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Abstract 

The mild-slope equation is an effective approximation for treating the combined 
effects of refraction and diffraction of infinitesimal water waves, for it reduces the 
spatial dimension of the linear boundary value problem from three to two. We 
extend this approximation to nonlinear waves up to the second order in wave 
steepness, in order to simplify the inherently three-dimensional task. Assuming 
that the geometrical complexity is restricted to a finite, though large, horizontal 
domain, the hybrid-element method designed earlier for linearized problems is 
modified for the two-dimensional elliptic boundary-value problems at the second 
order. 

This thesis consists of two parts. In Part I, the incident waves are monochro- 
matic. Application is first made to the special case of a a semi-circular peninsula (or 
a vertical cylinder on a cliff). Effects of the angle of incidence are examined for the 
free surface height along the cylinder. Numerical results for three examples involv- 
ing radially varying depth are discussed. In Part I1 the second-order mild-slope 
approximation will be further extended for random waves with a broad frequency 
spectrum. A stochastic approach of Sclavounos is generalized for the prediction of 
spectral response in harbors. Focuss is on the low-frequency harbor resonance, so 
the third-order solution is unnecessary. Numerical examples are given for a simple 
square harbor of constant depth. Effects of harbor entrance are examined. Possible 
extensions and other applications are discussed. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

In coastal dynamics there is a need for the prediction of the nonlinear diffraction 

and refraction of waves over varying bathymetry. Due to quadratic interactions 

of two first-order incident waves of nearly equal frequencies, second-order forcing 

at the difference frequency may induce significant slow oscillations inside a har- 

bor. These long-period oscillations with periods of one to several minutes inside 

harbors often cause excessive sway of ships, resulting in damages of ship hulls, 

fenders, or mooring lines, or costly delay of loading and unloading operations. 

Oftentimes, when these long-period oscillations occur, ships are forced to leave a 

harbor and wait outside until the oscillations within subside. These damage and 

delay can cause a huge loss of money to a port authority. 

Field reports [15] at Hualien Harbour, located in the center-eastern part of Tai- 

wan facing to Pacific ocean, show that during typhoon seasons (1) many mooring 

lines were broken, (2) cargo operations were terminated, and (3) ships could not 

anchor at the harbor, all because of the long-period waves which cause large ship 

motions. Moreover, similar damages are common in other harbors in Japan, such 

as Tomakomai, Kashima, Norshiro, Shibushi, etc 1321. 

In many harbors, the natural modes have periods longer than one minute, and 

these modes can be excited by waves with a comparable long period. When these 



modes are resonated, a small disturbance in water will induce large responses. 

This is called harbor resonance, which causes unpleasant long-period oscillations. 

The long-period waves that create harbor resonances can be induced by tran- 

sient winds. Although it is known that wind generated waves and swell usually 

have the periods less than 30 seconds, the long-period waves can be generated by 

the nonlinear interaction of the short-period wind waves. This is clearly seen in the 

wave records at many harbors. 

Figure 1-2 and 1-3 are the field observations [15] at Hualien Harbour during Ty- 

phoon Tim, 1994 at several stations both inside and outside the harbor as indicated 

in Figure 1-1. Figure 1-2 represents the wave energy vs. a waves period. It shows 

that (1) outside the harbor the range of the wave periods is from 11 sec to 15 sec 

and no long-period waves exist, (2) near the entrance of the harbor the energy of 

short-period waves decreases slightly while the energy of long-period waves are 

significant, (3) inside the harbor the energy of long-period waves, around 160 sec, 

increases dramatically while short-period waves decrease significantly. It is also 

shown in Figure 1-3 that inside the harbor the water level oscillates with a period 

around 150 sec. 

The study of the long-period waves induced by the nonlinear interaction of the 

short-period waves is of importance in the design of a harbor. Therefore, the objec- 

tive of this thesis is to investigate the second-order nonlinear refraction and diffrac- 

tion due to regular and random waves. 

1.2 Literature review 

1.2.1 Nonlinear Diffraction 

The linearized diffraction problem for a vertical cylinder in a constant depth has 

been studied before. Because of its simplest geometry the exact solution is well 

known and can be found in Mei [24]. 

The three-dimensional problem of nonlinear diffraction is difficult even for a 



Figure 1-1: Hualien Harbor, Taiwan, ROC. 
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sea of constant depth bounded by vertical cliff-like coasts. Many researchers have 

studied the nonlinear diffraction by a vertical cylinder in constant depth. For con- 

stant depth and monochromatic incident waves, Molin [28] obtained an approx- 

imated second-order analytical solution for a large cylinder by decomposing the 

second-order potential into free and forced terms satisfying respectively homoge- 

neous and inhomogeneous free-surface conditions. A weak radiation condition 

for the second-order diffracted waves is also obtained. In the study of a similar 

but large cylinder, Eatock Taylor and Hung [12] used an approximated first-order 

potentials for regular waves to obtain the second-order approximated solution for 

the second-order potential and forces. Zhou and Liu [44] used the multiple-scale 

perturbation method to investigate the diffraction of a nonlinear nearly periodic 

wavetrain by a vertical cylinder. Sclavounos [33] studied the second-order non- 

linear radiation and diffraction by floating bodies of deep-water bichromatic and 

bidirectional surface waves and developed a theory for surface piercing bodies of 

arbitrary shape. 

The second-order theory for an axially symmetric body was finally completed 

by Kim and Yue,[l7] and [IS]. In their theory a ring-source integral equation is 

developed to treat the diffraction by an axisymmetric body for monochromatic 

incident waves [17] and also for bichromatic incident waves [IS]. Besides, ana- 

lytic free-surface integration over entire surface domain is also developed. Com- 

plete second-order forces, moments, surface pressures and run-up on the vertical 

cylinder as well as a truncated vertical cone are presented. They showed that the 

second-order potential cannot be neglected and its contribution can dominate the 

total load in many cases. In Chau and Eatock Taylor [lo], a Green's function is 

employed to obtained an analytical solution which is in good agreement with Kim 

and Yue's numerical result [I 71. 

However, for problems related to varying bathymetry and irregular bound- 

aries, analytic solution is very difficult since the phenomenon combines refraction 

and diffraction. 



1.2.2 Mild-slope Equation 

The diffraction of infinitesimal waves by scatterers with vertical wall over a slowly 

varying bathymetry can be treated effectively by the mild-slope equation (MSE) 

originated by Berkhoff (61. A special feature of MSE is that it combines the re- 

fraction and the diffraction effects and reduces the boundary value problem from 

three dimensions to two, hence, facilitates numerical computations. In the orig- 

inal derivation of Berkhoff ( see also Smith and Sprinks [35] who derived MSE 

by weighted averaging via Green's formula.), terms proportional to the small ved 

slope Vh were kept but those proportional to (Vh)2, V2h were neglected. For 

applications to steeper bathymetries various modifications have been proposed( 

Massel [22]; Athanassoulis and Belibassakis [3]; Chamberlain and Porter [9]; Porter 

and Staziker [31].) In particular Chamberlain and Porter retain the second-order 

depth-gradient terms and show that the modified mild-slope equation has a bet- 

ter accuracy for scattering by corrugated sea bed of length scale comparable to the 

surface waves. Increased accuracy can be achieved for still steeper bed slopes by 

including all the evanescent modes, leading to an infinite set of two-dimensional 

modified mild-slope equations coupling all vertical modes( Massel [22] and Porter 

and Staziker [31].) Athanassoulis and Belibassakis [3] extend Massel's theory with 

one additional mode for the bottom slope in order to tackle a steeper bottom in 

which results of an one dimensional variable bottom with linear waves is demon- 

strated. Later a two dimensional problem for linear waves is shown in Belibas- 

sakis, Athanssoulis and Gerostathis [5]. Mei [25] use a multiple-scale perturbation 

method to obtain a MSE for the second-order long waves with including both slow 

scale and fast scale. In practice, it is difficult to separate the two scales when a nu- 

merical method is applied. 

Extensions of the mild-slope approximation to nonlinear problems are so far 

limited to basic ideas but not yet fully implemented. 



1.2.3 Harbor Oscillation 

Monochromatic Incident Waves 

Linearly excited oscillations by monochromatic incident long waves have been 

studied analytically for some simple geometries. Miles and Munk [27] gave a com- 

plete analysis for an open narrow bay. Unluata and Mei (381 studied the similar 

problem with a different approximation at the entrance. An analytic solution for 

a two coupled basins was also obtain by ~nl i ia ta  and Mei [39]. These linearized 

problem are reviewed by Mei [24] and by Mei and Liu [26]. 

Numerical methods are also developed for the linearized long waves. For har- 

bors of constant depth but arbitrary plan form, numerical solutions have been ob- 

tained by Hwang and Tuck [16] and Lee [21] by method of integral equations. 

For varying depth integral equations is rather complicated and expensive (Laut- 

enbacher [20]; Mattioli [23].) Chen and Mei [Ill developed a hybrid finite element 

method for a incident long waves and the method is well suited for variable depth. 

The numerical scheme was applied on the incident short waves with a mild-slope 

equation by Houston [14]. Also the numerical scheme has been applied in many 

practical computation, e.g. for Long Beach harbor in U.S. [13] and Hualien harbor 

in Taiwan (151. Some modifications are gven by Tsay Zhu and Liu [37] concerning 

dissipation at the boundary. 

Narrow-banded Incident Waves Groups 

Long-period harbor oscillations by groups of short-period wind waves with nar- 

row band have been studied by several authors. Bowers [8] considered two narrow 

channels with the outer channel being wider. He found both locked long waves 

and free long waves theoretically and experimentally. Agnon and Mei [2] studied 

a rectangular harbor with a narrow entrance width that is much wider than the 

wavelength of the incident short waves but much smaller than the wavelength of 

the long waves. Besides, the harbor basin is exposed to the ocean without any 

protection and the depth is constant everywhere. Moreover, the straight coastline 



intersects the longitudinal axis of the harbor. With these assumptions, they ob- 

tained an approximated analytical solution for the short waves. They showed that 

the free long wave can be resonated inside the harbor. 

Wu and Liu [41] examined a similar problem concerning wave-group-induced 

harbor resonance. The two major features are (1) a protection of two breakwaters 

parallel to the coastline is imposed, and (2) the harbor mouth is wider than the 

wavelength of incident short waves but smaller than the wavelength of the wave 

envelope . In their study, oblique incident wave groups were considered. The 

first-order wave field is obtained exactly by an integral-equation method. Also 

analytical expressions for both locked and free long waves inside and outside the 

harbor were obtained. They demonstrated that only the free long waves are res- 

onated at low frequencies and the locked long waves may be ignored for practical 

purposes. In the higher frequency range both locked and free long waves could be 

resonated. 

All researches cited above considered narrow-banded incident waves. These 

theories are however inadequate for simulating waves in nature which are random 

and broad-banded. 

1.2.4 Random Waves 

Since waves are random in the real sea, a stochastic theory for nonlinear waves is of 

importance. At the first-order, the linear response spectrum is well known to be of 

Wiener-Khintchine form. For simple progressive or standing waves in deep water, 

Sclavounos [34] has advanced a systematic stochastic theory. By assuming the 

incident waves to be a stationary and Gaussian process, he showed that nonlinear 

correction to the frequency spectrum starts at the fourth order in wave steepness, 

and depends on the frequency responses at first, second and third orders. With 

emphasis on the nonlinear corrections for the entire frequency range, he presented 

numerical results for a simple nonlinear problem of random wave reflection from 

a long vertical cliff in a sea of constant depth. 



In Part I1 of this thesis, his stochastic approach will be generalized for the pre- 

diction of spectral response in harbors. 



Chapter 2 

General Problem Formulation 

In this chapter, a general boundary value problem for a varying bottom is formu- 

lated. Based on the assumption of small amplitude waves, 0 (kA << I), where kA is 

the wave slope, perturbation equations governing the potential function for each 

order are obtained. 

2.1 Mathematical Formulation of the Boundary Value 

Problem 

Let us assume that the fluid is incompressible, inviscid and in a conservative force 

field. The flow is initially irrotational, therefore remains irrotational. The velocity 

potential is defined as 

d@ d@ d@ 
03@= (- - -) - 

dx' dy' dz - (u, V' w) 7 

where 

v -  3 - ( a  - - -  a a), 
dx' dy' dz 

and u, v, w are the velocity in x, y, z direction, respectively. 

For an irrotational flow, the velocity potential is governed by Laplace's equa- 



where V denotes the horizontal Laplacian 

and ((x, y, t) and h(x, y) are the vertical displacement of the free surface and the 

water depth, respectively, measured from the still water free surface x = 0. On the 

fixed and impermeable seabed, z = -h(x, y), the normal velocity must be zero 

a@ 
- = -V@ . V h ,  z = -h(x, y). 
ax 

All lateral boundaries, dB, including the coast are assumed to be vertical, so that 

dip - = n' Q3@ = 0, 
dn 

where n' is the normal vector toward the rigid boundaries. 

On the free surface, z = ( (x, y , t ) ,  the kinematic and dynamics boundary condi- 

tions are 
a( a@ a@ a( aip -+-- +-- - -  - 
at axax ayay ax7 2 = C(x7 Y7 t), 

and 

where the zero pressure on the free surface is assumed. Eqns. (2.1.5) and (2.1.6) can 

be combined to give 

For small-amplitude waves, i.e., the wave steepness E kA << 1, where A is the 

amplitude of the incident waves, we expand @ and its derivatives up to several 



order in powers of E by using the Taylor expansion about z = 0 

The free surface boundary conditions become 

and 

In summary, Eqns. (2.1.2), (2.1.3), (2.1.4), (2.1.9) and (2.1 .lo) represent the general- 

ized boundary value problem up to 0 ( e 3 ) .  

2.2 Perturbation equations 

Because of the assumption of small wave steepness, e  = kA << 1, we introduce the 

perturbation expansions 

into Eqns. (2.1.2), (2.1.3), (2.1.4), (2.1.9) and (2.1.10). By separating the orders, the 

first-order, second-order and third-order perturbation equations are presented be- 

low. 



At the first order, O(E), the velocity potential Q1 satisfies the governing equation 

in water, the no-flux conditions 

3% - = -VQ1 . Vh, z = -h(x,y) dz 

on the bottom and 

on all lateral boundaries, and the homogeneous free surface boundary condition 

on the still water free surface. 

The first-order free surface displacement, (1, is related to Q1 by 

2.2.2 Second-order 

At the second order, O(e2), the velocity potential Q2 also satisfies Laplace's equa- 

tion 

in water, the no-flux conditions 

= -Va2.  Vh, z = -h(z, y) 
d z  

on the bottom and 



on all lateral boundaries. On the still water free surface, z = 0, the boundary 

condition is now inhomogeneous 

1 d2Q2 1 8 - - a2a1 l a  
+ -7 - -  [ ( )  + ] - ( ~ 3 ~ 1 ) ~ )  z = 0. (2.2.11) az g a t  g 2 a t a z  

The second-order free surface displacement, (2, is given by 

la@, 1 a@, a2Ql 1 +--- - - 
g a t  g 2 d t  at82 29 ( ~ 3 @ 1 ) ~ ]  z=O . 

It is convenient to decompose c2 as follows, 

where 

The first part cil) can be calculated from the first-order potential @,. The second 

part (i2) is associated with the second-order potential Q2, which is the main objec- 

tive of the mathematical task. 

At the third order, O(P),  the velocity potential Q3 satisfies the Laplace equation 

in water, the no-flux conditions 

80'3 
= -V0, - Vh, 2 = -h(x, 9 )  d z  



on the bottom and 

on all lateral boundaries, and the inhomogeneous boundary condition 

on the still water free surface. 

The third-order free surface displacement, c3, is related to the first-order, the 

second-order and the third-order potentials by 

with C given by Eq. (2.2.7) and c2 gven by Eq. (2.2.12). 

In addition, radiation conditions at infinity for each order will be specified later. 

The study of combined nonlinear diffraction and refraction will be focussed on 

two types of incident waves, monochromatic and random. In Part I we consider 

monochromatic incident waves. After extending the mild-slope approximation. 

Applications are made to the geometries involving a mildly sloping seabed and a 

special case of a semi-circular cylinder on a cliff or an idealized peninsula, in a sea 

of constant depth. In Part I1 the second-order mild-slope approximation will be 

further extended for random waves with a broad frequency spectrum with appli- 

cations to harbor oscillations due to short incident waves. 



Part I 

Monochromatic Incident Waves 



Chapter 3 

Mild-Slope Approximation 

The mild-slope equation(MSE) is an effective approximation to combine refraction 

and diffraction and reduce the spatial dimension of the boundary value problem 

from three to two. In this chapter, we extend the mild-slope approximation to 

second-order in wave steepness. Attentions is limited to monochromatic incident 

waves through out Chapter 3 to 7. 

3.1 First-order MSE 

We assume the waves to be simple-harmonic in time at the first order with the 

velocity potential 

= +e-iwt + *, 

where * denotes the complex conjugate of the preceding term, and w the wave 

frequency. 

Let all coastal boundaries be vertical. We take the first-order 4 take to be 

+- igq(x, y )  cosh k ( z  + h)  
w c o s h k h  ' 

where q(x, y )  is the surface elevation for w, and k is the wave number satisfying 

the dispersion relation 

(3.1.3) w2 = gk tanh k h .  
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By treating Laplace's equation as an ordinary differential equation in 2 and apply- 

ing Green's formula (as in Sprinks and Smith [35]), we get the modified mild-slope 

equation for the first-order problem. The result by keeping all terms proportional 

to V h ,  V 2 h  and (Vh )2  is the modified mild-slope equation by Chamberlain and 

Porter [9], (see Appendix A for details) 

where 

(sinh2kh - 2khcosh2kh) 
U =  

4 cosh2 (kh)  (2kh + sinh 2kh) ' 
k [ ( ~ ) k h ) ~  + 4 (2kh)3 sinh 21ch - 9 sinh 2kh sinh 4kh] v =  

12 cosh2 (kh)  (2kh + sinh 2kh)3 

k [kh (kh + sinh 2kh) (cosh2 2kh - 2 cosh 2kh + 3)] + 
cosh2 (kh)  (2kh + sinh 2kh)3 

7 

C is the phase velocity, 

and C, is the group velocity 

Note that while no terms related to the gradients of depth are omitted, the assumed 

potential Eq. (3.1.2) is not exact and does not satisfy the bottom condition strictly. 

The above approximation is therefore still restricted to mild slope. Over a constant 

depth, Eqn. (3.1.4) reduces to Helmholtz equation 

Eq. (3.1.4) with appropriate radiation condition can be solved numerically by 

hybrid element method of Chen & Mei [ l l ]  if the complex geometry is limited to a 



finite near field. Afterwards by putting Eqs. (3.1 .I) and (3.1.2) into Eqs. (2.2.7) and 

(2.2.12) , we obtain the first-order free surface displacement 

With these results the following part of the second-order free surface displacement 

can be computed immediately, 

In particular, the zeroth harmonic v$:i represents the mean-sea-level setup / setdown 

and 17$1i represents the second-harmonic amplitude due directly to quadratic inter- 

actions of the first-order motion 

Solution of the remaining second harmonic 

must await the solution of Q2. 

3.2 Second-order MSE 

At the second order, the inhomogeneous free surface boundary condition, Eqn. 

(2.2.11), can be rewritten as follows 



where the forcing function F is found to be 

F = &q+Pvq. vv, 

with 

Details are given in Appendix B. Note that the forcing term does not contain any 

zeroth harmonic in time. 

Since the forcing term on the free surface contains the second time-harmonic, 

the second-order potential must be of the form 

Putting Eqn. (3.2.4) into Eqns. (2.2.8), (2.2.9) and (3.2.1), we find that Q satisfies the 

Laplace equation 

in water, 

on the seabed, 

on the lateral boundaries, 

3 = -VQ V h ,  z = -h(x ,  y), 
a2 

on the still water free surface. Because the forcing term F involves quadratic in- 

teractions of first-order incident and scattered waves, the second-order problem is 

more complex vertically than the first order. Similar to the first-order mild-slope 

approximation of Porter and Staziker [31], we express the solution for $ as the sum 



of all vertical eigenmodes 

00 

ig cos n,(z + h) $ = - & C t m  cosnmh ' 
m=O 

where n,, m = 1'2, . . . are the real roots of the transcendental equation 

2 -4w = gnm tan n,h, (m - 112) 7-r < nmh 5 m~ (3.2.10) 

and no is pure imagnary no = -iZo, with Eo being the real root of the dispersion 

equation 

4u2 = gZO tanhZoh. 

Physically the subscript m = 0 corresponds to the propagating mode which prop- 

agates to infinity, while those with m 2 1 to evanescent modes which represent 

local effects. Repeating the procedure of weighted vertical averagng via Green's 

formula, as in Appendix C, we obtain a matrix equation coupling all second-order 

modal amplitudes &: 

where 

with 

10 form + l 

l o  form = t 

sin 2 n m  h - 2 n m  h cos 2 n ,  h 
4 cos2 ( n ,  h )  ( 2 ~ ~  h + s i n  2 n m  h )  

for, m = l ,  - * 
Urn,[ = 

4 
C O S K ~ ~ C O S K ~ ~ ( F : - ~ ~ & )  ' for, m # e, 



and 

Cm,l = -t&Am,e + gUm,ev2h + gVm,l ( ~ h ) ~  . 

with Vm.e being 

n, [- (2nmh14 - 4 ( 2 ~ , h ) ~  sin 2nmh - 9 sin (2nmh) sin 4nmh] 
Vm,m = 

12 cos2 (nmh) (2nmh + sin 2 ~ , h ) ~  
(3.2.17) 

n, [~ ,h  (n,h + sin 2r;,h) (cos2 2nmh - 2 cos 2nmh + 3)] + 
C O S ~  (nmh) (2nmh + sin 2 ~ , h ) ~  

for m = t?, and 

-2ne sec nmh sec nth [ ~ K ~ K L  + (6: - n k )  sin2 neh] 
Vm,e = ( 2 ~  h + sin 2ne h) 

(6," - K & ) ~  

for m # t?. These Coefficients A,,e, B,,e,and CmTe are equivalent to those in the 

modified system of mild-slope equations of Porter and Staziker [31] for linearized 

waves and F = 0, after c h a n ~ n g  2w to w. We have now reduced the second- 

order task to the solution of coupled two-dimensional elliptic problems, subject to 

certain boundary conditions. 

In the region of constant depth, terms multiplied by Bm,e vanish, while Am,e 

and CmJ1 are diagonal matrices. Eqns. (3.2.12) are no longer coupled and reduced 

to 
2 2w V ce - nitl = -i-F, t? = 0,1,2,3, . . (3.2.19) 

Am,! 

In the simple case where h is constant everywhere and the coastline is simple, Eqn. 

(3.2.19) can be solved analytically as will be described in Chapter 6. 



Chapter 4 

Solution Strategy: Hybrid-element 

Method 

For coastal waters where only the complexities of local topography and coastline 

is of major concern, we can simplify the geometry in areas far from the local re- 

gion. With reference to Figure 4-1, let us divide the horizontal fluid domain into 

two regons : the near field flA in which the bathymetry and coastal boundary 

are complex, and the far field flF where the depth is constant and the coastline 

straight. The two fields are separated by a semi-circular cylindrical surface 8A of 

radius r = a. 

For the first-order problem, the far-field solution in flF can be represented an- 

alytically as an eigenfunction expansion. In the near field QA, discrete solutions 

will be sought via finite elements. The unknown nodal coefficients in flA and the 

expansion coefficients in QF will be found together by Galerkin's method, subject 

to the continuity of 11 and 8vldr at r = a 

where denotes the solution in QA, ( ) a F  denotes the solution in QF. This is the 

hybrid-element method developed for linearized wave problems by Chen & Mei 



Figure 4-1: Near (RA) and far (RF) fields. Variable bathymetry and non-straight 
coastal boundaries in (RA) behine the semi-circle r = a. (a): without a harbor (top) 
(b): with a harbor (bottom). 



(1974) and Bai & Yeung (1974) [4] for two dimensions and Yue, Chen & Mei (1976, 

1978) [42] [43] for three dimensions. The method is extended to the second-order 

problem here with the requirement of continuity of <[ and d&/dr at r  = a 

As a part of the hybrid-element analysis, let us first present the analytical solu- 

tions in the far field f l F  where the depth is constant and the coastline is along the 

x axis. 

4.1 First-order Far Field 

In the far field, the first-order waves consists of the incident, reflected and scattered 

(diffracted) waves given together by 

where 

The part ,,,(')is the first-order incident wave 

with Or being the incident angle and A the amplitude. The part q(R) is the first- 

order reflected wave 



while l ) ( S )  is the first-order scattered wave which can be represented by 

1)") = C ~ , i ~ a ,  Hm ( k r )  cos m0, 

where E ,  is the Jacobi symbol, being 1 for m = 0 and 2 for m 5 1, H,(kr) 5 

~ : ) ( k r )  is the Hankel function of the first kind, and the coefficients a , ,  m = 

0 ,1 ,2 ,  . are yet unknown. 

In the near field of complex bathymetry and coastline, discrete finite elements 

are used. The first-order two-dimensional finite element analysis is shown in sec- 

tion 5.1, and the coupled problem of near and far fields are then solved numerically 

as in Chen & Mei [ll]. After which the nodal values of q in the near field and the 

coefficients am of the far field are found. 

4.2 Second-order Far Field 

The analytic solutions in RF are sought as follows. As will be shown in the next- 

section, F can be split into two parts 

representing respectively self interaction of progressive waves, and quadratic in- 

teractions involving scattered waves (progressive-scattered and scattered-scattered). 

In accordance with the form of the forcing term, the second-order response (&)RF 

defined by Eqn. (3.2.9) can be separated into three parts 

The first part <: is the response to forcing P as if the complex geometry in the near 

field does not exist. Thus it satisfies the following inhomogeneous equation 



and 

along the coast. No conditions are imposed elsewhere. It will be solved in section 

4.4.1. 

The second part cf is the response to forcing Q and is required to satisfy the 

inhomogeneous equation 

the no-flux condition along the straight coast 

and along the semi-circle r = a 

For the evanescent modes, !? = 1,2,3, ., sf diminishes to zero at large enough 

r.  For the propagating mode, l = 0, ~7 must satisfy the weak (integral) radiation 

condition at infinity due to the slow attenuation of Q. We shall call both $ and (f 
the forced waves. 

Finally, the free wave @ is defined to satisfy the homogeneous Helmholtz equa- 

tion 

(v2 --'i;)tF = O ,  l =  0,1 ,2 ,3 , . - .  , 

and the no-flux condition along the straight coast, 

In addition, ~7 must satisfy the usual (strong) radiation condition at infinity. The 



formal solution to the free wave tf is immediate 

where Km is the modified Bessel function of the second kind of order rn. For ! = 0, 

(1) - 
KO = -GO is pure imaginary and K , ( K ~ ~ )  is proportional to Hm (rcor). The un- 

known coefficients Gl,, will be found jointly with the discrete solution in the near 

field by the hybrid-element analysis( in section 5.2), which requires the continuity 

of the near and far fields and their radial derivatives along r = a 

The solutions for and ~2 can be obtained explicitly as shown in section 4.4. 

4.3 Forcing function F in the far-field f l F  

Referring to Eqn. (3.2.2), F contains quadratic products of the first-order waves 

and can be decomposed as 

F = P + Q  

where P denotes the part associated with the self- and cross-interactions of pro- 

gressive waves( incident and reflected waves), 

with and p are given by Eq. (3.2.3), and 



is the part due to mutual interactions between the plane progressive waves and 

the scattered waves, and the self-interaction of the scattered waves. 

4.3.1 Explicit expression for P in OF 

By definition, P is 
( T )  ( T )  + P v l ) ( T )  . v l ) ( T )  P(r79)=F1) 1) 

with 

To get P,  we must obtain l ) (T) l ) (T)  and v ~ ( ~ )  ~ ~ ( ~ 1  

( T )  ( T )  = A i2kr cos(e-01) A .  A i2kr cos(B+B~) + -e22kr 61 cos 
1) 1) + -e (4.3.6) ze 4 2 

and 

A2 k 2  [ei2kr cos(e-eI) i2kr C O S ( ~ + ~ ~ )  + 2 Cos ( 2 0 ~ )  ei2kr cos eI cos e v l ) ( T )  . v l ) ( T )  = - - + e 
4 I 

(4.3.7) 

Therefore, putting Eqns. (4.3.6) and (4.3.7) into Eqn. (4.3.4), we obtain 

Clearly the first line 

represents a pair of obliquely incident and reflected plane waves of wavenumber 

2k,  and the second line 



is a plane incident waves of wavenumber 2k cos Or propagating along the coastline. 

4.3.2 Fourier expansion for Q in OF 

To calculate the forcing function Q, we shall first abbreviate the first-order progres- 

sive waves as 

with 

Tm ( r )  = Aim Jm ( k r )  cos meI, 

and the first-order scattered waves as 

where 

Sm ( T )  = imCtmHm ( k r )  

with the coefficients am are solved by the hybrid-element method. Because of the 

no flux condition on the straight coast, 

(dl)(T),  Yf)) 

80 
= 0 ,  r  > a ;  0 = 0 ,  and T ,  

and the properties of Bessel functions 

it is evident that 

T-,, ( T )  = A Z - ~  J-, ( k r )  cos (-mOI) = Aim Jm ( k r )  cos mOI = Tm ( r )  , 

A .-, A S-, ( r )  = - 2  Q-rn,H-m ( k r )  = -iman, Hm ( k r )  = Sm ( r )  
2 2 



i.e., Tm, Sm, am are even in m. 

We now calculate Q according to Eq. (4.3.3). A typical quadratic product in Eq. 

(4.3.3) is of the form 

It follows that Q can be expressed as a Fourier series shown in Appendix D 

or equivalently 

Q (r ,  0 )  = x Qm ( r  ) eims 

with 

4.4 E: and ~2 in the far-field RF 

The analytical solutions for tF and cF are obtained in the following sections. 

4.4.1 Response <: to Forcing P by progressive waves 

Let us recall that t$ satisfies Eqn. (4.2.8) 

with P being Eqn. (4.3.8) 



After inspecting the form of P we expect e: also has the same form, 

e:=t$+<pR+(iR7 1 = 0 7 1 7 2 , 3 * * -  

where 

In the preceding equation, and @ represent the second-order oblique incident 

waves and reflected waves, respectively, and tiR is radiated plane wave induced 

by the interaction between the first-order incident and reflected waves. Substitut- 

ing the above equations into Eqn. (4.4.1), we obtain 

and 

2iw A 2 [ - Pk2 cos (281) L , N = - -  
&,a 2  (2k cos o ~ ) ~  + ni 

In summary, we obtain 

21w [B - i k 2  '0s (2oI )]  
ei2kr cos 81 cos 0 +-- ) l = O , 1 , 2 , 3 - a .  . 

Atl[ 2  (2k  cos el)' + ng 

Substituting Eqn. (4.4.3) into (3.2.4) and (3.2.9), we obtain the corresponding second- 

order potentials @;, @? and @iR, 

( a )  - - 'C (' - i k 2 )  
(' + h, i 2 k r ~ o ~ ( 8 ~ 8 ~ ) - i 2 u t  e + *, (4.4.7) 

e=o 



and 

u g (p - Pk2 cos 201) 
@ I R  = C A2 COS Ke (2 + h) ei21crcos~r cos O-i2wt + *, (4.4.8) 

e=o A ~ , ~  [(2 k cos O) + K.:] -T cos ~ e h  

For normal incidence Or = 31~12, the second-harmonic potential @aR becomes 

independent of (x, y, z) (or r, 0,z); the associated second harmonic pressure persists 

for all depth down to the seabed and can induce rnicroseisms, as shown first by 

Longuet-Higgns (1950) for a pure standing wave in deep water on a straight coast. 

We remark that each potential above is just the series expansion of the second- 

order part of the classical Stokes wave (see Appendix E for details). While the 

Stokes form is more compact, the series form here is more convenient for later 

computations. 

4.4.2 Response cf to forcing Q 

To solve the inhomogeneous equations, we shall employ the method of Green's 

function, Ge (r, 0; ro, Oo), defined here by the following equations 

dGe -- - 0, r = a. (4.4.11) 
dr 

withe = 0,1,2,3. . .  . 

For l = 0, the usual(strong) radiation condition is required, i.e., at infinity, Go 

behaves as an outgoing waves, 



For l = 1,2,3,  . . . , we require that the evanescent modes die out at infinity 

The Green's function Ge(r, 0; ro, 00) is then obtained as follows. Let us expand 

the Dirac delta function for 0 into complete orthogonal sets of eigenfunctions 

Substituting the above expression into Eqn. (4.4.9)' yields 

(4.4.16) 

Let us assume Gp(r, 0; T O ,  Oo)  to take the form 

where g,,, ( r  ; ro) is yet to be determined. Putting Ge (r ,  0; ro, 00) into equation (4.4.16), 

we obtain 

- 
Defining ge.m = g,,, for r < ro and ge,, = g& for r > ro, we get 

The above equation is the Modified Bessel equation with integer order m, with the 

solution 



where Im is the modified Bessel function of the first kind of order m, and Km is the 

modified Bessel function of the second kind of order m. The following boundary 

conditions must be required 

d 
-ge;m(r;ro) dr = 0, r = a. (4.4.23) 

In addition, we integrate equation (4.4.18) with respect to r from r,  to r,f to obtain 

another matching condition at r = ro 

Since for large r, g&(r; ro) should satisfy Eqns. (4.4.12) and (4.4.13), the solution 

can only consist of Modified Bessel functions of the second kind, 

For g&(r; ro) to satisfy the boundary condition at r = a, we require 

so that 

To satisfy the matching conditions at r = ro, we need 



and 

P K ~  ( ~ e r o )  - cKA (nero) + c 
Kh ( ~ e a )  1 I; (nero) = -. 
I:, (ma)  Kero 

We shall make use of the Wronskian relation for modified Bessel functions 

and the recurrence relations for Kv+l ( 2 )  and for ( 2 )  

and 

Putting the recurrence relations, Eqns. (4.4.32) and (4.4.33), into Eqn. (4.4.31), we 

get another expression for the Wronskian relation 

Let us rewrite Eqn. (4.4.30) as 

and compare the above equation with the Wronskian relation, Eq. (4.4.34), we get 



We finally obtain 

and 

Green function can thus be written as 

00 

G, (r ,  8; T O ,  8 0 )  = C Km (ner,) Km (nir<) cos m0 cos meo 
m=O 

00 

I 
(4.4.41) 

with 

r ,  = Max {r ,  ro )  , r ,  = Min {r ,  ro) . 

This is the two-dimensional counterpart of the three-dimensional Green's function 

by Chau and Eatock Taylor(1992) [lo]. Also, it is clear that the arguments in Gl are 

interchangeable, i.e. 

Ge (r ,  8 ;  T O ,  00) = Ge ( T O ,  00; r, Q )  . (4.4.43) 

After obtaining Green's function, we can solve tf (r ,  8 )  by making use of Green's 

theorem 

where dQF is the boundary of QFf 



with d A  being the semi-circular cylindrical boundary between OA and OF, d B  the 

coastline and d F  the semi-circular cylindrical boundary at infinity r = R, + m. 

Putting the boundary conditions Eqns. (4.2.12), (4.2.11), (4.4.10) and (4.4.11) into 

Eqn. (4.4.44), we get 

Making use of the facts that (i) for l = 1,2 ,3 ,  . . , the evanescent modes die out 

exponentially at infinity, and (ii) for l = 0, the propagating mode satisfies the weak 

radiation condition, i.e. the line integral along the boundary at infinity dF  below 

vanishes in the limit of large r 

The details are shown in Appendix F.2. Therefore, Eqn. (4.4.46) becomes 

Putting Eqn. (4.2.10) and (4.4.9) into Eqn. (4.4.48), we get 

Due to the symmetry of the obtained Green's function, Eq. (4.4.43), the preceding 

equation can be further rewritten as 



By making use of Green function Eqn. (4.4.41) into Eqn. (4.4.50), cf ( r ,  0 )  is finally 

obtained 

00 

~ ~ ( r , 0 ) = ~ ~ r o d r o ~ ~ d 0 o [ - z  cos me cos rnh~, (ntr>) 

From Eqn. (4.3.19), Q (ro,  O o )  is written in terms of a Fourier series 

where Qp(ro, 00) is 

- as, +p- dro (2% + %)} are 

with 

Putting the identities of the eigenfunction of Oo 



into Eqn. (4.4.51), we obtain 

In particular, for r = a (i.e. on the boundary between flA and flF): 

Making use of Eqn. (4.4.34), the previous equation can be reduced as 

00 

~2 (a)  8 )  = -% cos (me) lm rodro [-i 2wQm ( T O )  Km (&!TO) 

Ke a Ae,e 
] !=0>1)273***.  

m=O 

For all ! > 0, Km(nero) decays exponentially for large ro, so the integral above 

converges rapidly. For ! = 0, no = -iEo is pure imaginary 

and 
77- 1 .  

Kk (noro) = Kk (-iEoro) = - - e ~ ' ~ "  H : ) ' ( E ~ ~ ~ ) .  
2 

(4.4.62) 

Thus the infinite integral Eq. (4.4.59) can be computed by first rewriting 

00 

<oQ ( a ,  0 )  = C % cos (me) 
1 

Koa  IF^ + I&) 
m=o H:)' (koa) 



where 

and 

The integral IF, is evaluated by the Guassian quadrature integral method. Eval- 

uation of the integral IF, can be expedited by the scheme of Chau and Eatock 

Taylor(1992) [lo] and the details are gven in Appendix G. 

In summary, the second-order solution in the far-field is known analytically 

except for the unknown coefficients lie,, of the second-order free wave. 



Chapter 5 

Finite element analysis 

The detailed finite element analysis for solving the first-order and the second-order 

mild-slope equation will be described in this chapter. 

5.1 First-order problem 

In this section, the finite element equations using Galerkin's approximation are 

formulated for the first-order mild-slope equation 

the no-flux condition on the solid boundaries dB which is the union of the complex 

coastline (peninsula, harbor, break~aters~etc.), 

and the continuities of pressure along and flux across the semi-circle d A  : ( r  = 

a , O <  0 < T )  



These conditions are imposed on the nodal points along the semi-circle. Recall that 

the far field solutions q(*) and v(S) are given by Eq. (4.1.2) and Eq. (4.1.5), the last 

of which still contains the unknown coefficients 0,. 

5.1.1 Weighted residual integral equation 

Instead of solving Eq. (5.1.1) directly, we use the weighted residual integral equa- 

tion as follows. 

where W is a weighting function to be chosen below. Instead of getting the exact 

solution, we try to get an approximate numerical solution in which the residual 

or error is forced to be zero in a spatially averaged sense. The first term of the 

integrand on the left hand side of Eq. (5.1.5) can be written as 

[O . (CCgOq)] W = 0 (WCCgOq) - CCgVq. OW. (5.1.6) 

Then, by Green's theorem, the following surface integral is transformed into a 

closed line integral along boundary I' of the domain RA 

Therefore, Eq. (5.1.5) becomes 



By employing the boundary condition, Eqns. (5.1.2)-(5.1.3), the preceding equation 

becomes 

5.1.2 Discretized by triangular elements 

We shall employ three-node triangular elements. Within each triangle 7' is approx- 

imated by a linear interpolation function 

where superscripts e represent quantities associated with an element, 7," is the lo- 

cal i-th nodal coefficient of 7. The local weighting function w," for nodal point is 

defined as 
1 

W e  = - 
"Ae 

(ai+bix+ciy),  i = 1 , 2 , 3  (5.1.11) 

with 

al = x;y; - xe 3 ~ 2 ,  ~ I = Y ; - Y ; ,  C I = X ~ - - X ; ,  (5.1.12) 

and A' being the area of element e 

where (x:, g,') denote the x, y coordinates at node i. The other coefficients a2, a3, b2, 

b3, ~ 2 ,  C I  can be obtained by permutation 1 -+ 2 -+ 3 -+ 1. Note that at local node i, 



wi is unity, while outside the immediately adjacent elements wi = 0; i.e., 

In the finite element analysis, domain i I A  is approximated as an assemblage of 

NE discrete triangular elements with Np nodes in which NB boundary nodes are 

placed from node Np - NB + 1 to node NB. Therefore, there are Np - NB interior 

nodes. In addition, the continuous field q is replaced by 

where 11, is the n-th global nodal coefficient of 7, and Wn, with n = 1 , 2  . Np, is 

the global weighting function. 11, and WE are assembled by the local nodal param- 

eter and the local weighted function w," respectively (Figure 5-la). Therefore, at 

global node n, W, = 1, while outside the immediately adjacent elements Wn = 0. 

Based on the Galerkin assumption, W in the weighted integral equation is 

chosen to be the global weighting function Wn. Therefore, with Eq. (5.1.16) and 

Galerkin assumption, Eq. (5.1.9) is approximated as 
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" "- -, node NP - N ~ + q + l  - line element 9 

enode Np- NB+q 
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I 
I 

I 
I 

b node Np- NB+l  

Figure 5-1: (a) Global and local nodes of finite elements . (b) Line elements on the 
semi-circular boundary a A  



Recalling that 

and the scattered waves with N, + 1 unknown coefficients a ,  after truncation is 

Na 

11'') = epiPnPHp ( k r )  cos p6, (5.1.19) 
p=o 

we can write Eq. (5.1.17) as 

- C np \ r , i ~ k . a ~ ~ ~  H; ( k a )  J0 Wm cos pod0 ) 
p=o 

+ cos (6 + 61) e ika cos(B+81) do, I 

Now let us define two column vectors x(') and x ( ~ )  b y  the unknown % and cup 

Eq. (5.1.20) can be written in matrix form 



or equivalently 

where the entries for K('), K ( ~ ) ,  and y(') are IC;?~, K:!, and yk) respectively ; they 

are defined as 

I C ( ~ )  = - ~ ~ i ~ k a C C ,  HA (ka) 
m7P 

and 

7T 

Y:) = i k a ~ ~ ,  1 Wm [cos (6 - O r )  eika cos(e-ez) + cos (6 + O r )  eikacOs(etez) 1 .  d6 

The above integrals ICE!,, IC:!, and yk) are obtained as follows. 

liEk is an assemblage of local element stiffness matrices Ei,j , 

N E  i, j +- local node, 
IC~!, = C Ei,j, with 

R e = l  ( m, n * corresponding global node, 

with 

obtained as 

where 0 is the averaged value within each element. 
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For a semi-circular boundary, dA, NB - 1 boundary line elements are formed by 

two of the adjacent boundary nodal points (Figure 5-lb). For example, V N ~ - N ~ + ~  

and VNp-NB+2 form line element 1. Also, the weighting function wn is unity at the 

global node n and is zero outside the adjacent nodes. The boundary integral can 

be represented by the sum of the integral over each line element. Let the length 1' 

of the element be very small and equal for each element. Let 8; be the angle at the 

mid-point of the line element q. The weighting function WNp-NBfq  is nonzero only 

within the line element q and q + 1. - - 112 at the mid-point of the line 

element q and q + 1. We take the mid-point value to represent the average value of 

the integrand. Therefore, 

with 

Y, = cos (0; - o I )  e"a COS(':-'I) + COS (0; + o I )  e 'kac~s( ' :+'~)  q = m - N p + N ~ ,  

(5.1.29) 

and 

A kle HI -E~~PCC, ( ka )  O,, r n = N P - N B + l ,  
(5.1.30) 

-E ,~Pcc  g A ~ E H '  (ka)  (@,-I + 0,) NP - N B  + 1 < m < NP,  

-cPiPCC 9 2  A ~ H '  2 P ( k a )  m = N p ,  

with 

0, = cos pe;. 

Since m = 1, . - . N p ,  we have N p  equations. There are however the same num- 



ber of unknown nodal coefficients plus N, + 1 unknown coefficients cup. The re- 

maining equations are found from the boundary condition, Eq. (5.1.4) as follows. 

Let us rewrite Eq. (5.1.4) as 

where Eqs. (5.1.16), (5.1.18) and (5.1.19) are applied. Let us multiply Eq. (5.1.32) by 

a factor of [E,~PCC,~H; (ka) cosp8], integrate along the semi-circle at r = a and use 

the identity 

We get N, + 1 additional equations 

where 

K ( ~ )  p7n = -epiPCC,kHj, (ka) 

7r 

xL4) P,P = E ~ ~ ~ P C C , ~ ~ H ~  (ka) Hi (ka) L cos2 p8d8, 

and 

yJ2) = - c i i 2 p ~ ~ g ~ k a  cos ~ ~ ( k a )  H; (ka) iT cos2 pods, 

or equivalently in matrix form 

where the entries for and ~ ( ~ 1  are @Land yL2) respectively, and ~ ( ~ 1 ,  is a diag- 

onal matrix with entries li!; The above integrals KEA, @A, and yL2) are obtained 



as follows. 

ICgJ = c ~ ~ ~ ~ T c c ~ ~ ~ H ~  (ka)  Hk (ka)  , (5.1.36) 

yi2) = - A E ~ ~ ~ P C C ,  k a ~  cos nor J,(ka) Hi (ka)  , (5.1.37) 

and 

with 

0, = cos PO;. 

In summary, by combining Eqns. (5.1.22) and (5.1.35), we can write a matrix 

equation with the N p  + N, + 1 unknown variables 

where the entries for I(('), and are ICE!,, ICE!, and K:!; respectively , 

is diagonal matrix with entries being ICE;, 

The matrix equation, (5.1.40), can be solved numerically by using the UC Berkeley 

programme Distributed SupterLU which is designed for distributed memory paral- 



lel processors, using MPI for interprocess communications. 

5.2 Second-order problem 

In this section, we repeat the finite element analysis for the second-order system of 

mild-slope equations 

with the no-flux condition on the solid boundary dB which is the union of the 

complex coastline(peninsula, harbor, breakwater, etc.) 

and the continuities of pressure along and flux across the semi-circle dA : ( r  = 

a,O< 0 5 ~ )  

as,' as," +- t != 0,1,2,3,.-• , r = a. 

These conditions are imposed on the nodal points along the semi-circle. Recall that 

the far field solutions t,', <f and <: are given by Eqs. (4.4.6), (4.4.58) and (4.2.15), 

the last of which still contains the unknown coefficients Gt,,. 

5.2.1 Weighted residual integral equation 

To obtain finite element matrices, Eq. (5.2.1) is truncated to a finite number of NF + 1 

modes; that is, ! = 0 , l . .  . , NF and rn = 0 , l . .  . , NF. Afterwards we applied the method 



of weighted residuals and form the integrals for the truncated equation 

N< 

- C [v . (Am,evIe) + Bm,eVh • vee + Cm,ett] = i2wF WdR, (5.2.5) 
e=o 

where the W is a weighting function to be chosen below. 

The first term of the integrand on the left hand side of Eq. (5.2.5) can be written 

With the Green's theorem, the following surface integral is transformed into a 

closed line integral along boundary r of the domain RA 

Therefore, Eq. (5.2.5) becomes 

Recall that Amle is diagonal; therefore, the previous equation becomes 

By employing the boundary conditions, Eqs. (5.2.2) and (5.2.4), the preceding equa- 



tion becomes 

5.2.2 Discretized by triangular elements 

Similar to Section 5.1.2, domain Q A  is approximated as an assemblage of NE dis- 

crete triangular elements with N p  nodes in which NB boundary nodes are from 

node N p  - NB + 1 to node Np.  Therefore, there are t N p  - NB interior nodal points. 

In addition, the continuous field variable te is replaced by 

where Wn is the global weighting function (same as the ones in Section 5.1.2), and 

Ce,n denotes the n-th unknown nodal coefficient of el, which is assembled by the 

local nodal parameter &, i = 1 ,2 ,3 .  

W in the weighted integral equation is chosen to be the global weighting func- 

tion W,. Therefore, with Eq. (5.2.11) and the Galerkin assumption, Eq. (5.2.10) is 

approximated as 



Recalling that 

with L y  and LF being Eqns. (4.4.4) and (4.4.5) respectively, and the free waves cF 
with Ns + 1 unknown coefficients Gtp, 

we can write Eq. (5.2.12) as 

N E  lT Wr ei2in cos eI cos R + i2kaAmlm cos 01 L: cos 0d8  + i2w 
R,=l 0 e 

Let us introduce the following abbreviation 

c;r"-,lm) = -cParcmAmlm KA (n,a) W,  cos p8d0, 
/o 

(5.2.16) 



+ ~2kaA,,~, cos oI L: wr ei2ka cos 19, cos B cos BdB, 

Eq. (5.2.14) can then be expressed more compactly as 

(m,e) -(m,m> (m) - The above integrals, KT,, , KTlp , yr , yim) are obtained as follows. 
(m,e> K @ ~ )  is an assemblage of element stiffness matrices Ei,j , 

N E  * local node, 
x$~n,') = C E ! ~ ' ~ )  with 

%,.I 7 (5.2.20) 
ne=l T, n * corresponding global node. 

The element stiffness matrices are obtained as follows. For a triangular element 

(see Section 5.1.2), we denote the centroid coordinates of a triangular element is 

Therefore, the element stiffness 



is obtained as 

where 0 is the averaged value within each element, and A', wif a,, bi and ci are 

defined in Section 5.1.2. 

Using the facts that 

we obtain, when m = l 

and when m # l 



Therefore, 

with 

%(m) =L( [COS (6; - or) e ikacos ( 0 -0 I )  + cos (6; + 0,) e ' k a c O s ( ~ : + ~ ~ ) ]  
(5.2.30) 

+ L: cos or cos o ; e i 2 k a ~ o s  01 cos 0: , q = T - - N p + N B ,  

and 

I 0 7 7 <  N p - N B + l ,  

~ ( m , m )  = -cpArn,rnnrn 5 ~ ;  ( n r n a )  Oq7 7 = N p - N B + 1 7  
7 , P  

I" - c ~ A m , m n m   m ma) (@,-I + 0,) , Np - NB + 1  < T < Np, 

- ~ p A ~ , ~ n ,  $K; (nma) T = N ~ ,  

(5.2.31) 

with 

0, = cos PO;. (5.2.32) 

9;") is an assemblage of the element integral $!me) 

with 

0 e 

where F is the averaged F over element e, and i = 1 , 2 , 3 .  

Since m = 0 ,  1 ,  - - . , NF, and r = 1 , 2 ,  . . - , Np,  these constitute ( N F  + 1 )  x N p  



equations. There are however, the same number of unknown nodal coefficients 

plus (Nt + 1 )  x ( N ,  + 1) free-wave coefficients Gmlp. The remaining equations are 

found from the matching condition Eq. (5.2.3), and let us rewrite it as 

where Eqs. (5.2.11) and (5.2.13) are applied. Let us multiply Eq. (5.2.35) by a factor 

of [ E , A ~ , ~ K ~ K ;  ( /€[a)  cospO], with l = 0 , 1 , 2 ,  . . , Nc and p = 0 , 1 , 2 , 3 ,  . , Ng inte- 

grate along the semi-circle at r = a  and use of the identity of Eq. (5.1.33) We get 

where 

and 
- 
yf) = - A E l l ~ c a K L  ((nea) (<: + <:) cospOd6. 

0 

yr) is evaluated numerically, and f!!), is as follows. 

with 

0, = cos p0;. 

80 



Combining Eqs. (5.2.19) and (5.2.36), we can get a matrix equation as follows. 

with 

The entries for K("le), k(m7e) and are IC;?', e::'), E$f$) respectively , Ik('le) 

- ( e  is diagnal matrix with entries being KT1; . These matrix equations can be solved 

numerically again by using the UC Berkeley programme Distributed SuperLU. 

In the limit of constant depth everywhere, the above matrix equation can be 



separated in to NF + 1 uncoupled matrix equations as follows, 

Before discussing numerical example, let us examine a special case of constant 

depth in the next chapter. 



Chapter 6 

Analytical Solution for a 

Semi-circular Peninsula in Constant 

Depth 

For a semi-circular peninsula (or a vertical cylinder on a cliff) along a straight coast 

and in constant depth, no finite elements are needed. The region O A  is not needed 

and the radius of the semi-circular cylinder R, is equal to radius a of the semi 

circle dA.  Hence, an exact analytical solution can be found. Effects of the angle of 

incidence are examined for the free surface height along the cylinder. 

6.1 First-order solution 

We recall the familiar first-order result of diffraction by a vertical cylinder in an 

open sea without a coast 

The first-order result for a semi-circular peninsula can be obtained easily by using 

the method of images and summing up the two first-order results for a vertical 

cylinder with opposite incident angles(see Figure 6-1). Hence, with the effect of a 



Figure 6-1: Method of image 

coastline, the first-order result becomes 

where q(T) being Eq. (4.1.2) and the scattered wave q(S )  being Eq. (4.1.5) with coef- 

ficients 

6.2 Second-order solution 

At the second-order, the free wave satisfies the boundary conditions along the 
* 

coast 

and on the peninsula 



Using the partial wave expansions for the plane waves 

e i2kr  cos eI cos e - - C tnim Jm(2kr cos Q I )  cos mO, 

and 

we rewrite ([ as 

Using Eq. (4.1.5) for (7 and applying Equation (6.2.4), we obtain 

- L: C emim JA(2ka  cos Or)21c cos OI cos me, r  = a ,  O 5 0  < n, 

and 

Therefore, 

hl JL (2ka )  a[,,, = -imLe 4k cos meI - imLe J h ( 2 k a  cos B I )  2k cos 01. (6.2.11) 
K& (&[a)  ~e K& (&la)  ~e 



In summary 

00 J h  ( 2  k a )  
< f  = x rmim K m  (Klr)  COS [- " K& (kt  a )  K[  

4k cos r n O I  
m=O 

J' (2ka  cos 01) -LY " 2kcosOI . 
K& ( ~ e a )  ~e I 

The corresponding potential QF is 

00 00 " cos(nu ( z  + h) )  ~ f = C < f f ~ = C  C O S K e h  C r,im K m  (ner)  cos me x 
e=o e=o m=o 

J h  ( 2  k a )  Jk (2kacosOI)  
4k cos meI - L,  2k cos OI 

K& (nea) K t  I 
In summary the amplitude of the second-order displacement lli:i is obtained 

as the sum of Eqs. (4.4.6), (4.4.57) and (6.2.12), 

2k cos OI J h  (2ka  cos 01) + im L,Y [Jm ( 2 k i  cos 61) - A 

K:, (nea) 
Km (Ker)] 

K e 

In particular, the value on the peninsula is 

2 2 rm cos mO 
e=o m=O 

+ i m ~ F  [Jm (2ka  cos B I )  - 

cos 

2k 

Combined with (3.1.11), the second-order free surface displacement for semi- 



circular peninsula is completely determined. 

6.3 Numerical Validation 

When the incident wave is parallel to the coastline either from the left (B I  = O), the 

first-order incident and reflected waves are in the same direction 

so that their total amplitude is 2 A  which can be treated as the full cylinder attacked 

by one incident waves. The second-order progressive waves <I and t I R  now have 

the same direction with amplitude 

The total second-order progressive waves is four times of that of the Stokes waves 

00 
cos nt ( h  + 2) 3A2w2 cosh 2kh  ef i2kr cos 4 = Ct: - -- cos neb 

(6.3.18) 
e=o 29 sinh4 k h  

The complete solution 17;;; of a vertical cylinder is 

00 00 
2k J k  ( 2 k a )  rl;:j ( r ,  8)  = C C Em cos me 

e=o m=O 

In particular, the run up on the cylinder is 

21; J h  (2ka )  7i:i ( a ,  0 )  = C C em cos rn0 ( i m ' 4 ~ r 2  I Jm (2ka )  - - , , Km (rcla) 1 



This closed-form solution is equivalent to the result of Chau & Eatock Taylor (1992) 

who started with a three-dimensional Green's function involving the eigenfunc- 

tions in z. 

As a check for the correctness and accuracy, we have carried out computations 

for the earlier works ( Kim & Yue ,1989) for the case of O1 = 0 with r l a  = 1, h l a  = 1, 

w2a lg  = 2. Fig. 6-2 shows the agreement of the radial variation of the amplitudes 

of the second-order free-surface forcing terms, ern &,I ( 2 g k 2 A 2 / ~ )  away from the 

vertical cylinder, r l a  with the numerical results of Kim and Yue(1989). The first- 
(1) (1) order solution is trivial. Therefore, only the second-order amplitudes, q2,0, q2,2, 

q$:i are shown in Fig. 6-3. As seen in Figure 6-2- 6-3, our solution agrees well with 

numerical solution of Kim and Yue (1989) and Chau and Eatock Taylor(1992). Note 

that our 2A is their amplitude of the incident wave. 



Radial distance (rla) 

Figure 6-2: Dimensionless amplitudes of the dimensionless second-order free- 
surface forcing terms, E , Q , / ( ~ ~ ~ ~ A ~ / w )  of the first three modes as a function of 
the dimensionless radial distance from the vertical cylinder, r / a  . Input: h / a  = 1, 
w2a lg  = 2. +, * and 0 are the data from Kim and Yue(1989). Solid, dot, and dash- 
dot lines are our numerical result. 



Figure 6-3: Comparison of our theory in the limit of Or = 0 with Chau and 
Eatock Taylor(1992) and Kim and Yue (1989)(+++). Dimensionless amplitudes of 
v$ / ( 4 ~ ~ 1 ~ )  (. - . -), (27-,11fi 1 / ( 4 ~ ~ / a )  (- - ) and 1 27-,1$ 1 / ( ~ A ~ / u )  (-) are evaluated 
along the semicircle r = a. Input data are : h l a  = 1, w2alg  = 2. 



6.4 Effects of Incidence Angle and Cylinder Radius 

We have carried out a number of computations to study the effects of incidence 

angle and the cylinder radius. The free-surface displacements (runup) along the 

circumference of the cylinder are shown for a fixed depth-to-wavelength ratio k h  = 

1. Three angle of incidences : BI = T (glancing), 5 ~ / 4  (oblique) and 3 ~ / 2  (normal) 

and four radius-to-wavelength ratios are considered. 

In computing the double series of Q defined in (4.3.19) and (D.1.12), both m and 

n must be truncated after a finite number of terms. These numbers are found by 

numerical experiments for a fixed error allowance, chosen to be As shown 

in Table 6.1 the numbers increase for larger ka. In addition, the integral for the 

propagating mode L = 0 in (6.3.20) is evaluated by sectioning the integration path. 

Over one section from a to a finite but large R numerical integration is performed 

by the Gaussian 3-points adaptive method. In the remaining section from R to co, 

asymptotic approximatons are used as in Chau & Eatock Taylor (1992). To limit 

the number of evanescent modes in the L series converges, we use Domb-Sykes 

extrapolation scheme. By defining the truncated sum as 

The final result is obtained from the limit of 111 = 0. Choosing just two values 1 

and 1 + 1, the limit by linear extrapolation gves 

In all the computations, the number of the evanescent modes is chosen to be MAX 

1 = 10; the relative error of is less than 1 0 ~ ~ .  

To help understand the second-order results we first display in Figure 6-4 the 

first-order runup along the cylinder. As is well known, for the smallest cylinder 

ka  = 0.1, the runup is quite uniform in all directions, and the effect of incidence 

angle is small. As the cylinder radius increases relative to the wavelength, the 



Table 6.1: Number of terms (m, n) used in the double series for &. 

effect of incidence angle becomes more pronounced. For glancing incidence, the 

runup is the greatest on the incidence side (small 0), and the smallest in the shadow 

(0 x a). For normal incidence the runup varies strongly in different directions with 

the greatest run-up at the corners( 0 = 0, a). The directional variation is oscillatory 

and symmetrical about the shore-normal axis. With increasing ka, oscillations be- 

come more prominant. 

The second-order setup and setdown along the semi-circle is shown in Figure 6- 

5. This quantity is the time-averaged part of the Bernoulli effect on the free surface 

(cf. Eq. (2.2.12)). For the smallest cylinder, the maximum setdown occurs in the 

direction 0 = n/2, being the largest for glancing incidence and smallest for normal 

incidence. With increasing ka the setup and setdown vary with direction in ways 

similar to the first-order, first-harmonic runup. The largest mean setup occurs near 

0 = 0. 

The second-harmonic runup contains two parts. The part due to the first-order 

interations (cf. Eq. (2.2.12)) is shown in Figure 6-6. For glancing incidence, the 

greatest runup is at Q = a/2 for the smallest cylinder but near the corner facing 

the incoming wave for the largest cylinder. For normal incidence, the runup is 

oscillatory in 0 and symmetrical with respect to the axis 0 = a/2, similar to the 

first-order, first-harmonic runup. The part due to second-order potential is shown 

in Figure 6-7. For glancing incidence, the greatest response appears at 0 = 0 for 

the smallest cylinder, but near 0 = a/2 for the larger cylinders. The total second- 

harmonic runup is also shown in Figure 6-8. The relative magnitudes and phases 

between 7);;; and depend on 0. The magnitudes of two parts in the total second- 

harmonic runup are comparable. 
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Figure 6-4: Dimensionless amplitudes of first-order Iv/A( along the semi-circular 
peninsula, for different angle of incidence OI = T(-), 5~ /4( -  -), 3a/2(- -). Input 
data are k h  = 1, (a) ka = 0.1 (b) ka = l(c) ka = 5 (d) ka = 10. 
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Figure 6-5: Dimensionless amplitudes of second-order v $ t i / ( 4 k ~ 2 )  along the semi- 
circular peninsula, for different angle of incidence Or = T(-), 5~/4( -  - -), 3 ~ / 2 ( -  
-). Input dataare kh = 1, (a) ka = 0.1 (b) ka = l(c) ka = 5 (d) ka = 10. 
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Figure 6-6: Dimensionless amplitudes of second-order lV$fi 1 / (2kA2) along the 
semi-circular peninsula, for different angle of incidence BI = a(-), 5a/4(- . -), 
3a/2(- -). Input data are kh = 1, (a) ka = 0.1 (b) ka = l(c) ka = 5 (d) ka = 10. 
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Figure 6-7: Dimensionless amplitudes of second-order 1 1)$ 1 / (2 k A 2 )  along the 
semi-circular peninsula, for different angle of incidence Or = T(-), 5a/4(- -), 
3 ~ / 2 ( -  -). Input data are k h  = 1, (a) ka = 0.1 (b) ka = l(c) ka = 5 (d) ka = 10. 
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Figure 6-8: Dimensionless amplitudes of second-order I ll$:i + 1 / ( 2  k ~ ~ )  along 
the semi-circular peninsula, for different angle of incidence O1 = T(-), 57~/4(- . -), 
3~/2( -  -).Input data are k h  = 1, (a) ka = 0.1 (b) ka  = l(c) ka = 5 (d) ka  = 10. 



Chapter 7 

Numerical Solution for problems 

involving a semi-circular shoal 

Three examples involving radially varying depth are discussed in this chapter. 

First is a semi-circular shoal near a vertical cliff, followed by a semi-circular cylin- 

der on top of a semi-circular shoal, and the last example is a square harbor open to 

a semi-circular shoal. 

7.1 Example 1: A Semi-circular Shoal near a Cliff 

We consider a circular shoal next to a straight and cliff-like coast. The top of the 

shoal is a flat semicircle of radius 30 m at depth 20 m. The sea depth increases 

monotonically with r until r = 300 m, outside of which the surrounding sea has 

the greater constant depth of 40 m. The radial variation of the sea depth is given 

( 3 0  - 10 cos [&(T - 30)] m, 30m 5 r 5 300m, 

as shown in Fig. 7-1. 

Three incidence angles (01 = n (glancing), 5a /4  (oblique) and 3 a / 2  (normal)) 

are considered. The frequency is chosen to be w = 0.7 rad/s for all cases; the 
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Figure 7-1: Radial variation of depth profile of the circular shoal. 

corresponding kh varies from 2.06 at h = 40m to 1.2 at h = 20m. 

It is known for this type of bathymetry, that caustics may appear in the lee of the 

shoal so that the linearized ray approximation may fail (Stoker, 1957 pp. 136-137) 

[36]. Remedy by accounting for diffraction is needed and can be performed for 

simple caustics by asymptotic methods (see e.g., Mei, 1989). More conveniently 

the linearized MSE makes it possible to account for refraction and diffraction in 

one unified approximation without having to locate the caustics first and to refine 

the calculation. 

7.1.1 Computational Aspects and Validation 

In the hybrid-element scheme, the analytical region (far-field O F )  is the region out- 

side the shoal r > a, 0 < 8 < T .  Finite elements are used to discretize the shoal. 

Numerical accuracy of the first-order computations depends on the number 

of finite element nodes N p  (or the grid size), and the number of angular modes 

N, included in the scattered waves. Two finite element grids: coarse grid with 

Np = 45451 and fine grid with N p  = 80601 are tested. Let ko = 0.0515 m-' denote 

the incident wavenumber at h = 40m. The maximum element size L, is such that 

koL, = 0.1 for the coarse grid, and 0.075 for the fine grid. The corresponding ratios 

of L, to wavelength are quite small: 0.016 and 0.012 respectively. For either grid, 



the solution converges to six decimal places if the number of angular modes is 

N, = 21 or more. Using 201 angular modes in the outer region, the amplitude 

at one sample point 2q(x = Om, y = 3 0 m ) l A  is 0.47036911 (coarse) and 0.4710272 

(fine); the relative error is approximately 1 O-3. Our first-order results are obtained 

with the coarse grid and N, = 201. 

For the second-order problems, we tested the number NE of evanescent modes 

needed. With the coarse grid and 51 angular modes, the 217$~~(0m, 30m) /kA2  is 

3.64316 for Nt = 3 and 3.6798 for NF = 4. Based on these tests, the following 

choices are made in all our second-order computations: N p  = 45451 (coarse grid) 

and N6 = 51. To limit the number of evanescent modes in the 1 series, we use the 

following Domb-Sykes extrapolation scheme. By defining the truncated sum as 

By plotting y(" vs. 111, the final result is obtained from the limit of 111 = 0. Choos- 

ing just two values 1 and 1 + 1, the limit by linear extrapolation gives 

We test the number Nt of evanescent modes needed, based on the numerical results 

with 1 = NE - 1 and 1 + 1 = NE in Domb-Sykes method to extrapolate y(m).  At the 

sample point (x=20 m, y=O m) the numerical results for 17$:l/2ko~2 are found to be 

1.82158 for NF = 3 and 1.8399 for Nt = 4. 

7.1.2 Results 

We now discuss the numerical results displayed below only for the shoaling re- 

gion: r < a = 300m,  0 < 0 < T .  

The first-order free-surface amplitude q/A  for three incidence angles shown in 

Figure 7-2,7-3 and 7-4. The mathematical problem for glancing incidence is equiv- 

alent to a full circular shoal in the open sea with an incident wave of amplitude 2A. 



Figure 7-2: The first-order amplitude, IvI/A, over a circular shoal near a coast. 
Glancing incidence (01 = r). At glancing incidence, waves are from left to right. 
The coast coincides with the plane y = 0 m. 

The incident rays are originally parallel to the x axis. The rays entering the shoal 

first bend toward then away from the center of the shoal. On the incidence side of 

the shoal the amplitude grows slightly towards the orgin. On the lee side, rays re- 

flect from the coast and intersect with those farther away from the coast, resulting 

in constructive interference and the greater amplitude. The greatest amplification 

is around 1.75 near the exit at x = -300 m, y = 0 m. For normal incidences, Figure 

7-5, the incident rays first bend towards the y axis by refraction, are then reflected 

specularly from the coast, and finally bend away from the y axis. Interference 

between the incident and reflected rays results in strong spatial variations in the 

direction normal to the shore (Figure 7-3). For oblique incidence, Figure 7-4, the 

amplitude variations are of course not symmetrical with respect to 0 = r/2, unlike 

the case of normal incidence. The greater amplification of the waves for oblique in- 

cidence is along the line around 0 = 3x14 with a peaks near the edge of the shoal. 

Figure 7-6 gives a clearer comparison of the profiles of first-oder amplitudes along 



Figure 7-3: The first-order amplitude, 17 I /A ,  over a semi-circular shoal near a coast. 
Normal incidence ( B I  = 3a/2). The coast coincides with the plane y = 0 m. 

Figure 7-4: The first-order amplitude, JqI/A, over a semi-circular shoal near a coast. 
Oblique incidence ( B I  = 5 ~ 1 4 ) .  The coast coincides with the plane y = 0 m. 



Figure 7-5: Ray geometry for normal incidence 

the y axis for glancing, oblique (01 = 57-44) and normal incidences. Along this 

centerline, both incident and reflected waves are affected by refraction, strong in- 

terference is again evident except for glancing incidence. For normal incidence, 

the greatest amplitude of q/A = 1.3 occurs near the outer edge of the shoal. The lo- 

cation of this peak depends of course on the incident wave frequency. Since longer 

waves (of lower-frequency) are more influenced by refraction, the peak amplifica- 

tion should occur closer to the flat top. For glancing incidence the variation along 

the y axis is imperceptible in Figure 7-6; the numerical values are q/A = 1.032 at 

x = 0 m, and 0.9946 at x = 300 m. 

The mean-sea-level setup/setdown is shown in Figure 7-7,7-8 and 7-9 for three 

incidence angles. Figure 7-10 compares their variations along the y axis. For nor- 

malization the amplitude (2A) and steepness (2koA) of the incident wave are used 

as references. As can be seen in Figure 7-7, at glancing incidence the mean-sea 

level is negative over most of the shoal except near the coast on the lee side where 

the first-order wave experiences inteference due to reflection and refraction. It is 

well known that the setdown of a progressive wave of amplitude 2A on a sea of 



Figure 7-6: Variations of the first-order amplitude, IqI/A along the centerline x = 
0 m. Glancing incidence (Or = a): (- -). Oblique incidence (Or = 57r/4) : (- . -). 
Normal incidence (Or = 3 ~ 1 2 )  : (-). 

constant depth is 

77;9 = - 
4kA2 

2 sinh 2kh 

At the entry point x = 300 m, y = 0 m, where koh = 2.06, t h s  formula gves 

1) i i ) /4ko~2 = -0.0162 which provides a check of the numerical result v; i) /4ko~2 = 

-0.016. The numerical results at the center top x = y = 0 m, v$k)/4ko~2 = 

-0.113406 is twice the estimate result, which shows the effect of the shoal. 

To better understand the computed mean sea-level at normal incidence shown 

in Figure 7-8, it is helpful to examine the limiting result under a simple standing 

wave over a horizontal seabed, 

- - 
kA2 1 

[- (1- tanh2kh)+cos2ky( l+tanh2kh)]  (7.1.5) 
2 tanhkh 

which follows from (3.1.12) by taking 77 = A cos ky. The maximum setup occurs 

along the lines 2ky = 0,2x,4x,  . .. where 1171 = A1 cos ky 1 = A is also the greatest. 

The maximum setdown occurs at 2ky = a, 3a,  5x, . .., where 171 = A1 cos ky 1 = 0 is 

the smallest. These features are qualitatively preserved in the numerical results, as 

can be more clearly seen from Figures 7-6 and 7-10. For oblique incidence, these 

features are also preserved as can be seen in Figures 7-4 and 7-9. The maximum 

setup and setdown of the normal incidence is the greatest among three incidence 

angles. 

The second-order second-harmonic amplitudes has two parts. In Figures 7-11, 



Figure 7-7: The second-order setup/down, lv1fi 1 / 4 k ~ ~ ~ ,  over a semi-circular shoal 
near a coast. Glancing incidence (BI = T) .  TOP: Contours. BOTTOM: 3-D view. 



Figure 7-8: The second-order setup/down, qiti/4b~2, over a semi-circular shoal 
near a coast. Normal incidence (Or = 3 ~ 1 2 ) .  TOP: Contours. BOTTOM: 3-D view. 



Figure 7-9: The second-order setup/down, 7 ) $ t i / 4 b ~ 2 ,  over a semi-circular shoal 
near a coast. Oblique incidence (01 = 57~14). TOP: Contours. BOTTOM: 3-D view. 

Figure 7-10: Variations of the second-order setdown/up, T , I $ : : / ~ ~ A ~  along the cen- 
terline x = 0 m. Glancing incidence (BI = n): (- -). Oblique incidence (0, = 57~14) : 
(- - -). Normal incidence (8, = 3n-12) : (-). 



Figure 7-11: The second-order amplitude, 11)$ 1/2koA2, over a semi-circular shoal 
near a coast. Glancing incidence (BI = T) .  

7-12 and 7-13, we show 11)iti1/2k0~2 for three incidence angles which is computed 

from the first-order potential Q1. The corresponding maximum amplitude of is 

2 lViti 1 , hence 2 koA2 is used as the normalizing scale. The variations resemble those 

of the first-order amplitude. Figure 7-20 shows the variations along the y axis. For 

glancing incidence seen in Figures 7-11, lll$;il is amplified with a peak on the lee 

side of the coast near the edge of the shoal. For normal incidence seen in Figures 7- 

12, 11)$ ( is amplified at the centerline due to refraction and reflection, with a peak 

near the foot of the shoal. The part 1);;; associated with Q2 is shown in Figures 

7-14, 7-15 and 7-16. Figure 7-21 compares their variations along the y axis . For 

glancing incidence, 1);;; is again nearly flat and larger for smaller radii and near 

the coast. For oblique and normal incidences, the response is relatively large along 

the coast and become smaller near the outer edge r = 300 m. The magnitude of 

the sum of the two complex amplitudes lq$:i + 1);:; 1 is shown in Figures 7-17,7-18 

and 7-19 after accounting for their phases, and is also shown in Figure 7-22 for the 

variations along the y axis. For glancing incidence, the total second-harmonic is 



Figure 7-12: The second-order amplitude, 1 / 2 1 c ~ ~ ~ ,  over a semi-circular shoal 
near a coast. Normal incidence (01 = 3 ~ 1 2 ) .  

Figure 7-13: The second-order amplitude, I lli:j 1 /21coA2, over a semi-circular shoal 
near a coast. Oblique incidence ( B I  = 57r/4). 



dominated by 17$:i and remains the greatest along the coast. Due to the staggering 

of the lines of maxima and minima, as can be seen by comparing Figures 7-20 with 

7-21, the resulting sum is doubly as complex as each individual components. 



Figure 7-14: The second-order amplitude, ~~$:i 1/2koA2, over a semi-circular shoal 
near a coast. Glancing incidence (01 = a). 

Figure 7-15: The second-order amplitude, 11~1:; 1/2koA2, over a semi-circular shoal 
near a coast. Normal incidence (8, = 3x12) . 



Figure 7-16: The second-order amplitude, lrl$:i 1/2koA2, over a semi-circular shoal 
near a coast. Oblique incidence (01 = 57r/4) . 

Figure 7-17: The second-order amplitude, lv$:i + vf; 1 / 2 b ~ ~ ,  over a semi-circular 
shoal near a coast. Glancing incidence (Or = T) .  



Figure 7-18: The second-order amplitude, lVi1i + 17i:i 1/2bA2, over a semi-circular 
shoal near a coast. Normal incidence (01 = 3rj2). 

Figure 7-19: The second-order amplitude, 117i:$ + 171;; 1 / 2 k ~ ~ ~ ,  over a semi-circular 
shoal near a coast. Oblique incidence (QI = 5n/4). 



Figure 7-20: Variations of the second-order amplitude ll)!jfJ 1/2koA2 along the cen- 
terline x = 0 m. Glancing incidence (Or = ?r): (- -). Oblique incidence (01 = 5 ~ / 4 )  : 
(- . -). Normal incidence (Or = 3n /2 )  : (-). 

Figure 7-21: Variations of the second-order lv$T; ) / 2koA2  along the centerline z = 
0 m. Glancing incidence (Qr = a) :  (- -). Oblique incidence (Or = 5 a / 4 )  : (- -). 
Normal incidence (Or = 371-12) : (-). 

Figure 7-22: Variations of the second-order 1 llifi + 17fi 1 /2koA2 along the centerline 
x = 0 m. Glancing incidence (Or  = T ) :  (- -). Oblique incidence (Or = 5 1 ~ / 4 )  : (- -). 
Normal incidence (8, = 3 a / 2 )  : (-). 



7.2 Example 2: A Half Cylinder on top of a Semi-circular 

Shoal 

We now apply the theory for an example combining diffraction and refraction. 

Consider a semi-circular cylinder with radius R, = 20 m standing at the center of 

a semi-circular shoal next to a straight and cliff-like coast. The top of the shoal is 

a flat semicircle of radius 20 m at depth 20 m. The sea depth increases monotoni- 

cally with r until r = 300 m, outside of which the surrounding sea has the greater 

constant depth of 40 m. The radial variation of the sea depth is given by 

The frequency is chosen to be w = 0.6873 rad/s such that k h  = b h  = 2 in the 

open sea where h = 40m. At depth h = 20m the local wavenumber is increased so 

that k h  = 1.1697. Two incidence angles ( B I  = a (glancing) and 3 ~ / 2  (normal)) are 

considered. 

7.2.1 Compuational Aspects and Validation 

In the hybrid-element scheme, finite elements are used to discretize the shoal, r < 

a = 300 m, 0 < t3 < a, outside which (OF : r > 300 m, 0 < 0 < a) the solution is 

analytical. 

We have tested two finite elements grids : coarse grid with Np = 73040 and 

fine grid with Np = 175625. Let ko = 0.05 m-' denote the incident wavenumber 

at h = 40 m. The maximum element size L, is such that koLe = 0.08 for the coarse 

grid, and 0.05 for the fine grid. The corresponding ratios of L, to wavelength are 

quite small: 0.012 and 0.008 respectively. For either grid, the solution converges 

to six decimal places if the number of angular modes is N, = 21 or more. Using 

201 angular modes in the outer region, the amplitude for normal incidence at one 

sample point q(x = 0 rn, y = 20 m ) / A  is 0.49802(coarse) and 0.49824 (fine); the 



relative error is approximately 4 x Our first-order results are obtained with 

the fine grid and N, = 201. 

For the second-order problems, we use N p  = 175625 (fine grid) and Nz = 91 

(number of angular modes) based on several tests. Again, Domb-Sykes extrapola- 

tion scheme is used to limit the number of the evancensent modes. At the sample 

point (x=20m, y=O m) the numerical results for q$:J/2ko~2 are found to be 1.9060 

for NE = 3 and 1.9117 for NF = 4. We now discuss the numerical results displayed 

below only for the shoaling regon: r 5 a = 300 m, 0 < 0 < T .  We have tested dif- 

ferent radius a of the semi-circle boundary 8A which separates the far field(ana1ytic 

solution) and near field(discrete solution). The convergence tests of radius a of the 

second-order amplitude q22 along the semi-circular cylinder are plotted in Figure 

7-23. The agreement between a = 300 m and a = 310 m are excellent. 

Figure 7-23: The second-order amplitude 11722 1/2koA2 along the semi-circular cylin- 
der for example 2. 0 : a = 310 m, x : a = 300 m. Left: glancing incidence. fight: 
normal incidence. 

7.2.2 Results 

The first-order free-surface amplitudes 111 I /A for glancing and normal incidences 

are shown in Figure 7-24 (a) and (b). For glancing incidence, the problem is equiv- 

alent to a full cylinder on a circular shoal in the open sea, attacked by an incident 

wave of amplitude 2A propagating from left to right. If the cylinder were absent( 



cf. section 7.1), the incident rays would enter the shoal first bend toward the ten- 

ter of the shoal; the amplitude grows slowly towards the orgin. On the lee side, 

rays would be reflected from the coast and intersect with those farther away from 

the coast, resulting in constructive interference and the greater amplitude. With a 

cylinder of fairly large radius koR, = 1, strong back-scattering results as indicated 

by the wavy envelope in Figure 7-24 (a). On the shadow side, only a mild increase 

with r is seen due to the constructive inteference between incident and reflected 

rays which are not interupted by the cylinder. All variations gradually diminish 

far outside the shoal not shown here. For normal incidence without the cylinder, 

the plot of (v/Al would resemble that of a simple standing wave with crests and 

troughs parallel to the x axis. Now scattering from the cylinder adds modulations 

in all directions as is evident in Figure 7-24 (b). 

The second-order setup/setdown of the mean sea level is shown in Figure 7-25 

(a) and (b) for two incidence angles. Depending solely on the first-order result, 

the qualitative features resemble those of Figure 7-24 (a) and (b). For reference we 

recall that the mean-sea-level of a progressive wave of amplitude 2A on a sea of 

constant depth is negative and hence a pure set-down is Eq. (7.1.4). On the other 

hand the mean sea-level under a simple standing wave over a horizontal seabed is 

Eq. (7.1.5). Unlike the simple progressive wave the maximum setup occurs along 

the lines 2ky = 0,2n, 4n, .. . where IqI = A(  cos ky 1 = A is also the greatest. The 

maximum setdown occurs at 2ky = n, 3a, 57r, . .., where 171 = A1 cos kyl = 0 is the 

smallest. These features are qualitatively preserved in the numerical results, as 

can be seen from Figure 7-25 (b). In particular the mean-sea-level along the coast 

is positive everywhere. 

The second-order second-harmonic amplitudes has two parts. In Figure 7-26 (a) 

and (b), we show for two incidence angles lv$:i )/2koA2 which is computed from the 

first-order potential Q1. The corresponding maximum amplitude of <il) is 2 1 17$fi 1, 

hence 2koA2 is used as the normalizing scale. The variations again resemble those 

of the first-order amplitude. 

Completing the second-order solution is the part r7$zi associated with Q2, shown 



Figure 7-24: The first-order amplitude, Iq(/A, over a semi-circular shoal around a 

cylinder. (a) : Glancing incidence (top). (b) : Normal incidence (bottom). 



Figure 7-25: The second-order setdown/setup, lll$:i 1/4koA2, over a semi-circular 

shoal around a cylinder. (a): Glancing incidence (top). (b) : Normal incidence 

(bottom). 



in Figures 7-27 (a) and (b). Note that for both incidence angles the spatial undula- 

tions are much more rapid, due to the fact the characteristic wavenumber is now go 

which is nearly four times the magnitude of k (see (3.2.11)). As a consequence the 

magnitude of the sum of the two complex amplitudes ll)$f; + ll$:i 1 oscillates nearly 

twice as fast in space, as is shown in Figures 7-28 (a) and (b) after accounting for 

the phases of the two components. 

Finally we compare the free-surface heights along the circumference of two 

cylinders of the same radius, r = Ra = 20 m: one on a sea of constant depth (40 m) 

and the other on top of a shoal just discussed. The incident wave has the same fre- 

quency w = 0.6873 rad/s so that kobo = 2 in the sea. Note first by comparing Figure 

7-29 (a)-(d) with Figures 6-4-6-8 that all results here for constant depth (koh = 2) are 

very similar to those for a smaller depth (kh = 1); this is likely because the cylinder 

radius is the same (kR, = 1). Secondly for both incidence angles, shoaling tends 

to increase mildly the first-order amplitude 171 as well as 17$f; 1, but to decrease the 

mean-sea-level lll$fdl, all of which depend solely on the first order. However the 

part )'I$:; I is considerably more enhanced by shoaling. 



Figure 7-26: The second-harmonic amplitude computed from the first-harmonic, 
llli:J 1/2koA2, over a semi-circular shoal around a cylinder. (a) : Glancing incidence 
(top). (b) : Normal incidence (bottom). 



Figure 7-27: The second-order amplitude computed from the second-harmonic, 
1 qi:i 1 / 2 b ~ ~ ,  over a semi-circular shoal around a cylinder. (a) : Glancing incidence 
(top). (b): Normal incidence (bottom). 



Figure 7-28: The total second-order amplitude, lVi1J + 11i2;l/2koA2, over a semi- 
circular shoal around a cylinder. (a) : Glancing incidence (top). (b) : Normal inci- 
dence (bottom). 



Figure 7-29: Free-surface heights along the semi-circular cylinder of the same ra- 
dius attacked by an incident wave of the same frequency. For incident wave in 
deeper water : koho = 2. Thick lines are for variable depth, h = h(r)  varying from 
40 m to 20 m. Thin lines are for constant depth h = ho = 40 m. Solid lines(-): 
Glancing incidence (Or = s). Dashed lines (- -): Normal incidence (01 = 3~12). (a) 

I17IIAf (b) 1171f:ll(4ko~~)f (c)l171fi1/(2ko~~)f (4 1171:il/(2ko~~). 



7.3 Example 3: A Square Harbor open to a Semi-circular 

Shoal 

We consider a square harbor of constant depth behind the straight coast and open 

to the same semi-circular shoal studied in Section 7.1 . The width and length of the 

basin is 300 m while the depth is h = 20 m. The centered harbor entrance is 60 m 

wide and is formed by a pair of breakwaters of 5 m thickness, as sketched in Fig. 

7-30. Outside the harbor the depth profile of the circular shoal has been defined in 

Eq. (7.1.1). Only normal incidence angle ( Or = 31~12) is considered and the incident 

e,=270° 
I 

Figure 7-30: Plane view of the square basin and locations of point A (x = 150m, y = 

-305m), B (x = Om, y = -305m) and C (x = Om, y = -86m) 

frequency is chosen to be w = 0.7 rad/s ; the corresponding k h  varies from 2.06 at 

h = 40 m to 1.2 at h = 20m. 

In the hybrid-element scheme, finite elements are used to discretize the square 

basin as well as the shoal, r < a = 300 m, 0 < 0 < T ,  Outside which (OF : r > 

300 m, 0 < B < T )  the solution is analytical. Number of the elements used is 

N p  = 145791 . The number of angular modes used in N, = 201 for the first-order 

problem and N3 = 91 for the second-order problem. Domb-Sykes extrapolation is 



used with three evanescent modes. 

7.3.1 Natural modes in a closed square basin with constant depth 

In order to understand the features of the computed result, it is useful to know the 

natural modes in a closed square basin with 300 m length with constant depth. Let 

the lateral boundaries of the square basin be x = -150, 150 m and y = -305, - 5 

m. For later reference, the eigensolutions for a closed square basin can be found by 

separation of variables 

with n, m = 0 , 1 , 2 , 3 ,  . . The corresponding eigenvalues are 

The natural frequencies are 

7.3.2 Numerical results 

Figure 7-31 shows the first-order response curve l ~ / A l  with respect to the incident 

frequency w at three locations : A (x = 150m, y = -305m), B (x = Om, y = -305m) 

and near the opening C (x = Om, ZJ = -86m) (see Figure 7-30). It is shown that 

the chosen incident frequency (w = 0.7 rad/s) is close to the resonant peak w,, = 

0.696 radls  and the second-order double frequency (2w = 1.4 rad/s) is also close 

to another resonant peak. 

The resonant frequency w,, = 0.696 radls  observed from Fig. 7-31 corresponds 

to the mode (n,  m) = ( 4 , 4 )  of the closed square basin which the natural frequency 

~ 4 , 4  = 0.6937 radls  , the corresponding wavenumber kd14 = 0.0592 m-I and wave- 

length L4,* = 106.067 m. According to Eq. (7.3.1), the absolute value of the corre- 



Figure 7-31: The first-order response Iq/Al vs. frequency w for normal incidence 
waves at three locations. Chain line : A(x=150 m, y=-305 m), Solid line: B(x=O m, 
y=-305 m) and Dashed line: C(x=O m, y=-86 m). 

sponding eigensolutions or natural mode (4,4) of the closed basin is 

whose spatial structure is illustrated in Figure 7-32. It can be seen from Figure 7-32, 

at the four corners and the center of the circles, the amplitude is the greatest. On 

the other hand, the amplitude is zero along the eight nodal lines x = h37.5, & 1 12.5 

m and y = -42.5, - 117.5, - 192.5, 267.5 m. Because the chosen incident wave 

frequency, w = 0.7 radls is close to the resonant frequency w = 0.696 radls, the 

contours of the first-order free surface amplitude inside the square basin, Figure 7- 

33, are similar to Figure 7-32. Inside the harbor, the standing waves with roughly 

60 m wavelength can be seen. Eight nodal lines are observed as well. Figure 

7-34 is the 3D view of the first-order free surface amplitude VIA. By comparing 

the amplitude of the first-order runup within the shoal with example 1, diffraction 

due to the breakwater and the harbor entrance can be seen especially in front of 

the entrance. In particular, the first-order runup of example 3 is more oscillatory 

near the harbor entrance than that of example 1 (section 7.1). The five nodal points 

along the centerline in example 3 are closer to y = 0 m than in example 1, Fig- 



Figure 7-32: Contours of the free-surface amplitude of natural mode in a square 
basin for (n, m) = (4,4) 

Figure 7-33: Contours of the first-order free-surface amplitude 1q/AI inside the 
square harbor with incident frequency w = 0.7 rad l s  



Figure 7-34: The first-order amplitude, 1~1/A, for a square harbor open to a semi- 
circular shoal near a coast. Incident wave frequency w = 0.7 rad/s. Normal inci- 
dence (OI  = 3x12). 

ure 7-35. Also the magnitude of the peak ampification at the y = 300 m on the 

centerline(x = Om) is reduced from 1.25A (example 1) to around 1A. The ampli- 

tude at ZJ = 0 m on the centerline is also reduced from 1A (example 1) to 0.25A. 

These can be understood because part of the wave energy is diffracted through 

the entrance into the harbor and reflected by the interior boundaries. Among the 

reflected waves, some escape the harbor and interfere with the diffracted wave by 

breakwater and the incident wave. In particular, for normal incidence, the greatest 

around 2A is on the centerline near the entrance due to the convergng effect of the 

shoal and the diffraction from the breakwater. 

The mean-sea-level setdown/setup is shown in Figure 7-36. Variations along 

the ZJ axis is shown in Figure 7-37. As can be seen in Figure 7-36, the maximum 

setdown occurs along lines x = S37.5, f 112.5 m and ZJ = -42.5, - 117.5, - 

192.5, 267.5 m where 171 = 0 is the smallest. The maximum setup occurs when 

171 is the greatest. The greatest setup and setdown are inside the harobr at y = 



Figure 7-35: Variations of the first-order IqJIA along the centerline x = 0 m for 
a square harbor open to a semi-circular shoal. Incident wave frequency w = 
0.7 radls .  Normal incidence (BI = 3x12). 

-86 m and y = -120 m, respectively. By comparing the setdown/setup within 

the shoal with example 1, example 3 is more oscillatory than example 1. At x = 

0 m on the centerline the mean-sea-level is negative( setdown) in example 3 while 

postive(setup) in example 1. Inside the harbor, its setup/setdown can be compared 

to the analytical formula for a standing wave mode (n, m) in a closed harbor 

9 nr nr 2 
- - w:,, 300 {sin [% (2 + 150)] cos [E (y + 305)]} 

9 mr 2 
- - - {cos [E (x + 150)] sin [z (y + 305)] } , 
w;,, 300 300 

Fig. (7-38) shows ~ 2 , ~  for n = 4, m = 4 which is close to that shown in Fig. 7-36. 

The two parts of the second harmonic response at the second order are shown 

in figure 7-39 and 7-41. Again, similar to the first-order runup, eight nodal lines for 

17$ are observed inside the harbor and has a peak at point C(x = 0 m, y = -86 m) 

near the harbor entrance on the centerline(x = @(Figure 7-40). The magrutude of 

the peak ampification at point C is around 3 times larger than the peaks on the 

shoal. By comparing q$ within the shoal with example 1, the magnitude of the 

peak ampification near the y = 300 m on the centerline(x = Om) is reduced from 

1.25A(exarnple 1) to around 0.75A. The part l)i:i associated with a2 is shown in 

Figure 7-41 and Figure 7-42. For rjfi, the value inside the harbor is much big- 

ger than the value outside the harbor because the standing wave is excited by the 



second-order double frequency. Inside the harbor there are roughly 12 peaks along 

the boundary of the harbor (y = -305 m,) the wavelenth of the standing wave is 

around 25m. It is useful to compare with Figure 7-43 for the spatial structure of 

the nature mode (n, m) = (12,15) of the closed square basin whose natural fre- 

quency is ~ 1 2 ~ 1 5  = 1.4036 radls  , wavenumber k12115 = 0.2012 m-' and wavelength 

LI2,i5 = 31.2348 m. According to Eq. (7.3.1), the absolute value of the correspond- 

ing eigensolutions or natural mode (12,15) of the closed basin is 

By comparing v$?i withn the shoal with example 1, unlike 17,v$t:, and r#l, the re- 

sponse in example 3 is in general larger than example 1, especially near the en- 

trance of the harbor. Due to the effect of diffraction, the spatial undulations for 

example 3 are much more rapid than example 1. The amplitude of the sum of the 

two complex amplitudes + ll$?i is shown in Figure 7-44, after accounting for 

their phases. It can be seen that v$:l + oscillates nearly three times as fast as 

and 1.5 times as fast as IIfi in space. In general, 17$ti + $4 inside the harbor is v2,2 

greater than the response within the shoal. The greatest + v$;i is now at point 

B(x  = 0 m, y = -305 m). Within the shoal, near the entrance of the harbor the total 

response is much larger than near the edge of the shoal. Since within the shoal 

the magnitudes of 17$:i is in general greater than q$fil, the features of the spatial 

variations of $'; are preserved in vifi + lli:i (Figure 7-45). 



Figure 7-36: The second-order setupldown, v$ /4ko~2 ,  for a square harbor with a 
semi-circular shoal near a coast. Incident wave frequency w = 0.7 rad/s. Normal 
incidence ( B I  = 3~12). 

Figure 7-37: Variations of the second-order setup/down 1 ~ ! $ / 4 k ~ ~ ~  along the cen- 
terline x = 0 m. Incident wave frequency w = 0.7 rad/s. Normal incidence 
(0,  = 3 ~ 1 2 ) .  



Figure 7-38: Setup/setdown ~2,0/koa, , ,  of standing wave in a closed basin at mode 
(n7 m) = (474) 

Figure 7-39: The second-order amplitude, lV$ 1 / 2 1 ; ~ ~ ~ ,  for a square harbor open to 
a semi-circular shoal near a coast. Incident wave frequency w = 0.7 rad/s. Normal 
incidence (8,  = 3 ~ 1 2 ) .  



Figure 7-40: Variations of the second-order amplitude lq$f; 1 along the cen- 
terline x = 0 m. Incident wave frequency w = 0.7 rad/s. Normal incidence 
(0, = 3x12). 

Figure 7-41: The second-order amplitude, lq$,;i ( J ~ ~ A Z ,  for a square harbor open to 
a semi-circular shoal near a coast. Incident wave frequency w = 0.7 rad/s. Normal 
incidence (Or  = 3 ~ 1 2 ) .  



Figure 7-42: Variations of the second-order amplitude ~~$:i l/2hA2 along the cen- 
terline x = 0 m. Incident wave frequency w = 0.7 rad/s. Normal incidence 
(0, = 3 ~ 1 2 ) .  



Figure 7-43: Contours of the first-order free-surface amplitude of natural mode in 
a square basin for(n, m) = (12,15) 



Figure 7-44: The dimensionless second-order amplitude, + 17$:j 1/2/co~~,for a 
square harbor with a semi-circular shoal near a coast. Incident wave frequency 
w = 0.7 rad/s. Normal incidence (QI  = 3~12).  

Figure 7-45: Variation of the second-order second-harmonic amplitude + 
vi:i ) /2kOA2 along the centerline z = 0 rn. Incident wave frequency w = 0.7 rad/s. 
Normal incidence (8, = 37112). 



Part I1 

Random Incident Waves 



Chapter 8 

Random Incident Sea 

8.1 Incident wave spectrum 

In Part 11, the incident waves are assumed to be random. In tlus part, we assume 

that the first-order incident waves are a stationary and Gaussian stochastic process, 

long crested and unidirectional. The free surface of the unidirectional incident 

waves is described by the Fourier-Stieltjes integral 

where BI is the incident angle and A (w) the random amplitude which satisfies 

A* (w) = A (-w) (8.1.2) 

since the free-surface elevation is real, with * being the complex conjugate. For 

each frequency w, the wave number k (w) is given by the dispersion relation 

w2 = gk tanh kh. 

Let us define the covariance function of the incident waves by 



where the overline denotes ensemble averages. Putting Eqn. (8.1.1) into the previ- 

ous equation, we obtain 

where SI is the incident wave spectrum 

For homogeneous and stationary incident waves, i.e. the incident waves spec- 

trum is independent of space and initial time t, hence A ( w )  obeys the relation 

with SA being the a two-sided frequency spectrum of the amplitudes A 

Thus for a spatially homogeneous and temporally stationary incident wave field, 

It follows that HI (r, 0, t ,  T )  = HI (r ,  0 , ~ )  with 

or equivalently, 

HI ( r ,  8,  T )  = 32 {la ~ S A  ( ~ 2 )  e - ik(wz)r  cos (O-BI )+ iw  
dW2} 

with 32 {) being the real part. It is clear that the one-sided spectrum is two times 

the two-sided spectrum. 



We shall take the TMA (a modified JONSWAP) spectrum(one-sided) as being 

representative of 2SA (w2).  

TMA spectrum 

The TMA spectrum formulation is developed as an extension of the well known 

JONSWAP spectrum( deep water spectrum) so that it can applied to wind-generated 

seas in finite water depth (Bouws et a1.(1985) [7]). Its validity is verified through 

analysis of three sets of data obtained (a) near TEXEL in the North Sea, (b) during 

the MARSEN Project conducted in the North Sea and (c) in the ARSLOE Project 

carried out at Duck, North Carolina, USA. The concept is based on the similarity 

law shown by Kitaigorodskii et al. (1975) [19], who introduced the factor 

with w and k satisfying the dispersion relation w2 = gk: tanh kh, to extend Phillipsf 

spectrum from deep to finite water. The transformation factor T are plotted in 

Figure 8-1. 

Figure 8-1: Transformation factor T as a function of dimensionless frequency 
w ( h l g )  

Bouws et a1.(1985) [7] applied the same transformation factor T to the JON- 



SWAP spectrum. The result is called the TMA spectrum:(Cf. Ochi 1998, pp.48[29]) 

where S JON (w) is the JONSWAP spectrum. 

where 7 = peak-shape parameter, 3.3 as an average, 

0.07 for w 5 w,, 
(Y = 0.0762-O.~~, 0 = 

0.09 for w 2 wp, 

with z being dimensionless fetch 

x the fetch length, u the mean wind speed and g gravity constant. The formula 

can be expressed in terms of the frequency f in Hz as 

where f = w / 2 a  and fp = wp/2a. Note that S( f )  = 2aS(w). 

Examples of the TMA spectrum and the JONSWAP spectrum are shown in Fig- 

ure 8-2. 



Figure 8-2: Comparison between the TMA and the JONSWAP spectrum with y = 

3.3, U = 20 rn2/sec, 3 = 3000. Solid line: STMA for h = 20 m . Dashed line: SJoN. 

8.3 First-order Diffraction 

Because the first-order incident waves are a homogeneous and stationary random 

process, the first-order velocity potential is given by 

where (x, w) is the unit potential which is the deterministic single frequency 

response. 

Putting Eqn. (8.3.1) into the first-order perturbation equations, Eqs. (2.2.3), (2.2.4) 

and (2.2.6), we find that (x, w) satisfies the following equations: 

Let us assume 

( 
d2 d2 
- + + , $1 (x, w) = 0, -h(x, y) < 2 < 0, ax ay a~ ) 
841 (x, W) 

dz 
= -V$l (x, W) . Vh, z = -h(x, y), 

ig cosh [k (w) ( z  + h)] 
(bl (x. w) = -- 

w cosh [k (w) h] (x, Y, 4 , 



where w and k ( w )  satisfy dispersion relation w2 = gk ( w )  tanh [k ( w )  h], and r1 ( x ,  y ,  w )  

is the unit transfer function of the free surface displacement. By applying the simi- 

lar procedure as in Section 3.1, rl is governed by the modified mild-slope equation 

of Chamberlain and Porter(1995) 

where the coefficients U and V depend on w through the dispersion relation 

sinh 2kh  - 2kh  cosh 2kh  
U ( w )  = 

4 cosh2 ( k h )  ( 2 k h  + sinh 2kh )  ' 
k [ (2kh)4  + 4 (2kh)3  sinh 2kh  - 9 sinh 2kh  sinh 4kh]  

V ( w )  = 
12 cosh2 ( k h )  ( 2 k h  + sinh 2kh)3  

(8.3.8) 
k [ k h  ( k h  + sinh 2kh )  (cosh2 2kh  - 2 cosh 2kh  + 3 ) ]  + 

cosh2 ( k h )  ( 2 k h  + sinh 2kh)3  

with 

being the phase velocity, and 

the group velocity. In the limit of constant depth, Eqn. (8.3.6) reduces to Helmholtz 

equation, 

v2r1 (x, y ,  W )  + k 2 r 1  ( x ,  y, W )  = 0. (8.3.11) 

By putting Eqs. (8.3.1) and (8.3.5) into Eq. (2.2.7), the first-order free surface 

displacement is given by 



Since the free surface displacement is real, 

we get by using Eqn. (8.1.2) 

8.4 Second-order Diffraction 

8.4.1 The potential 

At the second order, let us rewrite the inhomogeneous free surface boundary con- 

dition 

where 

With the assumption of Eq. (8.3.1), the random forcing F becomes 

A ( w l )  A (4) f (x, y ,  wl ,  w 2 )  e-qw'tw2)tdwl dw2 (8.4.3) 

where 

f ( x , y , w 1 , w 2 )  = - - 4 , ( x , w 1 )  { z:l 

1 7 2 )  w: a41 ( x ,  w 2 ) ]  [ i)z2 
--  

g a~ /O A A \  



Putting Eq. (8.3.5) into the previous equation, we get 

with 

and 

Note if wl + w2 = 0 (w2 = -wl), we get 

which leads to the following expression 

From the inhomogeneous forcing term on the free surface, Eq. (8.4.3), we expect 

the second-order potential to be a double integral 

with x = (x, y , z) and qh2 (x, wl , w2) will be deterministically obtained. 

Putting Eq. (8.4.10) into Eqs. (2.2.8), (2.2.9) and (2.2.11), we find that 42 (x, wl ,  w2) 

satisfies the Laplace equation 

the boundary condition at the sea bottom 



and the free surface boundary condition, 

Since wl and wz can be either positive or negative, (wl + w 2 )  includes the sum 

lwll + lw21 and the difference lwll - Iw21 In summary, Eqns. (8.4.11), (8.4.12) and 

(8.4.13) form the second-order boundary value problem. 

Now let us assume that the second-order potential 42 (x, w l ,  w 2 )  has the follow- 

ing form 

00 

ig cos K ,  ( z  + h)  
$2 ( ~ 7  W l  i ~ 2 )  = - c cm ( x )  ~ 7 ~ 1 7 ~ 2 )  

wl + w2 ,=, cos ~ , h  ' 

where n,, m = 1 7 2 ,  . . . are the real roots of the equation 

and KO are 

with Eo being the real root of the dispersion equation 

Note that rn = 0 represents the propagating mode in which the waves propagates 

to infinity where the radiation condition must be applied, while m 2 1 represent 

the evanescent modes in which the waves represent local effects. Applying the 

similar procedure of using Green's formula as in the first order,we obtain a modi- 



fied couple-mode mild-slope equation for (see Appendix C for details): 

where 

[ gh 
(I + ) when, m = 1 

2 cos2 ne h 
Am,[ = 

10 when, m # 1 

when, m = 1 
Bm,t = 

g (Umle - Utlm) when, m # 1 io 
with the Umle being 

sin 2nm h-2nmh cos 2nmh 
4 cos2 (nm h )  (2nm h+sin 2nmh) when, m = 1, 

urn4 = 
- ne" 

( n j - n ~ )  cos ~,hcosn,,rh' when, m f 1, 

and 

-n$Arnlm + gUm,mv2h + gVm,, ( ~ h ) ~  , if, m = 1 

gUm1tv2h + gVm,e ( ~ h ) ~  , i f , m # l  

with Umlp being Eq. (8.4.21) and VmYe being the following equations. For m = I, 

- n, sec2 (n, h)  
vrlm = [ ( 2 ~ , h ) ~  + 4 ( 2 ~ , h ) ~  sin 2nmh + 9 sin (2nmh) sin 4nmh 

12 (2nmh + sin 2 ~ , h ) ~  

-12~,h (n,h + sin 2nmh) (cos2 2nmh - 2 cos 2nmh + 3)] , 

(8.4.23) 



For m # l, 

-2ne sec 6, h sec ne h [46;6: + (6: - riff ) sin2 neb] 
Vm,e = (26lh + sin 2 ~ h )  

(8.4.24) 
(6," - 6 ~ ) ~  

Note that Eq. (8.4.18) forms a matrix equation and Cm,l contains 0(1), O(p),and 

0(p2) terms. In summary the second order theory is accurate by including terms 

of O(1, c, cp, cp2, c2, and c2p2). Finally, these are of the same form as these for 

monochromatic waves with 2w replaced by (wl + w2) 

For constant depth , Eq. (8.4.18) becomes 

or in matrix form 

where 

A = d i a g  [Ao,o,Al,l, . . ,AN,N, . - 1 ,  (8.4.27) 

@ = d i a g  [ - K ~ A ~ , ~ ,  - ~ ? A l , l ,  . , -~ ;AN,N, -  -1 , (8.4.28) 

D = -  2 (wl + ~ 2 )  f [I, 1,1, . . , 11 , (8.4.29) 

r =  [ E o , e i , - - -  , e ~ , . . - ] .  (8.4.30) 

Note that both A and C are diagonal matrices. Since A is nonsingular, we can 

multiply Eq. (8.4.26) with the inverse of A on the left. Then we obtain a set of 



equations in which each mode is independent to the others 

Eq. (8.4.18) and (8.4.31)-(8.4.34) must be solved with the boundary condition on the 

coastal boundaries andthe radiations condition at infinity. 

8.4.2 The free surf ace displacement 

From Eq. (2.2.12), we obtain the second-order free surface elevation 

where 

LJlLJ2 
r2 (x, Y ,  LJ l ,  LJ2) = - -41 (x, w1) 

841 (x,LJ2) 1 
g2 a x  

- -V341 (x, LJ1) . V341 (x, ~ 2 )  
29 

Making use of the expression of and 42, we get 



The ensemble average of c2 is the second-order mean setup or setdown 

where 

Note that for wl = -w2 all forcing terms in Eqs. (8.4.18) and (8.4.31)-(8.4.34) vanish. 

Hence Ee (wl, -wl) = El (-wl, wl) = 0. Eq. (8.4.39) can be rewritten as integrated 

from 0 to cc 

where 

8.5 The Frequency Spectrum 

Now we extend the nonlinear stochastic theory of Sclavounos [34]. Let us define 

the covariance function of the total free-surface height (x, y ,  t) by 



and the corresponding frequency spectrum S by 

S ( x ,  y ,w, t )  = d r e i w ' ~  ( x ,  y , ~ , t ) .  
27,- 

For simplicity the spatial coordinates x  and ZJ are omitted in the rest of this section. 

C is the total free surface displacement 

where the ordering parameter e is defined by 

with ic, being wave number corresponding to the peak frequency wp defined in Eq. 

(8.2.4) and Hs significant wave height 

Note that significant wave height is the measure most commonly used for repre- 

senting the severity of sea conditions. Although it is defined as the average of the 

one-third highest observed wave height, it is commonly evaluated by using the 

variance computed from a spectrum.( Cf. Ochi, 1998,pp. 81.) For the spectrum in 

figure 8 - 2 , ~  = 0.063. 

The covariance function of the free surface therefore is given by 

(8.5.6) 

Since c2, c3, ... involve quadratic, triple and higher products of A, the right-hand 

side involves ensemble averages of even and odd products of A. Due to the as- 

sumption of A ( w )  being a Gaussian random variable, all odd products of random 

variables gives zero averages, while all even products(e.g., quadratic) can be re- 



duced to averages of quadratic products. For convenience of reference, this well 

known result is derived in Appendix H. It follows that, up to O(c4 ) ,  

where 

H4 ( ~ 7  t )  = C2 ((t CC; ( t  + 7 )  + C1 ( t )  53. (t  + T )  + C3 ( t )  ( t  + T ) .  (8.5.9) 

There is no contributions at 0 (c3).  At the leading order, 0 (c2) ,  H2  depends only on 

the first-order solution. For a complete analysis of the O(c4 )  correction, H*(T, t ) ,  it 

is necessary to find not only C2 but also C3. Let us decompose H4(7 ,  t )  as follows. 

with H22 (7, t )  being the auto-correlation of the C2 

and H13 ( T ,  t )  and H3i ( T ,  t )  the cross correlations of the C1 and C3 

The corresponding frequency spectrum can also be written 

s ( w ,  t )  = t2s2 ( w ,  t )  + t4s4 ( w ,  t )  . 

with 

s4 ( w ,  t )  = S22 ( w ,  t )  f S13 ( w l  t )  + S31(W1 t )  - (8.5.15) 

The first part S22 is the self-product of the second-order frequency response , and 



the last two parts S13 and S3i are the quadratic products of the first-order and the 

third-order frequency response. The spectra Sz2 ,  S13 and S31 are respectively the 

Fourier transforms of Hz2,  H13 and H31. 

8.5.1 Linear frequency spectrum Sz 

By putting Eq. (8.3.12) into Eq. (8.5.8), H z  becomes 

0 0 0 0  

H2 ( x , ,  t ,  7) = A ( ~ 1 )  A* (w2)r l  (3, y ,  w1) r; ( x ,  y ,  u2) e-Y1teW2(t+')d w1dw2 
00 

= S 2  ( x ,  y ,  t ,  w2)  eiW2'dw2 

(8.5.16) 

where the linear spectrum S 2  (x, y ,  t ,  w 2 )  of the first-order free surface elevation is 

given by 

Since the wave process is stationary in time, the time at which we begn to observe 

will be immaterial. H2 depends only on T and not t .  Let us recall Eqn. (8.1.2) 

Therefore, only when wl = w2, the integrand of Eq. (8.5.17) is nonzero. Let us 

change variable w2 to w. Then Eq. (8.5.16) becomes 

and Eq. (8.5.17) becomes 

s2 ( x ,  y , w )  = S a  ( w )  IL ( x > Y , w ) I ~  7 



This is the familiar Wiener-Khintchine relation for a linear system and depends 

only on the linear frequency response Tl (x, 9, w ) . 

Since SA is a two-sided spectrum SA(w) = SA(-w) and 

S2 (x, 9, w) is also a two-sided frequency spectrum 

8.5.2 Nonlinear Correction S22 

Now let us obtain H22 (x, y, t, r) first. From Eq. (8.4.36) and Eq.(8.5.11), we get 

The random variable A (wi), with i = 1,2,3,4, is already assumed to be Gaus- 

sian, so A (wi), i = 1,2,3,4 are jointly normally distributed and independent. 

It follows that 



By making use of A (w) = A* (-w) and Eqn. (8.1.2), we get 

Similarly for the remaining terms in Eq. (8.5.23), we have 

A (wl) A* ( ~ 3 )  A ( ~ 2 )  A* ( ~ 4 )  = SA ( ~ 1 )  6 ( ~ 1  - ~ 3 )  SA ( ~ 2 )  6 ( ~ 2  - ~ 4 )  , (805.28) 

A (wl) A* ( ~ 4 )  A ( ~ 2 )  A* ( ~ 3 )  = SA ( ~ 1 )  6 ( ~ 1  - ~ 4 )  SA ( ~ 2 )  6 ( ~ 2  - ~ 3 )  . (8-5.29) 

In summary, 

The first integral in Eqn. (8.5.24) then becomes 

term I = /K dw1dw2dw~dw4 A (WI) A (~r.2) A* ( ~ 3 )  A* (4) x i 

Because of 6 (wl + w2) and 6 (w3 + w4), Term 1 becomes 



which is independent of T and is the square of the mean sea level 

The second integral in Eqn. (8.5.24) is 

term 2 = ////I dwldw2dw3dw4 A (wl) A* (w3) A (w2) A* (w4) x { 

Because of 6 (wl - w3) and b (w2 - w4), Term 2 becomes 

term 2 = /[I SA (wl) SA (w2) r2 (x, y, ~ 1 :  w2) 1.; (2, y, w17 w2) e'(w1+w2)Tdwldw2, 

which is a function of T .  The third integral in Eqn. (8.5.24) is 

term 3 = ///_I dwldw2dw3dw4 A (w) A* (w) A (w2) A* (w3) x { 
r2 (x, y, wl, w2) r; (x, y, w3, w4) e-i(wl+W2-W3-W4)t e i(W3+W4)T } 

(8.5.36) 
= ///I: dwldw2dw3dw4 {-$A (wl) 6 ( ~ 1  - ~ 4 )  SA ( ~ 2 )  6 ( ~ 2  - ~ 3 )  x 

r 2  (x, y, wl, w2) r; (x, y, w ~ ,  W4) e-i(wl+w2-w3-w4)t e i(w3+w4)7 > .  

Because of 6 (wl - w4) and 6 (w2 - w3), Term 3 then becomes 



which is also a function of T. Finally, H22 is given by 

Note that the first integral in Hz2 is independent of T, while the second integral is 

a function of T. 

Now let us denote 

a = wl + ~ 2 ,  

and rewrite the first term of equation (8.5.38) as 

2 [T; ( t ) ]  = /, doeioT 6 (0)  . 

It follows that 

00 

- - S22 ( a )  eioTda, 

Thus the corresponding frequency spectrum Sz2 ( a )  is 



Let us change the notation and replace 0 by w so that 

Note that since H22 ( T )  is real, Sz2  ( w )  = S22 ( -w) .  

The first term in Eq. (8.5.43) is the spectral part of the mean sea-level squared. 

Reliable field data near zero frequency is likely hard to find in view of the possible 

importance of tide and other long-periods events, and instrumentation limit. Only 

the remaining integral, w # 0, is included in the existing field data. 

Although in principle the second term in Eq. (8.5.43) is integrated over the 

entired frequency range of wl,  the sum of the two arguments of r 2 ( w l ,  w  - w l )  

l?;(wl, w  - w l )  and l?;(w - w l ,  w l )  is always 

If we only interested in the low frequencies part of spectrum S22 (w) ,  we only 

need to compute T2(w l ,  w2 )  in a narrow strip near the limit wl + w2 = 0 instead 

of the entire plane of ( w l ,  w2) .  Similar savings are possible for the second-order 

te ( ~ 1 ,  w - ~ 1 ) ~  tt ( ~ 1 ,  w - ~ 1 )  and I,* (w  - w l ,  w i ) .  

8.5.3 Nonlinear Corrections S13 and S31 

Now let us get S13 and S3i .  By inspecting the third-order perturbation equations, 

we expect the third-order free surface elevation to take the following form 



with F3 (x, y,  wl, w2, w3) being the transfer function of the third-order wave eleva- 

tion. By putting the above equation into Eq. (8.5.12), H13 (t, T) is glven by 

Since the random variable A (wi),with i = 1 ,2 ,3 ,4 ,  is Gaussian, so A (wi) are jointly 

normally distributed and independent. 

Hence, we obtain 

HI3 (t, T) = ///[I dwldw2d~3dw4 [A ( ~ 1 )  A* (4) A* (0.3) A* ( ~ 4 )  

Each ensemble average in Eqn. (8.5.47) is given as follows. 



Therefore, Eq. (8.5.47) becomes 

Thus the first integral in Eqn. (8.5.48) becomes 

term 1 = ///.I_: dwldw2dw3dw4 A (wl) A* (w2) A* (w3) A* (w4) x { 

Because of 6 (wl - w2) and 6 (w3 + w4), Term 1 becomes 

Let us change the notation and replace variable w3 by w2 

The second integral in Eqn. (8.5.48) is 

term 2 = 1/11 dwldw2dw3dw4 A (wl) A* (w3) A* (w2) A* (;I) * { 
rl (z, y, wl) r; (x, y, W2, W 3 ,  Wq) e - i ( w l - w 2 - ~ 3 - ~ 4 ) t  e ~ ( w z + w ~ + w ~ ) T  } 

(8.5.56) 
dwldwzdw3dw4 {SA ( ~ 1 )  6 (wl - w3) SA (w2) 6 (w2 + ~ 4 )  x 



Because of 6 (wl - w3) and 6 (w2 + w4), Term 2 becomes 

00 

term 2 = Lr / SA (wl) SA (w2) rl (x, y, wl) (x, y, w2, wl, -w2) eWlrdwldw2 

The third integral in Eqn. (8.5.48) is 

term 3 = ///l_̂ a_ dwldw2dw3dw4 A ( 1 )  A* ( 4 )  A* ( ~ 2 )  A* ( ~ 3 )  x { 

Because of 6 (wl - w4) and b (w2 + w3), Term 3 becomes 

In summary, we get 

where 



Again, let us change the notation and replace variable wl by w and w2 by w ,  

r; ( x ,  y ,  w l )  r3 ( x ,  y, w2, w3, w4)  e-i(-w1+w2+w3+w4)t e iwlr 7 

can be computed similarly. Details are given in the Appendix J. The result is 

H3, ( x ,  y ,  r )  = dwleiwlT { S A  ( W I )  r; ( ~ 1 )  SA (112)  [r3 ( ~ 1 . ~ 2 .  -4 
-00 -00 

The corresponding frequency spectrum is 

Let us change the notation and replace variable wl by w and w2 by w2 get 

The extension of Sclavounos is formally complete. The nonlinear spectral cor- 

rection S4 is the sum of Eq. (8.5.66), Eq. (8.5.62) and Eq. (8.5.43). 



For simple plane progressive or standing waves in deep water, Scalvounos de- 

rived explicitly the transfer function for cl, c2 and G, calculated S22 and S13, by 

using Pierson-Moskowitz spectrum for Sa . 

In the remainder of this thesis, focus is on the low-frequency harbor resonance. 

Since in the range of low frequencies, SA(w) is practical zero for typical sea spectra 

such as JONSWAP, as can be seen in figure 8-2 S13(w) and S31 (w) which are pro- 

portional to SA (w) can be neglected. This fortunate result makes it unnecessary 

to compute r3 and simplifies the task for the harbor problem. In the computa- 

tion of the integral in Sz2 the main task is to compute the transfer function r2 for 

many pairs of frequencies. For this purpose it is necessary to solve the second- 

order diffraction problem for & for all pairs of frequencies in a narrow strip near 

the diagonal wl + w2 = 0 of the (wl, w2)'. Hence the numerical task is limited. 

'The same advantage applies to the slow-drift motion of an offshore platforms. 
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Chapter 9 

Calculations of nonlinear transfer 

functions and spectra 

9.1 Hybrid-element Method 

Numerical analysis for the first-order problem is similar to that in Part I. Therefore, 

we only focus on the second-order analysis in this chapter. 

Let us divide the domain into two regons (Fig. 4-1) with a varying depth region 

inside where the finite element method is applied, and a constant depth regon 

where the analytic solution is applied. 

We require the matching condition at r = a for the finite element solution and 

the analytic solution 

where Ona denotes the solution in OA,  ORF denotes the solution in QF, d A  is the 

boundary between QA and OF where r = a. Now, the argument (x, ZJ) will be 

omitted throughout this chapter. 



9.2 Second-order analytic solution in the Far-field 

The analytic solutions in on, are obtained as follows. As will be shown in the next 

section, f (w l ,  w2 )  can be split into two parts 

representing respectively self interaction of progressive waves, and quadratic in- 

teractions involving scattered waves (progressive-scattered and scattered-scattered). 

In accordance with the form of the forcing term, we can separate the second-order 

response, (&(wl ,  w ~ ) ) ~ , ,  defined by Eqn. (8.4.14) into three parts 

Let the first part ( w l ,  w2)  satisfy the following inhomogeneous equation and zero 

normal flux on the entire coast 

and 

along the coast. No conditions are imposed elsewhere. It will be solved in section 

9.4.1. The second part t[ ( w l ,  w2)  represents the second-order progressive waves 

which responds to forcing P ( w l ,  w2)  due to the interaction of first-order incident 

and reflected waves. 

In addition, let tf ( ( w l ,  w2) satisfy inhomogeneous equation 



the no-flux condition along the straight coast 

and along the semi-circle r  = a 

eF (wl , w2)  is the response to the scattered forcing due to the interaction between the 

first-order scattered waves and the first-order progressive waves. For the evanes- 

cent modes, e = 1 , 2 , 3 ,  . . , (f ( w l ,  w2)  diminishes to zero at large enough r .  For 

the propagating mode, ! = 0,  c? ( w l ,  w2 )  must satisfy the weak (integral) radiation 

condition at infinity due to the slow attenuation of Q (w l ,  w 2 )  We shall call both 

(f ( d l )  w2)  and 57 ( w l ,  w2 )  both forced waves. 

Furthermore, let the free wave c? (wl , w2)  satisfy the homogeneous Helmholtz 

equation 

(v2 - K ; )  EF ( w l , w 2 )  = 0 ,  e = o,  1 , 2 , 3 ,  . . .  , (9.2.8) 

the boundary conditions at r  = a 

In addition, c,H ( w l ,  w2 )  must satisfy the usual (strong) radiation condition at infin- 

ity. The formal solution to the free wave (F ( w l ,  w2)  is immediate 

where K m  is the modified Bessel function of the second kind of order m. For t = 

( 1 )  A 0, ti0 = -izo is pure imaginary and Km(KOr)  is proportional to Hm ( n o r ) .  The 

unknown coefficients Ge,, ( w l ,  w2)  will be found jointly with the discrete solution 

in the near field by the hybrid-element analysis( in section 5.2), which requires the 



continuity of the near and far fields and their radial derivatives along r = a 

The solutions for tf ( ~ 1 ,  w2) and tf (w l ,  w2)  can be obtained explicitly as shown in 

section 9.4. 

9.3 Expression of f (x, y,  w l ,  w2)  in the far-field QF 

For the case of a infinite straight coastline and in the constant depth regon, the 

first-order free surface elevation for frequency w  consists of the incident, reflected 

and scattered waves as 

where 

ry) ( w )  = ry) ( w )  + r(P) ( w )  , 

I?(:) ( w )  is the first-order incident wave with frequency w  

r(P) ( w )  is the first-order reflected wave with frequency w  

with BI being the incident angle. ( w )  is the first-order scattered wave 

03 inBn ( w )  H:) [k ( w )  r ]  , w > O  
riS) ( w )  = C En COs no 

n=O (-i)" B: ( w )  H ; ~ )  [-k ( w )  r]  , w < O 



with the Jacobi symbol en 

The coefficients Bn (w) are obtained from the hybrid-element method for the first- 

order problem. 

Let us recall Eq. (8.4.5) 

with Pl (wl, w2) given by Eqn. (8.4.6) and P2 (wl, w2)by Eqn. (8.4.7). Clearly f (wl, w2) 

contains quadratic products of the first-order waves and they are of the form 

There are the self products, like I'r) (wl) I'y) (w2), and the cross products, like 

ry) (wl) rls) (w2), of the component waves. Therefore, the forcing term can be writ- 

ten as 

f ( ~ 1 7 ~ 2 )  = P ( ~ l r ~ 2 )  + Q ( ~ l r ~ 2 )  (9.3.9) 

where P involves only the incident and reflected waves 

P ( ~ 1 ,  ~ 2 )  = PI ( ~ l r  ~ 2 )  r(lT) ( ~ 1 )  ry) ( ~ 2 )  + P2 (wlr  ~ 2 )  v2ry) ( ~ 1 )  . v2r(lT) ( ~ 2 )  

(9.3.10) 

and Q involves the scattered wave 



9.3.1 Explicit Expression for P ( w l ,  w2)  in OF 

Let us recall P (w l ,  w2)  to be defined as Eqn. (9.3.10) 

P ( w l ,  ~ 2 )  = PI (wlr ~ 2 )  r r )  ( ~ 1 )  r y )  ( W Z )  + P 2  (wlr ~ 2 )  ~ 7 2 r y )  ( ~ 1 )  v 2 r y )  ( ~ 2 )  7 

(9.3.12) 

with 

r(lT) (ul) = e ik(w1)r  C O S ( O - O ~ )  + e i k ( ~ l ) r  cos(0+OI) 7 (9.3.13) 

To get P (w l ,  wz) ,  we must obtain l?r) ( ~ 1 )  r(lr) (w2)  and 'V2rp) (w l )  . v 2 f )  (w2)  

and 

= -lC ( w 1 )  ( ~ 2 )  { e i [ k ( w l ) + k ( ~ 2 ) ] r  cos(6-0 + e i[k(wl)+k(wz)]r  C O S ( ~ + ~ I )  

+ cos 201 [e i k (w2) r  ~ o s ( 6 - 6 ~ ) + i k ( w ~ ) r  cos(6+61) + eik(wl )r cos(6+ez)+ik(w2)rcos(6-61) . I > 
(9.3.16) 

Putting Eqs. (9.3.15) and (9.3.16) into Eq. (9.3.12), we obtain 



As a check, we take wl = w2, P (wl ,  w2) becomes 

which is same as Eq. (4.3.8) for monochramatic incident waves. 

9.3.2 Fourier expression for Q (w l ,  w2) in OF 

Let us rewrite I'y) (w) ,  Eqn. (9.3.13) as 

ry' ( w )  = C Tm (r ,  w)  eime 

with 

(2)" Jm [k (w)  rl w > o  
Tm (r ,  W )  = 2 cos mQI (9.3.20) 

(-2)" J m [ - k ( w ) r ] ,  w < O 

From the first-order scattered waves can be written as 

m 

ry) ( r ,  0 ,  w )  = C Zm (r ,  w )  e"' (9.3.21) 

where 

Note that all B,  (w) ,  T ,  ( r ,  w)  and Zm ( r ,  w )  are even with respect to m, i.e. B,  (w)  = 
h h 

B-, ( i j ) ,T ,  ( r ,w )  = T-, ( r ,w )  and Sm ( r ,w)  = S-, ( r , w ) .  

In Eq. (9.3.11), there are quadratic products of the first-order progressive waves 



and the first-order scattered waves and their derivatives. They are of the form 

Therefore, & (wl, w2) can be expressed in Fourier series 

or equivalently 

with 

where the argument r in Tm (r, w) and Fm (r, w) are omitted. 

9.4 [F ( w l ,  w2) and [F ( w l ,  w2)  in the far field Q F  

The analytical solution for [F (wl, w2) and <f (wl, w2) are obtained in the following 

sections 



9.4.1 Exact solution for <: (wl, w2) 

Let us recall Eqn. (9.2.3), <[ (wl, w2) satisfies, 

with P (wl, w2) given by (9.3.17). After inspecting the form of P (wl, w2) we expect 

<: (wlr w2) also has the same form, 

Putting the above equation into Eqn. (9.4.1), we obtain 

In summary, 

9.4.2 Exact solution for <,& ( w l ,  w2) by Green's theorem 

To solve the inhomogeneous equations, we shall employ the method of Green's 

function, Ge (wl ,  w2), defined here by the following equations 



withe = 0, l , 2 , 3 . .  .. 

For e = 0, the usual(strong) radiation condition is required, i.e., at infinity, Go 

behaves as an outgoing waves, 

For e = 1,2,3, . . , we require that the evanescent modes die out at infinity 

The Green's function Ge(r, 6; ro, 00) is then obtained (see section 4.4.2 for details) 

with 

r ,  = Max {r ,  ro)  , r ,  = Min {r ,  ro)  . (9.4.12) 

Note that Eq. (9.4.11) is equivalent to Eq. (4.4.41) when wl = w2. Also, it is clear 

that the arguments in Ge are interchangeable, i.e. 

After obtaining Green's function, we can solve { f ( r ,  6 )  by making use of Green's 

theorem 



where dRF is the boundary of OF, 

with dA being the boundary between RA and QF, dB is the coastline and d F  being 

the semi-circle boundary with a infinite radius. 

By making use of Eqns. (9.2.7 ), and (9.4.8), Eqn. (9.4.14) becomes 

The line integral along the infinite boundary 

is evaluated in Appendix 1.2, where it is shown that IaF approximates to zero 

Therefore, Eqn. (9.4.16) becomes 

Putting Eqn. (9.2.5) and (9.4.6) into Eqn. (9.4.19), we finally get 

Due to the symmetry of the obtained Green's function, the preceding equation can 

be further rewritten as 



The above integral which involves the infinite integration will be evaluated by us- 

ing the similar approach as Chau and Eatock Taylor (1992). Putting Green function 

Eqn. (9.4.11) into Eqn. (9.4.21), we obtain 

From Eqn. (9.3.25), Q (wl, w2) is written in terms of a Fourier series 

with 

Making use of Eq. (4.4.56) , Eqn. (9.4.22) becomes 



In particular, for r = a (i.e. on the boundary between tlA and tlF): 

rn 

<f ( a ,  0) = I,,, cos (m0) lrn rodrO [-i wl + w2 

m = ~  Ae,e 

Making use of Eqn. (4.4.34), the previous equation can be reduced as 

Now the analytical solutions in the far-field are obtained. In the near field of 

complex bathymetry and coastline, discrete finite elemets are used. The finite ele- 

ment analysis is same as chapter 5.2 by simply replacing the analytic solutions of 

<f, c? by Eqs. (9.4.5) and (9.4.27) and is therefore omitted. 

9.5 Evaluation of spectrum S22 

Let us recall Eq. (8.5.43) and rewrite it as 

where 

By dividing the interval [- oo, oo] into two subintervals, [- o o , O ]  and [O, oo], the 

above integral can be written as 



Now for the integral of the preceding equation, let us change wl by -wl, so the 

upper and lower limits of the integral becomes [co, 01. Making use of the fact that 

we get 

Since SA (w) is two-sided, i.e. SA (wl) = S (-wl), Eq. (9.5.4) can further be written 

As mention in section 8.1, we take the TMA spectrum to represent 2Sa(wl) and 

from section 8.2, STMA is nonzero only in the range of [w,, wb], Eq. (9.5.5) can further 

be rewritten as 

The trapezoid rule is used in the numerical integration of Z (w), which is ap- 

proached by first dividing the interval [w,, wb] into N subintervals according to the 

partition : {w, < w, + Aw < w, + 2Aw < w, + 3Aw < - .  . < wb) SO we can write Eq. 



(9.5.6) in series form by 

Z ( w )  = C SA (w,  + n l A w )  SA (W - - n l A w )  r2 (w,  + n l A w , w  - W ,  - n l A w )  x 

[r; (w, + n l A w ,  w - w, - n l A w )  + I?; (W - W ,  - n l A w , ~ ,  + n l n w ) ]  A w  

N 

+ SA (w,  + n 2 A w )  SA ( w  + w, + n 2 A w )  r2 (-w, - n 2 A w 7 w  + w ,  + n 2 n w )  x 
n2=0 

Since: (1) we are only interested in low frequency, 0 < w < w,, (2) 0 < (n l ,  n2) < N 

and (3) 

SA ( w  - w, - n l A w )  # 0 ,  only when w, < w, + n l A w  - w < wb, 

SA (W + W ,  + n 2 A w )  f 0 ,  only when w, < w + wa + n 2 A w  < wb, 

we get the range of integers nl and n2 

Therefore Eq. (9.5.7) becomes 

+ C SA (w,  + n A w )  SA ( w  + w, + n 2 A w )  T z  (-w, - n A w ,  w + w, + n A w )  x 



where 

n3 = the smallest integer 2 w / A w ,  

n4 = the largest integer 5 (wb - w, + w ) / A w ,  

n5 = the largest integer 5 (wb - w, - w ) / A w .  

In the computation of the integral in Sz2  the main task is to compute the transfer 

function r2 ( w l ,  w2)  for many pairs of frequencies. According to Eq. (9.5.8), the pairs 

for Sz2 ( w )  needed in the T2(w l ,  w2 )  are shown in the shaded portions of the narrow 

strip shown in Figure 9-1 and are tabulated in Table 9.1 and Table 9.2. All r 2 ( w l ,  w2)  

are computed by the hybrid element method. 

Figure 9-1: Plane of ( w l ,  w2) .  r2 is computed for frequency pairs inside the shaded 
strips. Frequencies w, and wb are the truncated limits of the incident sea spectrum. 



Table 9.1: Pairs of ( w l ,  w2)  for computing the first series of Z ( w )  

[w, + n 3 A w , w  - w, - n 3 A w ]  
[ w a + ( n 3 + l ) A w , w - w a - ( n 3 + l ) A w ]  
[ w a + ( n 3 + 2 ) A w , w - w , - ( n 3 + 2 ) A w ]  
[ w a + ( n 3 + 3 ) A w , w - w , - ( n 3 + 3 ) A w ]  

[w, + n 4 A w ,  w  - w, - n 4 A w ]  

[w - w, - n3Aw,wa  + n3Aw]  
[ ~ - ~ ~ - ( n ~ + l ) A w , w , + ( n 3 + l ) A w ]  
[ w - w a - ( n 3 + 2 ) A w , w a + ( n 3 + 2 ) A w ]  
[ w - w a - ( n 3 + 3 ) A w , w a + ( n 3 + 3 ) A w ]  

[w - w, - n 4 A w ,  w, + n4Aw]  

Table 9.2: Pairs of ( w l ,  w2 )  for computing the second series of Z ( w )  

(W +wa + Aw, -wa - Aw) 
(w  + w, + 2 A w ,  -wa - 2 A w )  
( w + w a + 3 A ~ , - ~ , - 3 A w )  
( w  + w, + 4 A w ,  -w, - 4 A w )  

( w + w , + n s A w , - w , - n 5 A w )  

(-wa - Aw, w + wa + Aw) 
(-w, - 2Aw,  w  + w, + 2 A w )  
( - w , - 3 A w , w + w a + 3 A w )  
(-w, - 4 A w ,  w  + w, + 4 A w )  

( - w , - n 5 A w , w + w a + n 5 A w )  



Chapter 10 

Numerical Solution for a Square 

Harbor in constant depth 

10.1 Square Harbor in constant depth 

In general, the theory presented here can deal with variable depth, which has 

already been demonstrated for monochromatic incident waves in Part I. Since 

here our focus is on the stochastic theory, only the cases involving constant depth 

h = 20 m are considered in order to reduce the numerical burden . Now let us 

consider a square harbor behind the straight coast in constant depth. The width 

and length of the basin is 300 m. Three entrances are considered (as shown in Fig- 

ure 10-1): (Case 1) centered harbor entrance of width 60 m and open to the sea, 

(Case 2) centered harbor entrance of width 30 m and open to the sea, and (Case 3) 

centered harbor entrance of width 30 m and protected by a detached breakwater ( 

100 m length, 5 m thickness and 30 m from the main breakwaters). In these three 

geometries, the opening is formed by a pair of breakwaters of 5 m thickness. Only 

normal incidence angle ( BI = 3~12) is considered. 



Figure 10-1: Plane view of the square basin and locations of St. 1 - 8. (a): without 
protection. Case 1: 60 m opening . Case 2: 30 m opening . (b): Case 3 with 
protection. 



10.2 Incident wave spectrum 

In the numerical computation, we have made use of the TMA spectrum (see section 

8.2) with y = 3.3, 3 = 3000 and u = 20 mls. We find from Eq. (8.2.4), W ,  = 

0.767 radls .  The corresponding modal wavenumber is ic, = 0.068 ( l lm)  We further 

truncate the range of this TMA spectrum from w = 0.6 to w = 1.8. Figure 10-2 

shows both the TMA spectrum and 2SA in frequency w and f space. According 

to Eqs. (8.5.5) and (8.5.4), we get the significant wave height Hs = 1.85 m and 

ordering parameter 6 = 0.063. 

Figure 10-2: Comparison between TMA spectrum and our incident spectrum in 
frequency (a) w (b) f space . Solid line: the incident spectrum 2SA(w) .  Dashed line: 
TMA spectrum SThIA(w). Input parameters y = 3.3, z = 3000 and u = 20 mls. 



10.3 Pairs of frequencies 

In the computation of the integral in S22 the main task is to compute the transfer 

function r2 (w17 w2)  for many pairs of frequencies as shown in Section 9.5. For 

each pair, the hybrid-element method is needed and finite element matrix has to 

be solved numerically. We choose A w  = 0.01 radlsec and let w = m a w .  With the 

assumed incident wave spectrum, the frequency of the incident waves ranges from 

0.6 radls to 1.8 radlsthe according to Eq. (9.5.8), examples of the pairs that needed 

in computing r 2 ( w 1 ,  w2)  are shown in Table 10.1 and 10.2. It is clearly that for each 

w, the total number of pairs is at least 100. We have computed the solutions from 

w = 0.01 radls to 0.6 radls. The total number of pairs needed for each mode is 

10620. The time for solving each pair with FEM is around 15 minutes, therefore, the 

time required to compute the total pairs is around 100 days if only ONE computer 

is used. The required computational time is reduced greatly by using 20-25 parallel 

computers at the same time. The total computational time for one case is around 

two weeks. 

Table 10.1: Pairs of ( w l ,  w2)  for computing S ( w  = 0.01) and S ( w  = 0.02). 

w = 0.01 

( ~ 1 ,  w2) 
(0.62, -0.61), (-0.61,0.62) 
(0.63, -0.62), (-0.62,0.63) 
(0.64, -0.63), (-0.63,0.64) 
(0.65, -0.64), (-0.64,0.65) 

(1.79,-1.78),(-1.78,1.79) 
total = 238 

10.4 Numerical result 

w = 0.02 

( ~ l r  ~ 2 )  
- - - 

(0.63, -0.61), (-0.61,0.63) 
(0.64, -0.62), (-0.62,0.64) 
(0.65, -0.63), (-0.63,0.65) 

(1.79,-1.78),(-1.78,1.79) 
236 

In the hybrid-element scheme, finite elements are used to discretize the basin (- 150 m < 

x < 150 m and 0 < ZJ < 305 rn) and the neighborhood near the entrance : (Case 1) 



Table 10.2: Pairs of (wl, w2) for computing S ( w  = 0.59) and S(w = 0.6). 

w = 0.59 
(dl , ~ 2 )  

(1.2, -0.61), (-0.61,1.2) 
(1.21, -0.62), (-0.62,1.21) 
(1.22, -0.63), (-0.63,1.22) 
(1.23, -0.64), (-0.64,1.23) 

' (1.79, -1.20), (-1.20,1.79) 
total = 118 

r < 30 m, (Case 2) r < 15 m, (Case 3) r < 62 m. In the regon (OF: (Case 1) r > 30 m, 

(Case 2) r > 15 m, (Case 3) r > 62 m) the solution is analytical. The maximum ele- 

ment size L, is 1 m, small compared with the shortest wave length X = 19 m. The 

total number of nodes is (Case 1) N p  = 164062, (Case 2) N p  = 162935 and (Case 3) 

N p  = 171209. 

As a convenient measure of the overall response, we define the spatially aver- 

aged response over the entire area of the basin, 

w = 0.60 
( ~ 1 7  ~ 2 )  
- - -  

(1.21, -0.61), (-0.61,1.21) 
(1.22, -0.62), (-0.62,1.22) 
(1.23, -0.63), (-0.63,1.23) 

(1.79, -1.59), (-1.59,1.79) 
116 

Spatially averaged response = 

with OAb being the domain inside the basin and Ab = 300 x 300 m2 the area of the 

basin. 

The spatially averaged response of T1 is plotted as a function of w for three 

entrances in Figure 10-3. Table 10.3 compares the first 18 resonated peaks ob- 

served from Figure 10-3 with the natural modes of the closed basin, w,,,( Cf. Eq. 

(7.3.3) ). From Table 10.3, the first resonated peaks for three cases are at frequency 

w = 0.032 radls, w = 0.028 radls and w = 0.027 radls for Case 1, 2 and 3 re- 

spectively. The first peak corresponds to the Helmholtz mode or pumping mode 

where the free surface with the harbor rises and falls in unison. In addition, the 

remaining non-Helmholtz modes are also identified by comparing the pattern of 

the free surface. The free-surface contours of first four natural modes of a closed 
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Figure 10-3: Spatial-averaged response TI for (a): 60 m opening (Case 1) , (b): 30m 
opening without protection (Case 2) , (c): 30 m opening with protection (Case 3). 



Table 10.3: The resonant frequencies for (1) closed basin (2) opening 60 m (Case 
1) (3) 30 m opening without protection (Case 2) (4) 30 m opening with protection 
(Case 3). 

basin are shown in Figure 10-4. It is clear that odd modes in n are not resonated 

due to the symmetry of the harbor and normal incidence. From Table 10.3, the 

peak frequency is slightly shifted and rl is finite at resonance. For the first three 

modes, the peak frequencies of Case 3 are the smallest and closest to the natural 

frequencies of the closed basin among the three cases. 

From Figure 10-3, the response curves look qualitatively the same in cases 1 

and 2 with the peaks occurring at the expected places. However, the height of the 

peaks differ quantitatively for different entrances. The greatest spatial-averaged 

response for each case occurs at the first peak. By comparing Case 1, Case 2 and 

Case 3, it is clear that when the incident frequency is high (short waves, w > 0.6), 

the narrower entrance has the smaller response. Moreover, by putting a breakwa- 

ter in front of the entrance, the response decreases tremendously. On the contrary, 

when the incident frequency is low (long waves, w < 0.6), the narrower entrance 



Figure 10-4: Free-surface contours of natural mode in a closed basin. (a) mode 
(n,  m) = ( 0 , l ) .  (b) mode (n,  m) = (O ,2 ) .  (c)mode (n,  m) = ( 2 , l ) .  (d) mode (n,  m) = 

( 2 , 2 ) .  Solid line: positive value. Dash line: negative. 



has the smaller response and smaller width of the peak. In particular, the height 

of the first peak increases from 8 (Case 1) to 12 (Case 3) , and the second peak in- 

creases from 4 (Case 1) to 7 (Case 3). Since with small entrance or with protection, it 

is harder for energy to escape the harbor, therefore the response is greater. The fea- 

ture that the resonant response increases with narrowing entrance does not always 

agree with practical experience and is one aspect of the harbor paradox named by 

Miles and Munk (1961). This indicates the friction loss at the entrance may play 

important role in reducing the resonant peaks. 

The local responses at stations 1-8 for three entrances are also plotted in Fig- 

ures 10-5 - 10-10. The location of each station shown in Figure 10-1 is 1 : (x, y) = 

(150 m, -305 m), 2 : (0  m, - 305 m), 3 : (75 m, - 230 m), 4 : (150 m, - 155 m), 5 

: ( 0  m, - 155 m), 6 : (75 m, - 80 m), 7 :  (-150 m, - 5 m) and 8: ( 0  m, - 5 m). 

Some of the peaks observed from the spatial-averaged response do not appear in 

the local response curve because some stations coincide with the nodal points of 

the standing wave mode. In particular, at St. 4 and 5 the peak for mode (0,l)and at 

St. 3,6 the peak for mode ( 0 , 2 )  disappear. The height of the peak differ quantita- 

tively for different location. Among all, St. 8 in general has the smallest response. 

In comparison with the spatial-averaged response, the height of the peak at the 

corners (St. 1 and 7) and the inner end St. 2 are much greater then the spatial- 

averaged response. This can be understood since according to the natural modes 

of the closed basin, the corners and st 2 are the antinodes. It can also be seen at each 

station (except for St. 4 and 5), that the responses of the first two peaks increase 

due to narrowing the entrance and Case 3 is the greastest. However, the height of 

the Helmholtz mode does not differ much at 8 locations in each case. 

The spatially-averaged linear spectrum S z ( w )  for three different entrances are 

shown in Figure 10-11. Recall that S2 ( w )  is proportional to the incident wave spec- 

trum and the square of lrl 1 .  Since the incident waves contains no energy at low 

frequency (w < 0.6) and for higher frequency the spatial-averaged lrll is small , 

S z ( w )  is mainly in the range from w = 0.6 rad l s  to 1.2 radls .  Despite the large 

value of the height, the width of the peak is more important since in the spectral 



analysis, the area under the curve represents wave energy and is of interest mostly. 

It can been seen that the areas under S2(w)  decreases greatly for Case 3. By making 

use of Eq. (8.5.5), the significant wave heights Hs for Case 1,2 and 3 are obtained 

by calculating the area under the curve as 1.2 m, 0.8 m and 0.5 m respectively. In 

comparison with Hs = 1.85 m of the incident waves, Cases 3 has reduced the inci- 

dent wave energy by almost 73% ((1.85 - 0.5)/1.85). The linear spectrum S2(w)  at 

station 1-8 for three entrance are also plotted in Figures 10-12- 10-17. St. 1,2 and 7 

again have the greatest spectra. 

The mean-sea-level setup/setdown within the square basin are shown in 

Figures 10-18- 10-20 for three entrances. According to Eq. (8.4.39), the mean-sea- 

level setup/setdown is an ensemble of various frequencies. To better understand 

the computed mean sea-level, it is useful to examine the limiting result under a 

simple standing waves at the natural modes of the closed basin 

g n7-r nr  m.rr 
- -- {sin [m (2 + 150)] cos (y + 305)]12 

w:,, 300 

which follows from Eqs. and (3.1.12) and (7.3.1). Spatial variation of ~ 7 2 0  are plot- 

ted in Figures 10-21-10-24 for eight modes: (n, m) = (0, s), (2,5), (4,4), (0,6), 

(6, I), (4,5),(6,3) and (0,7). The eight corresponding frequencies, w,,,, are in 

the range of [0.6 radls, 0.8 radls] which contains most energy. Therefore, these 

modes should dominate in the assemble average of C2. Due to the staggering of 

the nodal lines and antinodal lines, the assemble of all the frequencies response 

with the corresponding incident wave spectral Sa (wl) renders a more complicated 

free surface. Figures 10-18- 10-20, it can been seen that on the wall and along the 

centerline(:?: = 0 m) the setup are the greatest. Again, with a narrower opening and 

a breakwater in front of the entrance, the setup is reduced tremendously especially 

in the neighborhood of the centerline (x = 0 m). 



The low-frequency wave spectra are obtained from the nonlinear correction 

S 2 2 ( ~ ) .  The spatial-averaged response are shown in Figure 10-25 for three en- 

trances. The first two peaks in S 2 2  coincide with Helmholtz mode and the first non- 

Helmoholtz mode observed from the first-order response curves with the similar 

dependence on the opening. The feature of the harbor paradox mentioned in the 

first-order result is again observed. It can be seen that most of the low-frequency 

energy concentrates in the neighborhood of the first two modes. Sz2(w) at eight 

stations for three entrances are also plotted in Figures 10-26-10-31. It can been seen 

that in comparison with Case 1 and Case 2, the second peak for Case 3 is much 

larger. However, for Case 3 almost all the energy concentrates under the first two 

peaks while for Case 1 it still have some energy spreading though out the entire 

range of low- frequency domain. Among all, the nonlinear effect at St. 8 is the 

smallest while at St. 7 is the greatest. 

For qualitative comparison with field data, let us first see the spectrum during 

Typhoon Tim in Hualien Harbor at several stations both in side and outside the 

harbor, as shownin Figures 10-33 and 10-32. Figure 10-33 shows that inside the 

harbor high frequency energy component was blocked by the breakerwater, but 

the low frequency energy was increased by resonace hundred times. 

In order to compare further the computed result with the spectra during Ty- 

phoon Tim in Hualien Harbor, shown in figure 10-33, we presented in Figures 

10-34 - 10-60 the total spectrum S (  f )  = S 2 (  f )  U Sz2 ( f )  for the spatial-averaged 

spectrum as well as the local spectra at eight station. Note that the relation be- 

tween S ( f )  and S ( w )  is 

S ( f )  = 2?iS(w). 

Among the three cases, Case 3, which has a narrower entrance and a breakwater 

in front of the entrance, is the most relevant to Hualien Harbor. The computed 

spectrum of Case 3 resembles the spectrum of Typhoon Tim at St. 22 (Outer Basin). 

From Figure 10-36 and 10-33, it can be seen that the height of the peak of the short 

wave and long wave are about the same order in each figures. Also by compar- 



ing Sz2( f) with the incident spectrum, the height of the peak at Helmoltz modes is 

arout 1 /50-1 /I00 times of the peak of the incident waves spectrum. As mentioned 

previously, frictional loss at the entrance may play an important role in reducing 

the resonant peaks. This, as well as the effects of variable depth inside and outside 

the harbour, are of considerable practical importance and deserve further study. 

The present method in principle can be applied to a slow-drift motion of an off- 

shore tethered platform. Although the third-order solution is not needed in this 

type of problems, for high-frequency response of a floating structure, it is still nec- 

essary to include the third-order solution to get a complete spectrum up to O(e4). 
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Figure 10-5: Free surface response rl at St. 1-4 for opening 60 m (Case 1) 
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Figure 10-6: Free surface response at St. 5-8 for opening 60 m (Case 1) 
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Figure 10-7: Free surface response rl at St. 1-4 for opening 30 m (Case 2) 
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Figure 10-8: Free surface response TI at St. 5-8 for opening 30 m (Case 2) 
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Figure 10-9: Free surface response at St. 1-4 for opening 30 m with breakwater 
(Case 3) 
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Figure 10-10: Free surface response at St. 5-8 for opening 30 m with breakwater 
(Case 3) 
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Figure 10-11: Spatial-averaged spectrum 2S2(w). Top : opening 60 m (Case 
Middle: 30m (Case 2). Bottom: 30 m with protection (Case 3). 



Figure 10-12: Linear spectrum 2S2(w) at St. 1-4 for opening 60 m (Case 1) 
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Figure 10-13: Linear spectrum 2S2 ( w )  at St. 5-8 for opening 60 m (Case 1) 
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Figure 10-14: Linear spectrum 2S2(w) at St. 1-4 for opening 30 m (Case 2) 
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Figure 10-15: Linear spectrum 2S2 (w) at St. 5-8 for opening 30 m (Case 2) 
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Figure 10-16: Linear spectrum 2&(w) at St. 1-4 for opening 30 m with breakwa- 
ter(Case 3) 
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Figure 10-17: Linear spectrum 2S2(w) at St. 5-8 for opening 30 m with breakwater 
(Case 3) 



Figure 10-18: The second-order setup/down for opening 60 m (Case 1). 

Figure 10-19: The second-order setup/down for opening 30 m (Case 2). 207 



Figure 10-20: The second-order setup/down for opening 30 m with breakwater 

(Case 3). 



Figure 10-21: Setup/setdown ~ ~ o / k a ~ , ,  of standing wave in closed basin at mode 
(a) (n. m)  = ( 0 , s )  and (b) (n,  m)  = ( 2 , s )  



Figure 10-22: Setup/setdown I l z o / k a ~ , ,  of standing wave in closed basin at mode 
(a) (n,  m) = (4 ,4 )  and (b) (n,  m) = (076) 



Figure 10-23: Setup/setdown 7 2 0 / k a ~ , ,  of standing wave in closed basin at mode 
(a) ( n ,  m) = (67 1) and (b) (n7 m) = (47 5 )  



Figure 10-24: Setup/setdown ~ ) ~ ~ / k a : , ,  of standing wave in closed basin at mode 
(a) (72, m) = (67 3) and (b) (n,  m) = (077) 
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Figure 10-25: Spatial-averaged nonlinear correction 2SZ2 (w ) . Top : opening 60 m, 
Middle: 30m. Bottom: 30 m with protection 
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Figure 10-26: Nonlinear correction 2Sz2(w) at St. 1-4 for 60 m opening (Case 1). 
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Figure 10-27: Nonlinear correction 2S2Z(~)  at St. 5-8 for 60 m opening (Case 1). 
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Figure 10-28: Nonlinear correction 2Sz2(w) at St. 1-4 for 30 m opening (Case 2). 



Figure 10-29: Nonlinear correction 2 S 2 2 ( ~ )  at St. 5-8 for 30 m opening (Case 2). 



Figure 10-30: Nonlinear correction 2Sz2(w)  at St. 1-4 for 30 m opening with break- 
water (Case 3). 
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Figure 10-31: Nonlinear correction 2S22(w) at St. 5-8 for 30 m opening with break- 
water (Case 3). 
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Figure 10-32: Layout of Hualien Harbor 
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Figure 10-33: Spectrum during Typhoon Tim of Hualien Harbor 



Figure 10-34: Spatial-averaged spectrum 2S( f )  for 60 m opening (Case 1). Region 
I: 2S2 ( f ) .  Region 11: 2S22 ( f ). 



Figure 10-35: Spatial-averaged spectrum 2 S (  f )  for 30 m opening (Case 2). Regon 
I: 2 S 2  ( f ) .  Region 11: 2 S z 2  ( f ) .  





Figure 10-37: 2S( f) at St. 1 for 60 m opening (Case 1). Region I: 2S2( f ) .  Region 11: 
2S22(f 1- 



Figure 10-38: 2S(  f) at  St. 1 for 30 m opening (Case 2). Region I: Sz( f ) .  Regton 11: 
2S22(f ). 



Figure 10-39: 2S( f) at St.1 for 30 m opening with breakwater (Case 3). Region I: 
S2 (f ) . Region 11: 2S22 ( f ). 



Figure 10-40: 2S( f) at St.2 for 60 m opening (Case 1). Region I: 2S2( f ). Region 11: 
2S22 ( f ) . 



Figure 10-41: 2S( f )  at St. 2 for 30 m opening (Case 2). Region I: 2S2( f ). Region 11: 
2S22 (f ) 



Figure 10-42: 2S( f )  at St. 2 for 30 m opening with breakwater (Case 3). Regon I: 
2S2 ( f ) . Region 11: 2Sz2 ( f ) . 



Figure 10-43: 2S( f) at St. 3 for 60 m opening (Case 1). Region I: 2S2( f ). Region 11: 
2S22(f ) -  



Figure 10-44: 2S( f) at St. 3 for 30 m opening (Case 2). Region I: 2S2 (f ). Regon 11: 
2S22 (f ) 



Figure 10-45: 2S( f )  at St. 3 for 30 m opening with breakwater (Case 3). Region I: 
2S2 ( f ) . Region 11: 2S22 ( f ) . 





Figure 10-47: 2S( f) at St. 4 for 30 m opening (Case 2). Regon I: 2S2 (f). Region 11: 
2S22(f ). 



Figure 10-48: 2S( f )  at St.4 for 30 m opening with breakwater (Case 3). Regon I: 
2S2 ( f ). Region 11: 2Sz2 ( f ) . 



Figure 10-49: 2S( f )  at St.5 for 60 m opening (Case 1). Regon I: 2S2 (f) .  Region 11: 
2S22 (f ) 



Figure 10-50: 2S( f ) at St.5 for 30 m opening (Case 2). Regon I: 2S2 ( f ). Regon 11: 
2S22(f ). 



Figure 10-51: 2S( f )  at St.5 for 30 m opening with breakwater (Case 3). Region I: 
2S2 ( f ). Region 11: 2S22 (f ). 



Figure 10-52: 2S( f) at St.6 for 60 m opening (Case 1). Regon I: 2S2( f ). Regon 11: 
2S22(f ). 



Figure 10-53: 2S( f )  at St.6 for 30 m opening (Case 2). Region I: 2S2( f ). Regon 11: 
2S22(f ). 



Figure 10-54: 2S( f) at St.6 for 30 m opening with breakwater (Case 3). Region I: 
2S2 ( f ) . Region 11: 2S22 ( f ) . 



Figure 10-55: 2S( f ) at St.7 for 60 m opening (Case 1). Region I: 2S2 (f ) . Region 11: 
2S22 (f ) 



Figure 10-56: S( f) at St.7 for 30 rn opening (Case 2). Regon I: Sz( f ) .  Region 11: 
S22(f). 



Figure 10-57: 2S( f) at St.7 for 30 m opening with breakwater (Case 3). Regon I: 
2S2 (f ) . Region 11: S22 (f ). 



Figure 10-58: 2S( f )  at St.8 for 60 m opening (Case 1). Region I: 2S2( f ). Regon 11: 
2Szz(f ). 



Figure 10-59: 2 S ( f )  at St.8 for 30 m opening (Case2). Region I: 2Sz(f) .  Regon 11: 
2s22 (f). 



Figure 10-60: 2S( f) at St.8 for 30 m opening with breakwater(Case 3). Regon I: 
2S2(f). Regon 11: Sz2(f). 



Chapter 11 

Conclusion 

In this thesis, we have studied the combined second-order nonlinear diffraction 

and refraction with the following two types of incident waves: 

1. Monochromatic waves, 

2. Random wave with broad frequency spectrum. 

The theory is based on the mild-slope approximation, whose special feature is that 

it reduces the boundary value problem from three dimensions to two, hence, facil- 

itates numerical computations. 

In Part I, the incident waves are monochromatic. We have extended the ideas 

behind the mild-slope equation, developed previously for linearized problems of 

water-wave diffraction and refraction, to account for nonlinearity up to second or- 

der in wave steepness. For the first-order problem, we get the modified mild-slope 

equation by including only the propagating wave and keeping all terms propor- 

tional to Vh,, V 2  h and (Vh)  2(  Chamberlain and Porter [9]). For the second-order 

problem, a coupled mild-slope equation with forcing is derived for a slowly vary- 

ing bathymetry. In the case of uniform depth, the second-order diffraction is gov- 

erned by a set of uncoupled two-dimensional Helmholtz equations with forcing. 

For a semi-circular peninsula in constant depth, the solution is exact and can be ob- 

tained analytically. A hybrid-element method is described for the second-order re- 

fraction/diffraction over a slowly varying bathymetry. A two-dimensional Green's 



function including the propagating waves and all the evanecent waves and the 

weak radiation condition for propagating waves are used to get the analytic solu- 

tion in the far field where depth is constant and coastline is straight. 

Numerical results are demonstrated for three geometries, (1) pure shoaling 

without a scatterer , (2) a semi-circular cylinder resting on top of a semi-circular 

shoal and (3) a harbor behind a semi-circular shoal. Effects of incidence angles 

are studied. In past studies the phenomenon of ringng near an offshore tower 

has been attributed to third-order effects (Faltinsen et a1 1995 [30]). The ideas here 

can in principle be extended to third-order analysis for a tower on a slowly varying 

seabed, with of course increased algebraic and numerical complexity. Nevertheless 

the advantage of this approach that discrete computations are needed only for two 

horizontal coordinates would likely be even more preferable since refraction usu- 

ally involves a large domain extending over many wavelengths in all horizontal 

directions. The fully three-dimensional alternative via either boundary elements 

or finite elements covering the entire regon of variable boundary and bathymetry 

would appear to be extremely cumbersome and demanding. On the other hand, 

extending the three-dimensional treatment of Yue et a1 (1978) and Kim & Yue (1989) 

only near the structure, and matching with the quasi-two-dimensional mild-slope 

approximation for the much larger zone of variable depth, may simplify the nu- 

merical task considerably. 

We point out that the present theory is an extension of Stokes approximation, 

which is inherently limited to small Ursell-Stokes parameter (A/k2h3 << 1) (see 

(E.1.5) where sinh4 kh appears in the denominator). For very shallow water waves 

propagating over long distances one must use Boussinesq or other appropriate 

approximations expressly devised for small kh. 

In Part 11, the incident waves are random and broad-banded. For treating slow- 

drift motions of floating platforms or long-period oscillations in harbors, it is nec- 

essary to consider nonlinear effects due to random incident waves of broad fre- 

quency band. In this part, we have generalize the stochastic approach of Sclavounos, 

and, for calculating the nonlinear transfer function, the second-order mild-slope 



approximation by modifying the mild-slope equation for monochromatic incident 

waves described in Part I. At the leading order O(t2) spectrum S2(w) is in the 

Wiener-Khintchine relation. The complete nonlinear spectral correction S4 is the 

sum of Sz2, S13 and S3i and consists of the transfer functions r l ,  r2 and r3 which are 

associated with the first, second and third-order diffraction, and if the sea depth is 

slowly varying, refraction also. For simple plane waves in deep water, Sclavounos 

derived explicitly the transfer functions for el, c2, and 53, and calculated Sz2, S13 

and S31, by using Pierson-Moskowitz spectrum for SA. Strictly speaking, if one is 

interested in the O(t4) corrections for the entire frequency range, or for the mean- 

square amplitude(or the correlation function), it is necessary to complex the anal- 

ysis of (3 and solve the second-order problems for all pairs of frequencies in the w1 

and w2 plane. The compuational task involving diffraction is a dauntingly complex 

task. 

In typical sea spectra such as JONSWAP and its extension to finite water depth 

(TMA), the incident spectrum Sa(w) is practically zero for small w. In view of 

the Wiener-Khintchine relation, the leading-order spectrum S2 (w) of the harbor re- 

sponse is virtually zero in the low frequency range, where the total spectrum is 

dominated by the nonlinear correction S4. For the prediction of long-period oscil- 

lations in a harbor, due to the coincidence of the following two special features: 

1. The typical wind-generated incident spectrum SA(w)  is practically zero for 

small w, 

2. The nonlinear corrections S13 (w) and S31 (w) are proportional to SA(W), 

S13 and S3i must also be negligibly small at low frequencies. This fortunate result 

makes it unnecessary to compute 6 to get S4, for small w. In the computation of 

the integrals in S22, it is necessary to solve the second-order diffraction/refraction 

problems for r2 for many (in principle, infinite) pairs of frequencies only in a nar- 

row strip near the diagonal wl + w2 = 0 of the (wl, w2) plane. Furthermore, be- 

cause the incident sea spectrum SA(w)  is effectively nonzero only in a finite range 

w, < w < wb, only the pairs in the shaded portions of the narrow strip shown 



in Figure 9-1 are relevant. These two advantages are particularly suited for the 

harbor resonance problem (and to slow-drift problems of ships and floating plat- 

forms). In the range of high frequencies, contributions by Sz2, S13 and S3i are of 

O(e4) importance but are all much smaller than S2, hence they are not pursued 

here. 

Numerical examples are given for a simple square harbor of constant depth 

with normal incidence. As the Helmholtz mode or the pumping mode is known 

to strongly affected by the entrance geometry, we have studied three different en- 

trances. The short waves spectrum is dominated by the leading order response by 

the linearized theory. The long wave spectral response is dominated by the second- 

order response. Harbor paradox is observed and the resemblance of the numerical 

results to the field data of Hualien harbor is also shown. We have shown that for 

the analysis of long-period oscillations in harbors the third-order solution can be 

omitted. However, for high-frequency response of structure like the oil platform, 

it is still necessary to include the third-order solution to get a complete spectrum 

up to o(E~).  

In principle the present method for random waves can be applied or extended 

to study slow-drift motions of moored ships or tethered offshore platforms. Near 

the scatters, three-dimensional computations are needed, and be matched with 

the mild-slope theory away from the scatterer. For harbors, friction loss at the 

entrance must play an important role in reducing the resonant peaks. This, as 

well as the effects of variable depth inside and outside the harbour, require further 

modifications as well as streamlining of the computational efficiency. 



Appendix A 

First-order MSE 

A.l Derivation of the first-order MSE 

From Eqns. (2.2.3)-(2.2.6) and (3.1.1), + satisfies 

84 
- = -V+ . V h ,  2 = -h(x,  y ) ,  dz 

Let us recall the procedure of Smith and Spinks[35], and introduce 

cosh k(z  + h)  
f =  cosh kh 

with 

w2 = gk tanh kh. 

Note that f is a homogeneous solution which satisfies 

(A.1.2) 

(A. 1.3) 



Applying Green's formula to f and +, we obtain 

Putting Eqns. (A.l.1)-(A.1.3) and (A.1.5)-(A.1.7) into Eqn.(A.1.8), the preceding 

equation becomes 

L h  
( 4 k 2 f  + f V2$) d z  = - ( f  V + .  Vh)  z=-h ' 

We then assume 

Note that h is a function of x, y, so f is function of x, y and z. Taking the derivative 

of 4, we obtain V+ and V2+ 

Putting 4, V+ and V2+ into Eqn. (A.1.9), we get 

+ g Ih 2 f g V i i .  Vhdz = g + f2Vg Vh  
z=-h 

By Leibniz's rule, 



we can combine the last two terms on the left hand side of Eqn. (A.1.13) and the 

last term on the right hand side of the Eqn. (A.1.13). We then get 

O 
d f  f 7 + ( /: f 2 )  + q [ ( h )  g / -h d z ]  dh 

(A.1.14) 

+ v  [rvh)2gi_:f$d.] + [ ( f )  = 0. 

We can denote the preceding equation as 

where 

and 

Using Leibniz's rule, we can rewrite V as 

2 
- - E L ( $ )  dh dz. 

Let us calculate each integral separately. By using Eqn. (A.1.4), 

f- - (E )  r2 sinh k ( 2  + h)  - sinh kh sinh kz 
dh coshkh dh k 

and 
dk - - - - 

2k2 
dh 2kh  + sinh 2kh, 

(A. 1.20) 



in each integral, we obtain 

- - g (sinh 2kh  + 2 k h )  
2  cosh2 k h  2k 

U in the second term of b 

- - sinh 2kh  - 2kh  cosh 2kh  

4cosh2 ( k h )  ( 2 k h  + sinh 2kh )  ' 

and V in the third term of b 

k [ ( ~ ! k h ) ~  + 4 ( 2 / ~ h ) ~  sinh 2kh  - 9 sinh ( 2 k h )  sinh 4kh] v =  
12 cosh2 ( k h )  ( 2 k h  + sinh 2kh)3  

k  [ k h  ( k h  + sinh 2kh )  (cosh2 2kh  - 2 cosh 2kh  + 3)] + 
cosh2 ( k h )  ( 2 k h  + sinh 2kh)3  

Therefore, we obtain the modified mild-slope equation 

where 

a = CC,, 

(A. 1.25) 

sinh 2kh  - 2kh  cosh 2kh  
U =  

4 cosh2 ( k h )  ( 2 k h  + sinh 2kh )  ' 



k [ (2kh )4  + 4 (2kh )3  sinh 2kh  - 9 sinh 2kh  sinh 4kh]  v =  
12 cosh2 ( k h )  ( 2 k h  + sinh 2kh)3  

k  [ k h  ( k h  + sinh 2 k h )  (cosh2 2kh  - 2 cosh 2kh  + 3 ) ]  + 
cosh2 ( k h )  ( 2 k h  + sinh 2kh)3  

with 

u2 = gk tanh k h ,  

C c - - ( I +  
2kh  

g -  2 sinh 2 k h  ). 

A.2 Derivation of 

k satisfies 
w2 
- = k tanh k h .  
9 

Taking the derivative of the preceding equation in respect with h, we obtain 

Therefore 

- k h  + tanh kh]  + k2  ' 

- [cosh2 k h  cosh2 k h  

A.3 Derivation of $ 
f is defined as 

d k  - - - - 
2k2 

d h  2kh  + sinh 2kh  ' 

cosh k ( z  + h)  
f =  cosh k h  



Taking the derivative of the preceding equation in respect with h, we obtain 

sinh k (z + h) cosh k (z + h) 
- - [E (z + h) + k] -(ghfk) cosh2kh sinh kh dh dh cosh kh - 

A 

cosh k (z + h) 
- E [ ( z + h ) s i n h k ( z + h )  - hsinhkh 

cosh kh dh  cosh kh 1 
1 dk k 

+ cosh kh dh (dkldh) 
sinh k (z + h) - sinh kh 

cosh kh 

Making use of Eqn. (A.2.3), we obtain 

k sinh kh cosh kh 
(8k,dh) = - ( k 

+ h) - 

Putting the preceding equation into Eqn. (A.3.2), we get 

af - sinh kh 
--  I "{zs inhk(z+h)+-  k [cosh k (z + h) sinh kh 
dh cosh k h d h  . (A.3.4) 

- cosh kh sinh k (z + h)]} 

Since 

sinh (zl - z2) = sinh zl cosh zz - cosh zl sinh 22 ,  (A.3.5) 

we obtain 

2- - - z sinh k (z + h) - sinh kh sinh kz (A.3.6) 
dh  coshkh dh k 

A.4 Derivation of U 

By putting Eq. (A.3.6) into Eq. (A.1.18), U becomes 

A - (e) Ih z sinh k (z + h) cosh k (z + h) dz 
cosh2 kh 

- 
1 dk sinhkh O 

c0sh2 kh, (%) 7 lh sinh kz cosh k ( Z  + h) dz. 



Making use of the following equation, 

z sinh k ( z  + h )  cosh k ( z  + h )  

1 
= -2 sinh 21; ( z  + h )  

2 

='{ - d [ z  cosh 2k ( z  + h ) ]  - cosh 2k ( z  + h )  , 
4k d z  1 

and 
1 

sinh k z  cosh k ( z  + h )  = - [sinh (2kz  + k h )  - sinh kh]  , 
2 

(A.4.3) 

Eq. (A.4.1) becomes 

- - {c [ z  cosh 2k ( 2  + h)] - cosh 2k ( 2  + h )  dz  (A.4.4) 
cosh2 k h  d h  - 4 d z  I 

- 
1 d k s i n h k h  

- [sinh (2kz  + k h )  - sinh kh] dz .  
cosh2kh% k: S_Oh: 

Carrying out the integrals, we obtain 

U =  
1 dk  1 1 --I z cosh 2k ( 2  + h)  - - sinh 2k ( z  + h )  

cosh2 k h  d h  4k 2k z=-h 

or equivalently 

U =  
1 dk  1 1 

h - - sinh 2kh + 2h sinh2 k h  --[ 2, cosh2 k h  a h  41; I 
- - 

1 dk  1 1 
-- sinh 2kh + h cosh 2kh , 

c o s h 2 k h i i i i z i  [ 2k I 
where 

1 
sinh2 k h  = - (cosh 2kh - 1 )  

2 



is applied. Moreover, by making use of Eq. (A.2.3), Eq. (A.4.6) becomes 

sinh 2kh - 2kh cosh 2kh 
U =  

4 (2kh + sinh 2kh) cosh2 kh ' 

A.5 Derivation of V 

V is defined as 
dU 2 

V =  - -  dh ( )  dz. 

Let us obtain the first and second term of the previous equation, separately. The 

first term in Eq. (A.5.1) is obtained as follows. 

sinh2kh-2khcosh2kh 
4 (2kh + sinh 2kh) cosh2 kh 1 

- A 

c o ~ h - ~  kh d 
- (sinh 2kh - 2kh cosh 2kh) 

4 (2kh + sinh 2kh) dh 

+ (sinh 2kh - 2kh cosh 2kh) - 
4 (2kh cosh-2 + sinh kh  2kh) 1 

- - 
c o ~ h - ~  kh 

( h g  + k )  {-4kh sinh 2kh (2kh + sinh 2kh) 
4 (2kh + sinh 2kh)2 

sinh kh 
- (sinh2kh - 2khcosh2kh) (2kh + sinh 2kh) + 2 ( 1  + cosh 2kh) . 

cosh kh 11 
(A.5.2) 

Making use of the following equation 

d k  r -  k 1 sinh 2kh dk - - 
ah lh + (dkldh)]  = 2k dh 

A - 
k sinh 2kh 

(2kh + sinh 2kh) ' 



we obtain 

dU - - - - 
k sinh 2kh 

(4kh sinh 2kh (2kh + sinh 2kh) 
dh 4 cosh2 kh (2kh + sinh 2kh)3 

sinh kh + 2 (sinh 2kh - 2kh cosh 2kh) [ (2kh + sinh 2kh) + ( I  + cosh 2kh) . 
cosh kh I >  

In addition, the second term in Eq. (A.5.1) is obtained as follows. 

(e)2L [zs inhk(z+  h) - sinh kh sinh kz 
cosh2 kh a h  k 

I 2 d z  

sinh kh 
-2 

k 
z sinh k (z + h) sinh kz 

Making use of the following equations 

1 
sinh2 k (z + h) = - [cosh 2k (z + h) - 11 , 

2 
1 

sinh2 kz = - (cosh 2kz - 1) , 
2 
1 

sinh k (z + h) sinh kz = - [cosh kh - cosh (2kz + kh)] , 
2 

sinh 2kh = 2 sinh kh cosh kh, 

we can rewrite Eq. (A.5.5) as 

2 

- (dk'ah)2 lo {z2 C O S ~  2k (Z  + h) - z2 + sinh2 kh 
- (g) = 2 cosh2 kh -h k2 

cosh 2kz 

- 
sinh2 kh sinh kh sinh 2kh 

k2 
- 2------- 

k 
2 C O S ~  ( 2 k ~  + kh) + 



Making use of the following equation 

z2 C O S ~  2k ( z  + h)  = [z2 sinh 2k ( z  + h)] - 22 sinh 2k ( z  + h)  

- -- [x2sinh2k(z + h)] - -- a [zcosh2k ( 2  + h)]  ( A.5.11) 
2k dx 4k2 dz 

} (A.5.12) z  cosh (2kz + kh) = [z sinh (2kz + kh)] - sinh (2kz + kh) , 

and carrying out the integrals in Eq. (A.5.10), we obtain 

[ Z C O S ~ ~ ~ ( Z  + h)] - L (g ) d,z = :!:::[ { & [,z2 ~ i ~ h  2k ( z  + h)] - - 4k2 

2 z3 sinh2 kh sinh2 kh +- sinh 2k ( z  + h)  - - + sinh 2kz - 
k2  

z  
8k3 3 2k3 
2 sinh kh 2 sinh kh 

--- [z sinh (2kz + kh)] + ~7 cosh (2kz + kh) 
2k k 
sinh 2kh - Z ~ ) ' = O  

+ z=-h* 

Therefore, 

2 

- L (g) dz = 
1 h3 

sinh 2kh - - 
cosh2 kh 6 (A.5.14) 

sinh2 kh 
+ 

4k3 
sinh 2kh - 

4k 

Putting Eq. (A.2.3) and 
1 

sinh2 kh = - (cosh2kh - 1 )  
2 

into Eq. (A.5.14) ,we obtain 

2 k 2 (kh)3 

- 1, (g) '' = cosh2 kh (2kh + sinh 2kh)2 
kh+- 

3 
(A.5.16) 

- 
cash 2kh 

sinh 2kh + (kh)'sinh 2kh) . 
2 



Finally, by combining Eqns. (A.5.4) and (A.5.16), V is found to be 

k [ (2kh )4  + 4 (2kh )3  sinh 2kh  - 9 sinh ( 2 k h )  sinh 4kh]  v =  
12 cosh2 ( k h )  ( 2 k h  + sinh 2kh13 

k  [ k h  ( k h  + sinh 2kh )  (cosh2 2kh  - 2 cosh 2kh  + 3)] + 
cosh2 ( k h )  ( 2 k h  + sinh 2kh)3  



Appendix B 

Derivation of F 

B.1 Free surface boundary condition 

Let us recall Eq. (2.2.11), the free surface boundary condition at z = 0, 

where 

We assume the first-order potential is 

where 

and 
cosh k ( z  + h )  

f =  coshkh ' 

Note that the water depth h is a function of x and y, so f is a function of x, y and z.  



Now let us rewrite Eq. (B.1.2) as 

where 

By putting Eq. (B.1.3)-(B.1.5) into Eq. (B.1.6), each term in Q is obtained as fol- 

lows. 

For the first term (Q1) in Q, 

Making use of Eq. (B.1.4) and (B.1.5), the above equation becomes 

Note that there is no zeroth harmonic in Q,. 



B.3 Second term (Q2) in Q 

For the second term (Q2)  in Q 

Making use of Eq. (8.1.4) and (B.1.5), the above equation becomes 

Q2 = (-iwk tanh kh) v2e-"wt + * 

Note that there is no zeroth harmonic in Q2. 

B.4 Third Term (Q3) in Q 

For the third term (Q3)  in Q 

Making use of Eq. (B.1.4) and (B.1.5), the above equation becomes 

Note that there is no zeroth harmonic in Q3 



B.5 Fourthterm (Q4) inQ 

For the fourth term (Q4) in Q 

Making use of Eq. (B.1.4) and (B.1.5), the above equation becomes 

Note that there is no zeroth harmonic in Q3 

Finally combining Eqs. (B.2.2), (B.3.2), (8.4.2) and (B.5.2), we get 

where 

with 



Appendix C 

Second-order MSE 

C.l Derivation of the second-order MSE 

$ satisfies 

-- " - -V$ . V h ,  z = -h(x,  !I), 
ax 

Let us introduce 
cos nm ( z  + h)  

fm = 
COS nmh 

which satisfies 

where K,, m  = 1,2, . . . are the real roots of the equation 

2 - 4 ~  = g K m  tan rcmh, ( m  - 112) 7T 5 K,h 5 m7T, 



and rco are 
h 

KO = ik, 

with Eo being the real root of the dispersion equation 

Applying Green's formula to fm and $, we obtain 

Putting Eqns. (C.1 .I)-(C.1.7) into Eqn.(C.1.1 I), the preceding equation becomes 

We then assume 
00 

ig 
$ = -- C ee(x7 y)fe(x, Y )  z). 2w e=o 

Note that h is a function of x, 9, so fm is function of x, y and z. Taking the derivative 

of Q, we obtain V$ and V2$ 

Putting $, V$ and V2$ into Eqn. (C.1.12), we get 



By Leibniz's rule, 

Eqn. (C.1.16) can be written as 

where 

f n ( 0 )  = 1 

is applied. Let us denote Eqn. (C.1.18) as 

where 

with 

and 



with the Am,e being Eq. (C.1.20), Umle being Eq. (C.1.22) and 

Using Leibniz's rule, we can rewrite Vm,[ as 

NOW let US obtain Am,e, Bmle, Cm,[ as follows. Due to the orthogonality of functions 

fm and fe, Am,e is simply 

By inspecting Eq. (C.1.21), it is obvious that the Bm,e is zero when m = l .  Therefore, 

the Bmle is 

when, m = l, 

g m - m )  , when, m # l. 

with Eq.(C.1.22), being obtained as follows (see Appendix C.4 for details). 

For m = l, 
sin 2nmh - 2nmh cos 2nmh 

u m l m  = 
4 cos2 (nmh) (2nmh + sin 2nm h) ' 

form # l, 
0 

Furthermore, C,,e is obtained as follows. 

-~kAm,rn  + gUm,mv2h + gVmjm ( ~ h ) ~ ,  if, m = 1 
c m ,  

gUm,yV2h + gVmc ( ~ h ) ~ ,  i f , m # Z  



with Umje being Eq. (C.1.28) and (C.4.7) and Vm,e being the following equations. For 

- nm sec2 (n ,  h)  
Vm,m = [(2nmh14 + 4 ( 2 ~ , h ) ~  sin 2nmh + 9 sin (2nmh) sin 4nmh 

12 (2nmh + sin 2nmh13 

-12nmh (nmh + sin 2~,h) (cos2 2nmh - 2 cos 2nmh + 3)] , 

(C.1.31) 

For m # e, 

-2ne sec nmh sec neb [ ~ K : K $  + (ni - K % )  sin2 neb] 
Vm,  = 

(2neh + sin 2 ~ e h )  
(C.1.32) 

(n; - n&)2 

C.2 Derivation of % 
nm satisfies 

w2 
- = - K ,  tan nmh. 
9 

Taking the derivative of the preceding equation in respect with h, we obtain 

Therefore, 

afm C.3 Derivation of 

f m  is defined as 
cos r;, (t + h) 

fm = 
cos Kmh 



Taking the derivative of the preceding equation in respect with h, we obtain 

dfm - =  [ dnm - - ( 2  + h)  + Km I i n  m ( 2  + ) + ( ) cos K~ ( Z  + h)  
dh dh -h + nm sin nmh cos 6 ,  h cos2 nm h 

- - - ( 2  + h)  sin&, ( 2  + h)  + hsinnmh cos nm ( z  + h)  
cos nmh dh cos nm h I 

1 d m  itm + cos nm ( 2  + h)  
- sin n, ( z  + h)  + sin n,h 

cosnmh dh (dnm/dh) cos K ,  h 

Making use of Eqn. (C.2.3), we obtain 

Km sin nmh cos K ,  h + h )  
(d"m/dh) = - ( nm 

Putting the preceding equation into Eqn. (C.3.2), we get 

dfm - - i i h n l { - z ~ i n ~ m ( z + h ) +  sin nm h [cos nm h sin K ,  ( z  + h)  dh cos nmh dh K m  (C.3.4) 

- cos K ,  ( 2  + h)  sin K m  h ] )  . 

Since 

sin (zl  - z2) = sin zl cos z2 - cos zl sin 2 2 ,  

we obtain 

dfm -- sin K ,  h sin nm z 
- % [-xiinn, ( z  + h)  + 

dh cosnmh dh nm 

C.4 Derivation of Urn,! 

Let us recall that Urn,[, Eq. (C.1.22), is defined as 



For m = l, 

1 0 

= ( % ) c ~ s ~ a ~ h J _ ~  
[-z sin K m  ( 2  + h)  COS K m  ( 2  + h)] dz 

(C.4.2) 
+ (:;) sinnmh S" [sin nmz cos nm ( z  + h)] dz 

Em cos2 nmh -h 

- sin 2nmh - 2n,h cos 2nmh 
- 

4 cos2 (nmh) (2nmh + sin 2nmh) ' 

For m # l, 

- - (%) JO [-z sin K[  ( r  + h)  cos nm ( r  + h)] dz (C.4.3) 
dh C O S ~ , ~ C O S K ~ ~  -h 

1 sin Ke h 0 

---- Sh [sin iie2 cos nm (r  + h)] dz 
+ (2) C O S K ~ ~ C O S K ~ ~  Ke 

with 
- 2n; - _ -  

dh sin 2neh + 2neh' 

Let us define Lm,e to be 

0 

Lm,e = Lh [ -  sin ( z  + h)  cos nm ( 2  + h)] dz: 

and Lmle to be 
A sin ne h 
Lmle = - 1; [sin nez cos nm ( r  + h)] d l ,  

K e 

so that Umle can be written as 



After evaluating the integrals of Lmlt and we got 

sin (ne + n,) h sin (nl - n,) h 
Lm,; = ' [- - 

2 ( K P  + nm)2 ( ~ e  - nm) 2 + 2heh ] , 
6," - 

and 
A sin nth (cos nph - cos 6,  h)  
Lm,e = 

n; - n& 

Thus 

A 4nt (-ne sin np h cos n, h + n, cos ne h sin n, h)  
Lmle + Lm,e = 2 

2 (K," - n&) 

+ (n; - K % )  (2rieh + sin 2 ~ h )  
2 

2 (n; - n k )  
> 

Lmlm Lm,e - - 2ne ( - ~ e  tan nth + n, tan n,h) ( 2 ~ h  + sin 2neh) 
cos K ,  h cos ne h 

+ 
2 (n; - K & )  

. (C.4.11) 
(n," - n&)2 

Since k ,  and kt satisfy Eq. (C.2.1), Eq. (C.4.11) becomes 

h 

Lm,! + Lm,e - 
- 

(2ne h + sin 2ne h)  
cos n, h cos ne h 2 cos nm h cos ne h (n," - 6%) ' 

Putting the preceding equation into Eq. (C.4.7), we then obtain 

urn, = - 4 
cos n, h cos nl h (n; - n&) ' 

In summary, Um,e is 

sin 2nmh - 2nmh cos 2nmh umlm = , m = e ,  
4 C O S ~  ( K m  h )  ( 2 ~ ,  h + sin 2nm h)  

u = -  he 
mle cos n, h cos ne h (6; - n&) ' m i l -  



C.5 Derivation of V,,[ 

From Eq. (C.1.25), Vmle is defined as 

durn,[ dfm af t  
V ~ . E  = - dh - I: (hi)ii) dl. 

For m = e, 

sin2nmh-2nmhcos2nmh 
4 cos2 (n,h) (2~,h + sin 2 ~ ,  h)  1 

- K ,  sec2 ~ , h  
- {4~ ,h  sin2 2nmh (2nmh + sin 2n,h) 

4 (2nmh + sin 2 ~ , h ) ~  

+ 2 (sin 2~,h - 2~,h cos 2nmh) [2 sin2 ~ ,h  (2nmh + sin 2nmh) 

- sin 2~,h ( 1  + cos 2nmh)]) , 

K ,  sec2 K m  h 
[-3 ( 2 ~ , h ) ~  sin (2nmh) 

12 (2nmh + sin 2 ~ , h ) ~  (C.5.3) 

+12nmh - 3sin (4nmh) - ( 2 ~ , h ) ~ ]  . 

Therefore, combining Eqns. (C.5.2) and (C .5.3), we obtain 

- - n, sec2 (n, h)  
- [(2nmh14 + 4 ( 2 ~ , h ) ~  sin 2nmh 

12 (2nmh + sin 2 ~ , h ) ~  

+ 9 sin (2nm h)  sin 4nm h - 12~,h (n, h + sin 2nm h)  x 

(cos2 2nmh - 2 cos 2nmh + 3)] . 

For m # [, 

4 
cos n,h cos nth ( K ;  - K & )  1 

- - 4 4 1 ~ 2  sec n, h sec neb K e + K ,  

[-2n,ii+sin2ieh 2nmh+sin2xmh ] (C.5.5) (6; - n&)2 

- 
K; sec K ,  h sec ne h 2nm sin2 nmh 2ke sin2 ne h 

(6; - 6)  26,h + sin 2nmh + 2/ceh + sin 2neh I 



or equivalently, 

durn, - - sec K ,  h sec nth 
C-4n;h-k sin 2nmh 

dh ( n ; - ~ ~ ) ~ ( 2 n ~ h + s i n 2 n ~ h ) ( 2 1 c , h + s i n 2 k , h )  

f4n;nk sin 26th - 2 4  sin2 nth sin 2nmh + 2n;nk sin2 sin 26 ,  h 

-4n;n,h sin2 nth + 4n:nih sin2 nth - 4n:nmh sin2 nmh + 4m;n;h sin2 n,h 

-2ninm sin2 nmh sin 2neh + 2nink sin2 n,h sin 2neh) 

(C.5.6) 

and 

d f  m ?fe sec n, h sec ne h 
X 

(6; - K % ) ~  (2nth + sin 2neh) (2kmh + sin 2kmh) 

3 3 3 2 {-16nmnt h - 2nmnt sin2 mmh sin 2neh + 2n;nm sin2 n,h sin 2neh 

- 2n;nh sin2 nl h sin 2nmh + 2nln; sin2 nth sin 2nmh (C.5.7) 

- 4n&k h sin2 nmh + 4n:nm h sin2 K ,  h - 4 4  K: sin 2nm h 

+4nln:h sin2 - 4n;nkh sin2 - 4n:ni sin 2 ~ h )  . 

Combining Eqns. (C.5.6) and (C.5.7), we obtain 

dum,e dfm dfe 
vm,t = - dh - (dhilh) d~ 

- set 6 ,  h sec ne h 
- 3 2 {-8rien, sin 2~,h 

(n; - K % ) ~  (2keh + sin 2kth) (2kmh + sin 2kmh) (C.5.8) 
3 3 -26: sin2 nth sin 2nmh - 4ninmh sin2 nth - 16nmnth 

+2nen; sin2 nth sin 2nmh + 4npnkh sin2 nth) , 

or equivalently 

- - -2ne sec n, h sec nth [4n!n& + (6; - n:) sin2 ny h] 
(2nph + sin 2 ~ h )  (n; - K & ) ~  



Appendix D 

Fourier expression for & 

To calculate the forcing function &, 

we shall first abbreviate the first-order progressive waves as 

with 

Tm ( r )  = Aim Jm ( k r )  cos mer, 

and the first-order scattered waves as 

where 

Sm ( T )  = imamHm (kr )  , 

(D. 1.2) 

(D. 1.3) 

and Tm, Sm, am are even in m. 

We now calculate Q according to Eq. (D.l.l). Each quadratic product in Eq. 



(4.3.3) are obtained as follows 

(D. 1.8) 

(D. 1.9) 

It follows that & can be expressed as a Fourier series 

or equivalently 

with 



Appendix E 

Equivalence to Stokes waves 

We show here that Eqs. (4.4.7) and (4.4.8) are equivalent to Stokes waves of the 

following standard form: 

- - 
iA2w 

-- 
1 + 2 cos 20, - 3 tanh2 kh 

Stokes 
X 

2g tanh kh [2 cos OI tanh (2kh cos 0,) - 4 tanh kh] (E.1.2) 
cash [2k(2 + h, 'OS '11 ei2kr cos B I  cos 8-2iwt + *. 

cosh (2kh cos 0,) 

To show this we first get from (3.2.3), 

h p - Pk2 = 
3c~k 

sinh kh cosh kh' 

ikw p̂  - pk2 cos (20,) = [I + 2 cos(201) - 3 tanh2 kh] . 
tanh kh 

The Stokes wave potential can be rewritten as 

\ =' / Stokes 
(E.1.5) 



i A 2 u  p̂  - Dk2 cos (2QI )  
X 

29 [2 cos QI tanh ( 2 k h  cos 0,) - 4  tanh kh]  (E.1.6) 
cash [2k ( z  + h, cos ' 1 1  ei2kr cos B1 cos 0-2iwt 

cosh ( 2 k h  cos 01) 
+ *. 

Let us expand cosh 2 k ( z  + h )  and cosh [2k(2  + h )  cos QI]in terms of the vertical eigen- 

functions 

m 00 

cosh 2k ( 2  + h )  = x at f t ,  cosh [2k ( z  + h )  cos Q I ]  = be fe, (E.1.7) 
e=o e=o 

where 
cos ICp ( Z  + h )  

fe = 
cos ~ e h  

By using the orthogonality of f e ,  the dispersion relation as well as the identities 

4  sinh3 k h  4w2 
2  tanh 2kh  - 4  tanh k h  = - tan ~ t h  = -- = -4k tanh k h ,  

cosh k h  cosh 2kh'  9  

we obtain 
g  4ksinh3 k h  1 a t = - -  

At,[ C O S ~  k h  4k2 + K; '  

g [2k cos QI tanh ( 2 k h  cos Q I )  - 4k tanh kh]  cosh ( 2 k h  cos Q I )  be= -- , (E.l.ll) 
Ae.e (4k2  + K ; )  

where Am,p is given b y  (3.2.13). The equivalence of (E.1.5) and (4.4.7) and of (E.1.6) 

and (4.4.8) is evident. 



Appendix F 

Q Weak radiation condition for lo 

El Asymptotic behavior of ~f 
In order to verify the weak radiation condition and to ensure the convergence of 

certain infinite integrals, we need the asymptotic behavior of tf for kr >> 1. Recall 

that tf satisfies the inhomogeneous Helmholtz equation, Eq. (4.2.10). The forcing 

terms Q involves the products of and I)(') and the products of their gradients. 

For large kr, the first-order scattered wave behaves as 

hence 

and 



The remaining term is negligible because 

(F. 1.4) 

It is easy to see that products of I ) (S )  and itself is of the order 0 ( e i r 2 k / k r ) .  There- 

fore, & is dominated by 

From the governing Helmholtz equation Eq. (4.2.10), it can be seen that 

where F ( 8 )  and F ( 8 )  are known functions of 8. 

F.2 Weak radiation condition 

We show here that the following line integral vanishes 

where d F  is a semi-circle of unboundedly large radius. 

Since Go satisfies the strong radiation condition, 

(F. 1.5) 

(F. 1.6) 

Putting the asymptotic expressions of # and Go into Eq. (F.2.1), we obtain for large 



eikor irk[cos(O+O~)+l] 

+ lT l - d ~  H ( O ) P ( H )  
e 

[-ik c o s  ( 6  + 0 1 )  - i k  + Z ~ O ]  
( E ~ T ) ~ ' ~  6 (F. 2.3) 

For large r, we use the method of stationary phase, and let 

be the phase function. Since 

and 

.ir < eI < 2 ~ ,  

the stationary phase points are at 

and 
h 

0 = 0 ~ = 2 ~ - e ~ ,  q = - k c o s  

Using the fact that 



we obtain 

(F. 2.5) 

Clearly 

(F. 2.6) 

hence the weak radiation condition is satisfied. 



Appendix G 

Evaluation of Infinite Integrals 

By following Chau and Eatock Taylor (1992) [lo], the evaluation of the infinite 

integrals in Eq. (4.4.65) are shown as follows. As can be seen from Eq. (4.4.65), the 

typical forms of the infinite integrals are as follows form 

('1 = l* rdrHI1) ( k r )  H!') ( k r )  H:) (Z0r)  , ILl,,m 

and 

( )  = lr rdrHL2) ( k r )  Hi') ( k ~ )  H ( I )  (EOr) . JLl.r,m 

Making use of Hankel's asymptotic expansions as defined by Abramowitz and 

Stegun (1972)[1] 

where 



When L > irn, the remainder after L terms in the expansion of Xm (x) will not 

exceed the L + 1 term in absolute value(Abramowitz and Stegun (1972)[1]). This is 

also the case for Ym (x). Therefore, we can truncate Xm (x) and Ym (x) at L = Mm = 

Lm, + 2. The Hankel function can be written as 2 

where 

and then a recursive relationship for Cm,L+l is obtained as 

(G. 1.8) 

(G. 1.9) 

Therefore, the infinite integral can be written as 

(2) Similar for I , , , ,  as 

The integrals are of the form 



with /? = 2k + ko for Eq. (G.l.ll) or P = En Eq. (G.1.12). The infinite integrals, 

I!,?, and I!,?,,, can now be evaluated by the methods of asymptotic expansion of 

integrals. Using integration by parts we obtain 

which leads to the power series 

and can be written as 

The truncation error EN is 

Therefore 

It can be seen that EN always has the same order of magnitude as the last remain- 

ing term in the series Eq. (G.1.16). Let us consider The ratio of the N + lth term in 

Eq. (G.1.16) to the Nth term is 



The successive terms decrease as long as v + N - 112 i pr,, but increase unbound- 

edly with increasing N. The best estimate for A, can then be obtained by choosing 

N as 

N = greatest integer less than [pr,  - v]. 



Appendix H 

Jointly Gaussian distribution 

Let the joint probability density function (PDF) of the N random variables { xl, x2, 

- . , ~ ~ ) b e d e n o t e d a s  f (x17x2, . - .  ,xN). TheexpectationofafunctionG(xl,x2,~~~ ,xN) 

is obtained from 

where < > denotes the expectation value. The joint characteristic function, which 

is derived to be the N-dimensional Fourier transformation of the joint PDF 

Since we can expand the exponential function exp (-iax) as power series 



the expansion of {exp (- i  ajxj)  } can be obtained as 

(H.0.4) 

Making use of the above equation, the joint characteristic function can be expanded 

as 

Therefore, the joint moments are generated as 

The joint Gaussian distribution of N random variables is 

1 1 
f ( x x  N )  = y e X p  [ (  ( )  ( A n )  , 

(2a) det [C] 2 m,n 1 
(H.0.7) 

where A, = (x,), the matrix C is the correlation matrix, 

C m ,  = ( ( 2 ,  - Am) (xn - An) )  , (H.0.8) 

and C-' is its inverse. In addition, the corresponding joint characteristic function 

is 
1 

.f ( & I ,  a2; ' ' , @ N )  = exp -iam,Am - iCm,naman . I (H.0.9) 
m,n 
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For (2,) = Am = 0, the joint characteristic function becomes 

Putting Eqn. (H.O.lO) into (H.0.6), we can get that and 

and 

and all the remaining odd moments are zero. Besides, all the even moment can be 

obtained by grouping the random variables into pairs, e.g. 

(Cf. Root and Pitcher 1955, Theorem 2. [40]). 



Appendix I 

Weak radiation condition for 

1.1 Asymptotic behavior of # ( w l ,  w2)  

In order to verify the weak radiation condition and to ensure the convergence of 

certain infinite integrals, we need the asymptotic behavior of [ f ( w l ,  w2)  for kr >> 1. 

Recall that [f satisfies the inhomogeneous Helmholtz equation, Eq. (9.2.5). The 

forcing terms Q(wl ,  w2)  involves the products of ry) and ry) and the products of 

their gradients. For large kr, the first-order scattered wave behaves as 

hence 



and 

e i r [k (wl )  ~0~(6+61)+k(w2)1 

+ cos (0 + 01) 

ir[k(wz)  C O S ( ~ + ~ I  ) + ~ ( w I  )I 
+ cos (0 + 01) i 

The remaining terms are negligble because 

It is easy to see that products of r y ) ( w l )  and I'?)(w2)is of the order 0 (l lr) .  

Therefore, Q(wl, w2) is dominated by 



From the governing Helmholtz equation Eq. (9.2.5), it can be seen that 

where Fl , F2, F3 and F4 are known functions of 6. 

1.2 Weak radiation condition 

We show here that the following line integral vanishes 

where dF  is a semi-circle of unboundedly large radius. 

Since Go(wl ,  w2) satisfies the strong radiation condition, 

Putting the asymptotic expressions of ef and Go into Eq. (1.2.1), we obtain for large 

kr,  

lr 

d' H(6)F1 (*) e i r [k (w l )  c0s(0-o~)+*(~2)+~~I  [-ik(Wl) cos (0 - Q I )  - i k (W2)  + jzOj ' = I  Jm 
cos(0-OI)+k(wl)+ilo] [-ik(w2) cos (6 - Q I )  - i k ( w l )  + iEo] 

H(6)F3(0) e i r [ k ( ~ l ) ~ ~ ~ ( o + o ~ ) + * ( ~ ~ ) + i ~ ~  [ - j k (wl )  cos (0 + H I )  - i k (w2)  + izol 

H(6)LF, (H)  i':k(w')cOs(~+oz)+k(wlJ+~O1 [-ik(W2) 
(0 + H I )  - i k ( w l )  + izo/ . 

(1.2.3) 



For large r ,  we use the method of stationary phase, and let 

~ , ( e )  = k(wl) cos (6 - 61) + k(w2) + 20, q2 (6) = k(w2) cos (6 - 61) + k(wl) + 20, 

~ ~ ( 0 )  = k(wl) cos (0 + 61) + k(w2) + 20, 4 6 )  = k(w2) cos (6 + 01) + k(w1) + 20, 

be the phase function. Since 

and 

T < OI < 2 ~ ,  

the stationary phase points are at 

(p;l = -k(wl) cos (61 - 61) = k(wl), (o; = --~(wz) cos (61 - 61) = k(w2)7 

and 

6 = 62 = 2n -01, 

Using the fact that 



we obtain 

Clearly 

hence the weak radiation condition is satisfied. 



Appendix J 

Derivation of H31 

Since the random variable A (wi),with i = 1,2 ,3 ,4 ,  is Gaussian, so A (wi) are jointly 

normally distributed and independent. 

Hence, we obtain 

Each ensemble average in Eqn. (J.1.2) is given as follows. 



Therefore, Eq. (8.5.47) becomes 

Thus the first integral in Eqn. (J.1.2) becomes 

00 

term 1 = /Mm dwldw2dw3dw4 {A* (wl) A (w2) A (w3) A ( ~ 4 )  x 

I?; (x, y , wl) r3 (5, y , w2, w3, w4) e-i(-w1+W2+W3+ W 4 ) t  iW1r > 
(J.1.7) 

= ///.I_: dWldW2dW3dwl {SA ( ~ 1 )  6 ( ~ 1  - ~ 2 )  SA ( ~ 3 )  6 ( ~ 3  + ~ 4 )  

Because of 6 (wl - w2) and 6 (w3 + w4), Term I becomes 

Let us change the notation and replace variable w3 by w2 and get 

The second integral in Eqn. (J.1.2) is 

term 2 = ///.I_: dwldw2dw3dw4 A* (wl) A (w3) A (w2) A (w4) x { 



Because of 6 (wl - w3) and 6 (w2 + w4), Term 2 becomes 

The third integral in Eqn. (J.1.2) is 

term 3 = JJJ1-Y dwldw2d~3d~n {A* ( ~ 1 )  A (4 A ( ~ 2 )  A ( ~ 3 )  x 

rl (x, y , wl) (x, y , w2, w3, w4) e-i(-wl+W2+W3+ ~ 4 ) ~  &17 > 
Because of 6 (wl - w4) and 6 (w2 + w3), Term 3 becomes 

In summary, H31 (t , 7) is 

The corresponding frequency spectrum is 



Let us change the notation and replace variable wl  by w and wz by wl get 
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