 × 1 200

8 FCL-2 1 200 × 200, 200 × 1 200

9 FCL-3 1 2 × 200, 2 × 1 2

NWI, number of weighted layers; CH, configuration of hyperparameters; FM, feature map.

TABLE 4 | Similarity facets between proposed VIN and VGG-16.

Key Similarity facet

A Employing small convolution kernels with size of (3× 3)

B Employ small max pooling kernel with size of (2× 2)

C Each CB contains a few repetitions of conv layers followed by a max

pooling layer

D Fully connected layers are put at the end of the deep network

E Channel number increase as it goes from input to the last conv layer,

later decreases as to output.

F Size of FMs shortens as it goes from input to output

offered an attention-based deep network for automated skin
lesion segmentation.

In all, attention acts an essential role within the human visual
system (HVS) (Choi et al., 2020). Figure 6 displays a simplified
instance of HVS, in which image formation is first seized by the
lens of the human eye’s cornea. Thenceforth, the iris makes use of
the photoreceptor sensitivity to control the exposure. Afterward,
the information stream is passed to cone and rod cells in the
retina. At long last, the neural firing is forwarded to the brain
for additional handling.

Human eyes do not endeavor to sort out the whole scenarios
captured at one time. In contrast, human beings take the full
practice of partial glimpses and fix on salient features selectively
to grab a sounder pictorial structure. Thus, the recent attention
networks (Oh et al., 2021) embedding attention mechanism will
have the advantages of (a) focusing on those critical and salient

FIGURE 6 | Illustration of a simplified HVS.

features, (b) performing more successful than networks without
attention mechanism, and (c) become more reliable to noisy
inputs than networks without attention mechanism.

ADVIAN
Woo et al. (2018) presented a new convolutional block attention
module (CBAM), which not only informs the neural network
model of the regions to focus but also perfects the representation
of interests. In their paper, the core idea of CBAM is to improve
the 3D FMs by being trained with channel attention and spatial
attention, respectively.

CBAM is composed of two consecutive submodules: (i)
channel attention module (CAM) and (ii) spatial attention
module (SAM). The complete relation between CBAM and its
two submodules is exposed in Figure 7.

Suppose we have a provisional input FM of F ∈ R
C×H×W .

The CBAM applies 1D CAM NCAM ∈ R
C×1×1 and a 2D SAM

NSAM ∈ R
1×H×W in sequence to the input F, as illustrated in

Figure 7. Thus, the channel-refined FM and the final FM are
obtained as:

{

Q = NCAM (P) ⊗ P
R = NSAM (Q) ⊗Q

(3)

where⊗means the element-wise multiplication.
If the two operands are not with the same dimension, then

the values are transmitted (copied) in such tactics that the spatial
attentional values are transmitted by the channel dimension,
and the channel attention values are transmitted by the spatial
dimension (Fernandes, 2021).

Firstly, CAM is defined. Both max pooling (MP) fmp and
average pooling (AP) fmp are applied, breeding two features Sap
and Smp.

{

Sap = fap (P)

Smp = fmp (P)
(4)

Both are thenceforth sent on to a shared shallow neural
network—multilayer perceptron (MLP) (Tiwari, 2021), to
produce the output FMs, that are thenceforth united via element-
wise summation ⊕. Normally, MLP consists of three layers of
nodes: an input layer, a hidden layer, and an output layer, as
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FIGURE 7 | Relation of CBAM and its two submodules.

shown in Figure 8A. The united sum is then sent to the sigmoid
function β . Precisely,

NCAM (P) = β
{

MLP
[

Sap
]

⊕MLP
[

Smp

]}

(5)

To decrease the parameter reserves, the number of hidden
neurons of MLP is arranged to R

C/er×1×1, where er is identified
as the reduction ratio. Let W0 ∈ R

C/er×C and W1 ∈ R
C×C/er

mean the MLP weights, respectively, Equation (5) is updated as:

NCAM (P) = β
{

W1

[

W0

(

Sap
)]

⊕W1

[

W0

(

Smp

)]}

(6)

SeeW0 andW1 are shared by both Sap and Smp. Figure 8A shows
the flowchart of CAM.

Second, SAM is defined. The spatial attentionmoduleNSAM is
a paired phase to the preceding channel attention moduleNCAM.
The AP operation fap and MP operation fmp are harnessed to the
channel-refined FM Q, and we gain

{

Tap = fap (Q)

Tmp = fmp (Q)
(7)

Both Tap and Tmp are two-dimensional FMs: Tap ∈ R
1×H×W ∧

Tmp ∈ R
1×H×W , which are concatenated jointly along the

channel dimension as

T = f chacon

(

Tap,Tmp

)

(8)

where f chacon stands for the concatenation along channel dimension.
The concatenated FM T is thenceforth sent into a typical

convolution with a size of 7 × 7 fconv. The resultant FM is sent
to the sigmoid function β . Altogether, we find:

NSAM (Q) = β
{

fconv [T]
}

(9)

The yielded NSAM (Q) is subsequently element-wisely multiplied
with Q, as displayed in Equation (3). Figure 8B portrays the
diagram of SAM.

The previously introduced CBAM is integrated into the
proposed VIN network, which renders the proposed ADVIAN
shown in Figure 5C, which has the same FM structure as VIN in
Figure 5B. The difference between ADVIAN and VIN is that we

add CBAM after each CB, and thus we called each block as “conv
attention block (CAB),” as shown in Figure 9.

For any FM P of each previous CB, the two uninterrupted
attention modules (channel and spatial) are attached, coupled
with the refined FM R which is driven to the succeeding block.
Now CAB is made up of one CB and succeeding CBAMmodule.
Comparing Figures 7, 9, we can observe the relationship among
CAB, CBAM, and CB.

As default, the softmax function fs :R
K 7→ R

K is appended
at the end of our model. Suppose the input to the softmax is
z = (z1, . . . zi, . . . , zK) ∈ R

K , we have

fs (z)i =
exp (zi)

∑K
j=1 exp(zj)

(10)

The softmax function can be regarded as the output unit
activation function. For classification-oriented deep neural
networks, a softmax layer and a classification layer must follow
the last FCL. Also, batch normalization (Vrzal et al., 2021) layers
are embedded as assisting layers.

Cross-Validation
Cross-validation (CV) (Albashish et al., 2021) is a resampling
route to evaluate AI models on a limited-size dataset. Figure 10
shows the diagram of the K-fold CV. The whole dataset is split
into K folds evenly. Then for kth

(

k = 1, . . . ,K
)

trial, the kth fold
is used for test, and all the other folds

(

1, . . . , k− 1, k+ 1, . . . ,K
)

for training. We repeat K trials to facilitate each fold used for test
only once. The above K-fold cross-validation will repeat R times.
In this study, we set K = R = 10.

Multiple-Way Data Augmentation
Overfitting may occur due to the small-size dataset in this
study. To avoid this, multiple-way data augmentation (MDA) is
employed. MDA is a variant of the traditional data augmentation
(DA) method. Cheng (Cheng, 2021) presented a 16-way DA to
identify COVID-19 chest CT image. In their method, the number
of DA is set to J1 = 8, i.e., eightway different DA were applied to
original raw image r (x) and the horizontally mirrored version
rh (x ).

In this method, we propose an 18-way DA, of which the
diagram is displayed in Figure 11. The difference of our 18-way
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FIGURE 8 | Diagram of two submodules in CBAM. (A) CAM, (B) SAM.

FIGURE 9 | Relationship among CAB, CBAM, and CB.

DA against 16-way DA (Cheng, 2021) is that we add the speckle
noise (SN) to both r (x) and rh (x), respectively. the SN altered
image is defined as

rSN (x) = r (x) + N∗
Rr (x) , (11)

where NR is uniformly distributed random noise. In this study,
we set the mean and variance of NR to 0 and 0.05, respectively.

First, J1-different DA methods as displayed in Figure 11 are
applied to raw training image r (x). Let Hj, j = 1, . . . , J1 denotes
each DA operation, we have the augmented images of raw image
r (x) as

Hj [r (x)] , j = 1, . . . , J1 (12)

Suppose J2 means the size of generated new images for each DA
method, then,

∣
∣Hj [r (x)]

∣
∣ = J2 (13)

where || represents the number of elements in the set.
Second, horizontally mirrored image rh (x) is generated by

rh (x) = fHM [r (x)] (14)

where fHM stands for horizontal mirror function.
Third, all the J1 different DA methods are performed on the

mirror image rh (x) and generate J1 different datasets.







Hj

[

rh (x)
]

, j = 1, · · · , J1
∣
∣
∣Hj

[

rh (x)
]∣
∣
∣ = J2, j = 1, . . . , J1

(15)
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FIGURE 10 | Illustration of K-fold CV.

FIGURE 11 | Diagram of 18-way DA.

Fourth, the raw image r (x), the horizontally mirrored image

rh (x), J1-way datasets of raw imageHj [r (x)], and J1-way datasets

of horizontally mirrored image Hj

[

rh (x)
]

are combined. The

final generated dataset from r (x) is defined as R (x ):

r (x) 7→ R (x) = ffuse

























r(x)

H1[r(x)]

︸ ︷︷ ︸

J2
...

rh(x)

H1[r
h(x)]

︸ ︷︷ ︸

J2
...

HJ1[r(x)]

︸ ︷︷ ︸

J2

HJ1[r
h(x)]

︸ ︷︷ ︸

J2

























(16)

where ffuse is the concatenation function.
Suppose augmentation factor is J3, which represents the

number of images in R (x), we get

J3 =
|R (x)|
|r (x)|

=
(1+ J1 × J2) × 2

1
= 2× J1 × J2 + 2 (17)

Algorithm 1 recaps the pseudocode of the 18-way DA method.
We set J1 = 9, J2 = 30; thus, J3 = 542.

Algorithm 1 | Pseudocode of 18-way data augmentation.

Input Import raw preprocessed training image r (x).

Step A J1 geometric/photometric/noise-injection DA transforms Hj are

utilized on r (x ). We obtain datasets Hj [r (x)] , j = 1, . . . , J1. See

Eq. (12). Each enhanced dataset comprises J2 new images. See

Eq. (13).

Step B Horizontally mirrored image is obtained by rh (x) = fHM [r (x)]. See

Eq. (14).

Step C J1-way DA transforms are implemented on rh (x ), we obtain

datasets Hj

[

rh (x)
]

, j = 1, · · · , J1. See Eq. (15).
Step D r (x), rh (x), Hj [r (x)] , j = 1, . . . , J1, and Hj

[

rh (x)
]

, j = 1, . . . , J1
are combined. See Eq. (16).

Output Output a new dataset R (x). Its image number is

J3 = 2× J1 × J2 + 2. See Eq. (17).

Evaluation
The evaluation was reported on the R runs of K-fold CV
of our 98–98 image dataset. Suppose the image number
of each class is Tk

(

k = 1, 2
)

. The perfect confusion matrix
(CM) is

Oideal =
{

oideal
}

= R×
[

T1 0
0 T2

]

, (18)
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FIGURE 12 | Results of data augmentation. (A) Horizontal shear, (B) Vertical shear, (C) Image rotation, (D) Gamma correction, (E) Random translation, (F) Scaling,

(G) Gaussian noise, (H) Salt-and-pepper noise, (I) Speckle noise.
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where the off-diagonal entries of ideal Oideal are all 0 s, viz.,
oideal

(

i, j
)

= 0,∀i 6= j. The realistic confusion matrix is

O = {o} =
[

o (1, 1) o (1, 2)
o (2, 1) o (2, 2)

]

. (19)

Now, we define positive (P) and negative (N) classes. The
meaning of TP, TN, FP, and FN are shown in Table 5.

Nine measures are used: sensitivity, specificity, precision,
accuracy, F1 score, Matthews correlation coefficient (MCC)
(Daines et al., 2020), Fowlkes–Mallows index (FMI) (Monteiro
et al., 2018), receiver operating characteristic (ROC), and area
under the curve (AUC). The first four measures are defined as

{

Sen = o(1,1)
o(1,1)+o(1,2) Spc = o(2,2)

o(2,2)+o(2,1)

Prc = o(1,1)
o(1,1)+o(2,1) Acc = o(1,1)+o(2,2)

o(1,1)+o(2,2)+o(1,2)+o(2,1)

(20)

and the middle three measures are defined as:

F1 = 2×
Sen× Prc

Sen+ Prc
=

2× o (1, 1)

2× o (1, 1) + o (1, 2) + o (2, 1)
(21)

MCC =
o (1, 1) × o (2, 2) − o (2, 1) × o (1, 2)

√
[o (1, 1) + o (2, 1)]× [o (1, 1) + o (1, 2)]× [o (2, 2) + o (2, 1)]× [o (2, 2) + o (1, 2)]

(22)

FMI =
√
Sen× Prc =

√

o (1, 1)

o (1, 1) + o (1, 2)
×

o (1, 1)

o (1, 1) + o (2, 1)
(23)

The above measures are calculated in the mean and standard

TABLE 5 | Meanings in measures.

Abbreviation Full form Symbol Meaning

P Positive AD

N Negative HC

TP True positive o (1, 1) AD images are classified correctly.

FP False positive o (2, 1) HC images are wrongly classified as AD.

TN True negative o (2, 2) HC images are classified correctly.

FN False negative o (1, 2) AD images are wrongly classified as HC.

deviation (MSD) format. Besides, ROC is a curve to measure
a binary classifier with varying discrimination thresholds.
The ROC curve is created by plotting the sensitivity against
1-specificity. The AUC is calculated based on the ROC curve.

EXPERIMENTS AND RESULTS

Multiple-Way Data Augmentation
Figure 12 displays the part of 18-way DA results (i.e.,
Hj [r (x)] , j = 1, . . . , J1) if we take Figure 4A as the raw image
r (x). From Figure 12, we can observe that this 18-way DA
improves the diversity of our training set, which will make our
classifier model more robust. In the following experiments, we
shall prove this robustness.

Statistical Analysis
The results of 10 runs of 10-fold cross-validation of our model
ADVIAN are itemized in Table 6. The sensitivity and specificity

reach 97.65 ± 1.36 and 97.86 ± 1.55, respectively. Its precision
and accuracy are 97.87 ± 1.53 and 97.76 ± 1.13, respectively.
The F1 score, MCC, and FMI are obtained as 97.75 ± 1.13,
95.53 ± 2.27, and 97.76 ± 1.13, respectively. We can see that all
the seven indicators of our model are above 95%. The ROC curve
is displayed in Figure 14B, and the AUC is 0.9852.

Effect of 18-Way DA
To validate the importance of 18-way DA, we carry out an
ablation study in which we remove 18-way DA from our model
and observe the performance change. After another 10 runs
of 10-fold CV, the performances decrease to a sensitivity of
92.45 ± 2.21, a specificity of 94.18 ± 1.99, a precision of

TABLE 6 | Results of proposed ADVIAN model.

Run Sen Spc Prc Acc F1 MCC FMI

1 100.00 97.96 98.00 98.98 98.99 97.98 98.99

2 97.96 96.94 96.97 97.45 97.46 94.90 97.46

3 97.96 95.92 96.00 96.94 96.97 93.90 96.97

4 97.96 100.00 100.00 98.98 98.97 97.98 98.97

5 95.92 98.98 98.95 97.45 97.41 94.94 97.42

6 97.96 95.92 96.00 96.94 96.97 93.90 96.97

7 97.96 98.98 98.97 98.47 98.46 96.94 98.46

8 95.92 96.94 96.91 96.43 96.41 92.86 96.41

9 95.92 96.94 96.91 96.43 96.41 92.86 96.41

10 98.98 100.00 100.00 99.49 99.49 98.98 99.49

MSD 97.65 ± 1.36 97.86 ± 1.55 97.87 ± 1.53 97.76 ± 1.13 97.75 ± 1.13 95.53 ± 2.27 97.76 ± 1.13
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94.13 ± 1.81, an accuracy of 93.32 ± 1.16, and an F1 score
of 93.25 ± 1.20. The MCC and FMI decrease to 86.69 ± 2.31
and 93.27 ± 1.20, respectively. The result of comparison with
and without 18-way DA is shown in Figure 13. The ROC curve
comparison is shown in Figure 14, where we can observe that

FIGURE 13 | Error bar of the effectiveness of 18-way DA (w/ means with wo/

means without).

AUC without 18-way DA is only 0.9603 (Figure 14A) and AUC
with 18-way DA is 0.9852 (Figure 14B).

Method Comparison
To further show the proposed ADVIAN model’s effectiveness,
we compare it with 11 existing algorithms on the same dataset
by 10 runs of 10-fold CV. The comparison methods include
BRC-BC (Plant et al., 2010), TJM (Savio and Grana, 2013), RF
(Gray et al., 2013), FMSA (Lahmiri and Boukadoum, 2014), DF
(Zhang, 2015), PZM-SCG (Gorji and Haddadnia, 2015), BBO (Li,
2018), PZM-LRC (Du, 2017), CNN-LReLU (Sui, 2018), CNN-
BND (Jiang and Chang, 2020), and CNN-RNN-LSTM (Dua et al.,
2020). The comparison is displayed in Table 7, with the bar plot
shown in Figure 15.

In Figure 15, we move the MCC to the leftmost since its
value range is smaller than the other six measures. We sort
all algorithms in terms of MCC, and the sorted list can be
observed at the bottom left corner of Figure 15. The 3D bar plot
clearly shows that our method achieves better results than all 11
state-of-the-art methods.

FIGURE 14 | ROC curves of the effectiveness of 18-way DA (w/ means with wo/ means without). (A) wo/MDA, (B) w/MDA.

TABLE 7 | Comparison with other methods.

Algorithm Sen Spc Prc Acc F1 MCC FMI

BRC-BC (Plant et al., 2010) 92.96 ± 1.63 88.78 ± 1.86 89.25 ± 1.59 90.87 ± 1.11 91.05 ± 1.09 81.83 ± 2.22 91.08 ± 1.09

TJM (Savio and Grana, 2013) 88.27 ± 3.27 92.45 ± 2.37 92.20 ± 2.03 90.36 ± 1.31 90.13 ± 1.44 80.88 ± 2.53 90.18 ± 1.41

RF (Gray et al., 2013) 87.86 ± 2.18 88.67 ± 1.70 88.60 ± 1.55 88.27 ± 1.36 88.21 ± 1.41 76.56 ± 2.72 88.22 ± 1.41

FMSA (Lahmiri and Boukadoum, 2014) 90.31 ± 2.32 87.86 ± 2.47 88.21 ± 1.93 89.08 ± 1.08 89.21 ± 1.08 78.25 ± 2.13 89.23 ± 1.07

DF (Zhang, 2015) 90.61 ± 1.65 93.16 ± 1.18 93.00 ± 1.08 91.89 ± 0.70 91.78 ± 0.75 83.83 ± 1.39 91.79 ± 0.74

PZM-SCG (Gorji and Haddadnia, 2015) 92.96 ± 1.63 92.65 ± 1.79 92.72 ± 1.57 92.81 ± 0.70 92.82 ± 0.69 85.65 ± 1.40 92.83 ± 0.69

BBO (Li, 2018) 91.73 ± 1.83 91.43 ± 2.21 91.52 ± 1.89 91.58 ± 0.60 91.60 ± 0.56 83.22 ± 1.21 91.61 ± 0.57

PZM-LRC (Du, 2017) 93.37 ± 1.82 92.76 ± 2.01 92.83 ± 1.81 93.06 ± 1.30 93.08 ± 1.29 86.15 ± 2.59 93.09 ± 1.29

CNN-LReLU (Sui, 2018) 97.35 ± 1.88 96.94 ± 1.08 96.97 ± 1.01 97.14 ± 0.87 97.14 ± 0.90 94.31 ± 1.72 97.15 ± 0.89

CNN-BND (Jiang and Chang, 2020) 97.04 ± 1.55 97.35 ± 1.29 97.36 ± 1.24 97.19 ± 0.88 97.19 ± 0.89 94.41 ± 1.73 97.19 ± 0.88

CNN-RNN-LSTM (Dua et al., 2020) 92.65 ± 1.65 92.35 ± 1.30 92.38 ± 1.19 92.50 ± 1.02 92.51 ± 1.04 85.02 ± 2.04 92.51 ± 1.04

Ours 97.65 ± 1.36 97.86 ± 1.55 97.87 ± 1.53 97.76 ± 1.13 97.75 ± 1.13 95.53 ± 2.27 97.76 ± 1.13
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FIGURE 15 | Bar plot of all methods.

This paper is mainly focusing on methodological
improvements. We shall try to combine DL with individual
anatomical brain regions [such as medial temporal lobe (Chen
et al., 2016a), etc.] and brain network connectively patterns
(Chen et al., 2016b) in AD patients.

CONCLUSIONS

This paper proposes a novel VGG-inspired network as
the mainstay and combines the attention mechanism
with VIN to produce a new ADVIAN deep-learning
model to detect AD. The 18-way DA is harnessed to
prevent overfitting in the training set. The experiments
revealed the usefulness and superiority of this proposed
ADVIAN method.

Nevertheless, there are several shortcomings. First, this model
did not go through strict clinical environment tests. Second,
the dataset is relatively small. Third, the AI output is hard to
understand for human experts.

Correspondingly, wemay carry out the following researches in
the future. We shall deploy our ADVIAN to hospitals to receive
feedback directly from clinical doctors. Meanwhile, we will try to
collect more AD data. Finally, explainable AI will be included in
our future studies.
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