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Abstract: The formation of vortex rings during the left ventricle (LV) filling is an optimized mechanism 
for blood transport, and the vorticity is an important measure of a healthy heart and LV. There is a 
relationship between abnormal diastolic vortex structure and impaired LV, and hence vortex identification is 
vital for understanding the underlying physical mechanism of blood flow. However, due to lack of 
quantitative methods, defining, computing and mapping the left ventricular vortices has not been rigorously 
studied previously. In this paper, a novel method of vortex detection based on the convolutional neural 
network (CNN) is created, which enables determination of the boundary of vortex and integrates the local 
and global flow fields. We have used the CNN-based vortex identification and vector flow mapping (VFM) 
to quantify left ventricular vorticity. In the clinical application of our methodology to healthy subjects and 
uremic patients, we find differences in the strength and position of the vortices between healthy and patients 
with uremia cardiomyopathy. Our results can accurately indicate the role of vortex formation in intra-
cardiac flow, and provide new insights into the blood flow within the heart structure. 

1 INTRODUCTION 
Left ventricle (LV) fluid dynamics presents a complex 
flow phenomenon. During the LV filling, the blood flow 
begins with the transmitral flow achieving a maximal 
velocity of about 100 cm/s into the LV. In less than a 
second, the blood flow in LV changes direction and 
leaves the LV into the ascending aorta with a maximal 
velocity of about 66 cm/s. During the course of an 
optimized flow path, a vortex flow is developed during 
diastole, to redirect the blood flow toward the LV 
outflow tract.[1] Earlier studies have shown that the 
vorticity is an important measure of LV diastolic 
function and overall heart health.[1] Therefore, 
quantitative measurements of vorticity can provide 
deeper insights into hemodynamics within the heart. 

Earlier studies have quantified the vorticity based on 
the different time frames of a cardiac cycle. [1,2] Wong et 
al have measured vortex characteristics by calculating 
the vorticity and developing two-dimensional vortical 
flow maps.[2] Kheradvar et al analyzed velocity sequence 
obtained by ultrasonic electrocardiogram, to derive 
further LV spatial flow characteristics for better 
characterization of the flow patterns, and used the 
vorticity to describe blood motion.[1] Most of these 
methods are based on a finite-differences approach, and 
the evaluation of vorticity has been performed globally 
in the region of interest after segmentation, which has 
suffered from loss of accuracy in the irregular LV 

boundary and ignoring of the main component of the 
vortex. Hence accurate identification of vortices is 
important for studying the law and mechanism of blood 
flow in the LV. 

Vortex identification methods based on associated 
implicit vortex definition have been developed, and these 
methods can be roughly classified into two categories：
local methods and global methods.[3] The local methods 
are generally based on physical properties of the flow 
field, and only use the local flow information to compute 
some criterions and obtain the results efficiently. 
However, there are many false positives and false 
negatives in the results. Different from the local methods, 
the global methods are typically based on global 
topological properties of the flow field, such as 
Lagrangian-Averaged Vorticity Deviation (LAVD). 
These methods use global flow information to detect 
vortical regions, and have excellent objectiveness and 
robustness.[4] However, global methods are 
computationally intensive, and therefore take more time 
than local methods. 

Since the local and global methods have their 
advantages and disadvantages, it is worth combing the 
advantages of both the methods. Meanwhile, defining 
the boundary of the vortex in the LV poses a challenge, 
because the flow is intricate and involves a large-scale 
data set. The complex blood flow makes local methods 
have a high error rate, and the global methods are 
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difficult to deal with the large size of data. With this in 
mind, we have innovatively adopted the vortex 
identification method based on convolution neural 
network (CNN) taking into account the local and global 
information of the LV flow field to solve these problems. 
Additionally, we have sought to quantify the vorticity 
after vortex identification, and to compare differences 
between healthy volunteers and patients with uremia 
cardiomyopathy. These sample cases have demonstrated 
the working principles of our proposed framework, that 
is devised to perform component flow analysis and 
justify the effectiveness of the methodology. 

2 Methods  

2.1 Study population 

Ten healthy volunteers and five patients with uremic 
cardiomyopathy were included in our study. All healthy 
volunteers had normal blood pressure, normal ECG, and 
no history of cardiovascular disease. The study was 
approved by the Regional Ethical Review Board of the 
Third Affiliated Hospital of Sun Yat-sen University. All 
subjects underwent cardiovascular ultrasound, consisting 
of cine images in 2-chamber, 3-chamber, 4-chamber, and 
short-axis views. 

2.2 Echocardiography 

The ultrasound device is Prosound F75 ultrasound 
(Hitachi Aloka medical Ltd., Tokyo, Japan). The apical 
long-axis view was adopted for acquiring the color 
Doppler images, by using a UST-52105 probe through a 
water bag, at a transducer frequency of 5 MHz, depth of 
8 cm, focal point of 5 cm, and frame rate of 29-57. The 
images were captured over three successive heartbeats 
and stored on a built-in hard disk. Then, the Vector Flow 
Mapping (VFM) analysis software (DAS-RS1, Hitachi 
Aloka Medical Ltd) was employed for vector flow 
mapping, by flow visualization echocardiographic 
technology. The relationship between ECG and cardiac 
cycle defines the cardiac events based on the number of 
scan time frames. 

2.3 Convolution neural network for vortex 
identification 

The CNN-based vortex identification method consists of 
two parts: the data processing part and the network part, 
[5] as shown in Fig. 1. The data processing part provides 
the data inputs to the second part, and the network part 
trains a CNN model to recognize the vortical structures 
and define the boundary of the vortexes in the flow field 
of the LV. 

2.3.1 The data processing part 

The data processing part of the CNN-based vortex 
identification includes four steps: acquiring LV velocity 

data, obtaining labels, normalization, and sampling 
patches.  

Firstly, the LV velocity data can be expressed as 
rectangular arrays, and each point has associated velocity 
components and location information in the Cartesian 
coordinate system. 

 
Fig. 1. The architecture of CNN-based LV vortex identification. 

Secondly, CNN is a typical supervised learning 
algorithm, which requires a large amount of labelled data 
to train the network. A global vortex method named 
instantaneous vorticity deviation (IVD) can be used to 
label all points in the LV flow field. [4] Haller et al. have 
defined vortices as sets of tubular surfaces of constant 
intrinsic material rotation rate and proposed LAVD, a 
threshold-dependent vortex identification technique.[4] 
The IVD, the transient expression of LAVD, is described 
as the absolute value of the difference between the 
vorticity at a point and the space average vorticity of the 
global field: 
          , ( , ) ( , ) ,IVD x t x t x tavg  （ ）                      (1) 

Where w represents the vorticity value, and x is the 
position of the flow field. The IVD can obtain the 
definition of the instantaneous vortex and describe the 
boundary of vortex as the largest convex member of 
nested tube family. The IVD also has the ability to detect 
vortical features more quickly and accurately in 2D and 
3D flows.[4] The Training data is based on the LV blood 
flow of patients, and can be labelled by the IVD. Note 
that ‘0’ represents the point outside the boundary of the 
vortex, and ‘1’ represents the point inside the boundary 
of the vortex. In this way, the LV blood flow global 
information can be obtained. 

Thirdly, the velocity rectangular arrays need to be 
normalized, and the normalization method is shown in 
Eq. (3): 
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where  u and  v are the normalized velocity components 
of each points in the LV flow field; u0 and v0 are the 
original velocity; umax, umin, vmax, vmin are the maximum 
and minimum of the velocity components of each points 
in the original LV flow field, respectively.  

Finally, the normalized velocity field needs to be 
sampled by local patches around each of the points, and 
these patches and labels are used as input of the network, 
as shown in Fig. 1. By using local patches and global 
labels to train the network, the CNN method combines 
global and local LV flow information in the testing stage. 
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2.3.2 Structure of the network 

After the data processing part, each point must be 
classified. The classification task is performed by the 
network part, which trans a CNN model to distinguish 
non-vortex points and vortex points, and define the 
boundary of the vortex in the LV. The network includes 
a single input layer, four convolutional layers, and three 
fully connected layers, as shown in Fig. 1. The first layer 
is the input layer corresponding to a patch in the LV 
flow field. The size of this input layer is 2×19×19, in 
which 2 represents the number of channels and 19 is the 
size of patches. The second to the fifth layer are 
convolutional layers all of which use the convolution 
kernels by 3×3. These kernels need to be decided 
through the training stage and the number of feature 
maps of these layers is 8, 16, 32 and 64. Meanwhile, 
these convolutional layers use the activation function is 
the rectified linear unit (ReLU), as shown in Eq. (3): 

max(0, ),y x  (3) 

wherein y means the output of the activation function, 
and x represents the output of the convolutional layer. 
The sixth to eight layers are the fully connected layers 
with 128, 64 and 2 neurons, respectively. The last fully 
connected layer is the output layer, which describes the 
boundary of the vortex and classifies the input into 
‘vortex’ or ‘non-vortex’. The output layer is a SoftMax 
layer, where each neuron means a probability of the 
input belonging to one category. The SoftMax neuron is 
given by: 
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where m represents the number of classes,  zj is the 
output of the last layer,  NPRVE represents the number of 
neurons of previous layer, Wk,j and xk are weight and 
output the kth neuron of the previous layer to the jth 
neuron of the SoftMax layer.[5] 

The Network uses back-propagation with the cross-
entropy cost function to optimize the parameters. The 
cross-entropy cost function is shown in Eq. (6): 

1
[ (1 ) (1 )]
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where (i) x  and n are the number of training samples and 
the total number of training samples, and (ii) y and a  
represent the predicted and true output of the neuron. 
Back-propagation iteratively calculates the gradient of 
each layer by using chain rule and starting from the 
output layer. The well-trained CNN model can thus be 
obtained and employed to correctly identify the vortex. 

 

3 Results  

In this section, we implement the method based on the 
CNN to identify the vortex in the LV during the 
complete cardiac filling process, compute and map the 
spiraling flow fields, and compare them for healthy 
people and patients with uremia cardiomyopathy. We 
use an in-house data set that contains 400 LV velocity 
rectangular arrays attached with associated labels in 
different states to train the CNN model. The trained 
CNN model is employed to identify the LV vortex of ten 
healthy volunteers and five patients with uremia 
cardiomyopathy. Fig. 2 illustrates the computed LV flow 
visualizations of one healthy person and one uremic 
patient, during (i) rapid filling, (ii) the end of rapid 
filling, (iii) reduced filling, and (iv) atrial systole. 

 
Fig. 2. Flow visualizations of normal and abnormal LV, during 
(i) rapid filling, (ii) the end of rapid filling, (iii) reduced filling, 

and (iv) atrial systole. 
 

In Fig. 3, we are depicting the strengths of two 
vortices in opposite directions of ten healthy volunteers 
and five patients during the LV diastolic period. This 
provides evidence that the physical flows are related to 
the cardiac events, and the uremia cardiomyopathy 
disease leads to differences in vorticity between patients 
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and healthy people. Although there are the outliers, 
which are caused by mismatching the flow patterns or 
the excessive resolution during the acquisition process. It 
can be observed that the vorticity of healthy volunteers is 
generally higher and positive (dominant vortex is 
counter-clockwise rotation) during the LV diastole. At 
the transition stage to LA systole, the vorticity values 
keep decreasing. In the LA systolic event, the dominant 
vortex appears at the basal level of the LV, and the 
vorticity is increased. The flow patterns and properties of 
patients with uremia cardiomyopathy are more complex 
than of the healthy group. 

 
Fig. 3. Comparison of vorticity between healthy group and 
patients with uremia cardiomyopathy at each stage of LV 

filling. ‘*’ represents the outliers. 
 

In this paper, we use two classical metrics to measure 
the performance of CNN-based vortex identification 
method at various periods of LV filling, including recall 
and precision. They are calculated by using Eq. (7): 

TP
recall

TP FN



； TP
precision

TP FP



，  

(7) 

where TP, FP, TN and FN represent the number of true 
positives, false positives, true negatives and false 
negatives, respectively. 

 
Fig. 4. The performance of CNN-based vortex identification at 

each stage of LV. 
 

The curves of recall and precision over time are 
shown in Fig. 4. In terms of the temporal variation of 
recall and precision, the trend is from growth to stability, 
which may be due to the relatively complex blood flow 
at the beginning of filling. However, recall and precision 
are always more than 98.5%, which means that (i) there 
are lots of true positives and a small number of false 
negatives and false positives in the vortex identification 

results, and (ii) the CNN model can achieve a high recall 
as well as high precision during the LV filling period. 

4 Discussion  

The objective of this study is to identify blood flow 
vortices in the LV, and measure the difference of 
vorticity between healthy people and patients during the 
LV diastole, by combing the local and global blood flow 
field information and adopting CNN. From an 
innovative perspective, the LV vortex identification 
issue is transformed into binary classification. Breaking 
down the vorticity analysis into examination of 
individual vortices allows us to characterize the blood 
flow behavior more accurately. 

We find that at the beginning of ventricular diastole, 
the identified vortices are both counter-clockwise and 
clockwise in ten healthy volunteer and five patients. This 
is in line with an earlier study by Johannes et al.[6] while 
(i) the counter-clockwise vorticity mean of the healthy 
group is higher than that of patients, and (ii) the 
clockwise vorticity mean of patients is higher than that 
of the healthy group. This relatively complicated 
situation may be a consequence of the complex variation 
and the asymmetry of flow in the LV. At the middle and 
end of ventricular diastole, the flow patterns of healthy 
volunteers are visually same as that of patients, and the 
defined vortices are counter-clockwise and clockwise 
(with the dominant vortex being counter-clockwise 
rotation) in both healthy groups and patients. However, 
the main difference between the two groups is that 
vorticity of the healthy subjects is still higher than that of 
patients, as shown in Fig. 3. 

Meanwhile, we can note that our method of 
identifying the LV vortex based on CNN has high 
precision, as shown in Fig.4. Also, the network is 
threshold-independent, and can provide vortex 
identification result objectively and robustly, which is a 
consequence of using IVD and global flow information 
to label data. Compared with conventional network 
architecture, our methodology removes the pooling layer, 
because (i) we have sampled the velocity rectangular 
arrays in the data processing, and (ii) the size of input 
data is relatively small, which shows local information 
of LV flow fields. Based on our results, the CNN model 
can be seen to accurately detect the vortical structures, 
and reveal the nature of flow phenomena in the LV flow 
fields. More importantly, the model trained by one LV 
case can be directly applied to other cases, thereby 
avoiding a long time of training, with good universality 
and scalability. 

However, there are some significant works needing 
to be improved. Firstly, in order to enhance the 
performance of CNN model, deeper CNN architecture 
can be used. Adopting a highly and complex modular 
approach to design the CNN model is a clear way to 
integrate new improved algorithms. Secondly, tracking 
development of LV vortex is a research area closely 
related to vortex identification. Future work will focus 
on labelling the time-dependent flow field and 
describing the evolution of the vortex feature. 
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5 Conclusion 

In this paper, we have adopted a CNN-based method to 
identify the LV flow field vortex and map the flow 
patterns, and have measured the differences in vorticity 
between healthy and patients with uremia 
cardiomyopathy to justify effectiveness of the method. 
The novelty of this study is that we can innovatively 
detect and measure the LV dominant vortex during the 
complete LV diastole. The boundary of LV vortex can 
be defined by using local and global information of flow 
field, and a CNN model is trained which combines the 
advantage of traditional vortex identification for the 
characteristics of LV blood flow. Finally, the vorticity of 
healthy subjects and patients is calculated based on the 
result of vortex identification. The quantization of 
individual vortices can provide a good reference for the 
early diagnosis of uremia cardiomyopathy. 
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