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ABSTRACT

The Monte Carlo Simulation technique has been improved so that it
can be used to simulate a system of a finite number of particles at
thermal and mechanical equilibrium with its surroundings. The tech-
nique has been used to study structural and mechanical properties of
argon and iron crystals, and also a two dimensional bicrystal with
Lennard Jones interatomic potential. The behavior of impurity atoms
and vacancies in the two dimensional bicrystal have been explored
using the improved technique.

The martensitic transformations (bcc+fcc) and (fcc+bcc) under
tension and compression at the temperature of 700K,through the non-
classical path,have been observed using a 32 particle system with
Johnson I interatomic potential. The critical stresses at which the
transformations occur are less than the values calculated by static
method because of the thermal motion of particles. Johnson I potential
overestimates the lattice c6nstant in the fcc phase by 4.2% when the
transformation takes place.

The static calculations of theoretical tensile sj6engths of10
a-iron 2using Morse and Johnson I potential are 1.2*10 and 9*10
dyn/cm respectively. These results reveal that Johnson I is a more
realistic potential to be used to simulate mechanical properties of
a-iron. Still the Johnson I potential does not give the theoretical
strength greater than the experimental value that one would expect.

The fcc argon crystal has been studied under uniaxial loading at
the temperature of 400K (melting temperature n 110 0K) using 32 and 108
particle systems with Lennard Jones interatomic potential. The stress-
strain relation is significantly different from that of static calcu-
lation (00K) at high stresses. The temperature effects result in
12.8% decrease in C and 6.4% increase in C with respect to their
values at 0°K. At tbe tension load of 600 bar the system fails whereas
the static method prediction is 2100 bar. This discrepancy is



partly explained by the thermal motion of particles. At the com-
pression load of 350 bar the fcc structure is transformed to an hcp
structure by contraction along the load direction [001] and sliding
of (010) planes.

The mechanical properties of a two dimensional bicrystal with
Z=7 has been investigated. The bicrystal is composed of 56 particles
interacting through the Lennard Jones potential. The stress-strain
of the bicrystal has been calculated when a load normal to the grain
boundary plane is applied. the results show that the bicrystal deforms
more than a single crystal with the same crystallographic orientation
as one of the components of the bicrystal. Grain boundary sliding and
migration has also been observed under shear loading.

The behavior study of impurity atoms in the bicrystal has shown
that impurities with the size smaller than the host atom are absorbed
by the grain boundary. Also it has been demonstrated that vacancies
annihilate by the grain boundary.
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Title: Professor of Nuclear Engineering
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Title: Assistant Professor of Materials Science and Engineering
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Computer simulation techniques are widely used to investigate

properties of materials and to understand their behavior from an

atomistic point of view. There are essentially two techniques that

are used to simulate a system consisting of a finite number of

particles at a given temperature provided that the interatomic inter-

action is known: the molecular dynamics method [W76] and the Monte

Carlo Method [W68]. One of the limitations of these techniques was

that they could be used to simulate a system under the condition of

hydrostatic pressure only. Recently the molecular dynamics technique

was improved [p81] such that it can be used to simulate a system under

the condition of externally applied stresses. This corresponds to

the study of a system in the (N, E, S) ensemble where N is the number

of particles in the system, E is the total energy of the system,

and S the stress tensor applied on the system. This improvement

opened up a whole new area of investigations, namely, the behavior

of solids at non-zero temperature and high levels of external stress

where crystal structural transformations and spontaneous defect

generation become possible. Previously structural and mechanical

studies were limited to absolute zero temperature using the static

method [M71]. One of the objectives of this thesis was to improve

the Monte Carlo technique such that it can also be used to simulate

the behavior of solids at normal temperatures and high levels of

external stress. The improved Monte Carlo technique simulates a

system in the (N, T, 5) ensemble where T is the temperature. This

technique carries out the simulation isothermally whereas the

improved molecular dynamics method does it adiabatically. Essentially
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Monte Carlo is a method of efficiently evaluating multi-dimensional

integrals in a stochastic way [W68]. In simulation studies these

integrals are the ensemble averages.

Structural transformations in solids have been of interest

both theoretically and experimentally [C65]. Among the structural

transformations the Martensitic transformations which are common in

iron, iron alloys and many other materials [B56] are of special

interest [081, 082]. The Martensitic transformation is a trans-

formation in which the product structure and the parent structure can

be related by a pure deformation. This transformation is believed to

occur through either a classical or a non-classical path [081]. In

the classical path theory a nucleus having the product structure is

created whereas in a non-classical path theory the product is pro-

duced in a finite region through a continuous deformation of the

parent structure. In this work, using the improved Monte Carlo

technique, the martensitic transformations of iron through the non-

classical path were investigated when a uniaxial stress was applied

on the system. The simulations were carried out on a model system

consisting of 32 particles interacting through the Johnson I potential

[J64] commonly used for a iron. In these studies the flexible

periodic border condition was used. This border condition allows the

simulation cell to change its shape and dimensions as the simulation

proceeds. Since the system used was small, investigations of the

martensitic transformation through the classical path was not

possible. It was found that at the temperature of 70"K the bcc iron

structure transforms to the fcc structure at the critical tension load

of 5.5*1010 dyn/cm2 and the fcc structure transforms to the bcc
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structure at the critical compression load of 6.0* 1010 dyn/cm2

These results are in general agreement with the results found using

the static method. A similar study at 400K was also carried out on

a system of 32 particles interacting through the Lennard-Jones potential.

The potential parameters were chosen to represent argon [H64] solid.

The simulation results showed that the fcc argon structure fails at

a critical tension load of 600 bar. At the critical compression load

of 350 bar the fcc structure transformed to an hcp structure by a

large contraction in the load direction and sliding of (010) planes.

This transformation could not be predicted by the static calculations

carried out on the same system because at zero temperature thE. sliding

of the (010) planes was not possible. This transformation was also

observed previously [P81] on a system model representing nickel. The

isothermal elastic constants C11 and C12 were calculated from the

simulated stress-strain curve. Comparing these elastic constants with

those found by the static method (zero temperature) revealed that the

temperature effect results in 12.8% decrease in C11 and 6.4% increase

in C12. The simulation results obtained for a 108 particle system of

argon showed that the number dependence effects are insignificant.

Although most of the practical engineering material are in the

form of polycrystals, it is much easier to investigate the grain

boundary effects in a bicrystal [P75]. There has been relatively

few simulation attempts [J70] so far to study the influence

of grain boundaries on mechanical properties of a bicrystal. The

experimental results [L77] show that when a bicrystal of $-brass

is subjected to compressive loads along the grain boundary plane
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it will deform less than the single crystal under the same

conditions. It is believed [L77] that this change arises from

elastic shear incompatibility [H72].

Simulations were carried out on a two dimensional coincidence

site lattice grain boundary system composing of 56 particles inter-

acting through a Lennard-Jones potential. The coupled sliding and

migration of the grain boundary in this system was studied pre-

a b
viously [B82, B82]. Using the improved technique and flexible

periodic border condition the stress-strain curve of the bicrystal

was simulated when it was subjected to the compressive and tensive

loads along the direction normal to the grain boundary plane. It

was found that, in comparison with the stress-strain curve of the

single crystal, at low temperature (% of melting temperature)

the bicrystal deforms more than a single crystal along the compression

or tension loadings. Also it was found that, at the same temperature,

the grain boundary starts sliding and migration when a shear stress

is applied on the hicrystals.

Although it is well known that the grain boundaries act as

a
sources or sinks for point defects [B 79], it was only recently that

b b
some attempts were made [B80, B81, H81] to study the structure of

vacancy in several grain boundary systems employing computer simula-

tion techniques. These studies showed that the vacancy introduced

away from the boundary will lower the total energy of the systems

if it is moved toward the grain boundary, but it remains at the

boundary as a distinguishable missing atom in the grain boundary

structure. In this thesis the behaviors of impurity and vacancy in
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the above bicrystal were investigated using the improved technique

and the flexible periodic border condition. It was found that

impurities of a size smaller than the host atom are absorbed by

the grain boundary whereas impurities with twice the size of the

host atom tend to divide the system into clusters. Also it was

found that the vacancies are absorbed by the grain boundary if the

temperature is high enough to activate the grain boundary motion.

In these simulations when the vacancy was absorbed by the grain

boundary no "distinguishable missing atom" was observed.
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2.1 Introduction

Monte Carlo method is a well known technique in which, in general,

many-dimensional integrals are evaluated by simply integrating over

random sampling points instead of over a regular array of points as

is done in finite element method. Detailed descriptions of this

method are available in various reviews [B79, V77, W68].

Monte Carlo method has been used to study thermodynamic , structural,

and even statistical properties of a sytem composed of a finite number

of particles interacting through a known potential function.. For example,

applications have been made to solids [iH70, B73], liquids [B71,B73],

liquid mixture [T77, M72], phase transitions [B81, T82, A80, T78, F72,

H69,R741, grain boundaries [C81, C80], vacancies in solids [J80,

a 4 C
569], surface tension [L80], magnetic systems [P80, B80, B76], free

b b
energy calculations [N82, T77 , P76 , B76], among others.

In Section 2 we discuss the calculation of thermodynamic properties

as ensemble averages. The implementation of the Monte Carlo method

is described in Section 3, and its applications to an isobar-isothermal

ensemble are expained in Sec.4. In Section 5 the Monte Carlo technique

is formulated for an "isostress-isothermal" ensemble.

2.2 Calculation of Thermodynamic Properties

Statistical mechanics provides a method of relating the thermo-

dynamic properties of a macroscopic system to the statistical and

mechanical properties of the particles which make up the micro-

scopic system.

The microscopic state of a system, in classical physics, is



specified in terms of momenta and position coordinates of all its

constituent particles. Thus a microscopic state of an 1-dimensional

system may be represented by the location of a point in the 2xMxN

dimensional phase space (N is the number of particles) defined by

MXN position coordinates and MiN momenta. From now on we use "state"

to denote a microscopic state unless otherwise stated. The total

energy, E, of any state of a 3-dimensional system is given by:

1 6 z

where m is the mass of a particle, Pi', Py , and Pzi are the momenta

of particle i, xi, Yi, and zi are the coordinates of particle i, and

U, is the total potential energy of the state.

In order to write the equations more concisely, we employ a

vector notation as follows:

-A

(2.2)

and in this notation Eq. (2.1) becomes:

-z M r (2.3)

In calculating thermodynamic properties one assumes the system

being studied is in equilibrium. This requirement allows a time

average (which would be used in a real measurement of a thermodynamic
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variable) to be replaced by an average taken over a representative

sample (generally called an ensemble) of states, which are assumed

to exist concurrently. This equivalance is known as the ergodicity

condition.

The average value (i.e. a macroscopically observable value) of

any function, say J (-, ), is given by the integral that must be evaluated.

<.V • (P (d" • • d (2.4)

where the integral is taken over the entire phase space, and /(,';x)

is the probability density function. In other words p(,&;x)dpd'

is the probability that, at a given instant, the state of the system

is represented by a phase point lying in the elemental volume d'd?'

centered on (•,). Thus

1., ( P ) 1 (2.5)

In the above equations variables x are the thermodynamically independent

external variables. These variables effectively restrict the integrals

to be taken over a portion of the phase space. For example, they

could be temperature (T), volume (V), and a number of particles (N)

in the system corresponding NVT or canonical ensemble, or they could

be T, N, and pressure (p) in the isobar-isothermal ensemble, or

T, N, and stress tensor (S) in the "isostress -isothermal"ensemble.

The probability density function f(",%;i) in general is given by Hill

[H56].



In the following we will derive some of the thermodynamical

properties of an isobar-isothermal ensemble for a closed system

in mechanical and thermal equilibrium with its surroundings. They

will be used in Chapter 3 to study thermodynamic properties of the argon

crystal under constant pressure and temperature. One may easily

derive the corresponding expressions for other ensembles by the

appropriate f(l,p; Pex;N;T).

The density distribution function, f, for the isobar-isothermal

ensemble has the form [H56]:

fe r, ; r Pea Mj T) = -onS4 EXp - [E( V(t * (2. 6)

where Pex is the external hydrostatic pressure, not to be confused

with momenta vector p, V the volume of the state, and T absolute

temperature of the system. The constant factor in Eq. (2.6) is

the inverse of .the partition function.

F=-,-. *. 4 'r)17TVCF (2.7)

From Q all thermodynamic properties of a system can be derived;

it is very difficult, except for some simple systems, to calculate

this quantity. For this reason direct calculation of the property

of interest is more appropriate. Some properties of interest in the

present work are the following.

i) Total energy <E>



> Q-Jdp' r Edpr to, r -Vr)lI (2.8)

since p and r are independent variables in classical systems, sub-

stituting Eq. (2.3) in Eq. (2.8) gives

2A +Ur C (2.9)

where (2.10)

and (2.11)

It is easy to show that:

-- &P - .- 3 h T (2 .12)

**i,. se BRAT 2M 2

then

<F 3kT + &T dur c i pVC An
Notice that to calculate the second term in Eq. (2.12) one needs to

work in a 3N dimensional phase position space, not 6N dimensional

phase space.

ii) Volume <V>

Putting VO) for (p$,r) in Eq. (2 .4) the kinetic part cancels

out and

< v- { L3 ) ?.iV Y J> (2.14)
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iii) Internal pressure <Pin>

Using virial theorem [M25] one gets

A/kT I I 2 I
- > cV> (Ar)*0 (2.15)

or in the more general case, the internal stress tensor <Sin>:

-b .

< . . . . .r .. - & " (2.16)

'T I UT(% + P.e V,,
iv) Specific heat at constant pressure, c

CP 2T P. <r ' %t + (2.1.7)

v) Isothermal compressibility, KT

V), f I
e - --- I = . .. < v -< (2.18)R IV, T ,lV.. &T

Note that thermal bulk modulus B is -
T KT

vi) Thermal expansion coefficient c

v = _ I =i , . P. V (2.19)
V.• . T =v-, pT= P,,., - .v,-] (

IJ <UV,. - Ur. V,.3?
2.3 Monte Carlo Method

The "conventional" Monte Carlo method is directly applicable to

the evaluation of any integral, but it is very inefficient [M53] in

evaluating-the average quantity <A> of the form
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65-Ar V (2.20)

f (r) being Exp {- [UT() + P V( )]j or other density distributionf (r)> being Exp {- [UT TO exTK

functions. Here, we are not concerned with the general applications of

the Monte Carlo method for which the reader isreferred to the reference

[C64]. Our interest lies in the special procedure developed by

Metropolis et al. [M53] which is an efficient procedure, to be dis-

cussed later in this section, to calculate thermodynamic properties.

Eq. (2.20) can be considered as the expected value of the quantity

A(") over the phase space with the unnormalized probability density

f(f). It can be written as:

4A -- 2 A(2.21)

where, in the Metropolis procedure, points r. in phase space are

sampled with a probability proportional to f(r~.) so that the

sampled states are pre-weighted. By contrast,in the "conventional"

Monte Carlo procedure the states are sampled without any discrimination

(the phase space is uniformly sampled), and then they are weighted by

f(ri.). Since the weighting function f(r) in ensemble averages varies

from almost zero to almost infinity and most of the states in phase

space have almost zero weighting function. For example, in the canonical

1
ensemble f(f) is Exp [- . Ur(7)], where UT(') is the total potential

K

energy of the system and varies from a negative minimum value, say

K UT(r) = -800 for a small size system of 32 particles, to zero when
K

the particles are far apart. Then the conventional sampling procedure
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will end up sampling those points in phase space which have virtually

no contribution to the ensemble average most of the time.

In carrying out the Metropolis procedure a chain of states is

generated such that the probability of getting to the ith state of

the chain is explicitly dependent on the probability of the (i-l)th

state. This type of sequence is called a Markov chain. The matrix

describing the transition probabilities, Pij. between all states of

the system should be chosen so that the value of any function of

state, averaged over all the states of the chain, tends towards

the ensemble average defined in Eq. (2.20)% as the chain is extended

indefinitely. The necessary and sufficient conditions [W68] for

the convergence of the chain average Eq. (2.21) to the ensemble

average Eq. (2. 20) are the following:

1. I n oa fd 4jr> o for all j (2.22)

J='

2. Ergodicity condition

If i and j are any two admissible states ( states for which the

probability of the system being in them is finite). Then for some

finite k, which may depend on i and j, the k-step transition
(k)

probability pij is non-zero.

3. Steady state condition

2 e.4~~jg U for lj
aj (2.23)

where u., the normalized probability of the system being at the state

i,is given by:



. /(2.24)

Combining Eqs. (2.23) and (2.24) one gets

Xfi 6W (2.25)

The desired stochastic convergence results essentially from the

fact that under these conditions, the n-step transition probability
(n)

Sj -- u. as n • om, and also limit theorem for Markov chain (D53]

gives:

I r (2.26)

where P{} means the probability of the event {}. This means the

realization average A given by Eq. (2.21) is asymptotically normally
aL2

distributed with mean value <A> and variance 1 . The variance
n

parameter in Eq. (2.26) is defined by the relation

"" .-- ~ ~' A' A. % A- - J (2.27)

in which E {} denotes the expectation of the quantity in the curly

braces for the stochastic process in question.

In essence, then, the Monte Carlo procedure is simply to select

a (pij) prescription which will satisfy the above conditions. In

practice, it is essential to choose pij in such a fashion as to be

non-zero only for states i and j which in some sense are near

.& -b-



neighbors of each other [W68].

The most commonly used prescription, often referred to as the

asymmetrical procedure, is

0 if "A

fIit

where n(i) denote any specified set of Z

and Z is independent of i and also

nihoA P Z Ut (2.28)

neighbor states of state i,

2 6 li

(2.29)

It is readily verified that (2.28) satisfies the necessary and

sufficient conditions (1) to (3). There are other forms of (p ij)

[W68] which also satisfy the above conditions. Thus the path to get

the ensemble averages of a system is not unique.

Notice that to carry out the Monte Carlo method with the above

prescription of (p.ij) there is no need to know the exact values of

u;i and u (to know them requires one to know the partition function),

only uiiuj is required which can be evaluated easily.

In the next sections we have briefly indicated how one practically

develops a realization of the Markov chain defined by Eq. (2.28) for

two different ensembles.

only ;"c J6 zt;j



2.4 Isobaric-Isothermal Ensemble Sampling

The unnormalized density distribution function for an isobar-

isothermal ensemble was given in Eq. (2.6). To get the normalized

u., Eq. (2.6) is substituted in Eq. (2. 14),

• . .. .• ) V() (2.30)

where P is constant external hydrostatic pressure applied to the
ex

system, while the internal pressure P. in Eq. (2.14) will fluctuate
in

about P The average of A(r) in the ensemble can be written in

the form

Qof (2.31)

where the integration Jdr = JdXldYldz 1  .. /d xdyNdzN, should be

carried out over the whole position space. One way to do

this, in principle, is to replace the integral /d• by

f 1 - - -de/ /tiy., (2.32)
o V v

So the sampling is done first in a fixed volume V, then the volume

is changed and the sampling repeated till the entire space is

covered. In this way the problem of defining the .volume of each

state is avoided, otherwise, it would be difficult to assign a

volume to each point in position space in a simple way.
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In practice the Markov chain is started from an initial state

defined by (Vi, ri ) . Then a trial state (V,t') is chosen randomly

1
and uniformly (i.e., with equal probability - for any state which is

considered a neighbor to state "i," (V., .i) from the set of states

rn(i). The set n(i) consists of all those state "j" for which its

V. and the scaled coordinates of a randomly chosen particle "m"
m m m

(Sx, Sy, Sz ) lie in some interval V. + S and (Sx + 6, S _+ 6,1 v

Sm + 6) respectively, and all other particles (N-1) have.the same
z -

scaled coordinates as they have in state (Vi, ri).

The scaled coordinates refer to the coordinates of particles when

the cubic volume is reduced to a unit cube. Then Eq. (2.32) may be

written as:

0 v V1a Va (2.33)

This conversion makes bookkeeping easier.

The trial state is chosen from the following relations:

I = .r C -d÷ 3.J

S--+•. • c'- ) (2.34)

Aj- + C5 I-5)

where 5v, 2m' , , and EZz denote independent random numbers uni-

formly distributed on the interval (0,1), 6 and 6 are parameters tov
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be discussed in section (2.6), and I[x] means integer part of x

(particles are numbered from 1 to N). The mechanism of choosing

the trial- 3tate is schematically shown in Fig. 2.1 for a 2-dimen-

sional system. Once the trial state is chosen, the expression

h' = P V + U (r') - Nln(V')is evaluated. If h' < h = P -V.
ex T ex 1

+ U (rF) - Nln(V.) (u'>u.),the term Nln(V) comes from VN in Eq.

(2.33), then the new state is the trialstate and the quantities of

interest are evaluated for this state to be used to calculate the

' 1
ensemble averages. But if h'>hi (u'<ui), then u = Exp [- - (h-h)]

SUi1

is evaluated and is compared with a random number ý uniformly dis-

tributed on the interval (0,1). If n- < E the new state is the trial
ui

state,otherwise, the trial state is rejected and the new state is

the old one. The repetition of this process many times will produce

the desired distribution of states IM53].

Note that the volume of the system at any state is the uniform

expansion or contraction of the initial volume. This constraint on

the system volume corresponds to subjecting the system to a particular

value of hydrostatic pressure, and it will be used in Chapter 3. The

constraint will be removed for the constant stress ensemble discussed

in the next section. One may revise the above prescription in such

a way that for a given volume a fixed number of trials should be

made, equal to N the number of particles, for example. This means

that once a state with a new volume is reached, in the next N trials

the volume is to be kept constant. This will reduce the computational

time because to calculate the total potential UT(?), which is the

most time consuming part of the program, the program calculates
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only those pair interactions which are affectedby the movement of

the particle "m".

2.5 "Isostress-Isothermal" Ensemble

2.5.1 Density Distribution Function

The probability density distribution function for a closed system

in thermal and mechanical equilibrium with its surrounding (which we

will call "isostress-isothermal" ensemble), in general is given

[H56] by:

.* I . + U -% l i dX: . +

(2.35)

where X is the vector of the generalized forces corresponding to the

generalized coordinates x, and is defined by the thermodynamic equation

[H56].

dS E TddS ' d- .X.
(2.36)

In order to make explicit X and x we should find out an appropriate

expression for the external work done on the system, namely the

X.di- term in Eq. (2.36) for a system under constant stresses.

In this ensemble the shape of the system is described by three

vectors, a, b anid " that span the edges of the system, see Fig. 2.2.

The vectors a, b and c can have different lengths and arbitrary

mutual orientations. Equivalantlythe system can be described by

a 3x3 matrix h whose columns are the components of a, b and c [P31]
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y

Fig. 2.2 Simulation cell made by three vectors a ,b and c,

and one of its 26 images.

X



The work done on the system by the external stress tensor a

is given [L61] by:

-1 _ (2.37)

where ho is the matrix describing the reference system and h' the

deformed system, _ is the Lagrangian strain defined [L59] in terms

of h' and ho,

S- -(2.38)

and V is the volume of the deformed system given by:

= / ((2.39)

with V being the reference system volume and superscript "t" stands

for transpose. The above equations are valid for infinitesiLmal

homgeneousdeformation. As a first approximation Eqs. (2.37) to

(2.39) can be written as:

(2.40)

SVO

where the new strain is called infinitesimal strain. Then the

generalized force X in Eq. (2.36) has the form



sk. (2.41)

and Eq. (2.35) becomes:

Ee jrVTr-3I[v T,( + 1 (2.42)

Note that the term Vo Tr a s could be replaced by

2.5.2 "Isostress- Isothermal" Ensemble Sampling

The average quantity A(Y) in the ensemble may be written as:

<A> f A c; P¢ x rl ; (2.43)

and using Eq. (2.42) ' for f(r;i). The integralr/dr, as in Eq. (2. 33)

may be replaced by

o /';,, .

The volume V is defined by the matrix h. Since we are only

concerned with pure deformation (no rigid body rotation), then the

infinitesimal matrix strain 6 in Eq. (2.40) should be symmetric [B65]

under symmetrical stress tensor. This means that if we start the

Markov chain with:



; 0 36
r, f0 (2.45)

o o k";

then to avoid rotation during the Markov chain process,, the following

relations should hold between elements of h matrix at all times:

(2.46)

Eq. (2.46) reduces the 9 variables describing the volume to 6 independent

variables. Now, the development of the Markov chain for this ensemble

is the same as isobar-isothermal ensemble (the revised one) except

that the volume of the trial state is described by some matrix h

whose elements are chosen as follows:

h h

''1

The prescription given in Eq. (2.47) to change the volume iswhonere i''" ym33 are random numbers distributed uniformly on theinterval (0,1), and 6 6 are discussed in section (2.6) and
the other three elements are calculated using Eq. (2.46), also

replacing P V term in isobar-isothermal ensemble by V.Tr a C.

The prescription given in Eq. (2.47) to change the volume is

one of the many ways that this could be done. For example, one may



change one of the elements of matrix h at a time to get h', or

change one of the diagonal elements and one of the off-diagonal

elements of h at a time, or so on. We have tried the above two

ways and the one described by Eq. (2.47)to change h. Qualitatively

speaking, Eq. (2.47) gives a faster convergence.

As it was mentioned,Eq. (2.42) is not an exact equation and

is valid only for small strains (compare to unity); then after many

trials the strains of the state relative to the reference state

ho may be large. To avoid this problem, the reference system can

be updated after some trials, and Vo and ho in Eq. (2. 40) are

replaced by the new values.

2.6 Determination of 6 Parameters

The 6 parameters in principle should be adjusted for optimum

rate of convergence of the Markov chain. In a canonical. ensemble

where there is only one 6 it is empirically found [W68] that a

reasonable choice leads to about 50% rejection of the trial states.

In our case there are more than one 6, thus there are many

combinations of 6's that will produce 50% rejection rate. Throughout

this work we have used the following method to determine 6 parameters.

We assume all the 6 parameters to be zero except one of them,

then adjust the non-zero 6 to have 50% rejection rate (the starting

state should be quite close to equilibrium). The method is

repeated for all 6's. The combination of the adjusted values, of

course, does not lead to 50% rejection, therefore they are uniformly

scaled to produce 50% rejection rate.
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2.7 Flexible Periodic Border Condition

The number of particles in a simulation cell is limited by

the computer size and time. To avoid the surface effects periodic

border is used. The simulation cell is periodically repeated in

all directions producing 26 image cells in 3-dimension. Usually

the shape and the volume of the simulation cell are kept constant.

In this case we call it conventional periodic border. In cases where

the simulation cell is described by the three vectors, a, b and c

or equivalantlyby the matrix h and changing during the simulation

we call it flexible periodic border condition.
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Chapter 3

Thermodynamic Properties of Perfect Crystal

3.1 Introduction

3.2 Computational Detials and Results



3.1 Introduction

Thermodynamic properties of rare gas solid argon have been

well studied by Monte Carlo and molecular dynamics techniques. The

Monte Carlo studies have for the most part confined to calculations

in canonical ensemble or NVT ensemble. In this Chapter, potential

energy, volume, bulk modulus, thermal expansion coefficient and

specific heat of argon are simulated in the isobaric-isothermal

or NPT ensemble described in Chapter 2. The Lennard Jones

potential is used to describe the interatomic interaction. These

results are used to calibrate our technique and to compare them

with the experimental results.

3.2 Computational Details and Results

The calculations reported here have been made for 3-dimensional

systems of 32 and 108 particles interacting through the Lennard

Jone potential with the parameters e = 119.80K and a = 3.405A [H64]

using the flexible periodic border condition and the isobaric-

isothermal prescription of the Monte Carlo technique described in

Chapter Two. The cut off range used is the midpoint between the

second and third nearest neighbors (for discussions of the cut

2 2
off range see 5.2), r = 4.95 a The long range interaction was

c

approximated by assuming that beyond the cut off range the inter-

atomic distances are those of the perfect fcc lattice.

As it is explained in Section 2.4, the trial state (St) in

the simulation is found by changing the volume uniformly and dis-



placing one of theparticles(m) in the system. In order to

accept or reject the trial state as a new state, one needs to

know the potential of the trial state. This potential energy

calculation, in general, involves calculating all pair interactions.

In this study the potential of a state (S') with the same volume

v as the volume of the old state (So) when the particle, m, is dis-

placed is calculated. This calculation involves the interactions

of the displaced particle and other particles. Now the potential

of the trial state, which is the same as the state (S') except

that its volume is changed uniformly to Vn , is given by

v 4 v 2
(St) = (v +  )  (3.1)

n

where

= 4: (1)12 and 2 = 42E(1 )6 (3.2)
1 r 2 r

1 and 2 are for the state (S').

All the simulations started from an ordered structure and

continued for 20,000 to 25,000 steps/particle where the first

5000 steps/particle wre discarded as the transition period needed

to get to the equilibrium.

In order to find out how fast the technique responds to a

sudden pressure change,- at the temperature of 400K the simulation

started with the external pressure being at 0. kbar then at 12,000

step /particle it was changed to 2.0 kbar and simulation proceeded



up to 29,000 step/ particle . At this point the external pressure

was again changed to 4.0 kbar,In Fig. 3.1a and b the program

responses for the internal pressure and the volume of the 32

particle system are shown.

The simulation results at the temperature of 37.3 0K and

the pressure of 1.87 kbar are within the 0.1% agreement of the

molecular dynamics results [D75]. The results for 32 and 108

particle systems shows no significant number dependence effects.

The simulation results of an isobar line in solid phase

(P = 1.0 kbar) are shown in Fig. 3.2 along with experimental

data [L74, A75, Z79] . The molar volume agreement with the experi-

mental result is to within 0.5%, the bulk modulus is to within

2.0%, the specific heat at constant pressure to within 24.0%

and thermal expansion coefficient to within 24.0%. The discrepancies

are mainly due to the Lennard Jones potential where its long range

interaction is in error by a factor of 2 [B76], although the

quantum corrections may slightly change the results. The tempera-

ture was increased to the liquid phase in order to observe the melt-

ing of the system. It is seen from Fig. 3.3 that there are jumps

in the range of 100-1100 K in the potential energy and the volume

of the system. The melting experimental value at 1 kbar is

about 108 0K [A75].
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Fig. 3.2a Calculated (1) and experimental(O) molar volume Of solid
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Fig. 3.2b Calculated (0) and experimental (0) bulk modulus of solid

argon as a function temperature at 1.0 pressure.
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Fig. 3.2c Calculated (0) and experimental (0) thermal expansion

coefficient of solid argon as a function of temperature

at 1.0 kbar pressure.
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Fig. 3.2d Calculated (0) and experimental (0) specfic heat of solid

argon as a function of temperature at 1.0 pressure.
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Fig. 3.3a Calculated volume of 108 particle system of argon as a

function of temperature at 1.0 kbar pressure.
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Chapter 4

Structural and Mechanical Properties of Perfect Crystals

(Static Calculation)

4.1 Introduction

4.2 Theory

4.2.1 General Theory

4.2.2 Crystal Under Uniaxial Force

4.2.3 Numerical Results



4.1 Introduction

Necessary conditions for the thermodynamic stability of a perfect

lattice are that the crystal be mechanically stable with respect to

arbitrary small homogeneous deformations. Born [B54] derived the

mathematical expressions for these stability requirements for cubic

lattices of the Barvais type on the assumption of central faces of a

very general form.
C

The Born stability criteria recently [M72,M71] have been applied

to study the mechanical stability of cubic crystals which are deformed

homogeneously under the application of external stresses. These studies

are of interest because the values of stress and strain at which the

crystals becomemechanically unstable represent the "theoretical strength"

of the crystal. These values are upper limits for corresponding values

of a real crystal. These studies are also of interest because they

provide a stress-strain curve for a crystal at absolute zero temperature

which stress-strain curve is used as a reference for those ca°lcu-

lated in Chapter IV for finite temperature.

A mathematical procedure is presented for applying the Born

stability criteria to the determination of the mechanical stability

of cubic crystals under applied stresses in section (4.2). In section

(4.3) the calculations are carried out for (fcc) argon crystal using

Lennard-Jones potential and for (bcc) iron crystal using Johnson I

and Morse potentials. It turns out that the Johnson potential is a

much more realistic potential to be used to study mechanical properties

of iron. The "theoretical strength" of Morse potential is a factor of 7
b 10 2

lower than that of the experimental data [B56] 9x10 dyn/cm .



4.2 Theory

4.2.1 General Theory

For a cubic crystal lattice which is homogeneously deformed by

the application of external forces, the internal energy may be

expressed in terms of six independent variables that describe the unit

cell. Figures (4.1a - 4.1c) respectively illustrate convenient unit

cells for bcc and fcc crystals in the state of zero stress, and that

of a bcc crystal with a normal stress applied parallel to an edge of the

cube. The variables ai, i=l, 2,...,6 describe the unit cell; a super-

script "o" is used to denote the values of the lattice parameters in

the absence of applied forces. The following notation [M71] is used

to express the energy of unit cell of the lattice

UI( a ,, a2 .. ) = L( ) (4.1)

In order for the lattice to be in mechanical equilibrium in the

state (a i), there must be an equilibrium of forces between the exter-

nally applied forces and the internal forces resulting from the mutual

potential energy of the atoms. This equilibrium is identically satisfied

[M71] if the "generalized forces," F. , acting on the lattice in the

state (a k ) are given by

(i (4.2)

where the F.k are defined such that the work involved is a small
1

k k k
deformation of the lattice (6a. in the state a. . The F. are

1 1 i S



al= a2 =a3=a 0

a4= a5= a6= 900

bcc

a4 al= a2= a3= a0

a4 = a 5 = a6=90°

fCC.

a l= 2 3
a3  = a 2# a3

a4= a5= a6 = 90 °

Fig. 4.1 Convenient unit cells for bcc and fcc crystals.



ic : 1(4.3)

For the special case in which the edges of the unit cell

ai, i=1,2,3 are orthogonal, Fa may be related to the normal stress

acting on the plane (of the unit cell) defined by the two edges ab

and ac (i.e., the plane perpendicular to aa) by

- (4.4)

where a,b,c are permutations of 1,2.3. Thus, under the condition of

equilibrium of forces, Eq. (4.2), the normal stress acting on a face

of the unit cell when the cell edges are perpendicular to each other is

given by

wCe) g o -, (4.5)

Equation (4.2) thus gives the conditions for the lattice to be in

equilibrium with respect to internal and external forces. However, in

order for the lattice to be in a stable equilibrium, there is an

additional constraint, namely, that the total energy of the system

consisting of the lattice in the presence of the applied forces must be

at a minimum. In other words, if the state of the lattice specified

by the six components (a ik ) is one of the stable equilibrium, there

must be required a positive expenditure of energy to go from state

(ai ) to any nearby state (ai ). This energy expenditure is equal to
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the difference in the internal potential energy between the state

(a ik ) and the state (ai ) plus the work done by the lattice on its

surroundings (i.e., the negative of the work done by the external

forces on the lattice). The difference in the internal potential

energy between the states (ai ) and (ai ) is expressed in terms of

a Taylor's series expansion

U( 41)= u( )  ,- cT ) 4

.(4.6)

The deformations (ai - a. ) are taken to be small so the series is

o k o
terminated after second-order terms. (Neither (ai -a. ) nor (ai -a. )

1 1 1 1

are necessarily small, however). In terms of the definition of

equilibrium, the generalized forces acting on the lattice in the state

(ai ) must be (-), therefore the first term on the right-hand side of

Eq. (4.6) is seen to be identically equal to the work done by the

external forces in going from state(a ik ) to state (a). Thus a
i 1

positive expenditure of energy will be required for this transition if

and only if the second term on the right-hand side of Eq. (4.6) is

positive. For convenience, let

a.

The double sum in Eq. (4.6) will be positive for an arbitrary

deformation [l452] (ai -a. ) if and only if the principal minors of the1 1
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k
determinant IB.ij I are all positive. Thus, the condition for stable

equilibrium is that the determinant of the matrices of successive

orders as marked out below (principal minors) are all positive.

B11 B12 B13 B14 B15 B16

B21 B22 B23 B24 B25 B26

K B31 B32 B33 B34 B35 B36

B41 B42 B43 B44 B45 B46
(4.8)

B51 B52 B53 B54 B55 B56

B61 B62 B63 B64 B65 B66

k k
Rewriting Eq. (4.6) in terms of F. and B.. as

1 ij

SU(it) 2 -+a, 2 d.- )(4.9)

and differentiating the above equation with respect to ai gives

9d. 2 : () (4.10)
'J ul "° " a

For application of the above formalism to a specific crystal, in general,

the reader may refer to the discussion by Milstein [M711. A specific

application is given in the following section.
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4.2.2 Crystal Under Uniaxial Force

For a cubic crystal with a uniaxial force applied perpendicular

to one of its faces, parallel to, say the edge al, and in the absence

of applied shear stresses, the components a4 ,a5 and a6 will retain

their initial values of f/2 (at least up until failure occurs). For a

tensile force, the edge al will elongate and the edges a2 and a3 will

contract. By symmetry it is seen that the relation a2=a3 will be

maintained. (The deformed crystal will possess tetragonal symmetry).

An equilibrium state (a k ) must satisfy the conditons of force

equilibrium

(4.11)

and

(4.12)

where

O1 = a and a.. 45 44 /2 (4.13)

k
and F1 is the applied load. The normal stress in the al direction

is simply

CqZ  (4.14)

As a result of the symmetry of the crystal structure, for i=4,5,6

the equations summarized in Eq. (4.11) are identically satisfied



and for i=2,3 these equations are identical to each other. Hence,

the relations (4.11) will be satisfied if

du I f o

(4i,
(4.15)

Furthermore, the special symmetry of the crystal in this case also

greatly simplifies the matrix elements B.. [M71].J-J

B11

B12

B
1 2

0

0

0

B12

B22

B23

0

0

0

B12

B23

B22

0

0

0

0

0

0

B44

0

0

0

0

0

0

B55

0

0

0

0

0

0

B55

(4.16)

The principal minors in the determinant of the above matrix for-a lattice

with central pairwise interatomic forces will be [M71] positive if

B12 > 0

B23 > 0

B22 - B23 >0 (4.17)

and B11 (B2 2+B23 ) - 2(B1 2 )
2 >0

and Eqs. (4.9 and 4.10) become

I C e 'C
+4q (aa-4) z fz4

r

I
F t FX

I /
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S( 4(4.18)

Rearranging Eq. (4.18) gives

(4.19a)

1=2 t c33)] C Q- C) (4.19b)

Therefore the iteration process may begin with the known values

k k o k
of the lattice parameters a1 = a2 = a for which all F. = 0. After

k
calculating the values of Bij , the lattice parameter a is elongated

k k
by a small amount (al -alk ). The value of a2k (for which F2 =0)

is then found from Eq. (4.19a), and the value Fl (which results in

elongation (al -alk)) may be determined from Eq. 4.19b). The values of

Bij are evaluated for these values of lattice parameters and the

iteration process is repeated until one of the stability relations is

violated. The value of F1 /(af 2 at which the instability occurs is

the theoretical strength (stress) of the crystal and (a1 f-a o/al
° is

the theoretical uniaxial strain.

4.2.3 Numerical Results

In the previous section, it has been assumed implicitly that for

a given set of lattice parameters (ai) the quantities F. and B.. can

be calculated.

For a cubic crystal in which the atoms interact in a central

pairwise potential, (1l). The -internal energy per unit cell is



written as

Ca;) (4.20)

where n is the number of atoms per unit cell and r. is the distance

from an arbitrary atom in the lattice (chosen as the origin) to the

th
j atom. This distance in a bcc or fcc crystal lattice which is

subject to uniform deformations may be written as

3

r-= -  ; Q. a . (4.21)

where a. are unit vectors in the direction of the cell edges ai,1

and all the 1. are integers.
1

The quantities F. and B.. are given [M71] as
1 1J

F = L Y) aI 'g -a 3 2 2 -(4.22a)-4 4Cr')

J- M t 2 1 4 J Y, (4.22b)

Bill 2 ba, -A. (4.22c)

The remaining Bij may be found by switching subscripts in the above

equations. For example, to find B22 , al and P1 are changed to a2

and 12 in Eq. (4.22b).

The static calculation method described above was used to

investigate the response of a crystal to a uniaxially applied external
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force along the (001) direction at zero temperature. The results are

used as references to the corresponding results simulated for the same

systems at finite temperature in Chapter 5. The following potential

functions were used to describe the interatomic interaction between

the atoms in the crystal:

i) Lennard-Jones

o, [ ) (r )'J (4.23)

The parameters E and a are chosen such that the potential

represents an Argon crystal, the same value used in Chapter 3.

2 2
The potential was truncated at the distance rc =4.95 a , again the

same value used in Chapters 3 and 5. The results are summarized in

Fig. 4.2. It is seen that the static method predicts . there is

only one stable structure under condition of no stress for this

truncated Lennard-Jones potential and it is the fcr structure with

the lattice constant of 1.573a (al=a2=a3=1.573a and a =a5=a6=0).

The body centered tetragonal (al=1.193a, a2=a 3=1.853 and a4=a5=a6=0)

structures are unstable. It also predicts that at the tensile load

greater than 2100 bar and the compressive load greater than 1000 bar

there is no stable structure; in other words the system at these loads fails.

Those values are the tensile and compressive theoretical strengths

respectively. The discontinuities in the stress - strain curve are due

to the discontinuity in the potential used.

ii) Morse Potential

(4.24)

+(r) D C ZOr ( 01 )- 2 yi rollf
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The values of the potential parameters used in the present

calculation are those given for the bcc iron [G53]. The potential

was truncated at a distance of 14.76 A'. This is long enough to

ignore the long range interaction effect. The results are shown

in Fig. 4.3, as it is seen there are two stable structures at no

stress condition which are bcc and fcc structures with lattice

constant of 2.86 and 3.606 A* respectively. At the tensile load

of 1.21*1010dyn/cm2 the bcc structure become unstable. This value

is the theoretical tensile strength which is almost an order of

magnitude smaller than the experimental value of 13x1010 dyn/cm2

b
[B56]. On the basis of this result we conclude that the Morse

potential will not lead to a sufficiently realistic simulation of

the mechanical properties of bcc iron.

iii) Johnson Potential [J64]

The empirical Johnson potential is shown in Fig. 5.8 The

results obtained using this potential are summarized in Fig. 4.4.

The results are markedly different from the corresponding

results of the Morse potential. Again these are bcc and fcc stable

structures under the condition of no stress with the lattice constant

of 2.86 and 3.70 A0 respectively. The correct prediction of bcc lattice

constant by both Morse and Johnson potential is expected because the

bcc lattice constant is one of the properties used to construct both

potentials. The calculated fcc lattice constant is greater than the

experimental value of 3.55 AO[L61] by 2% and 4.2% for Morse and

Johnson potential respectively. In the figure 4.6 the transformation

from deformed bcc to deformed fcc under tension is shown by A-+A'
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and transformation from deformed fcc to deformed bcc under compression

is shown by B'-+B. The calculated theoretical tensile strength is

9*1010 dyn/cm 2 for the bcc structure which is off by 35% from the

experimental value of 13*1010 dyn/cm 2 . One would expect that the

calculated theoretical strength to be greater than the experimental

value becauseAlthoughthe experimental value is measured for fine

iron whisters, it is not 100% pure and single crystal iron. The

overall conclusion is that the Johnson I is a more reasonable potential

than the Morse potential to be used in simulating the mechanical

properties of fcc iron.
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Chapter 5

Structural and Mechanical Properties of Crystals

5.1 Introduction

5.2 Study of Argon Crystal Under Uniaxial Stresses

5.2.1 System Under Compressive Load

5.2.2 Structural Transformation Under Compression (fcc-+hcp)

5.2.3 System Under Tensile Load

5.2.4 Stable Structure Under No Stress

5.2.5 Stress-Strain Curves

5.3 Study of Iron Crystal Under Uniaxial Load

5.3.1 Simulation Model

5.3.2 Bcc Crystal Under Uniaxial Load

5.3.3 Structural Transformation Under Tension (bcc-+fcc)

5.3.4 Structural Transformation Under Compression (fcc-*bcc)



5.1 Introduction

The behavior of solids under the combined effects of external

stress and of temperature has considerable practical relevence. Yet

even in the idealized case of a perfect crystal, a detailed micros-

copic picture of such effects is still lacking. Most of the theoretical

studies [H77, M72, M71, M80] have been confined to conditions at zero

temperature, in addition a perfect prefixed crystalline arrangement of

the atoms has been assumed. These two assumptions may lead to useful

insights for relatively small values of the stress and temperature.

However, it is obviously desirable to be able to study the behavior

of solids at normal temperatures and high levels of external stress.

In particular, at high values of the stress spontaneous defect genera-

tion and/or crystal structure transformation become possible. This

makes the assumption of a perfect, even if elastically distorted

crystalline arrangement untenable. Furthermore, the stresses -where these

processes occur are dependent on the temperature.

In the first part of this chapter the work done based on the

improved Monte Carlo method is presented. The model system which has

been used is a system of classical particles interacting through a

pairwise additive potential of the Lennard-Jones type. The parameters

of potential have been determined {H64] to represent a.rgon systems,

the values being the same as those used in Chapter 3. This model of

argon was used in this study primarily for two reasons. First,

Macmillan and Kelly [M72c, b] have made static calculations of stress-

strain relation using this model of argon. Also Squire et al. [S69]

have calculated elastic constants of argon at different temperatures.
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These calculations provide convenient checks for our method of calcu-

lation. Secondly, isothermal bulk modulus have been measured for

argon [P65]. So direct comparison between model calculation and

experiment is possible.

The fcc crystal of argon was studied under uniform uniaxial load

along [001] at 40 K. As the load was increased, the crystal homogeneously

deformed and maintained its face centered tetragonal symmetry all the

time. Beyond a value of 600 bar tension the system failed. It turns

out that it is much smaller than the theoretical value of 3700 bar pre-

veiously reported [1M72]. As the compression load increased beyond a

value of 350 bar the system transformed to an hcp structure by a

combination of large deformation and relative sliding of the (100)

planes. The transformation fcc-hcp under compression loading has

been observed by Parrinelloand Rahman [P81] in a molecular dynamics

simulation using a 500 particle system with a Morse potential

describing the interaction between nickel atoms. On the basis of the

two above fcc-hcp transformations, the fact that there is no bcc stable

structure for the two above potentials, and the observation that the

fcc-bcc transformation does occur for Johnson I potential as discussed

in the second part of the chapter, one can conclude that the fcc--hcp

transformation is more a manifestation of those potentials that will

not stablize a bcc structure.

The calculated strain-stress curve for argon system at 40 K

is compared with that of the static calculation (Chapter 4) and the

b
published results [M72]. The effect of temperature on the stress-



strain curve at high stresses is significant, see Fig. 5.6. Temperature

effects on the elastic constants result in a 12.8% decrease in cll and

6.4% increase in c12 relative to their zero temperature values res-

pectively. The calculated isothermal bulk modulus of 16.75 kbar is

22% lower than the experimental value [P65].

There exists a class of structural transformations in solids

called the martensitic transformations which are common in iron, iron

alloy, and many other materials [B5 6]. This transformation, which

occurs rapidly with a velocity approaching that of sound wave in the

crystals [C65], is believed to occur through either a classical or a

non-classical path [081,082]. In classical path theory a nucleus

having the product structure is created, whereas in a non-classical

path the product is produced in a finite region through a continuous

deformation of the parent structure. An example of non-classical

martensitic transformations is the transformation predicted theoreti-

cally by Bain [B24] who suggested that under a compressive load one

should be able to observe an fcc to bcc transformation, as is shown

in Fig. 5.1. Such a transformation has been observed experimentally

when fcc iron is quenched [Z65].

Martensitic transformations are defined as a subset of diffusion-

less displacive transformations, with sufficiently large lattice-

distortive shear displacements that the transformation kinetics and

product morphology are dominated by strain energy [082].

In the second part of this chapter we present the mechanical and

structural properties of a model system of iron crystal where the

Johnson I potential [J64] is used to describe the interatomic



Fig. 5.1 The fcc lattice with a body centered tetragonal cell picked out of it.
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interaction. The bcc iron behavior under the uniaxial tensile load

along the [001] direction was studied using the improved Monte

Carlo method described in Section 2.5. The system under tensile

load deformed homogeneously by expanding in [001] direction and con-

tracting in the [010] and [100] directions (by the same amount). The

deformed structure was always body centered tetragonal. At the

tensile load of 6-*1010 dyn/cm 2 the system transformed to a deformed

fcc structure. The fcc structure then was studied under the com-

pressive load. Up to 5.5*1010 dyn/cm 2 the system behaved normally

like, the fcc argon under the compressive load. At the 5.5*1010

dyn/cm2 load the fcc structure transformed to a new structure which

was found to be the bcc structure when the load was removed. These

non-classical Martensitic transformations,the bccfcc and fcc-bcc under

the uniaxial tensile and compressive load respectively ,can not be

explained by the thermal activation energy concept for two reasons.

First,,they can occur even at zero temperature as it is shown in the

stress-strain curve calculated using the static method in Chapter 4.

Secondly, in the case of the bcc-)fcc transformation the total energy

of the system is increased (the total energy is the same as the free

energy of the system at zero temperature). At the transformation

points the parent structure is mechanically unstable, therefore the

system transforms to a structure at which it is mechanically stable.

Thus these transformations are not induced by the temperature,

although the stresses at which they occur are dependent on the

temperature. For example,the bcc-fcc occurs at 9*1010 and 6*1010
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2 0
dyn/cm for the system at 0 and 70 K respectively, and also the

fcc+bcc occurs at 7.7*1010 and 5.5*1010 dyn/cm 2 for the system at
0

zero and 70 K respectively.

The calculated stress-strain curve for the system at 70 K is

in good agreement with that obtained using the static method described

in Chapter 4. The stress-strain for a iron under tensile load is also

in agreement with the stress-strain curve measured for a iron whiskers
b

[B56] to within 12% error. This latter agreement confirms that the

Johnson I potential is a more realistic potential for simulating

mechanical properties of a iron than the Morse potential (See Chapter 4).

In the section 5.3 we describe the system and the simulated results

obtained for the iron crystal.



5.2 Study of Argon Crystal Under Uniaxial Load

The simulations were carried out on a perfect 3-dimensional fcc

system consisting of particles interacting through the truncated

Lennard-Jones 12-6 potential with the flexible periodic border

condition described in Chapter 2 to avoid surface problems. Although

most of the simulations were carried out on a 32 particles system?

some simulations were also carried out on a 108 particle system to

confirm firstly the number dependence effects on the quantities calcu-

lated here, -for example strains, is negligible, and secondly and more

importantly, the transformation is not an artifact of the small system

of simulation. It was found out that the results for the 108 particle

system were the same as those of the 32 particles system within the

statistical uncertainty of the results. The Lennard-Jones potential

used was truncated at the midpoint between the second and the third

neighbor for the system under no stress at 40 K, i.e. the cut

2 2
off range was chosen to be r =4.95 a . Usually the cut off range

should be chosen to be less than half of the simulation cell size in

order to avoid the unphysical interaction between a particle and its

own images. Although our cut off range does not satisfy this criterion

in the case of the 32 particle system, the results for the 108 particles

system showed that the effect is not significant, at least at the

rather low temperature of 40 K (melting point of argon system is about
0

110 K).

The simulations started with a perfect fcc lattice configuration

i.e., the particles were placed on the lattice sites and the h matrix

describing the unit cell for 32 particle system was:



h =

3.222 0 0

0 3.222 0

0 0 3.222 (5.1)

The values of the elements of matrix h are the values found for

o

the perfect system at 40 K and zero external pressure in Chapter 3.

These initial values do not have to be exactly the equilibrium values.

In general, they could be any values if all the interaction neighbors

are considered in evaluating the total potential energy of the system.

In cases where the interaction potential between the particles is

truncated at some distance or there are discontinuities in the

potential function, as it is the case in all the dynamical simula-

tion studies, these values must be close to or smaller than that of

the equilibrium values so that the number of particles which are

neighbors to each particle in the system with the initial h is more

than or equal to the corresponding number in the equilibrium condition.

The bookkeeping of neighbor particles as simulation goes on is made

by the method described by Deutsch [D75].

The 6 parameters defined in Section 2.7 throughout the simulations

were:

.03f .03a .03a
h .03a .030

.030] (5.2)

6 = .28cy

f
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where a is the Lennard-Jones parameter. Throughout the simulations the

internal stresses were calculated in order to monitor the equilibrium

between internal and external stresses. Also the pair correlation

function and snapshots of the particles were calculated to confirm

the crystal structure which in the first place was predicted from the

relationship between the unit cell dimensions.

5.2.1 System Under Compressive Load

A uniaxial compressive stress along [0011 direction was applied

on the system. Under the action of such a load the matrix h started

to change in a well-defined manner, as expected, by a contraction in

the [001] direction and expansion in the [100] and [010] directions,

while deforming homogeneously and preserving its face centered

tetragonal structure (h22=h33 and h12=h13=h23=0) to a high degree of

accuracy. All runs were made for 5000-7000 steps/particle where the

first 1000 steps/particles were discarded as the equilibrium period.

This was long enough to let the system reach equilibrium as could be

seen from the variation, say, of h, as the simulation proceeds. The

ensemble averages were calculated over the last 4800-6000 steps/

particle. One could get a better statistical error by averaging over

a longer time. The standard deviation of the element hll of the

matrix h at the compressive stress of 200 bar was 0.15%.

The responses of the 32 particles system at 40 K to the compressive

load 150, 200, and 300 bar were calculated. The simulation for the

system under 300 bar was also carried out on the 108 particle system

and as it was mentioned earlier, no significant difference between

the 32 and 108 particles system was observed (for example at the
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compression of 200 bar hll was 1.54 (1 + 0.15%) for the 32 particles
2

system and hll was 1.54 (1 + 0.12%) for the 108 particle system). At
3

the300 bar load,after 6000 steps/particlesthe load on the 32 particle

system was reduced to 200 bar. The results were the same as those of

200 bar previously found,and then after another 4000 steps/particle

the 200 bar load was removed the system went back to its original fcc

structure. The 300 bar load was also removed from the 108 particle

system and it also went back to its original fcc structure. The

results are shown in Figs. 5.6 and 5.7.

5.2.2 Structure Transformation Under Compression (fcc-+hcp)

When the compressive load was increased to 400 bar, the system

behavior changed markedly. In the new structural equilibrium the

system was not tetragonal any more, and a careful analysis of the

snapshots showed that the new structure was a deformed hcp. When the

load was removed either suddenly or in two steps, the system did not

return to the fcc structure, instead the hcp structure was obtained.

The h for the hcp structure was

3.732 0 0

h = 0 3.952 0

0 0 2.260 (5.3)

which corresponds to an hcp structure whose closed packed planes

(0001) are parallel to the (010) planes of the fcc structures. The

[0001] axis in this case was parallel to the load direction. An hcp

structure with the above orientation has the dimensions:



hl1 = c = 4 a
11  a

h 2 2 =j3 a (5.4)

H33 = a

h.. =0 f=j

where a is the nearest neighbor distance of the perfect hcp system

at 40 K. The changes in size and shape associated with this trans-

formation are shown in Fig. 5. 2

The h matrix found for 350 bar was used as initial value to

study the response of the hcp structure as the load is increased.

The results of the system under 450, 550, and 600 bar are shown in

Fig. 5.6 and 5.7. As it can be seen from Fig. 5.6,the new structure

is very hard to compress. This is expected since the load direction

and closed packed planes are parallel.

The transformation mechanism [P811] is depicted in Fig. 5.3. Two

adjacent planes (010) of the perfect fcc system in Fig. 5.3a is

deformed to that of Fig. 5.3b as the compressive load is increased,

beyond 300bar the structure changes to that shown in Fig. 5.!c.

This change is accomplished by the sliding of the alternative planes

(010). After the transformation has occurred, the dimensions of

the unit cell in the directions [010] and [100] were not the same as

they were before the transformation. Notice that this fcc-hcp

transformation is not the one that can be found by shuffling of closed

packed planes. In the

(-A-B-C-A-B-C-) is transformed to the hcp structure (-A-B-A-B-) such
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that the closed packed planes have the same orientation in both

structures. In the transformation observed here the closed packed

planes in fcc structure are normal to the [111] direction and those

of hcp are normal to the[010] direction.

5.2.3 System Under Tensile Load

The uniaxial tensile load along the [001] direction was applied

to the system to study its behavior under tension. The simulation

again started with the perfect fcc configuration and tensile loads

of 100, 200, 400, 500, and 600 bar were applied on the 32 particle

system and 100, 500, and 600 bar on the 108 particle system. Again

the results for both systems were the same within the statistical

uncertainty. The system behavior was, as it is expected, elongation

in the [001] direction and contraction in the [010] and [100] directions.

Under this range of stress the structure was face centered tetragonal

to within high accuracy; for exampleat the tensile load of 400 bar

the average values of the elements of h were h11 = 3.324 (1 + .15%),

h22 = h3 3 = 3.188 (1 + .15%) and h1 2 = h13 = h23 = 3.22 (0 + .2%).

As the tensile load was increased beyond 600 bar the system was

not able to maintain a stable configuration. The elements of matrix

hwhich describes the shape of the systemwere diverging as the

simulation proceded. shown in Fig. 5.4. We can conclude that the

theoretical tensile strength of the a.rgon system at the temperature
0

40 K is 600 bar. This value of the critical load is much smaller

b
than the reported static calculation value of 3700 [M72] and 2100

bar found in Chapter 4. by static calculation. Therefore,heating
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Fig. 5.4 (cont'd)
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up the argon system from zero temperature to 40 K apparently causes the

theoretical tensile strength to drop about by a factor of 3.5.

The lattice constants at zero and 40 K are 1.573a (Chapter 4) and

1.611 a respectively. This means that at 40 K the thermal strain

is 2.42%. Notice that this is only the average strains while the

instantaneous strain is fluctuating about this value. The system

fails when the instantaneous strain along the load direction [001]

becomes greater than the critical strain value. If we assume the

critical strain value is the one found in Chapter 4 by static

calculation, i.e. 11.5%, t'hen the difference of the theoretical

tensile strength at 0 and 40 K could be explained partly because at
0

40 K there is an additional 2.42% average thermal strain. This means

for the same total average strain the system at 40 K is under lower

stress, and partly because the system fails when the instantaneous

strain value is greater than critical strain no matter if the

average strain is not greater than the critical value.

5.2.4 Stable Structure Under No Stress

It has been predicted [B241 that an fcc to bcc transformation

is possible under compression. Since such a transformation was not

observed in our simulation, it is important to determine if the reason

was because the fcc-hcp transition occurs first or the fcc--bcc trans-

formation does not occur at all. A simulation was started with the

corresponding size of a bcc structure under no stress, i.e. the

initial matrix h was:



3.617 0 0

h= 0 3.617 0

0 0 2.557 (5.5)

The system was unstable and quickly went to the fcc structure.

This observation confirms the static calculation result of Chapter 4

that predicts there is no bcc structure which could be stabilized

by the Lennard-Jones potential.

5.2.5 Stress-Strain Curve

The strain as a function of applied stress for the argon system is

shown in Fig. 5.5 along with the Macmillan's static calculation [M72]

and the one also calculated by the static method in Chapter 4. As it is

seen from the Fig. 5.5,the effect of the temperature is small at low

stress (<+100 bar) but it becomes significant at higher stresses. This

shows that the static calculation, which is valid at zero temperature, is

a good approximation at low stresses for the system at finite temperature.

At low stresses the stress-strain relationship is a = c c where

r I

saa (aa
T3C"-* C4

LI61f

Tillt~
. j

5( K
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Fig. 5.5 Stress-strain under uniaxial load for truncated Lennard Jones

potential. Solid line is the static calculation, the dashed line

is Macmillan's results and closed circles are Monte Carlo results

at T=40 0K.
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For a cubic system

1.L C,.

12  CIL

0 0

0 0
o o

the elastic constant matrix c is:

C2. 0 0 0

0 4q O 0

o 0 0

0 o C44

In the fcc system under uniaxial load i.e.,

the structure was always face centered tetragonal i.e.

-Xj( UK •/ = f--r-i

(5.7)

(5.8)

* - 6

6-Y = 6Aff W yJ a 0
(5.9)

Substituting Eqs. (5.8) and (5.9) into a = c e one obtains:

= (C,, - a,12. )( zC,)/(1 . C11 )

- ( C 1 - 12. )( C al + 2 /) 'I (5.10)

The right hand sides of Eq. (5.10) are the slopes of strain-stress

curves. Substituting these slopes into Eq. (5.10) the elastic constants

for the simulation and static calculation were calculated. The elastic

constants c11 and c12 calculated by different methods are given in

Table 5.1
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(kbar) (kbar)
C1 1  c12'

MacMillan's 33.28 15.66

Squire's 28.4 16.1

Static Cal. 33.23 19.98

Simulation 28.99 21.26

Table 5.1 Elastic Constants Calculated by Different Methods

The Macmillan's elastic constants are for the Lennard-Jones

potential and the Squire's are the conventional Monte Carlo results

for 108 particles system at 40 K with the Lennard-Jones potential

[to within a good approximation], while the last two rows in Table 5.1

are the results for a truncated Lennard-Jones potential. Therefore

the temperature effect could be seen from the changes in elastic

constants in row 1 to row 2 and in row 3 to row 4 in Table 5.1 which

is a decrease of 17.7 to 12.8% in c11 and an increase of 2.8 to 6.4%

in c12 . Also the effect of cutting off the potential at some distance

can be seen by comparing row 1 with row 3 and row 2 with row 4 which is

significant in the elastic constant c12 and negligible in the elastic

constant C11'

The isothermal bulk modulus can be written [S69] as

8 = C e 2 (5.11)

which is valid only at zero pressure. Then the BT for our simulation
0

results in 16.75 kbar whereas the experimental value at 40 K is
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21.74.units. The calculated BT is lower by 6%. This means that including

long range interaction improves the results. There are no experi-

mental values for the isothermal elastic constants [S69], so a

direct comparison between calculated and experimental isothermal

elastic constants for the argon system is not possible at this point.

5.3 Study of Iron Crystal Under Uniaxial Load

5.3.1 Simulation Model

The system used to carry out the calculations consisted of 32

classical particles in a perfect 3-dimensional crystal lattice with

the flexible border condition described in Chapter 2. The particles

interact through a short range, empirical potential called Johnson I

shown in Fig. 5.8. As can be seen from Fig. 5.1, the [100], [010],

and [001] directions for the fcc structure are taken to be along the

coordinate axes. The [100], [010] and [001] directions for the

bcc structure are the [100], [010] and [001] directions for

rotated":by 450 in the xy plane.

The optimized matrix 6h and 6m determined by the method des-

cribed in Section (2.6) have the following values:

a036 0-O01 o. Ce

0.0 36 o.ooq

0.• 0 36

m = .ozo (5.12)

Throughout the simulations the temperature and pressure were kept at

0
70 K and zero respectively. The internal stresses were calculated

to monitor their balance with the externally applied stresses.
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The pair correlation function and snapshots of particles were also

calculated to confirm the structure of the system found from the

equilibrium value of matrix h.

5.3.2 BCC Crystal Under Uniaxial Load

The simulation started with the system in a perfect lattice

configuration. The corresponding matrix h describing the simulation

cell of 32 particles being:

r.oq a 0

h o s.oq o A
(5.13)

where this corresponds to a bcc structure with lattice constant 2.86A

found in Chapter 4. The system responses to uniaxial compressive and

tensile loads applied along the [001] direction up to 5.5 * 1010

dyn/cm2 and 6.0*1010 dyn/cm 2 were calculated respectively. As the

tensile (compressive) load was increased the bcc structure expanded

(contracted) in the [001] direction and contracted (expanded) in the

[010] and [100] directions (by the same amount) such that the angles

between the a, b, and c vectors (see Section 2.2) remained at 900

to within an accuracy of +.010. The results are summarized in Fig.

5.9.

The simulation results at the relatively low temperature of 70K

are in good agreement with the static calculation of Chapter 4, see

Fig. 5.10. Also the results are in good agreement with the experimental
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Fig. 5.10 Calculated and experimental stress-strain curves for 0c iron

(Johnson potential). Solid line is static results, is Monte

Carlo results and dashed line is the experimental results.



b10
data [B56] of a 3.81 diameter whisker of a iron up to 1.0*10

2  o
dyn/cm . The experimental data is at room temperature (u300K)

The temperature difference between experimental and simulated

10 2data will lower further than the 1.0*1010 dyn/cm stress because

of thermal motions, as it was explained in the case of the argon

system. Above the 1.0*1010dyn/cm2 tensile stress the discrepancy

-rises as the stress increases and at 4.0*1010 dyn/cm 2 the calculated

strain is larger than the experimental value by 12% (not including the

temperature difference effect) ,see Fig. 5.10.

5.3.3 Structural Transformation Under Tension (bcc~-fcc)

At a.tensile load of 6*1010dyn/cm2 the bcc structure transformed

into a deformed fcc (face centered tetragonal): The load was then

decreased to 3*1010dyn/cm2 and then to zero. At zero load the system

was found to be a perfect fcc structure. This first was seen from the

matrix h given in Eq. (5.13) and was confirmed by the snapshots of the

particles.

h = 0 7.4 0 A

= 7.4 (5.14)

O 0 7 . 4

This corresponded to a fcc structure with the lattice constants of

3.70A °. This value turned out to be greater than the experimental

value[L61] of 3.55A ° by 4.2%. The difference is due to the potential

used to describe the interatomic interaction, because the Johnson I

potential is originally being constructed from the experimental

lattice constant and elastic constants of (bcc) iron.
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The critical loading of 6.0*1010dyn/cm 2 at which the bcc+fcc

transformation occurs is less than that given by the static calculation,

9*1010dyn/cm2 in Chapter 4. The reason for such a difference is

explained in terms of thermal contribution to the total strain and the

fact that the transformation occurs when the instantaneous strain is

greater than the critical strain. This was described in the case of the

argon system failure in Section 5.2.2. The potential energy or

enthalpy of the system (the pressure is zero) in this transformation is

increased from -48.46 to -47.66ev (in zero temperature from -48.4 to

-47.53ev), see Fig. 5.12. Therefore this transformation cannot be

explained in terms of the free energy concept. What happens is that the

bcc structure cannot at the same time keep its body centered tetragonal

symmetry and also match the internal and external stresses, or in

other words,there is no body centered tetragonal structure that could

10 0 10 2
have internal stress of 6*10 at 70K (9*10 dyn/cm at zero temperature)

along [001] direction. Thus the system at the critical stress is

mechanically unstable and it will seek another structure, in this case

a face centered tetragonal, which could have such an internal stress

regardless of the potential energy being increased. In Fig. 5.11

potential, internal stress along the load direction and some elements

of matrix h are shown as the transformation occurs.

5.3.4 Structural Transformation Under Compression

The fcc structure found in Section 5.3.3 was subjected to tensile

and compressive loads and the results are summarized in Fig. 5.9.
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At compressive load of 5.5*1010dyn/cm 2 the fcc system transformed

to a deformed bcc structure (body centered tetragonal structure).

The load was then removed and the system went to a perfect bcc

structure. Again the critical stress was smaller than the value of

7.74*1010dyn/cm2 predicted by the static calculation in Chapter 4. Our

explanation of this difference is also the thermal motion effect

which was described in Section 5.2.2. In this transformation fcc+bcc

at the critical stress the potential energy is decreased, in contrast

to the bcc-+fcc, from -47.53 to -48.65ev (from -47.65 to -48.93ev at

zero temperature), see Fig. 5.12. Although in this case the trans-

formation is energetically favorable, it is the mechanical instability,

as explained in Section 5.3.3, that starts the transformation and

the temperature effect that cause the critical stress to be reduced.
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Chapter 6

Structure and Mechanical Responses of Bicrystals

6.1 Introduction

6.2 Bicrystal System and Border Condition

6.3 Responses of Bicrystal to Uniaxial Loading

6.4 Responses of Bicrystal to Shear Loading
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6.1 Introduction

Most of the practical engineering materials are in the form of

polycrystals; however, because of the simplicity of investigation and

interpretation of results, scientific research is more widely conducted

on single crystals. As might be expected, the properties of poly-

crystals are not always the same as those of single crystals of

identical chemical composition and structure. The difference in

properties arises from [P 75]:

(i) Factors that are inherent in the properties of individual

grains, such as size and shape, and in the relationship between grains

such as mutual orientation. Plastic properties of materials are

especially sensitive to these factors.

(ii) Factors that are intrinsic properties of the boundary

surfaces between individual grains, i.e., of the grain boundaries of

polycrystalline materials. The basis of these properties is the fact

that a grain boundary is essentially a region physically distinct from

the grains that it binds. This region gives rise to such phenomena as

grain boundary segregation, enhanced diffusion along the grain boundary,

etc.

In general, the effects from the two contributions are difficult

to distinguish, especially in the case of materials having complicated

grain boundaries. It is much easier to distinguish between the effects

due to the grain boundary itself and the effects due to interaction

between grains when there are only two grains to deal with. For this

reason, it is appropriate to study the behavior of bicrystals, i.e.,

two similar single crystals of arbitrary relative orientation bounded
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together by a simple grain boundary.

Much progress has been made in the detailed understanding of low-

angle grain boundaries. The dislocations model for a low-angle grain

boundary is now well established [P75]. Knowledge of the properties of

high-angle grain boundaries, however, remains to some extent incomplete.

A large number of atomistic studies of grain boundaries (mostly high-

angle) have been made in recent years and they are now one of the

principal sources of our understanding of grain boundary properties,

for reviews see [H76, V80]. The majority of atomistic studies has been

carried out for coincidence site lattice boundaries. The coincidence

site lattice grain boundary has a lower energy state than those non-

coincidence boundaries with almost the same misorientation angle and

also structural units of the boundary are inherently small in size and

contain such a small number of atoms that the atomistic configuration

in these units could be calculated by computer simulation more

realistically than the non-coincidence site lattice grain boundary [W71].

There has been relatively few attempts [J70] so far to study the

mechanical responses of a bicrystal to a uniaxial loading, and there

is no study of the mechanical responses of a bicrystal to a shear

loading. The experimental work has shown [L77] that the behavior of

bicrystals under compression is significantly different from that of

single crystals.

In this work we are interested in the mechanical behavior of a

two dimensional bicrystal under uniaxial and shear loading. In the

next section the system and the border condition used are described.

It was found in section 6.3 that the bicrystal deforms more than

the single crystal under unixial tensile and compressive loads normal
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to the grain boundary plane (line). In section 6.4 the grain boundary

movement was observed under shear loading when the load was greater

than the critical value of 0.2 (dimensionless).

6.2 Bicrystal System and Border Conditions

The grain boundary system chosen for simulation study by our

improved MC was a symmetric-tilt coincidence grain boundary with the

reciprocal density of coincidence sites E=7, as is shown in Fig. 6.1.

The thermodynamic properties of this system have been previously

studied by molecular dynamics simulation [K78, C82]. The 56 particles

in the system interact through the Lennard-Jones 12-6 potential with

its cut off range being the midpoint between the second and third

nearest neighbors. From the Fig. 6.1 it can be seen that the con-

figuration is not a minimum energy configuration because the particles

"2" and "56", and also "28" and "30" are too close to each other in

the grain boundary core. The system therefore needs to be allowed

to relax. There are different ways of relaxation [B82]. In this

work we always started the simulations with the relaxed configuration

found by Kwok [K78] for the same system. Ideally, when modeling a

grain boundary a perfectly flexible border condition should be applied

in every direction and it should act to give the same results as if

the small grain boundary system were embedded in a large system, thus

avoiding surface effects to as large an extent as possible. Among

the variety of border conditions used in atomistic computer simula-

tion the periodic border condition is commonly used for the small

system size such as the one used here. However, the periodic border
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in our system introduces an interesting artifact, namely, a second

grain boundary at the border[B82]. This second boundary is crystallo-

graphically identical to the first one, but of opposite rotational

sense [B82]. In conventional periodic border the shape and the

dimensions of the simulation cell are predetermined and kept fixed

throughout the simulation. This border condition is reasonable for

simulating a perfect system, because the equilibrium shape and the

dimensions of the system under any condition are known to a good

extent. When simulating a system with defects in it, the equilibrium

shape and dimensions of the system under any condition are not known

in advance, for example in the grain boundary system sutdied here one

may argue that the equilibrium simulation cell should have a rectangular

shape due to the symmetry in the simulation cell. The simulation cell

will end up being under an unknown stress field when the conventional

border condition is used unless the right shape and dimensions are

chosen. The flexible periodic border condition we have used here

does not have such a problem. As it was mentioned in section (2.7),

the simulation cell is described by three vectors (here two vectors).

This border condition allows the simulation cell dimensions to expand

or contract independently in different directions and even have a

different shape. Of course these shapes are still constrained to be

described by the two vectors. Another advantage of this border

condition is that when the grain boundaries annihilate or when a

particle is replaced by an impurity or is removed (see Chapter 7) the

excess free area produced is removed from the simulation cell by

adjusting the shape and the dimensions of the simulation cell whereas
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in the conventional periodic border condition this free area, in the

best case, is uniformly distributed throughout the simulation cell.

Starting with the relaxed configuration given by Kwok [K78] we

first made two runs at tempertures of T =0.44 and T = .496
* T * * p 2

(T = ) and hydrostatic pressure of p = 1.9744 (p ) on a
E e

112 particle system to check our results against those recently

calculated using new molecular dynamics technique [C82]. It turned

out that the potential energy, enthalpy, and area of the system were

the same within 0.9% error. The grain boundary sliding and migration

were observed at these temperatures, and a snapshot of the system at

T = 476 is shown in Fig. 6.2. At the same temperatures and pressure

the boundaries in a 56 particle system shows annihilation. To avoid

thermally activated grain boundary motion in the 56 particle system the

temperature was lowered to T = .044 at which point no grain boundary

motion was observed.

6.3 Responses of Bicrystal to Uniaxial Loading

The mechanical responses of the 56 particles bicrystal under a

uniaxial stress applied along the [010] direction were calculated.

The load direction is normal to the grain boundary direction. The

simulations were carried out at constant temperature of T = 0.044

so that thermal activation could not induce grain boundary sliding

and migration at this low temperature (the melting temperature of the

system is about T .64 [C82] ). In order to find out the grain

boundary effects on the mechanical properties of the bicrystal,

another "computer experiment" were carried out under the same

conditions on a 28 particle perfect crystal system with the same
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crystallographic orientation as the top crystal in the bicrystal

system. Since the coordinate axes of the single crystal shown in Fig.

6.3 do not coincide with its principal axes, a uniform loading will

produce a shear stress as well; in other words, the single crystal

undergoes strains e.. given by:
1J

J = 2 .1 . (6.1)

where the off diagonal elements of matrix S are not zero. It turned

out that shear strain produced is negligible because, firstly the

coordinate axes is close to the principal axes (less that 200

rotation along [001] direction) which causes the off diagonal elements

of S to be small, and secondly the range of applied load from

a = 1.6 tension to a = 4.5 compression is not wide enough to produce

significant shear strain (beyond this range the grain boundaries

started moving toward each other). Thus, from the macroscopic point

of view the incompatibility caused by shear strain [H72] is not an

important factor. The stress-strain curves for the bicrystal and

the single crystal are shown in Fig. 6.4. The results show that the

bicrystal suffers a larger deformation than the single crystal under

the same load. From the snapshots of the particles in the bicrystal,

qualitatively speaking it seems that the grain boundary region under

the load has grown, for example see the system at the compression

load of a = 4.5 in Fig. 6.5. This expanded grain boundary is a

rather disordered region relative to the bulk region and causes the

region to become softer. Thus the overall strain of the bicrystal

is larger because the bulk region response is the same as that of
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the single crystal.

As it was mentioned above, beyond the range of applied stress

shown in stress-strain curves in Fig. 6.4, the grain boundaries

started moving and as the simulation proceeded they eventually were

annihilated.

6.4 Responses of Bicrystal to Shear Loading

The behavior of the 56 particle bicrystal under shear stress was

monitored by taking snapshots of the particles as the simulation pro-

ceeded. In order to avoid the rotation of the whole system the net

torque applied on the system should be zero. This was achieved by

applying symmetric shear stresses i.e, a and a had the same
xy yx

magnitude. At the low temperature of T = 0.044 and pressure of

P = 1.9744 the shear stress was increased up to a critical shear

stress of a = a = 0.2,no grain boundary motion was observed.
xy yx

Beyond this critical value the grain boundaries started moving by

sliding and migration mechanism [B82],then as the simulation pro-

ceeded they annihilated and left behind a single crystal. Although

the sliding and migration under shear loading has been suggested

d
[B82], this is the first computer observation. In Fig. 6 the

initial and a snapshot configuration of the system at shear stress

ofa = a = 0.4 are shown.
xy yx
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Fig. 6.1 Structure of the symmetric-tilt coincidence grain boundary

with the reciprocal density of coincidence site 1=7, (a) unrelaxed

configuration (b) relaxed configuration. Circles with number are

the particles and without number are 2 images of the particles

in X direction.

(b) (a)
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Initial GB position

GB

ition

Fig. 6.2 Snapshot of the 112 particle bicrystal at T =0.496 and P =1.9744.

The distances that the grain boudaries have moved are shown. The

circles with numer indicate particle and without number are images.
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Fig. 6.4a Stress-strain curves of bicrystal and single crystal at T =.044. open

circles are single crystal results and closed circles are bicrystal results.
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Chapter 7

Grain Boundary-Point Defect Interactions

7.1 Introduction

7.2 Impurities in Bicrystal

7.3 Vacancy in Bicrystal
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7.1 Introduction

It is well known that grain boundaries act as sources or sinks

for point defects [B 79 ]. Recently some attempts were made [B81,

H81] to study the structure of vacancy in several grain boundary

systems employing computer simulation techniques. In these studies

it was found that the vacancy moves toward the grain boundary in order

to lower the total energy of the system when it is introducted away

from the boundary, but it remains localized at the boundary as a

distinguishable missing atom in the grain boundary structure. In all

of these studies either conventional periodic border conditions or a

combination of periodic and fixed border conditions were used and were

carried out at zero temperature. In the hard-sphere two-dimensional

dynamic model [B8 0Oit was observed that the vacancy becomes delocal-

ized,in contrast to being a distinguishable missing atom, after

entering the boundary. This process was eventually followed by an

annihilation process which restored the boundary to its original

state and transferred the excess volume out to the model surface.

Obviously in this case the border was free to have any shape and

volume.

In this work we studied the behavior of impurities and vacancies

in a two dimensional bicrystal system used in Chapter 6 using the

improved MC method and the flexible periodic border condition. a

Our results clearly demonstrated that vacancies and impurities tend

to go into the grain boundary when the temperature is high enough to

initiate the movement. In all cases that vacancies or impurities
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were absorbed by the grain boundary, it was the boundary that moved

toward the defect. The vacancy results are similar to that found by

hard-sphere dynamic model. Clearly, as it has been pointed out [B80b,

to have realistic results one should make the simulation cell bigger

to include more grain boundary periods.

7.2 Impurities in Bicrystal

The atoms in the bicrystal were interacting through the Lennard-

Jones potential with the parameters E and a of Argon given in
a a

Chapter 3. To study the behavior of impurities in the system one also

needs to know the interaction potential between impurity and impurity

(i-i) and between atom and impurity (a-i). In this study we assumed

that (i-i) interaction also is described by the Lennard-Jones potential

with the same parameter Ei as that of (a-a)E and the parameter a.1 a 1

different from the a . The parameter a. is a representation of the
a 1

size of the impurities.

The parameters of the Lennard-Jones potential describing interaction

between atom and impurity using the Berthelot and Lorentz [M72] rules

are:
6=.(6 '12

and (7.1)

= 2 (7.2)

Then, interaction potentials between different entities in the system

are:

VC r 4 (7.3)
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(t- I) cf¢r)= •[ )i j - t' (7.4)

The scaling of pressure and temperature were done using e and aa

as in Chapter 6.

As it might be expected the size of the impurity atom introduced

in the system is one of the important factors which controls the

behavior of the impurity in the grain boundary system. In order to

study effects of this factor we considered impurities with three

different sizes, namely:

i) Impurities with twice the size of atoms in the bicrystal.

ii) Impurities with half the size of atoms in the bicrystal.

iii) Impurities with a size much smaller than the size of atoms

in the bicrystal.

In the following we have reported our observations of the above

three categories of impurity size. In all simulations the hydrostatic

pressure was kept zero.

Case (i): At the temperature of T* =.044 the particle "42" and

"13" were replaced by the impurities of the size ai = 2aa, as is

shown in Fig. 7.l.a. When the simulation started, the grain boundary

structure was destroyed and the system was divided into different

clusters as is shown in Fig. 7.1. This clustering effect might be

an artifact of the highly dense 2-dimensional system being used. In

the 3-dimensional system this may not happen because there is more

free volume in 3-dimensional system than in the 2-dimensional system

used here.
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Fig. 7.1 Snapshots of the bicrystal with large impurities at sites #42 and

#13 at 0,1000,2000,3000,4000 and 5000 step/particle (T =.044).

Circles with numer are particles and without number their

images in x direction.
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Fig. 7,1 (cont~d)
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Case (ii): At the temperature of T = .044 the particles "42"

1
and "13" were replaced by impurities with the size of =

vi 2 aa

as it is shown in Fig. 7.2a. After 5000 steps/particles neither the

impurities nor the boundaries moved. Then the temperature was

raised to T = 0.11 and the simulation proceeded. At this

temperature the grain boundaries started moving toward the impurities

as shown by the snapshots in Fig. 7.2 and finally they absorbed the

impurities and did not move any more. The absorption of the

impurities changed the potential energy of the bicrystal from -1584

by 4.25%. Thus, this size of impurity could be absorbed by grain

boundary when the temperature is high enough to initiate the grain

boundary motion or possibly by putting impurities closer to grain

boundaries.

Case (iii): At the temperature of T = .044 the particles "36"

1
and "7" were replaced by impurities with the size of c i -= a.

Considering the cut off range used there would be no impurity-

1.1 1
impurity interaction. The parameter a ai would be I aai 2 a 2 a

when the size of the impurity goes to zero. Therefore any impurity

1
size less than - a will have similar behavior as the impurities10 a

studied here. As the simulation started the impurities were absorbed

by boundaries, as it is shown in Fig. 7.3. The absorption position

of the impurities were next to the boundaries whereas in case (ii)

they were inside the boundaries.
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)

Fig. 7.2 Snapshots of the bicrystal with impurity half the size of host atom

at 0,500,1000,2000,2500,3000,4000 and 5000 step/particle (T =.11).

At 2000 step/particle impurity #42 and at 3000 step/particle impurity #

13 is absorbed by the grain boundaries.

,,,DOW-~0.



124

asee.

Fig. 7.2 (cont'd)

3000

~s..4000



125

e00
1low

Fig. 7.3 Snapshots of the bicrystal with small impurities at site #36 and #7
at 0,1000,2000,3000 and 5000 step/particle (T =.044). At 1000
step/particle impurity #36 and at 3000 step/particle impurity #7 is
absorbed by the grain boundaries.



126

7.3 Vacancy in Bicrystal

A vacancy was placed at three different locations in the 56

particle bicrystal to monitor its behavior and also to make an

estimate of the range of interaction between the grain boundary and

the vacancy. The following three simulations were carried out at the

temperature of T = .044 and zero pressure:

i) The particle #36 was removed and the simulation was continued.

After about 1000 steps/particle the grain boundary moved toward the

vacancy and absorbed it. The initial and final configurations are

shown in Fig. 7.4.

ii) The particles #37 was removed and the simulation was con-

tinued. After about 4000 steps/particle the grain boundary annihilated

the vacancy, as it is shown in Fig. 7.5.

In the above two cases the excess free area was removed from the

simulation cell by changing its dimensions and the grain boundary kept

its kite shaped structure.

iii) The particle #38 was removed and the simulation was con-

tinued for 10,000 steps/particle and nothing was observed. Therefore

at the temperature of T = .044 the interaction between vacancy and

grain boundary was not enough to initiate the grain boundary movement.

It seems not only the distance between the vacancy and the grain

boundary is an important factor in the vacancy being absorbed but the

vacancy site is also an important factor.
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Chapter 8

Conclusions and Discussions
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The Monte Carlo simulation technique has been improved so that

it can be used to simulate a system of a finite number of particles

which are interacting through a given pairwise potential at thermal

and mechanical equilibrium with its surroundings in a general way.

Previously the Monte Carlo technique could be used to simulate a

system at thermal and hydrostatic pressure equilibrium only, whereas

the improved method can be used to simulate a system under arbitrary

externally applied stresses. The improved technique can be used to

investigate many interesting phenomena which are induced either by

externally applied stresses or by a combination of stresses and

temperature. Such phenomena include : different structural trans-

formations, theoretical strength calculation of materials at different

temperatures, effects of defects on the mechanical responses of

different systems.

The improved Monte Carlo technique is applied to a system of 32

particles which are interacting through the Lennard-Jones potential

with the given parameters for argon [H64]. The stress-strain curve

of the system at the temperature of 400K (the melting temperature

is about 1100K) for loads along the [001] direction is calculated.

The comparison between the stress-strain curve at 400 K and the

corresponding curve calculated by static method (O0K) and also the

published static results [M. 72] suggests that the temperature effect

is insignificant at low stresses (<100 bar) but becomes more

pronounced as the stress increases beyond the value of 100 bar.

Thus the static calculation is a good approximation to the stress-

strain curve at low stresses and it will underestimate the strain
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at high stresses for the system at finite temperatures.

At the temperature of 400 K the system fails under a tensile

load of 600 bar applied along the [001] direction while the static

calculation of theoretical tensile strength is about 2100 bar. The

factor of 3.5 drop in the strength is mainly due to the thermal

motion of particles. At the compressive load of 350 bar the deformed

fcc structure is transformed to a deformed hcp structure where the

[0001] axis of the hcp is along the [100] direction of the fcc

structure. The transformation mechanism is a simultaneous large

contraction in the [001] direction (load direction) and sliding of

the adjacent (010) planes. This transformation can not be predicted

by static method because it involves not only homogeneous deformation but

also inhomogeneous particle displacement. The same transformation

of fcc+hcp under compression has been also observed in the nickel

system by the molecular dynamics method [P81]. Simulation results

on a system with 108 particles reveal that the number dependence

effect on the properties studied here is insignificant.

The stress-strain curves of a-iron are calculated using Morse

[G53] and Johnson I[J64] potential to represent interatomic interaction

by the static method. From the fact that the experimental tensile

b 10 2
strength of whisker a-iron[B56] is about 13*10 dyn/cm and the

corresponding values of the static calculation are 1.2*10 and

9*1010 for Morse and Johnson I potential respectively, one concludes

that Johnson I potential is a more realistic one to be used to simu-

late mechanical property of a-iron. Still the Johnson I potential

does not give the theoretical strength greater than the experimental
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value that one would expect.

Martensitic transformations (bcc-fcc) and (fcc-*bcc) are observed

under stress at the relatively low temperature of 700 K (experimental

melting temperature of a-iron is , 18500 K) using the improved Monte

Carlo technique.: Such transformations were theoretically predicted

[B24] and have been experimentally observed [Z65] when y-iron is

quenched. It is believed that Martensitic transformation [081] could

occur through either a classical or a non-classical path. Martensitic

transformations observed here are through the non-classical path.

It is shown that at the tensile load of 6*1010 dyn/cm 2 the bcc~-fcc

transition occurs and at the compressive load of 5.5*1010 dyn/cm2

the fccbcc transition occurs. It is also shown that at the critical

loadings the parent structures become mechanically unstable. The

simulated stress-strain curve at 700K is in good agreement with static

calculations.

More extensive simulation runs are needed to investigate the

effect of temperature. It is also useful to carry out simulations

using Johnson II potential because the.Johnson I potential over-

estimates the lattice constant in the fcc phase by 4.2% when the

transformation takes place. This corresponds to an underestimation

of the density in the fcc phase by 11.3%.

The mechanical properties of a two dimensional coincidence site

lattice bicrystal with E=7 are investigated. The bicrystal is composed

of 56 particles interacting through the Lennard-Jones potential.

The stress-strain curve of the bicrystal is calculated when a load

normal to the grain boundary plane (line) is applied. The comparison
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between the calculated stress-strain curve and the corresponding curve

for a single crystal with the same crystallographic orientation of the

top component of the bicrystal shows that the effect of the grain

boundary is to increase strain along the load direction. To our know-

ledge this is the first computer study of the grain boundary effect

on the stress-strain curve of a bicrystal. Further studies could be

carried out on a 3-dimensional system using a realistic potential to

investigate the effects under different loading conditions.

Grain boundary sliding and migration under shear loading is

observed in the bicrystal when the shear stress exceeded the critical

valud of a = .2 (dimensionless unit) at the reduced temperature ofxy

T =0.044. The critical shear should vary with the grain boundary

surface (length); additional simulations using a larger system are

needed to find out this grain boundary surface dependence.

In this thesis we have also explored behavior of impurity atoms

and vacancies in the bicrystal. It is demonstrated that small impurity

atoms will be absorbed by the grain boundary if the temperature is

high enough to initiate grain boundary motion. An impurity atom twice

the host particle size appears to cause clustering. This behavior

may be an artifact of the two dimensional bicrystal used, because the

system is highly densed and also the simulation cell is rather thin.

This may not occur in a three dimensional system. The absorption of

impurity atoms by the grain boundary is a first step to understand

the segregation phenomenon in materials because the grain boundaries

are sources and sinks of defects. Further studies are needed to

establish the defect-grain boundary interaction by correlating the
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relative position of the defect with respect to the grain boundary

and the potential energy of the bicrystal.
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