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Trait introgression is a complex process that plant breeders use to introduce desirable

alleles from one variety or species to another. Two of the major types of decisions

that must be made during this sophisticated and uncertain workflow are: parental

selection and resource allocation. We formulated the trait introgression problem as

an engineering process and proposed a Markov Decision Processes (MDP) model

to optimize the resource allocation procedure. The efficiency of the MDP model was

compared with static resource allocation strategies and their trade-offs among budget,

deadline, and probability of success are demonstrated. Simulation results suggest that

dynamic resource allocation strategies from the MDP model significantly improve the

efficiency of the trait introgression by allocating the right amount of resources according

to the genetic outcome of previous generations.

Keywords: dynamic programming, resource allocation, Markov decision processes, plant breeding, multi-allelic

trait introgression

1. INTRODUCTION

Plant breeding has been defined as the art and science of producing desired characteristics through
artificial selection (Poehlman, 2013). Practiced since the beginning of civilizations, plant breeders
in the twentieth century made enormous changes to important agronomic traits, e.g., grain yield
and pest resistance, of cereal crops (Duvick, 1994; Rincker et al., 2014). It is the plant breeder’s job to
identify new, genetically-superior crop varieties by “testing” the varieties in multiple environments,
then selecting those that perform the best. The intention of this process is to breed specific
varieties so that certain phenotypic traits (such as yield, height, weight, pest resistance, etc.) of
two individuals can be carried over into its offspring. Historically, identifying the best varieties
has been done by trial and error, with breeders testing their experimental varieties in a diverse set
of locations and measuring their performance, then selecting the varieties that display the desired
characteristics. However, analogously to two humans having children, not all traits can be seen in
each child. Due to the inherent randomness in the plant breeding system, this process can take
many years to produce the ideal variety and is inefficient, simply due to the number of potential
combinations to create and test.

Methods for discovery of genetic variants (alleles) associated with specific phenotypic variants
have been developed over the last 25 years and are now routinely applied using “omics” technologies
in forward and reverse genetics approaches. These technological advancements have the potential
to shorten the time-period required for the integration of desired traits. Because the genetic variants
associated with phenotypic variability are distributed unevenly throughout a germplasm collections
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and breeding populations, it is challenging to combine the most
desirable alleles to create improved cultivars. Traditionally, the
transfer of a single desirable allele from an inferior cultivar
to a superior cultivar is routinely accomplished using marker
assisted breeding strategies (Visscher et al., 1996; Frisch et al.,
1999; Frisch and Melchinger, 2005; Peng et al., 2014). However,
recent developments have demonstrated that the efficiency of
these routine processes can be doubled by reframing the objective
using principles from operations research (Cameron et al., 2017;
Sun et al., 2017; Moeinizade et al., 2019; Xu et al., 2019).

The more complex challenge of aggregating sets consisting
of multiple alleles into cultivars with predictable adaptive trait
phenotypes will require a specialized breeding strategy to rapidly
transfer multiple desirable genetic alleles from a donor individual
to an elite recipient individual. In the vernacular of the plant
breeder, this is known as multi-allelic trait introgression (MATI)
process. The MATI process can be regarded as a decision
making system, of which the components are in uncertain
states due to the stochastic nature of genetic reconstruction
during crop mating. In this process, the plant breeder has the
obligation to obtain the available genotypic and phenotypic
information, decide parents to breed, allocate resources and
fulfill goals. Hospital et al. (2000) demonstrated via simulation
that the marker assisted-selection, such as the Marker-based
Truncation Selection (MTS) and the QTL Complementation
Selection (QCS) could drastically improve the efficiency of
parents selection. Recently, De Beukelaer et al. (2015) adapted
optimization concepts with heuristics approaches to design a
modern and advanced algorithm to solve the gene pyramiding
problem. In order to accurately depict this decision making
system and optimize the MATI process, a set of mathematical
transformations and formulations have been proposed to frame
the MATI process as an engineering system (Han et al.,
2017). An algorithmic process with mathematical definitions
was designed and parental selection was addressed as a key
procedure, which can affect the result dramatically. A new
metric called the Predicted Cross Value (PCV) with the
assistance of genetic markers for parental selection was proposed.
The PCV was defined as a quantification metric for any
pair of selected breeding parents. Using the metric of PCV,
significant improvements with respect to minimizing the cost
and amount of time required for successful trait introgression
were demonstrated as well as the great potential for further
research on MATI process.

As pointed out in Han et al. (2017) and Cameron et al.
(2017), in addition to parental selection, resource allocation also
plays a crucial role in improving the efficiency of the MATI
process. Hospital et al. (2000) discussed similar simulations
with fixed population size in each generation but different
selection intensity or the number of parents selected. Herein,
we expand our discussion on the decision making problem
of resource allocation for MATI and improve the breeding
strategy by dynamically adjusting the population size for each
generation. Resources allocation, as the major topic of this
paper, means intelligently determining the population size during
the introgression process to efficiently and effectively utilize
the resources. Because of the dynamic and uncertain states of

FIGURE 1 | Flowchart of the MATI process.

the system, we apply the Markov decision processes (MDP)
model to frame MATI processes. The MDP model is a technique
for solving stochastic sequential decision making problems
(Puterman, 2014). The MDP model has been proved to make
contributions to various practical decision making projects, such
as optimal replacement policy for a motion picture exhibitor
(Swami et al., 2001) or the vehicle mix decision in emergency
medical service systems (Chong et al., 2015), which share many
similarities with MATI processes.

2. MATERIALS AND METHODS

In this section, we cast the MATI process with resource
allocation as a Markov decision process model and present a
dynamic programming method to solve it. The general idea of
this MDP framework is to dynamically simulate and optimize
the parent selection, meiosis, gamete production and crossing
and other key steps during the trait introgression process.
During the simulation, mathematical analysis is applied to adjust
parameters to derive the optimal or near optimal decisions. This
section covers the flowchart of this engineering process, the
necessary mathematical formulations, the detailed discussion on
the resource allocation challenge and the MDP model to solve
the model.

2.1. The MATI Process
The work flow for the MATI process is presented in Figure 1. We
summarized theMATI process into three steps with two checking
points. The three steps are: resources allocation, selection and
reproduction, and the two checking points check the available
resources and the population genotype.

• The MATI process begins with the “Start” step, in which at
least one elite recipient individual and one donor individual
are available. In most annual crops, both elite and donor
individuals are homozygous throughout their genomes. The
majority of alleles in the donor are undesirable, but it does have
desirable versions of alleles that the elite individual is lacking
at several loci. The goal of this process is to achieve an ideal
individual inheriting all the desirable alleles from both donor
and elite individuals within the provided resources.
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• In the “Genotype ideal?” check box, the genotypic
information of current progeny is screened to check if
the ideal individual was produced. If the ideal individual was
sampled, the entire process is considered as a “Success.”
• Otherwise, the process flows to the “Resource enough?” check

box. This step involves the resources assessment and the
process continues if the remaining resources are adequate.
Usually, the resource consists of budget and time. A breeding
process is associated with different terms of cost, such as
genotyping assays, crossing, growing the crops, and labor.
Some costs are fixed, while others are proportional to the
number of crosses made or progeny produced. In practice,
there may be a total budget constraint for the cost through the
entire breeding project. In addition to the cost, the breeding
project is often bounded by a deadline, which shall be regarded
as a time resource limit.
• In the step “Resource allocation,” the decision maker needs to

observe the current status of the breeding project and allocate
the resources based on policies. For commercial breeding
projects, there is revenue associated with the ideal individual
when delivered to the market. Hence, for resource allocation,
the decision maker needs to consider revenue with the cost.
• When the process reaches the “Selection” step, two breeding

parents are selected based on a provided selection metric.
• In the “Reproduction” step, the selected breeding parents

are mated to produce a new generation of progeny and the
process flows back to the check box “Genotype ideal?” In this
MATI process, we assume that the breeding parents would be
retained for the next one generation.

2.2. Mathematical Formulations for the
MATI Process
According to the flowchart, we design a mathematical
algorithmic engineering process for simulating the MATI
process, in which some steps can be optimized such as “Resource
allocation” and “Selection.” For the “Selection” step, random
selection, genomic estimated breeding value (GEBV) (Meuwissen
et al., 2001), optimal haploid value (OHV) (Daetwyler et al.,
2015) and the newly designed predicted cross value (PCV) (Han
et al., 2017) are possible metrics for determining the optimal
breeding parents for the next generation. For the “Resource

allocation” step, the remainder of the paper will discuss how to
apply dynamic programming model to improve the efficiency.
First, we define some major steps in the MATI process.

Definition 2.1. (Han et al., 2017) “We define the Reproduce
function, X = Reproduce(L1, L2, f ,K), as follows. Its input
parameters include two binary matrices L1, L2 ∈ B

N×2, a vector
f ∈ [0, 0.5]N−1, and a positive integer number K. Its output is a
three-dimensional matrix X ∈ B

N×2×K , representing a random
population of K progeny.”

The Reproduce function is defined the same way as the one
in Han et al. (2017). We use a binary matrix with dimension of
N × 2 to represent the genotype of a diploid individual with N
loci where “0" represents undesirable alleles and “1" represents
desirable alleles at each of the loci. In the function L1 and L2
are the selected breeding parents. The output X of the function

represents the genotype of all the progeny produced by the
breeding parents, whose element Xi,1,k with i ∈ {1, 2, . . . ,N}, k ∈
{1, 2, . . . ,K} represents the allele on the ith row (locus) of the
first set (‘2’ on the second dimension of X representing the
second set) chromosome of the kth progeny in the population.
The vector f ∈ [0, 0.5]N−1 represents the recombination
frequency, which reveals the inheritance characteristics of gene
reconstruction. The parameter K in the function decides the
number of progeny to produce. In the Reproduce function, we
assume that the recombination is independent and only related
to the recombination frequency.

Definition 2.2. We define the Selection function, [k1, k2] =
Selection(X), as follows. Its input parameter includes a
three-dimensional binary matrix X ∈ B

N×2×K representing a
candidate population. Its output includes two integers, k1, k2 ∈ Z

indicating the indexes of selected parents.

The Reproduce function and the Selection function utilize
matrices to represent the information and population genotype.
With the information of recombination frequencies, such
functions could cast the introgression process into mathematical
formulas to be programmed in computer simulation.

Definition 2.3. We define the Reward function,
Reward(K,X, t,T) = Revenue(X, t,T) − Cost(K), as
follows. Its input parameters include a positive integer K
representing the progeny number, a three-dimensional binary
matrix X ∈ B

N×2×K representing a candidate population,
a non negative integer t representing the current generation
number and a non negative integer T representing a deadline.
Its output is a reward consisting of the revenue from population
X at generation t given deadline T and the cost for producing
K progeny.

Definition 2.4. We define the Allocation function,

Kt = Allocation(T, t, f , Pt ,Bt ,Reward),

as follows. Its input parameters include a positive integer T
representing the deadline, a non negative integer t representing
the current generation number, a vector f ∈ [0, 0.5]N−1

representing the recombination frequency, a three-dimensional

binary matrix Pt ∈ B
N×2×Kt−1

(t ≥ 1 and K0 = 2) representing
the candidate breeding population for the current generation
(produced by generation t−1), a positive number Bt representing
the current available budget and the Reward function. Its output
Kt is a non negative integer representing the number of progeny
to produce for generation t. Note that if Kt equals 0 with t ≤ T
and Bt > 0, the project fails.

The Reward function describes the estimated value of certain
genotype under assumptions, in relation to current generation
and the deadline. This function serves as a measure of quality.
Together with theReward function, theallocation function
describes the resources allocation step mathematically. This
function determines the population size to produce at a certain
generation according to the genetic quality and the time and
budget resources left.
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With the definitions for three major steps in Flowchart
(Figure 1), the definition for simulating the entire MATI process
is proposed as follows.

Definition 2.5. We define the MATI function, Ts =

MATI(P0, f ,B,Reward,T), as follows. Its input parameters
include a three-dimensional binary matrix P0 ∈ B

N×2×2

representing the initial breeding population, a vector
f ∈ [0, 0.5]N−1 representing the recombination frequency,
a positive integer B representing the total budget, a Reward
function and a positive integer T representing the deadline. Its
output Ts, is the number of generations the process takes to
finish the breeding process, which is determined through the
following steps.

Step 0 (Initialization) Set t = 0 and go to Step 1.
Step 1 (Genotype check)

Ifmax
k

{

N
∑

i=1
(Pt

i,1,k
+ Pt

i,2,k
)

}

= 2N

RETURN: Ts = t.
Else Go to Step 2.
Step 2 (Resource check and resource allocation)

Kt = Allocation(T, t, f , Pt ,Bt ,Reward).
If Kt = 0 or t > T

RETURN: Ts = ∞.
Else Go to Step 3.
Step 3 (Selection) Obtain [kt1, k

t
2] = Selection(Pt) and go to

step 4.
Step 4 (Reproduction) Obtain Pt+1 =

Reproduction(Pt
:,:,kt1

, Pt
:,:,kt2

, f ,Kt), update t ← t + 1

and Bt+1 ← Bt − Cost(Kt), then go to Step 1.

The intuition of the MATI function is as follows:

• Step 0: Initialization;
• Step 1: Check if current population contains the ideal progeny;

if it does, return the current generation; otherwise go to the
next step;
• Step 2: Check current available time and budget resources and

determine the number of progeny to produce; if no resources
are left or current time is beyond the deadline, return failure;
otherwise go to step 3;
• Step 3: Select the best pair of breeding parents from the current

population;
• Step 4: Reproduction step with the determined breeding

parents and the number of progeny to produce; Update
available resources accordingly; Go back to step 1.

2.3. Resource Allocation in the MATI
Process
In this section, we propose the problem definition for the
resource allocation step in the MATI process, which is related
to designing the Allocation function in the MATI function.
The resource allocation problem for the MATI process is a
dynamic decision making problem. The plant breeder needs
to determine how many progeny to produce according to the

current generation number, the deadline, the budgets remaining
from the total budget, the cost and revenue function and the
available progeny at the beginning of each generation. This
decision is a key factor affecting the MATI process because it
determines the number of offspring produced in each generation
as well as the cost and revenue.

Herein, we give some intuitive explanations for the resource
allocation problem statement. In each generation, producing
more progeny can increase the cost but also the probability of
obtaining a more promising genotype. The offspring’s genotype
and the amount of time together determine the revenue of
a project. Generally speaking, the earlier a new genotypically
designed product (i.e., offspring) can be delivered to the market,
the more market share and revenue a company may attain.
Hence, designing the policy for resource allocation (i.e., how many
progeny to produce at each generation) to maximize the expected
net present value at the beginning of a breeding project is regarded
as the general problem statement of the resource allocation
problem in MATI process.

We frame the resource allocation problem as a dynamic
programming problem. Based on the previous discussion, the
state describing the status of a breeding project shall consist of
genotypic indicators and the budget information. Using metrics
like MTS score, QCS score (Hospital et al., 2000) or PCV (Han
et al., 2017), we can convert genotypic information into a number
and use an interval to cover a group of progeny. Associated with
the budget, the state is denoted as a combination of available
budget and the metric interval for certain genotypes. By carefully
designing the metric intervals, we can make the state space
discrete and small enough to enumerate and cover all potential
progeny genotypes.

The action that the breeder needs to take is to determine
the number of progeny to produce at each state after the
evaluation of the available population genotypes, which contains
the potential breeding parents for the next generation. This
action determines the cost. Meanwhile, different actions affect
the probabilities of transitioning among states, which are stored
in the transition probabilities matrix. In addition, reaching a
specific state at a certain generation will generate revenue. Based
on the breeder’s estimation, the revenue may not only be decided
by the state, but also determined by the current generation
number and deadline. There will be a decision policy describing
a series of actions to optimize the expected revenue of the
breeding project.

In such manners, with a discount factor, the objective of a
breeding project can be formulated as determining the optimal
policy to maximize the expected net present value in terms of
rewards subjected to the deadline and budget. In mathematical
formulations, the objective of this resource allocation problem
can be stated as:

maxπ E
π

s {
∑T

t=0 λ
trt(a, s,T)},

where, s represents the state; a represents the action; T represents
the deadline; r represents the reward function; λ represents the
discount factor and π represents the decision policy.
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2.4. A Markov Decision Processes Model
for Resource Allocation
The dynamic programming structure of theMATI process makes
Markov decision processes (MDP) an appropriate approach for
solving the stochastic decision making problem. In this section,
we formulate an MDP model with finite horizon to identify
the optimal resource allocation strategy, which is applied in the
Allocation function of the described process.

An MDP model consists of five major components including
decision epochs, states, actions, transition probabilities and
rewards. The detailed notations for these components are
as follows.

Decision epoches: We define the decision epoch as the
beginning of each breeding generation, denoted as {1, 2, 3, . . . ,T}
andT is the deadline of a breeding project. Decisions like parental
selection, resource allocation, etc., are made at each decision
epoch. We assume the MATI process generally has a specified
deadline, which implies that the MDPmodel has a finite horizon.

States: For any given sample of progeny P, we define a
function V(P) to measure the progress in the MATI process,
which takes the values within the interval [V(P0),V(PIdeal)],
with P0 and PIdeal denoting the original sample of progeny
and a sample that includes an ideal individual (with all alleles
being desirable). Various definitions of breeding values or parents
selection metrics, such as MTS score, QCS score (Hospital
et al., 2000) or PCV (Han et al., 2017), could be used for this
function. Due to the enormous space of all possible samples
of progenies, there is potentially a large number of possible
values for V . For computational tractability, as illustrated in
Figure 2, we group all possible V values into a small number of
intervals m0,m1,m2, . . . ,mG−1,mG, where G is a predetermined
integer. In the figure, m0 is a single value representing the initial
population and mG is another single value representing the final
ideal progeny. The intermediate population is represented by
each metric interval.

Next we define the state space S as:

S = (mg , b) ∪ {failure} ∪ {success},

and

g ∈ {1, 2, . . . ,G− 1}, b ∈ {1, 2, . . . ,B− 1,B},

where (mg , b) is a 2-tuple. In the 2-tuple, mg represents the
metric interval indicating the genotype status and b represents
the remaining budget for the breeding project. In the definition,
B represents the total budget at the beginning of the process.
The design of metric intervals is associated with the preference
of the decision maker and shall not be fixed. We will propose
one possible approach in the case study section for designing
the metric interval. With such state space definition, the initial
state is (m0,B)

Actions: The action space is denoted as A =
⋃

s∈S As =

{0, 1, 2, . . . , amax} representing the number of progeny to produce
at each decision epoch. The maximum number of progeny that
can be produced is set as amax for each generation determined by
the reproductive biology of the plant species. In the remainder
of this paper, action a is used to substitute K in the algorithmic
process for Allocation function.

Transition Probabilities: In the MDP model, we use Wa
i,j

to denote the transition probability from interval mi in one
generation to mj in the next generation under action a. One fact
of our MDP model is that once the intervals are determined,Wa

only depends on the action a and is stationary at different epochs.
According to the assumption that the breeding parents are
retained to generate a new sample of progeny for the subsequent
generation, the process either advances to the next interval or
stays in the same one but never moves backwards, i.e., Wa

i,j = 0

if j < i. The matrix Wa could be estimated by simulations
recording the information of action, the progeny produced
at each generation and the hierarchical kinship information
of mating. With the Wa matrix, we are ready to define the
transition probabilities matrix, which consists of the probability
of transitioning from one state s to another state s′ under action
a, i.e., Pt(s

′|s, a).

Definition 2.6. Given action a, the transition probabilities

matrix can be defined as a partitioned matrix Ma as follows:

Ma =









































S⊤B S⊤B−1 . . . S⊤B−a S⊤B−a−1 S⊤B−a−2 . . . S⊤1 failure success

SB 0 0 . . . W̄a 0 0 . . . 0 0 Ŵa

SB−1 0 0 . . . 0 W̄a 0 . . . 0 0 Ŵa

SB−2 0 0 . . . 0 0 W̄a
. . . 0 0 Ŵa

...
...

... . . .

...
...

...
. . .

...
...

...
Sa+1 0 0 . . . 0 0 0 . . . W̄a 0 Ŵa

Sa 0 0 . . . 0 0 0 . . . 0 1− Ŵa Ŵa

Sa−1 0 0 . . . 0 0 0 . . . 0 1 0
...

...
... . . .

...
...

... . . .

...
...

...
S1 0 0 . . . 0 0 0 . . . 0 1 0
failure 0 0 . . . 0 0 0 . . . 0 1 0
success 0 0 . . . 0 0 0 . . . 0 0 1









































where W̄a = Wa
1 :G−1,1 :G−1, Ŵa = Wa

1 :G−1,G and

Sb = [(m1, b), (m2, b), . . . , (mG−2, b), (mG−1, b)]
⊤ is a vector

representing G− 1 states. Here, Pt(s
′|s, a) = Ma

s,s′ ,∀t < T.

In the definition of the transition probabilities matrix, the
matrix W̄a represents a sub-matrix containing all the transition
probabilities from states group Sb to states group Sb−a under
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FIGURE 2 | Genotype indicator.

action a. The vector Ŵa represents a sub-vector containing all
the transition probabilities from states group Sb to success under
action a. Each single value of the transition probability between
state s and s′ under action a, which is Pt(s

′|s, a), is equal to each
single element in the matrixMa

s,s′ .
Rewards: For an MDP model, the reward rt(s, a) received at

epoch t is decided by the state s ∈ S and action a ∈ As, which can
be either positive or negative. In our MDP model for the MATI
process, the reward is defined as rt(a, s,T) = −C(a) + Rt(s,T),
where C(a) is the cost function for producing a progeny and
Rt(s,T) is the revenue function at epoch t associated with state
s and deadline T.

Our finite horizonMDPmodel can be efficiently solved by the
backwards induction method, which is introduced as follows.

The Backward Induction Algorithm: (Puterman, 2014)

Step 1. Set t = T and u∗T(s) = rT(s) for all s ∈ S.
Step 2. Set t← t − 1 for t and compute u∗t (st) for each st ∈ S by

u∗t (st) = max
a∈Ast

{rt(a, st ,T)+ λ

∑

s′∈S

Pt(s
′|st , a)u

∗
t+1(s

′)}. (1)

and

A∗st ,t = arg max
a∈Ast

{rt(a, st ,T)+ λ

∑

s′∈S

Pt(s
′|st , a)u

∗
t+1(s

′)}. (2)

Step 3. If t = 1, stop. Otherwise return to step 2.
We use π = (d1, d2, . . . , dT−1) to denote a policy, where
dt : S → As is the decision rule prescribing the procedure for
action selection in each state at epoch t. rt(at , st ,T) denotes the
random reward received at epoch t < T and rT(sT) denotes the
terminal reward. vπ

T (s1) denotes the expected total reward over
the decisionmaking horizon if policy π is selected and the system
is in state s1 at the first decision epoch. With the discount factor
λ ∈ [0, 1), the expected total discounted reward will be

vπ

T (s1) = Eπ

s1
{
∑T−1

t=1 λ
t−1rt(at , st ,T)+ λ

T−1rT(sT)}.

And the total expected reward obtained by using policy π at
epochs t, t + 1, . . . ,T − 1 will be

uπ

t (st) = Eπ

st
{
∑T−1

n=t λ
n−1rn(an, sn,T)+ λ

T−1rT(sT)},

and uπ

T (sT) = rT(sT).
Suppose u∗t , t = 1, . . . ,T and A∗st ,t , t = 1, . . . ,T − 1 satisfy

equation (1) and (2). Let d∗t (st) ∈ A∗st ,t for all st ∈ S, t =
1, . . . ,T−1 and let π∗ = (d∗1 , . . . , d

∗
T−1). Then, π

∗ is the optimal
policy and satisfies

vπ
∗

T (s) = sup
π
vπ

T (s), s ∈ S

and

uπ
∗

t (st) = u∗t (st), st ∈ S for t = 1, . . . ,T.

3. RESULTS

This section introduces a simulation-based case study for the
MDP model to solve the resource allocation problem in MATI
process. In this case study, we propose a budget, time and
probability of success criteria to assess a breeding strategy. We
also discuss how the budget is allocated throughout the process
and how to find the most cost-efficient total budget. For purposes
of illustrations, we compare static budget allocation strategies and
a dynamic budget allocation strategy. All the simulations and case
studies are implemented in MATLAB/Octave.

3.1. Simulation Setup
We consider a hypothetical project for a case study with
the same data structure as the simulation example 1 in
Han et al. (2017). As stated in this paper, “We simulated a
polygenic trait consisting of 100 markers that are responsible for
genetic variability in the trait. The locations of the marker are
distributed as uniform random variables among 10 simulated
linkage groups. Each linkage group has from 8 to 12 markers.
The recipient and donor are homozygous at all QTL. The
recipient has desirable markers at 93 loci, while the donor
has desirable markers at the remaining 7. For reference,
the recipient has undesirable alleles at C1M4, C1M6, C2M9,
C3M1, C5M4, C6M3, and C6M8, where CiMj denotes the jth
marker in chromosome i. Recombination frequencies used in
the simulation are given in the Supplementary Materials. The
value shown for column Ci and row Mj is the recombination
frequency between the correspondingmarker pairs. The value for
adjacent chromosomes is 0.5, in accordance with the principle
of independent assortment of chromosomes.” In addition to
the genotypic information, Table 1 contains all the parameters
for establishing the MDP model. This example represents a
realistic plant breeding problem, in which, for instance, 7 disease
resistance alleles from a low yield donor need to be introduced
to a high yield but disease susceptible recipient. The other 93
markers are used to ensure a high recovery rate of background
genes to maintain the favorable agronomic traits of the recipient.

Herein, we introduce one possible way to construct the
intervals for state space. In order to estimate the intervals, we run
100 preliminary simulations for each possible non-zero action
a ∈ {100, 200, . . . , 1000}.

Preliminary Simulation:

Step 1 Let P0 denote the initial population and LE, LD denote the
elite recipient and donor individuals, respectively, where P0

:,:,1 =

LE and P0
:,:,2 = LD.

Step 2 Set G = 0, which represents the current largest terminal
generation number.
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Step 3 Set m0 = PCV(LE, LD, f ), in which f represents the
recombination frequency.
Step 4

For a = 100 : 100 : 1000
For n = 1 : 100

g = 0

Whilemax
k

{

N
∑

i=1
(P

g

i,1,k
+ P

g

i,2,k
)

}

< 2N

[k
g
1, k

g
2] = argmaxk1 ,k2{PCV(P

g
:,:,k1

, P
g
:,:,k2

, f )}

pn,ag = PCV(P
g

:,:,k
g
1

, P
g

:,:,k
g
2

, f )

Pg+1 = reproduce(P
g

:,:,k
g
1

, P
g

:,:,k
g
2

, f , a)

g = g + 1
G = max(G, g)

The intuition of this preliminary simulation is as follows:

• Step 1: Initiate the starting population with the donor and elite
recipient; Herein, P0

:,:,1 = LE denotes that in the 3-dimensional

matrix P0, all elements in the first and second dimensions are
equal to the elite recipient LE, respectively; The “:” represents
all elements in a dimension;
• Step 2: Initiate the current largest generation to achieve the

ideal target, which is 0;
• Step 3: Initiate the starting metric point as the PCV value of

the donor and elite recipient, with the given recombination
frequency;
• Step 4: The major simulation step, simulates the effects

of different actions (i.e., different population sizes per
generation), on the largest number of generations needed to
achieve the ideal target.

In this preliminary simulation, we update the G and record the
pn,ag for each simulation run. Then, we construct the state space
based on the G and each pn,ag . Since F1 will be the only possible

outcome after generation 1, we set m1 = pn,a1 ,∀n, a. Similarly,
for the last generation G, mG will be the PCV value of the ideal
individual, which means mG = pn,aG = PCV(LIdeal, LIdeal, f ).
After the preliminary simulations, we define the interval mg

as mg = [minn,a(p
n,a
g ), minn,a(p

n,a
g+1)] where 2 ≤ g ≤

TABLE 1 | Parameters.

Parameter Value Interpretation

amax 1,000 maximum progeny number for

one generation

A {0, 100, 200, . . . , 900, 1, 000} action space

C(a) 10a cost function

Rt (s,T ) 2, 000, 000− 100, 000t nominal market value

(revenue) function

rt (s,T ) Rt (s,T )I(s = success)I(t ≤ T ) reward function

T 8 deadline (in number of

generations)

B $11,000, $12,000, …, or

$80,000

budget scenarios

G-1, n ∈ {1, . . . , 100}, a ∈ {100, 200, . . . , 1000}. The state space
construction will be trivial based on the definition.

Next, we need to estimate the matrix Wa for the transition
probabilities between each state. First, for any given p, we can
trace back the unique interval that p belongs to, based on the
preliminary simulation. We use an indicator function mk =

Interval(p) to represent this procedure. Meanwhile, we use
another matrix Na ∈ I

G×G to record the number of simulation
runs, which lead to the transition between two intervals under
action a.

For a = 100 : 100 : 1000
For n = 1 : 100

g = 1
While pn,ag < mG

mk1 = Interval(pn,ag )

mk2 = Interval(pn,ag+1)

Na
k1 ,k2
= Na

k1 ,k2
+ 1

g = g + 1

Wa
i,j =

Na
i,j

∑

j N
a
i,j

The procedures above introduce how to derive each element
in the matrix Na and how to calculate the transition matrix Wa

based on Na.

3.2. Simulation Results
We demonstrate the effectiveness of the dynamic programming
method for resource allocation by summarizing the results from
the simulation experiments.

3.2.1. Tradeoff Among Cost, Time, and Probability of

Success
We first ran the simulation with varying levels of total budget
for a static budget per generation and presented the results in
the CTP framework associated with each total budget value in
Figure 3. The horizontal axis shows the total budget (cost) for the
MATI process, the vertical axis represents the stacked histogram
of probabilities, and different layers with distinct colors indicate
the number of generations (time) it takes to successfully complete
the process. For example, when the total budget is $11,000, the
project can successfully finish in 6, 7 or 8 generations with
probability about 2, 20, or 44%, respectively. This project also
has about 34% probability to fail. The figure also demonstrates
the diminishing effect of increased budget to the performance of
the process. From a commercial breeding perspective, this would
enable an organization to estimate the cost and time-length
needed for successful creating the desired progeny.

3.2.2. Comparison With Static Resource Allocation

Strategies
We demonstrate the improvement of optimal dynamic resource
allocation over the static resource allocation using two random
simulations, which are summarized in the following tables of
figures, Tables 2, 3. Table 2 shows the result simulated using the
static strategy with Kt = 400 for each generation t, whereas
Table 3 shows the result from the MDP model. In both tables,
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FIGURE 3 | CTP graph with T = 8. In the figure, the horizontal axis is different total budget scenarios of the breeding project and the vertical axis represents a stacked

histogram of the probabilities of reaching success at different generations. In the figure, “GX” label means that the breeding process successfully finishes in X

generations and “Failure” means no ideal individual is produced when the budget or the time is depleted.

the first column is the generation number. In the second column,
at each generation, all the progeny produced in the simulation are
put abreast to each other to form a wide rectangle and the width
of the rectangle reflects the sample size. Here we use gray pixels
to represent the desirable alleles whereas black pixels to represent
the undesirable alleles. Those individuals highlighted by white
are the selected breeding parents and several ideal individuals
are produced at the last generations. The third column of each
table is the base 10 logarithm of PCV values of the selected
breeding parents. The fundamental difference between these two
resource allocation strategies is that the MDP model allows the
decision maker to dynamically allocate the resources based on
the outcomes from the previous generation. As a result, for the
same amount of the total budget, the dynamic approach was able
to produce the ideal progeny in the seventh generation, whereas
the static strategy required an extra generation.

Figure 4 compares static and dynamic resource allocation
strategies with respect to the CTP criteria for a fixed total budget
of $32,000. We considered seven different static strategies, in
which a fixed number of progeny (ranging from 100 to 700 with
an increment of 100) are produced in each generation. A total
of 500 simulation repetitions were conducted for the seven static
strategies and the dynamic strategy, and the histograms of the
terminal generations are compared in the figure. When a small
number of progeny are produced, the static strategy takes more
time resources to complete the project; when a large number
of progeny are produced, on the other hand, the static strategy
risks depleting the total budget before successful completion.
For instance, the 600-strategy produces 600 progeny in each of
generations 1–5 and only 200 progeny in generation 6 with a

TABLE 2 | Generations 2–8 of one random simulation run with fixed budget

allocation.

fixed total budget of $32,000. For such strategy, the success rate
of achieving the ideal target in generation 6 is <5%. In contrast,
the dynamic strategy has the flexibility to adjust the amount
of resource allocation based on the outcome of the previous
generation and is more likely to achieve successful completion
within a shorter amount of time.

3.2.3. Optimal Total Budget and Budget Allocation
Figure 5 enables plant breeders to determine the optimal total
budget for the MATI project based on cost-benefit analysis. The
blue curve represents a regression line on the estimated total
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TABLE 3 | Generation 2–7 of one random simulation run with MDP based budget allocation.

FIGURE 4 | Comparison under a fixed total budget of $32,000. The left 7 stacked bars represent the static budget allocation strategies with different progeny number

per generation while the last bar represents the MDP based strategy.

revenue, referring to the blue axis on the left. The red curve
represents a regression line on the estimated marginal return,
which is the derivative of the total revenue, referring to the red
axis on the right. This red curve illustrates the relation between
the investment on the total budget and the relative gain on the
total revenue. The optimal total budget, approximately $32,000,
is achieved where the marginal revenue intersects with $1000,
which is the unit increment of the total budget. Before the
optimal budget, every extra unit total budget investment brings
more return on the total revenue. However, after this point, the
increment on the total revenue is comparatively less with the unit
total budget increment.

Figure 6 breaks down the cost allocation to different
generations for varying levels of total budget. When total
budget is less than the optimal level, the model tends to
allocate unproportionately higher percentages of budget to
early generations, in order to produce enough progeny and
preserve genetic diversity for future genetic gains. When total
budget exceeds the optimal level, resource allocation to different
generations becomes stable. Meanwhile, the model tends to
allocate relative more resources on generation 2 and 3 to push
the process to succeed in generation 5. However, if it is not
finished in 5 generations, the model allocates a second push in
generation 6 to pursue a quick success. In general, the model
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FIGURE 5 | Profits and Budgets. In the figure, the blue pentagrams represent the estimation results from simulations and the blue curve represents a nonlinear

regression with model y = a1 + a2 × exp(a3x) for the estimation. The red squares represent the difference between the adjacent estimations and the red curve

represents the derivative of the expected total revenue curve. The red horizontal line is the marginal return is equal to one unit increment of total budget,

which is $1,000.

FIGURE 6 | Budget allocation with T = 8. In the figure, the horizontal axis is different total budget scenarios of the breeding project and the vertical axis represents the

proportion of budget allocated in different generations. Different gray scale are used for different generations.

focuses on dynamic balance of both budget and time resources.
After G1, the model tends to allocate higher budget in G2
and G3 to create variability; G4 requires less budget but a

little time for favorable recombinations to happen; G5 gives
a final push for the “lucky” progeny to succeed in G6 and
subsequent generations.
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4. CONCLUSIONS

In this paper, we addressed the issue of optimal resource
allocation in a MATI process using a Markov decision
process model, and made connections to the importance
of optimizing this process for a commercial organization.
Simulation experiments suggested that the proposed dynamic
resource allocation method greatly improves the efficiency of
the MATI process. Due to the assumptions made in the
problem definition and model construction, the proposed
model is by no means the best possible solution to the
proposed problem, but this can be seen as a potential efficiency
improvement on the traditional MATI process. Future research
effort is needed to explore other definitions of the state
space and action space to further improve the effectiveness of
the model.

Estimating the cost and revenue function is a possible research
topic for further discussion, as well. Plant breeding organizations
have their own forecasting models about the market value of
a certain genotype as well as its revenue associated with time
when it is delivered to the market. Thus, the research on the
discussion about cost and revenue functions may reveal more
economic discoveries about the trait introgression problem and
inspire further analysis.

Another fruitful research topic will be applying more
advanced artificial intelligence techniques into such research
problems. In our model, simplifying assumptions were made to
reduce the problem dimension to a relatively small scale with
only a few actions and states and finite time horizon. However,
as studied in Hospital et al. (2000), different selection intensity
or the number of parents selected for each generation could
make this resources allocation challenge more comprehensive
and complex. At the same time, relaxing the problem to
allow multiple donors is challenging. Also, the assumption
on independent crossovers could be changed for a more
comprehensive analysis. At the same time, it would be a
meaningful followup study to relate and compare with the
gene-stacking algorithm in De Beukelaer et al. (2015), in which
the population size was determined by a statistical formula.
In order to solve such problems under fewer assumptions
and higher dimensions, more powerful modeling and solution
techniques, such as reinforcement learning will be necessary to

deal with the uncertainty and complexity of the MATI process to
discover more efficient strategies.
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