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ABSTRACT

Human yD crystallin (HyD-Crys) and human yS crystallin (HyS-Crys), are major
proteins of the human eye lens and are components of cataracts. HyD-Crys is expressed
early in life in the lens cortex while HyS-Crys is expressed throughout life in the lens
epithelial cells. Both are primarily n-sheet proteins made up of four Greek keys
separated into two domains and display 69% sequence similarity.

The unfolding and refolding of HyD-Crys and HyS-Crys have been characterized
as a function of guanidinium hydrochloride (GdnHCl) concentration at neutral pH and
37°C, using intrinsic tryptophan fluorescence to monitor in vitro folding. Equilibrium
unfolding and refolding experiments with GdnHCl showed unfolded protein is more
fluorescent than its native counter-part despite the absence of metal or ion-tryptophan
interactions in both of these proteins. This fluorescence quenching may influence the
lens response to ultraviolet light radiation or the protection of the retina from ambient
ultraviolet damage.

Wild-type HyD-Crys exhibited reversible refolding above 1.0 M GdnHCl.
Aggregation of refolding intermediates of HyD-Crys was observed in both equilibrium
and kinetic refolding processes. The aggregation pathway competed with productive
refolding at denaturant concentrations below 1.0 M GdnHCl, beyond the major
conformational transition region. HyS-Crys, however, exhibited a two-state reversible
unfolding and refolding with no evidence of aggregation. Atomic force microscopy of
HyD-Crys samples under aggregating conditions revealed ordered fiber structures that
could recruit HyS-Crys to the aggregate.

To provide fluorescence reporters for each quadrant of HyD-Crys, triple mutants
each containing three tryptophan to phenylalanine substitutions and one native tryptophan
have been constructed and expressed. Trp68-only and Trp 156-only retained the
quenching pattern of wild-type HyD-Crys.
During equilibrium refolding/unfolding, the tryptophan fluorescence signals indicated
that domain I (W42-only and W68-only) unfolded at lower concentrations of GdnHCl
than domain II (W130-only and W156-only). Kinetic analysis of both the unfolding and
refolding of the triple mutant tryptophan proteins identified an intermediate along the
HyD-Crys folding pathway with domain I unfolded and domain II
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intact. This species is a candidate for the partially folded intermediate in the in vitro

aggregation pathway of HyD-Crys.
An N143D deamination post-translational modification has recently been

identified in HyS-Crys that is present in high concentrations in insoluble protein removed
from cataractous lenses. The presence of the N143D mutation did not significantly affect
the equilibrium or kinetic properties of HyS-Crys indicating that this mutation is unlikely
to be involved in protein destabilization during cataract formation in vivo.

The method in which HyD-Crys aggregates on its own and engages neighboring
molecules in the polymerization process in vitro may provide insight into the process of
cataractogenesis in vivo.

Thesis Supervisor: Dr. Jonathan King, Professor of Biology
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CHAPTER I: INTRODUCTION

A. THE PROTEIN FOLDING PROBLEM

The biomedical research community has been inundated with new technologies

and discoveries that seem to be multiplying at an exponential rate. Things that seemed

completely unattainable just five or ten years ago have now been transformed into routine

procedures that are taught to introductory biology majors and sold as ready-made kits

from mass manufacturing companies. For example, RNA interference loops and micro-

array gene chips are customizable at a touch of a button, and a few minutes at a computer

keyboard will align a newly discovered gene with hundred of possible functional cousins.

Perhaps the most striking advance in the scientific world has been in DNA

manipulation and sequencing. DNA sequencing has become so accessible at large

throughput facilities that the average incoming biochemistry student has never even seen

the massive glass plates that were used historically for these experiments, never mind

actually run a sequencing gel. The biomedical community has successfully sequenced

entire genomes including many animal model organisms such as C. elegans, S.

Cerevisiae, and the mouse. The majority of the human genome was successfully

completed in 2001 by two competing groups (Lander et al. 2001 and Venter et al. 2001).

We now possess every chromosomal coding sequence in the human cell. In essence, that

means we know the sequence of every RNA and, perhaps most shockingly, a possible

sequence for every protein that sustains human life! Unfortunately, unlike the

sequencing of the human genome, there is no shot-gun method of folding a protein when

faced with simply its amino acid sequence.

Protein sequence dictates structure and polypeptide structure controls protein

function. We now have half of the code needed to break the mystery of how proteins

fold. We have the sequence, we need to be able to understand and predict the formation

of structure from this information. As early as 1960, Christian Anfinsen set out upon this

lofty goal and subsequently won the Nobel Prize for his insights into protein folding as a

sequence guided process. Numerous scientists have spent their entire careers trying to

unravel the "second-half' of the genetic code. We are flying at light speed in other
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scientific arenas, but in the world of protein folding, we are moving relatively at a snail's

pace. How does a linear sequence of amino acids actually control and maintain a

complex three-dimensional protein fold? Moreover, how does this complex fold become

altered and manipulated in protein deposition disorders?

i. The models of protein folding: framework versus hydrophobic collapse

There are two conceptual models most frequently used to describe the events that

occur in protein folding. In the frame-work model, isolated pieces of secondary structure

form independently in regions of the polypeptide chain upon folding (Ptitsyn 1998,

Goldberg 1969, Wetlaufer 1973, Jaenicke 1999). These isolated a-helices, P-sheets, and

loops then come together forming the native tertiary contacts. Alternatively, in the

hydrophobic collapse model, upon folding, the polypeptide chain undergoes a rapid

compaction in which the hydrophobic residues come together and form a rigid core (Dill

and Chan 1997, Onuchic et al. 1997, Eaton et al. 1997). The hydrophobic core provides a

stabilized center around which the native secondary structure forms.

Some combination of both of these mechanisms is probably applicable for most

proteins containing a-helices and 3-sheets. One reasonable approach to tackling the

grand problem of protein folding is to understand the kinetic and thermodynamic

properties of each class of secondary structure separately.

ii. Folding of a-helical proteins

Some headway has been made in understanding the propensity of an amino acid

sequence to adopt an a-helical conformation (Mufioz and Serrano 1995). There are 3.6

residues per turn in an a-helix, and this means that within an isolated helix, one amino

acid will interact only with other amino acids within a four residue linear distance of

itself. In cases in which short-range interactions of i to i+4 between residues are

dominant, estimations of secondary structure may be determined from knowledge of

linear sequence interactions. These local interactions allow a rapid backbone hydrogen-
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bonding network to be established for -helices that results in complete folding within

the millisecond time scale (Capaldi and Radford 1998).

For sequences of amino acids within a polypeptide chain in which local

interactions dominate, we can generally assess the ability and likelihood that the

sequence in question will form an a-helix based on the type of amino acids involved and

the "capping" residues at the end of the sequence. Specifically, our ability to predict

coiled-coil domains or the collagen triple helix fold is making progress (Hu et al. 1990,

Brodsky and Ramshaw 1997).

In the cases of coiled-coils or four helix bundles, interactions between helices are

reasonably well understood as well. The heptad repeat is a predictable motif observed in

these types of interacting helices controlling individual helix stability and interaction

energies (Cohen and Parry 1990, O'Shea et al. 1991). The stabilities and conformations

of four-helix bundles are controlled by local and capping interactions as described above,

together with the "knobs into holes" packing between helices (Dunker and Jones 1978).

Successful de novo design of four-helix bundles has been achieved based on knowledge

of hydrophobic packing, conformational entropy, interhelical turn residues, and helix-

dipole interactions (Kamtekar and Hecht 1995). Specifically, the structure and stability

of hydrophobic point mutants for homodimeric and heterodimeric coiled-coils may be

calculated accurately based on side-chain packing interactions (Keating et al. 2001).

ii. Folding of f-sheet proteins

With the progress in understanding -helical conformations, many laboratories

have now turned their attention away to a more elusive problem; [-sheet folding. To

understand -sheet protein folding, we cannot simply look at the primary sequence of

amino acids in a protein and predict what interaction will be present in the final P-fold.

The global sequence control of residues involved in n-sheets could perhaps extend from

residue i to residue i+4 or from residue i to residue i+204. In other words, one amino

acid may be conformationally stabilized into a -sheet structure by interaction with others

residues throughout the entire rest of the protein molecule.
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iii. The parallel 3-helix

Accurate structure prediction of all 3 proteins has been most successful for

parallel J3-helices, structures in which the P-strands wind around upon each other in coil-

like fashion similar to the processive nature of an a-helix (Jenkins and Pickersgill 2001).

Although the distance between 3-strands in the primary sequence may be variable with

the insertion of large domains that project out from the stacked P-helix, many 13-helical

rungs in any given protein will be found in succession in the primary sequence. Many of

these structures, like the P22 tailspike protein and pertactin from Bordella Pertussis

contain a hydrophobic core of successive stacked nonpolar residues that runs throughout

the length of the P-helix central cavity (Betts et al. 2004, Emsley et al. 1996). An accurate

computational algorithm for P-helix prediction has been developed that takes advantage

of the processive nature of the helical rungs and the regular placement of the hydrophobic

stacked core (Bradley et al. 2001).

iv. Model f-sheet proteins

This question of how and why P-sheet proteins fold and aggregate has been

addressed by several research laboratories through analysis of small primarily 13-sheet

proteins adopting relatively simple folds and by observing kinetic and thermodynamic

trends between members of small molecule P-sheet protein families that demonstrate

high levels of structural homology. Techniques such as circular dichroism (CD), nuclear

magnetic resonance imaging (NMR), fluorescence imaging, hydrogen deuterium

exchange (H-D), and stopped-flow fluorescence (SF-flu) have provided the scientific

community with some insight into the folding pathways of 1-sheet proteins, aggregation

intermediates, and thermodynamic stability (Capaldi and Radford 1998).

b. Central questions of this thesis

In this thesis, I have investigated why the folded state of some proteins exhibit

much greater stability under physiological conditions than others. In addition, I have
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studied the process of P-sheet protein aggregation in a small model Greek key protein that

is involved in the protein deposition disorder of cataract. The protein that is the primary

focus of this thesis, human yD crystallin (HyD-Crys), remains in solution at high

concentrations for more than fifty years in most adults. In addition to deciphering how its

amino acid sequence drives it into a P-sheet fold, we hope to understand which aspects of

the sequence are important for the maintenance of this long term stability.

Despite the stability of the crystallins, as well as many other proteins, aggregated

or polymerized states form under physiological conditions. For the eye lens proteins this

aggregated state causes cataract, a major disease of the elderly. As discussed below,

considerable evidence points to partially folded or partially unfolded conformations, as

the species responsible for the self-association reactions. A second focus of this thesis

has been the identification of partially folded or partially unfolded conformers of HyD-

Crys that might be involved in aggregation reactions related to cataract.

In the sections following, I review selected aspects of P-sheet protein folding and

misfolding and the lens crystallin literature to set the context for the experimental results

described for the human y-crystallins.

b. Two-state 3-sheet protein folding

A central experimental question in the investigation of P-sheet folding, unfolding,

and misfolding, has been the nature of the partially folded intermediate in these

processes. Some of the first advances in the field of :-sheet protein folding came with

the determination that small molecule 13-sheet proteins were capable of undergoing

reversible transition from the native folded to denatured, unfolded form. A reversible

transition is two-state if does not exhibit populated folding intermediates in its conversion

from the unfolded to the folded form. When the differential fluorescence or CD of a

protein is monitored versus varying concentrations of urea or guanidinium hydrochloride,

two-state protein denaturation/renaturation transitions only show one true folded and one

true unfolded baseline.

Initially, it was believed that many proteins and their homologous family

members exhibited two-state folding. Among [-sheet proteins, these included the Src
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homology domains from x-spectrin, Fyn tyrosine kinase Src, bovine yB crystallin, and

phosphatidylinositol-3-kinase; the fibronectin type III domains including human

fibronectin and the third domain of human tenascin; tendamistat; some members of the

interleukin family; and certain proteins classified in the intracellular lipid binding protein

family (Capaldi and Radford 1998, Jaenicke 1999).

Further work beyond simple equilibrium studies has revealed that many of

these proteins experience transient folding intermediates that are not visible in

conventional equilibrium denaturation. However, these types of two-state studies can be

of importance in determination of the Gibbs free energy of folding (Fersht 1999).

Equilibrium transitions of f-sheet molecules have been subsequently used in the

dissection of the importance of interactions in n-sheet molecules using double mutant

cycles and as a primary means of folding classification (Horovitz and Fersht 1990).

In order to successfully analyze the kinetics of folding in a model -sheet

molecule, it is necessary to extend one step beyond two-state equilibrium and to

characterize the intermediates that form in the unfolding and refolding pathways of these

molecules. Unfortunately, many intermediates are unstable, occur only transiently,

and/or are seen in only minute concentrations. We will discuss several specific examples

of model P-sheet proteins whose folding intermediates have been observed and well

characterized.

c. Intermediate stabilization by pH: IFABP

One model family system that has been extensively analyzed in P-sheet

protein studies is known as the intracellular lipid binding protein (iLBP) family. All of

these proteins are [3-barrel proteins containing solvent filled cavities that bind fatty acid

(Banaszak et al. 1993). This particular family of proteins is quite unique in that it retains

high levels of structural homology but relatively low levels of sequence homology. This

system has proved to be very important for identifying different folding pathways that

ultimately led to the same quaternary fold (Gunasekaran et al. 2001).

Dalessio and Ropson studied one member of the iLBP family, intestinal fatty

acid binding protein (IFABP), to elucidate the folding dependence of this molecule on pH
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(Dalessio and Ropson 1998). IFABP had an apparent two-state equilibrium-folding

pathway as monitored by CD, fluorescence, and absorbance studies. SF-flu studies

predicted that IFABP goes through one molten-globule-like intermediate structure in its

unfolding pathway, but a much more denatured-like folding intermediate retaining little

or no secondary structure as determined by CD in its refolding pathway. The unfolding

and refolding of IFABP were the same at all studied pH ranges except for pH 4.0.

IFABP subjected to pH 4.0 aggregated rapidly as the concentration of protein was

increased. Soluble protein formed in these conditions produced an equilibrium folding

intermediate with a fluorescence and CD signal that did not look like the signals

characteristic of the molten globule folding intermediate characterized at pH 7.0. This

transient folding structure was probably not a folding intermediate found in the normal

physiological pathway. This result is in contrast to results reviewed by Ptitsyn stating

that intermediates stabilized by low solution pH conditions are generally productive

pathway intermediates (Ptitsyn 1998).

The pH effects on IFABP refolding and unfolding by SF-Flu were then

characterized in detail (Dalessio and Ropson 1998). Kinetic folding experiments

performed at pH 6-9 showed an initial burst phase. The authors postulated this burst was

due to a global hydrophobic collapse that occurs only when the denaturant concentration

was low. Refolding experiments performed at pH 10 showed that IFABP experienced

triphasic kinetics alluding to the presence of an additional folding intermediate under

these conditions. This new intermediate may be a structure involved in the productive

folding pathway that was simply not present long enough for an accurate spectroscopic

signal to be detected at lower pH levels. The authors tentatively concluded that changing

the solution conditions in terms of pH, could in fact stabilize the transient intermediates

in [-sheet protein folding pathways normally invisible to current spectroscopic

technology.

d. Using tryptophan as a conformational probe: CRABPI

Another well characterized member of the iLBPs is cellular retinoic acid binding

protein I (CRABPI). CRABPI was initially characterized as exhibiting a two-state
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transition using urea denaturation and equilibrium analysis. CRABPI has three intrinsic

tryptophans at positions 7, 87, and 109 that provided fluorescence reporters if excited at

280 nm with emission monitored at 350 nm. These tryptophans have been used to study

the stability and folding of the molecule.

Double tryptophan mutants containing only one of the three native tryptophans

demonstrated that Trp7 and Trp87 showed significant changes in fluorescence from the

native to the unfolded state (Clark et al. 1996). Furthermore, Trp 109 experienced a

significant quenching when placed in its native environment. Later experiments

performed by Steve Eyles showed that this quenching could be at least partially reversed

by removal of Cys95 (Eyles and Gierasch 2000).

Further analysis of the tryptophan single mutants showed that wild-type CRABPI

has three definable folding phases that can be monitored using SF-flu (Clark et al. 1996).

Initially, a global hydrophobic collapse occurs characterized by all three tryptophans

experiencing a more hydrophobic environment and the formation of the only a-helix

present in the molecule. The helical structure was confirmed by NMR. A second phase

then occurs during which the environments of all of the tryptophans change indicative of

the formation of stable 3-sheet structure. It is at this point at which the hydrogen-

bonding network between the 13-strands is established. Finally, ten percent of the

CRABPI molecules were shown to exhibit a refolding alternate pathway resulting from of

cis/trans isomerization of the Leu84-Pro85 bond (Eyles and Gierasch 2000).

Proline 85 is located in what is considered the hydrophobic core region of

CRABPI. Angle restriction in the trans configuration somehow allows for the correct

alignment of surrounding residues for a global hydrophobic collapse. Free rotation of the

residue 85 q angle observed with residues like alanine, severely disturbs the folding

pathway and structural intermediates of CRABPI. These studies have now raised the

question as to whether or not hydrophobic collapse can be a contributing factor in the

folding of 3-sheet proteins that have a hydrophobic cavity. NMR studies using peptides

encoding the sequence of the loops of CRABPI have shown that they retain structure in

solution without the stabilizing effect of the entire molecule (Rotondi and Gierasch

2003). Together these data suggest that P-sheet proteins require both a global

hydrophobic collapse as well as local framework structure for proper folding.
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e. Hydrogen bond network formation: Interleukin 1-[3

To further analyze the mechanism of P-sheet formation, interleukin 1-P (IL-13)

was studied in hydrogen-deuterium exchange (H-D) experiments (Varley et al. 1993).

IL-l1 P is a small P-sheet protein with a high-resolution structure that has been

characterized by NMR. IL-1 p appears to be kinetically two-state in unfolding

experiments, but refolding studies reveal a stable intermediate molten-globule structure

may be formed that has 80-90% of the native state secondary structure (Varley et al.

1993).

Using stopped-flow far-UV CD and SF-flu of ANS binding and tryptophan

fluorescence, the refolding kinetics of IL-1p were characterized. In combination, by

reporting on different phenomenon, these two techniques showed that three refolding

intermediates of IL- 1 exist.

CD experiments showed that all secondary structure was fully formed at 6

seconds. The fluorescence data, however, demonstrated an initial burst phase faster than

6 seconds corresponding to a hydrophobic collapse and a subsequent slow folding

process that continued for over 20 minutes. The discrepancies in the two data sets

suggest that secondary structure formation is separable from initial folding collapse in IL-

113 and the final hydrophobic environment of tryptophan is not fully achieved until the

slow orientation of small pieces of 3-sheet occurs.

The kinetics of refolding of IL-1 were then characterized with quenched-flow H-

D exchange experiments with two-dimensional H-' 5N correlation spectroscopy to

monitor the rate of stable backbone amide hydrogen bonding of the protein (Varley et al.

1993). By observing amide peak protection versus incubation time, they were able to see

that no stable hydrogen bonds representative of 1-sheet formation were present until 1

second of refolding had passed. A preliminary hydrogen-bonding system was observed

at 1 second although the hydrogen-bonding network for the protein did not fully form

until 25 seconds. It was further demonstrated that all the early forming 1-sheets were in

areas of the molecule that interact with a-helices or other types of early folding structures

independent of other 1-sheets.
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The initial folding states seen with fluorescence and CD were, therefore, not a

result of the formation of true P-sheets, because these structures require the formation of

hydrogen bonds that would be observable in the H-D exchange experiments.

Fluorescence and CD data perhaps allude to an early forming molten globule folding

form of IL- 1 3 that forms isolated unstable 1-strands or 3-like structures. These data

demonstrate true 1-sheet formation and inter-strand alignment of these types of

secondary structures are perhaps the last features that form in the small molecule 1-sheet

protein folding pathways.

f. Aggregation prone intermediates: IL- 1

Scientific attention has moved from mechanistic studies of folding and refolding

to determining the mechanisms of off-pathway aggregation processes. In the past few

years, studies have determined that the incorrect folding of some naturally occurring

proteins normally present in native a-helical conformations to primarily 5-sheet

molecules may be implicated in the formation of harmful aggregation intermediates

(Prusiner 2000). Some off-pathway 1-sheet intermediates self-associate and result in the

formation of amyloidogenic plaques and ultimately untimely death in higher organisms.

For this reason, it is useful to study the aggregation process of known small 1-sheet

molecules to try and establish folding trends of 3-sheet proteins.

The effects of single residue mutations on aggregation of IL-1 1 during the folding

process were studied by Finke et al. (2000). Ninety percent of the wild-type IL- 13

produced in E. Coli expression systems was found in the soluble portion of the

centrifuged cellular lysate. Several different point mutations have been isolated and

characterized in this protein that cause over 90% of the protein expressed in E. Coli to be

in the form of inclusion bodies. Mutation of a charged lysine residue present in the

native protein in a flexible loop at position 97 to a hydrophobic isoleucine resulted in the

production of a folded protein that was thermodynamically more stable than the wild-type

monomer form, but that was expressed primarily in inclusion bodies.This suggested that

the mutation was acting on a folding intermediate or at the junction of productive folding

and off-pathway aggregation. K97I appears to have the same slow folding step, the same
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synthesis rate on the ribosome, and the same level of chaperone interaction and assistance

as wild-type IL-1 P. Protein extracted from in vitro aggregates of K97I and in vivo

inclusion bodies have demonstrated both systems produce insoluble proteins with nearly

identical secondary structures as observed with Fourier transfer infrared spectroscopy.

Using SF-flu to measure kinetic refolding characteristics of IL-1 B showed that

high protein concentrations changed the early events in refolding of the molecule (Finke

2000). As the concentration of K97I was increased, the transition from the unfolded to

intermediate state was found to be the only folding step dependent on concentration.

Similarly, stopped-flow light scattering demonstrated that whereas wild-type IL-1 B

experienced no scattering no matter what concentration of protein was tested, K97I light

scattering was present in samples of greater than 18 gM. It was, therefore, hypothesized

that aggregation was occurring in the unfolded to intermediate transition.

The self-association process of K97I most likely occurred between unfolded

molecules under native conditions first experienced when initial refolding buffer was

injected in the GdnHCl solution. The authors proposed a scheme for the possible

aggregation mechanism of K97I. The proposed model relies on a nucleation mechanism

for aggregation based on the fact that a critical protein concentration is needed for protein

self-association. The hypothesis states that the flexible loop encompassing residues 86-

99 represented an isolated "hydrophobic micro-domain" in the early peptide sampling

process. The substitution of the hydrophobic residue isoleucine for the charged lysine,

caused an increase in the hydrophobic surface area of the micro-domain. The

hydrophobic area could more efficiently form and thus can more effectively interact with

other exposed hydrophobic loops. The continued association of the hydrophobic regions

over time could eventually lead to aggregation. Lysine 97 present in wild-type IL-1 [ had

a strong charge that destabilized the hydrophobic packing of the overall molecule

preventing aggregation.

Such aggregation intermediates in P-sheet proteins stabilized by micro-domain

packing may represent possible a therapeutic target for prevention of self-association

protein folding diseases.
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B. -SHEET PROTEINS INSIDE THE LIVING LENS

The human lens contains a unique class of proteins that are important for both

generalized protein folding studies and for their involvement in aggregation and cataract.

The protein in the lens may be present at concentrations at high as 700 mg/mL and

maintains a short-range order that allows light to be correctly diffracted and focused on

the retina for proper vision (Figure 1-1) (Delaye and Tardieu 1983, Jaenicke 1999). The

proteins in the lens must maintain high stability over the human lifetime as there is no

protein turnover in this organ. The ubiquitous crystallins may be separated into two

classes, a-crystallins and 5y-crystallins.

i. The chaperone: a-crystallin

The two identified human ca-crystallins are aA and aB crystallin, both of which

are thought to perform chaperone-like functions in the human lens. The native

conformation of lens a-crystallin appears to have a 3:1 stoichiometric ratio of aA to aB

crystallin (Horwitz et al. 1999). Although the crystal structures of neither of the a-

crystallins have been solved directly, light scattering and mass spectroscopy studies have

shown that these proteins self-associate in vitro to form multimeric species composed of

anywhere from 24 to 33 protein subunits (Aquilina et al. 2003).

Electron microscopy has shown that the multimers are spherical with hollow

centers that are thought to bind destabilized or partially unfolded protein species

nonspecifically (Haley et al. 2000). In vitro studies have shown that the presence of a-

crystallin may inhibit aggregation of not only the Py-crystallins, but other aggregation-

prone proteins such as the serpins and abrin (Reddy et al. 2002, Devlin et al. 2003).

The association of the a-crystallin spherical complex with a destabilized protein

may prevent further self-association and aggregation. It is unclear whether the a-

crystallins are present in the high molecular weight protein removed from cataractous

lenses simply because they have associated with the aggregating material in a chaperone-

related role or whether destabilization and/or mutation of the a-crystallin itself can

initiate cataract formation (Clark and Muchowski 2000, Horwitz 2000, MacRae 2000).
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Most recently, studies of normal and cataractous lenses showed that certain

covalent damage and specific residue racemization in the a-crystallins are the same in

both the HMW and LMW fractions in both lens types indicating that covalent damages in

a-crystallin are unlikely the causative agent of cataract (Takemoto and Boyle 1998, Fujii

et al. 2003).

ii. The f/y-crystallins

The [Py-crystallins are primarily structural proteins of the lens (Jaenicke 1999).

The [y-crystallins found in the human lens are PA1 crystallin, PA3 crystallin, PA4

crystallin, [B 1 crystallin, PB2 crystallin, yC crystallin, yD crystallin, and yS crystallin.

Sequence alignment of both DNA and amino acid sequence shows that the p-crystallin

family includes the two-domain protein, protein S of Myxococcus xanthus (Jaenicke

1999). The only known single domain py-crystallin homologue is the dormant protein

spherulin S3a from Physarum polycephalum (Jaenicke 1999).

The 3By-crystallins are made up of two highly homologous domains that appear to

be the result of gene duplication and fusion during evolution (Lubsen et al. 1988). Each

domain is primarily P-sheet and is composed of two Greek keys separated by a linker of

variable length. The P-crystallins have approximately 30% sequence similarity to the y-

crystallins. The ,-crystallins are oligomeric in solution while the y-crystallins are

monomeric and the 3-crystallins contain N- and C-terminal extensions absent in the y-

crystallins (Jaenicke et al. 1999).

The 3-crystallins have a connecting peptide between the N- and C-terminal

domains that is found in an extended conformation in the crystal structure, whereas the

linker peptide in the y-crystallins has a central glycine that adopts a V-like conformation

(Blundell et al. 1993, Bax et al. 1990, Najmundin et al. 1993). The 3y-crystallins have

been implicated in the development of juvenile onset cataracts and these proteins are

primary components of mature onset cataracts.
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Schematic diagram of the human eye. The purple lines represent the passage of light
through the lens and its refraction onto the retina. The different regions of the eye are
labeled.
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iii. Folding of the py-crystallins: small fp-sheet proteins important in cataract

The y-crystallins have been studied for their role in cataract formation and for

their importance as small model 3-sheet proteins. The Greek key fold has a compact

hydrophobic core at the center with highly organized, structural loops at either end. The

py-crystallins contain four Greek key motifs with two in each domain. These proteins

have remarkable stability presumably reflecting their functional requirement to remain

soluble at high concentration for long periods of time in the eye lens (Jaenicke 1999).

The P-sheet and Greek key propensities of the y-crystallins have been analyzed in an

attempt to determine how and why P-sheet proteins fold and how the Greek key structure

of these proteins is involved in protein stability. I will discuss several thorough studies of

specific y-crystallins not directly covered in later chapters.

a. Stability differences between P- and y-crystallins

To determine the overall stability of the y-crystallins, the difference in resistance

to GdnHCl denaturation by the py-crystallins was assessed spectroscopically by

comparing the unfolding characteristics of human BB2 crystallin to human yC crystallin

(Fu and Liang 2002). Size exclusion chromatography indicated that intramolecular

contacts between PB2 crystallin dimers were disrupted at very low concentration of

GdnHCl. The thermodynamic stability of PfB2 crystallin monomer was higher than that

of yC crystallin monomer when unfolding was measured with absorbance at 235 nm,

fluorescence at 320 nm, and far-UV at 223 nm. Both proteins showed equilibrium

transitions that were best fit to a three-state model demonstrating that both PB2 and yC

crystallin unfolded via a partially denatured intermediate.

b. Assessing the importance of interface interactions

The intermediate observed in these studies is likely a structure with one domain

folded and one domain in native-like conformation. Given the two-domain structure of

the py-crystallins, it seems equally likely that the interface interactions between the
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individual domains are important in Py-crystallin stability. Several research laboratories

have attempted to resolve the structure of the partially unfolded intermediate and assess

the contribution of the domain interface to the overall stability of the py-crystallins

(Jaenicke 1999).

Isolated N- and C-terminal domains of Protein S were constructed and studied to

determine whether the domain interface was important to maintaining the stability of this

py-crystallin as well (Wenk et al. 1999). Protein S is a calcium binding two-domain pfy-

crystallin that has 172 amino acids (Wistow et al. 1985). Native Protein S showed

independent domain folding where the N-terminal domain is less stable than the C-

terminal domain. The stability and cooperativity of the intact molecule increased

significantly in the presence of calcium although the stability of the N-terminal isolated

domain was unaffected by the cation. Protein S showed a biphasic transition when

denatured in urea at pH 2.0 while the isolated domains each show two-state transitions

(Wenk and Mayr 1998, Wenk et al. 1999). Furthermore the midpoint of the denaturation

transition for the isolated N- and C-terminal domains were located at lower

concentrations of urea than wild type indicating a destabilization of the truncated

proteins. The isolated domains did not exhibit any propensity to form pseudo-native

molecules when mixed together in solution. From these studies, domain interactions

appear to be important to the stability of Protein S (Wenk et al. 1999).

The importance of the domain interaction in y-crystallin stabilization was further

assessed in yB crystallin from calf eye lens. When denatured in urea at pH 2.0, an

unfolding intermediate was stabilized as shown by a biphasic equilibrium transition

(Rudolph et al. 1990). Kinetic experiments revealed that the intermediate retained a

similar structure during both unfolding and refolding analysis in which the C-terminal

domain was unstructured and the N-terminal domain was in a rigid conformation.

Construction of the isolated domains of yB revealed that the N-terminal domain was

more resistant to GdnHCl denaturation than the C-terminal domain (Mayr et al. 1997).

Furthermore, similar to Protein S, the individual domain constructs of bovine yB

crystallin did not associate to form a pseudo-native molecule in solution. Formation of

the interface was necessary to maintain native-like structure in the C-terminal domain.
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c. Oligomerization of y-crystallins

The By-crystallins have also been studied as model P-sheet proteins prone to

multimerization. The stability and aggregation characteristics of the 03-crystallins were

studied using temperature and urea induced unfolding experiments (Bateman et al. 2001).

Oligomerization and precipitation of human P-crystallins were observed at high

temperature. When hetero-oligomers were constructed by subunit exchange, P3A was

stabilized when it oligomerized with PB 1 crystallin. These results suggest that the

formation of hetero-oligomers of different subunits may add a further level of

stabilization to the -crystallins.

The N- and C-terminal extensions of the oligomeric f3-crystallins are thought be

involved in protein multimerization (Norledge et al. 1996). The energetics of the domain

to domain interactions were studied in recombinant mouse PA3 and PB2 crystallin by

Sergeev et al. (2004). Both proteins were found in reversible monomer-dimer

equilibrium from 5-35°C. The amount of time the two P-crystallins spent in the dimer

state increased significantly at elevated temperatures. The overall entropy and enthalpy

of binding in recombinant proteins with truncated N-termini increased as compared to

wild-type. It is possible that post-translational truncations of f-crystallins in the eye lens

make the protein more susceptible to association, aggregation, and cataract.
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C. CATARACT AS A PROTEIN DEPOSITION DISEASE

Mature onset cataracts affect nearly 15% of the US population over 40 years of

age and are the leading cause of blindness worldwide (NEI 2002). Pathological studies

of cataractous lenses have revealed that cataracts are composed of protein aggregates that

precipitate or polymerize in the lens region of the eye (Oyster 1999).

The aggregates removed from patients with mature onset cataracts are quite

amorphous by light microscopy and do not appear to have distinct structures or sizes.

The precipitation may occur anywhere in the lens from the nucleus to the dividing

epithelial cells and can begin at any point in life although the prevalence of mature onset

cataracts in the population increases sharply with age. The aggregated material extracted

from aged lenses is composed of a variety of proteins most of which belong to the

crystallin family rather than one dominant species (Hanson et al. 2000).

There are many covalent modifications in the high molecular weight (HMW)

insoluble protein fraction of aged lenses including deamidations, methylations,

acetylations, carbamylations, glycations, truncations, cysteine and methionine oxidations,

and tryptophan ring cleavages (Hanson et al. 1998, Lin et al. 1998, Ma et al. 1998,

Hanson et al. 2000, Clovis and Garland 2002, Lapko et al. 2002, Srivastava and

Srivastava 2003, Srivastava et al. 2004). The prevalence of these modifications is

markedly increased in the HMW material with respect to the low molecular weight

(LMW) fractions. It is still unclear whether these modifications are the causative agents

of the cataracts or occur after the protein aggregates. It is possible, however, that changes

such as these locally or globally destabilize the polypeptide structure making it more

susceptible to aggregation. For all these reasons, the mechanism of mature onset

cataractogenesis is still unknown.
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D. MECHANISMS OF PROTEIN AGGREGATION

i. Disordered protein polymerization

The insoluble, nonfibrous nature of the protein removed from aged cataractous

lenses, makes cataract a possible candidate for non-specific protein aggregation (Figure

1-2). In this model, regions of several molecules would associate at random and

eventually precipitate from solution.

Aggregation is rarely a random process in situations not affected by heat

destabilization. Oftentimes, protein self association occurs via specific native or non-

native interactions. Lysozyme, in particular, may undergo non-specific protein

aggregation under certain conditions, but it may also form specific amyloidogenic

interactions under similar conditions (Fischer et al. 1993, Cao et al. 2004).

ii. Ordered protein polymerization

Many diseases are now known to be caused by protein misfolding and

aggregation. Afflictions such as Alzheimer's disease (AD), Creutzfeldt-Jakob's Disease,

and Parkinson's disease (PD) are thought to be directly caused by the misfolding and

aggregation of proteins in the brain (Caughey and Lansbury 2003). Although the exact

mechanism of axon death and dementia are unknown, all of these diseases have distinct

ordered protein aggregates that accumulate in the brain of afflicted patients. Despite the

unstructured nature of the mature onset cataract observed in the light microscope, it

seems reasonable that the species that initiates aggregate formation is composed of

ordered inter-protein associations. Furthermore, the eye lens is packed with crystallins in

their native states, so cataract is likely to form from native-like or partially unfolded

proteins. Such species are likely to be sufficiently structured to yield ordered

polymerization reactions.

Several studies have been performed on crystallins demonstrating these proteins

are capable of ordered aggregation. Amyloid fibers can be produced from P- and y-

crystallins when they are refolded out of acidic conditions (Meehan et al. 2004). The
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crystallins also bind thioflavin T and Congo red and show birefringence (Fredrickse

2000, Sandilands et al. 2002). These dyes are used to identify ordered P-sheet structures

and amyloid. Atomic force microscopy of human yD crystallin shows formation of

distinct twisted fibrils that collapse to form fiber-like aggregates (Kosinski-Collins and

King 2003). It is likely that aggregation of a few protein molecules in an organized self-

association process may seed the subsequent aggregation of other polypeptides thus

facilitating cataract formation.

Ordered aggregation can occur through native-like or nonnative interactions.

Native-like aggregation mechanisms include domain swapping and loop-sheet insertion.

Nonnative interactions that cause aggregation include the prion diseases, amyloid

formation, and self-association caused by mutation.

a. Aggregation caused by mutation and association of native-like states

Sickle cell anemia is caused by a specific glutamine to valine mutation at position

six of hemoglobin (Ingram 1956). This mutation substitutes a surface exposed polar

amino acid with a hydrophobic residue. The mutated valine associates with an adjacent

hemoglobin molecule at Phe85 and Leu88 (Bihoreau 1992). Because the native form of

hemoglobin has four subunits, there are two valines that provide points of contact for

other proteins on each side of the molecule. If nearby mutated proteins associate in a

staggered network, multiple molecules can continue to associate via this valine-

hydrophobic connection forming long extended, fiber-like threads (Figure 1-3). Under

conditions of low oxygen, the long thin fibers grow across the red blood cell and distort

the cell morphology to a "sickle-like" shape.

Aggregation of the native-like state occurring due to mutation of the crystallin

proteins has been implicated in juvenile onset cataracts. Numerous heritable mutations in

chromosome 22 in the human yD crystallin and human yC crystallin genes are involved

in the pathogenesis of juvenile cataract (Heon et al. 1999; Kmoch et al. 2000, Ren et al.

2000, Santhiya et al. 2002, Nandrot, et al. 2003, Shentu et al. 2004).
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Figure 1-2

Schematic representation of one possible mechanism of disordered aggregation.
Unfolded proteins close to one another in solution associate via non-native contacts (gray
lines). The contacts may continue throughout many monomers creating an polymerized
"mat" of protein.

Altered Hemoglobin
Tetramer

Association of Mutated
Hemoglobin Tetramers

Figure 1-3

~~~

~~ .~,~
Hemoglobin Fibers

Schematic representation of hemoglobin tetramer association in sickle-cell anemia. The
hemoglobin tetramers associate via a non-native valine which forms a nonpolar
interaction with a hydrophobic pocket in another region of the molecule. The
polymerization continues through multiple tetramer eventually forming a long, thin fiber.
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An arginine to cysteine mutation at position 114 in HyD-Crys exposes a cysteine

sulfur on the edge of domain II of the molecule. In vitro studies on the mutated protein

showed that an intermolecular disulfide bond formed between Cys 114 of one molecule

and the natively solvent exposed Cys 110 of an adjacent molecule (Stephan et al. 1999,

Pande et al. 2000). High molecular weight oligomers were formed that retained the

molecule's overall native state, but were covalently bonded through this non-native

disulfide bonding network.

Two additional unique mutations in HyD-Crys are the R38H mutation that results

aculeiform juvenile cataracts and the R36S mutation that causes congenital juvenile

cataracts (Heon et al. 1999). In the human eye, these mutations cause the protein to

crystallize and fall out of solution. Studies performed on the R38H and R36S mutants

showed crystals formed that retained native-like structure in vitro but formed strong

intermolecular association tendencies not observed in the wild-type protein (Pande et al.

2001).

Although the aforementioned amino acid substitutions are caused by hereditary

DNA mutations, the underlying mechanism of ordered protein aggregation in these

processes may be applicable to mature onset cataracts as well. Crystallin proteins

removed from old cataractous lenses contain many covalent modifications. It is still

unclear whether these modifications destabilize the protein making it more prone to

cataract or if covalent damage is accumulated after the precipitates form. It is possible,

however, that deamidation, peptide bond cleavage, methylation, carbamylation, aromatic

ring opening, and even cysteine or methionine oxidation caused by one of the many

oxidative stresses present in the lens may accumulate in the crystallins disrupting protein

structure. As demonstrated in the both sickle cell anemia and the juvenile onset cataracts,

one exposed hydrophobic or cysteine residue can act as an interaction interface for

oligomer formation.
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b. Domain Swapping

A candidate mechanism for aggregation of many proteins is domain swapping (Liu

and Eisenberg 2002). In these polymerization reactions, native inter-domain interactions

in a monomer are replaced with interactions between folded conformational regions of

multiple polypeptide chains (Figure 1-4). In most cases the swapped structure had been

identified unexpectedly in the crystal form or the protein. The kinetic process has only

been observed and studied experimentally in a limited number of cases.

One protein "swaps out" an independently folded unit of its structure for the same

folding unit of another protein of identical sequence. Domain swapping may involve

isolated pieces of secondary structure such as one P-strand or one a-helix or may involve

the swapping or an entire domain of the protein. Because domain swapping involves

proteins of the same linear sequence with little or no 3-dimensional remodeling of the

folded secondary structure, the intermolecular interactions formed are native-like, often

as strong as the monomer interactions, and cannot be visualized using techniques that

monitor loss of secondary structure like circular dichroism.

Domain swapping can occur in closed conformation in which a specific number of

molecules swap conformational units resulting in a circularized protein multimer with no

free unpartnered domains. Alternatively, domain swapping has been hypothesized to

occur in infinitum producing an open-ended conformation with unpartnered domains on

either end of the growing chain. It is in this open-conformation that polymerization and

aggregation of proteins is thought to occur (Liu and Eisenberg 2002, Rousseau et al.

2003).

The first protein to be crystallized in a domain swapped conformation was diphtheria

toxin (Bennett et al. 1994). Domain swapping produces either dimers or trimers in RNase

A that involve swapping of either the N- or C-terminal portions of the molecule,

indicating that one protein may have multiple domain swapped conformations (Liu et al.

2001, Liu et al. 2002).
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Native
Protein Higher Order Oligomers

Dissociated Domain
Interface Conformation

Figure 1-4

Schematic representation of domain swapping. Intramolecular contacts are broken
between two individual domains in the protein and are replaced by native-like
intermolecular domain contacts. The domain swapping reaction may occur between
several protein molecules and may form higher order oligomers.

Figure 1-5

Ribbon diagram of ~B2 crystallin in its crystallized domain swapped conformation (Bax
et al. 1990).
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A functional role for domain swapping was first identified in Glyoxalase I. This

protein is enzymatically active in the domain swapped dimeric state, but its activity is

reduced when it is found in a less stable monomeric state (SaintJean et al. 1998).

In vitro studies have allowed domain swapping to become appreciated as a viable

mechanism for aggregation. The rate at which suc 1 aggregated during heating was

correlated with the rate at which the protein was able to domain swap (Rousseau et al.

2001). In addition, during refolding of several proteins including suc 1, the maltose

binding protein, and E. Coli tryptophanase, domain swapping is thought to occur as part

of either on- or off-pathway conformational states (Silow et al. 1999, Ganesh et al. 2001,

London et al. 1974). Finally, and perhaps most strikingly, protein engineering has

produced a three-helix bundle protein that was capable of producing not only domain

swapped dimers, but higher order oligomeric structures as well (Liu et al. 2001).

Because the py-crystallins are made up of two highly homologous domains, they are a

likely candidate for domain swapping. In fact, whereas the y-crystallins are monomeric

in solution, the [3-crystallins are dimeric and are composed of two domain swapped

chains (Figure 1-5) (Bax et al. 1990). Deamidation and truncation in 3B1 crystallin cause

elongation of the dimer and modifications of the P-crystallins tend to cause association of

3B2 crystallin with the modified protein (Lampi et al. 2001, Zhang et al. 2003). Perhaps

a destabilization in the domain interface causes the native intramolecular interface to

dissociate and become more likely to domain swap intermolecularly. A domain swapped

core of the crystallins could act as a nucleus for further aggregation and, ultimately,

cataract formation.
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b. Loop-sheet insertion

The serine protease inhibitors or serpins are a class of proteins with distinct structural

characteristics that control function. Serpins are composed of a central P-sheet structure

with a highly flexible, unstructured, sixteen residue loop. During serpin function, the

reactive loop is cleaved in the metastable state which has a melting temperature (Tm) of

60°C and the cleaved strand may become incorporated into the P-sheet forming a highly

stable structure with a Tm of greater than 100°C (Carrell and Gooptu 1998).

One well studied serpin is known as al-antitrypsin. In the active state, al-antitrypsin

has a P-sheet made up of five antiparallel P-strands with a surrounding flexible loop. The

loop is considered extremely flexible, because its 3-dimensional structure varies based on

the pH at which it is crystallized (Ryu et al. 1996, Kim et al. 2001). When the loop is

cleaved by trypsin, it inserts itself into the P-sheet forming a six stranded highly stable,

but inactive protein.

Normal, functional, loop-sheet insertion occurs intramolecularly, however, it is

possible that the cleaved strand of one protein may insert into an adjacent sheet of

another protein molecule (Figure 1-6). The polymerization process may continue

between several protein molecules and eventually the chain becomes long enough

causing the polymer to fall out of solution (Banzon and Kelly 1992, Carrell et al. 1994,

Huntingtin et al. 1999).

Intermolecular loop-sheet insertion has been observed with many serpins and the

subsequent serpin deficiency has been identified as the cause of many diseases (Figure 1-

7). For example, al-antichymotrypsin deficiency results in liver damage, al-antitrypsin

deficiency causes cirrhosis and emphysema, antithrombin deficiency results in

thrombosis, and Cl-inhibitor deficiency results in angioedema (Bruce et al. 1994, Sifers

1995).
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Figure 1-6

Schematic representation of loop-sheet insertion. In this mechanism, a ~-strand from one
protein is disrupted from its intramolecular native state and becomes incorporated into a
nearby protein via native-like interactions.

Figure 1-7

Ribbon structure of a cleaved a I-antitrypsin polymer. The intermolecular loop-sheet
insertions of ~-strands are shown in black (Huntington et al. 1999).
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The structure of the py-crystallins is quite high in P-sheet content. Each domain is

composed of two Greek key motifs. In cataracts removed from aged lenses, one major

covalent modification is peptide bond cleavage. For human yD crystallin, a premature

truncation at Trp156 has recently been identified as a causative agent of juvenile onset

cataracts (Santhiya et al. 2002). One could imagine that peptide backbone cleavage or

simply tertiary structure destabilization could produce a free strand with the potential of

becoming incorporated into another domain. If this inter-molecular P-sheet is stable, it

has the potential to be propagated over several molecules thus producing a large

molecular weight species prone to aggregation.

In addition, a-crystallin is known to bind the py-crystallins both in vitro and in

vivo. Recently, Devlin et al. demonstrated that a-crystallin was able to prevent the

nucleation-dependent aggregation of al-antitrypsin and al-antichymotrypsin (2003).

Perhaps the loop-sheet insertion self-association reaction of these two serpins presents a

binding epitope for a-crystallin that is similar to the binding region formed in the

polymerization of the fly-crystallins.

c. Amyloidosis

Many human proteins are capable of forming amyloid-like fibrils in vivo and

causing a variety of diseases many of which are characterized by neurodegeneration

(Kelly 1996). Some of the most well understood amyloid forming polypeptides include

transthyretin (TTR) which causes senile systemic amyloidosis, P2-microglobin which

causes dialysis and hereditary renal amyloidosis, lysozyme which causes autosomal

hereditary amyloidosis, and the A,3-peptide which may cause AD (Saraiva 2001, Inuoe et

al. 1997, Pepys et al. 1993). In the amyloidogenic diseases, native protein conformation

is altered resulting in the formation of a protein structure capable of self-associating into

a primarily P-sheet fiber structure in which the P-strands are perpendicular to the long

axis of the fibril (Figure 1-8) (Sipe 1994).
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Amyloid proteins bind thioflavin T and show Congo red birefringence. The fiber-

like structure of amyloid may be anywhere from 60-100 A in width and may be branched

or unbranched. Oftentimes, the fibrils are twisted and demonstrate regular periodicity

visible in TEM and AFM images (Caughey and Lansbury 2003).

Transthyretin is a protein that undergoes an acid-induced conformational change

in vitro. Under these conditions, an intermediate is formed that is capable of

polymerizing into amyloid fibrils (Figure 1-9) (Colon and Kelly 1991, Colon and Kelly

1992). TTR is normally found in the tetrameric state at pH 7.5. When the pH is reduced

to 5, the tetramer dissociates into monomers that have both secondary and tertiary

structure, but do not have exposed hydrophobic surfaces. The pH-induced monomers are

thought to be the intermediates in amyloid formation (Lai et al. 1996). Interestingly,

these monomers are not detected in a mutant of TTR, T 19M, known to be resistant to

amyloid fibril formation (McCutchsen et al. 1995).

Perhaps the most prominent of the amyloid-forming polypeptides is the Ap-

peptide because of its involvement in AD. The amyloid precursor protein (APP), a

membrane protein of unknown function, is cleaved in the cell by presenilins and a

peptide of 40 or 42 amino acids is released. When released from the membrane, the A3-

40 or AP-42 peptides are converted to amyloidogenic intermediates with strong

propensities to form P-sheets. When the concentration of the AP-40 or AP-42 peptides is

high enough, atomic force microscopy has revealed a nucleation-dependent

polymerization mechanism involving a protofibril intermediate which then converts to a

twisted amyloid fiber (Harper et al. 1997b, Harper et al. 1999). The protofibrils are

approximately 40% of the width of the fibers and are usually unbranched. The protofibril

to fiber transition may be accelerated by addition of fiber nuclei seeding units (Harper et

al. 1997a).

Recent studies have identified other protein structures in the amyloidogenic

pathway (Kayed et al. 2003). Many fiber-forming proteins may adopt a conformation

consisting of a "ring" of monomers linked together via an unknown association

mechanism.
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Figure 1-8

Schematic representation of disordered amyloid formation. In amyloidosis, the native
protein changes conformation to an intermediate conformation. The intermediate can
then polymerize into amyloid fibers or pores.
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Figure 1-9

Schematic representation of TTR aggregation (Colon and Kelly 1991). As the pH of the
solution is lowered an amyloidogenic intermediate forms that is capable of becoming
fibers or pores.
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The pore-like species appear independently from the amyloid fibers and are

thought to be an off-pathway polymerized state. The oligomeric, amyloid pores have

structures that are similar to bacterial cytolytic P-barrel pore-forming toxins and thus are

believed to increase membrane permeability (Hotze et al. 2002). Historically, the

amyloidogenic fiber aggregates were thought to be the toxic species in amyloidogenic

disease. However, protofibrils and small oligomeric aggregates of transthyretin (TTR),

Cu/Zn superoxide dismutase 1 (SOD 1), amyloid-P protein (A3) and a-synuclein all cause

cellular toxicity reminiscent of their respective diseases, systemic amyloidosis, familial

amyotrophic lateral sclerosis (FALS), Alzheimer's disease (AD), and Parkinson's disease

(PD) (Caughey and Lansbury 2003).

Experiments performed on TTR have shown that small oligomeric species cause

apoptosis of IMR-32 cells in culture (Reixach et al. 2004). Aggregates of TTR were

filtered using size exclusion chromatography and only species of less than 100 KDa

induced cell death. The cytotoxic species is thought to be in either a monomeric or a

nonnative hexameric state.

The cellular conformation of a-synuclein is natively unfolded and the protein has

an undetermined physiological function (Jensen et al. 1998, Lotharius and Brundin 2002).

This protein undergoes a polymerization pathway that proceeds from small spherical

protofibrils to long fiber filaments as observed in TEM images (Caughey and Lansbury

2002). The rate of formation of the pore-like oligomers is accelerated by mutations in a-

synuclein known to be associated with PD. Furthermore the PD oligomer has significant

membrane-binding capability that may be related to the disease (Conway et al. 1998).

These circular oligomers of a-synuclein have the ability to disrupt synthetic vesicles and

are now considered the cytotoxic cellular species (Volles et al. 2001, Volles and

Lansbury 2002).

The mechanism of neuronal cell death in AD is thought to be caused by a change

in membrane ion permeability by A3 protofibrils (Kawahara and Kuroda 2000).

Mixtures of wild-type and pathogenic forms of AP-40 form protofibrils and amyloid

pores in vitro (Lashuel et al. 2003). TEM of the aggregating protein revealed that several

different AP polymerized structures formed including small compact circular particles of

4-5 nm in size, pore-like protofibrils, large spherical aggregates of 18-25 nm in diameter,
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as well as fibril and fibrous species. The circular oligomers may create amyloid pores

that destabilize membrane permeability (Caughey and Lansbury 2003).

SOD 1 undergoes a polymerization process that is slightly different to those

described for AP and a-synuclein. Mutants of SOD1 implicated in familial amyotrophic

FALS aggregate under oxidizing conditions, but the aggregates are not amyloid in either

their appearance or ability to bind Congo red or thioflavin T (Rakhit et al. 2002). Post-

mortem studies transgenic mice expressing SOD1 variants observed in FALS have

identified fragmented Golgi apparatus reminiscent of insufficient energy production by

cellular mitochondria (Stieber et al. 2004). Pore-like oligomeric species have recently

been identified during in vitro studies that may interact with and disrupt the

mitochondrial membranes in FALS neuronal cells (Chung et al. 2003).

Dobson and his coworkers have shown that many proteins, including the

crystallins, are capable of undergoing a conformational change that produces amyloid in

vitro (Meehan et al. 2004). This suggests that under the right conditions, the p3y-

crystallins could undergo a structural rearrangement in the lens to form an intermediate

capable of polymerizing into an amyloid fiber.

Specifically, HyD-Crys has been shown to form both amyloid and non-amyloid

fibers in vitro (Meehan et al. 2004, Kosinski-Collins and King 2003). Preliminary AFM

studies have demonstrated that small circular structures may form during aggregation in

vitro as well (M. S. Kosinski-Collins, D. J. Solis, A. Belcher, and J. A. King, unpublished

results) (Appendix E). We do not know whether any of these species may form in the

lens or if a change in lens cell permeability is important in cataract. In addition, we have

no idea whether or not amyloid fiber or pore formation actually happens in the eye, but

an amyloid fiber or oligomeric seed may very well be the core of the cataractous material

removed from aged lenses.
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d. Prion diseases

The prion diseases are a distinct class of amyloid-forming molecules. Prion

diseases are characterized by a conformational change from one form of a protein to

another and result in the accumulation of fiber-like structure that can bind Thioflavin T

and show Congo red birefringence. In the transmissible spongiform encephalopathies

(TSE) such as kuru and Creutzfeldt's Jakob's disease, the cellular prion protein (PrP)

changes from an a-helical state to a primarily -sheet scrapie species (PrPS c) (Pan et al.

1993, Safar et al. 1993, Baldwin et al. 1994, Lansbury 1995, Nguyen et al. 1995, Zhang

et al. 1995). The cellular function for PrP is not currently known. PrPS c is a protein-only

infectious particle that may convert PrP to the scrapie state and thus makes the disease

transmissible when PrPS c protein is transferred from an infected to a healthy individual.

There is a distinct species barrier in the infectivity of prion diseases.

Cohen and Prusiner have hypothesized that the amyloid structure of the

aggregated PrPS c is a trimer composed of three right-handed parallel P-helices. Folding

studies on the P22 tailspike protein, a polypeptide adopting a parallel P-helix fold, have

shown that this structure is prone to self-association and aggregation during folding and

that the resulting aggregate is resistant to SDS and temperature denaturation (King et al.

1996). The native structure of the Py-crystallins is composed of antiparallel 3-sheets.

One could imagine a 3-dimensional rearrangement of the py-crystallins that formed a P-

helical structure similar to that observed with PrP.

Although it is unlikely that cataract is a self-propagating prion-like disorder, it is

important to remember that once an aggregating nucleus forms, it provides a sink for any

other proteins that become unfolded or mutated due to environmental stresses. Because

of the lack of protein turnover in the eye, at some rate, the naturally present proteins are

being modified through oxidation by atmospheric oxygen, heat, and electromagnetic light

(Sliney 2002). If a polymerized "seeding" unit is formed in the eye that contains exposed

hydrophobics, it may recruit any other nearby proteins as they become disrupted before
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the natural degradation and chaperoning machinery of the lens can stop or impede the

aggregation process.

One way in which amyloid may form is via a domain swapping mechanism (Liu

and Eisenberg 2002). Crystallography and NMR reveal that two proteins capable of

amyloid formation, the human prion protein and human cystatin C, may domain swap

and form fibers in vitro (Knaus et al. 2002, Janowski et al. 2001). It is possible that the

domain-swapped species may either directly assemble into amyloid. Alternatively,

polymerization of PrP and cystatin C may involve an intermediate common to the domain

swapping and amyloid formation pathways.
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CHAPTER II: CHARACTERIZING THE UNFOLDING, REFOLDING, AND

AGGREGATION OF HUMAN yD CRYSTALLIN, AN EYE LENS PROTEIN

IMPLICATED IN CATARACT FORMATION

A. INTRODUCTION

Human age-onset cataracts affect nearly 50% of the world's population and are

the leading cause of blindness worldwide (Clark 1994). Although cataracts are treatable,

this treatment is invasive, expensive, and is performed only if the cataract has reached a

sufficient level of severity.

Pathological studies of cataractous lenses have revealed that cataracts are

composed of protein aggregates that precipitate in lens cells of the eye. The insoluble

protein species obstructs the passage of light through the lens, thereby, blocking light

from reaching the photoreceptors in the retina (Benedek 1997).

The human eye lens, as a tissue, is composed of layers of fibrous cells that

continuously grow with age. Crystallins comprise 90% of the total protein content of the

lens (Oyster 1999). The ubiquitous crystallins are expressed primarily early in life and

they, therefore, must remain stable throughout a person's lifetime despite the high protein

concentration in the lens and the continued presence of oxidative stress from atmospheric

oxygen, UV, and visible light to maintain transparency.

In addition to the unique cellular structure of the lens, the overall protein

concentration within these cells is extremely high (approaching 70% g/g wet volume). A

short-range order exists between the tightly packed crystallin proteins in the lens that

provides minimal solution turbidity and a high degree of light transparency (Delaye and

Tardieu 1983).

Cataracts removed from the human eye lens are composed of different species of

aggregated crystallins. The cataractous crystallin proteins may be divided into two

categories: a-crystallins and y-crystallins. a-crystallin is a member of a class of small

heat-shock proteins thought to bind to unfolded polypeptide chains during times of stress

and is thus crucial to preventing protein aggregation (Horwitz 2000; Clark and

Muchowski 2000; MacRae 2000).
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f3y-crystallins are small 20-30 KDa proteins primarily composed of anti-parallel

b-sheets. [3- and y-crystallins are structurally similar. They are both comprised of four

Greek-key motifs separated into two domains (Wistow et al.). The domains are very

similar and appear to be the result of gene duplication during evolution. The P3-crystallins

form domain-swapped dimers in solution due to their flexible linker sequence, whereas

the y-crystallins are monomeric in solution (Jaenicke 1999). In addition, the y-crystallins

are the only known crystallins having attractive forces between molecules (Tardieu et al.

1992; Clark 1994). Extensive biophysical studies have been performed on members of

the y-crystallin family proteins in vitro (Pande et al. 1991; Wenk et al. 2000; Norledge

et al. 1997; Rudolph et al. 1990; Mayr et al. 1997; Slingsby et al. 1997).

Human yD crystallin (HyD-Crys) is a 173 amino acid protein. HyD-Crys has a

high sequence similarity to its bovine homologues, bovine yD crystallin (-86%) and

bovine yB crystallin (-75%) (Slingsby et al. 1997). The human structure modeled using

the bovine y-crystallin 3-D structures is shown in Figure 2-1 (Guex and Peitsch 1997;

Peitsch 1995 and 1996). The structure of the human protein, has been determined from

crystals grown from the human recombinant protein and is fully homologous with the

bovine structure (Christine Slingsby, personal communication). HyD-Crys has four

intrinsic tryptophans that may be used to probe the unfolding/refolding progression of the

molecule with fluorescence spectroscopy.

Human genetic studies of families exhibiting juvenile-onset cataracts identified a

set of surface amino acids of HyD-Crys, including R1 14C, R38H, and R36S (Heon et al.

1999; Kmoch et al. 2000). Site-specific mutagenesis of recombinant HyD-Crys in

collaboration with the laboratory of George Benedek (MIT Physics Department),

confirmed that these substitutions influence the protein's phase transition characteristics

in vitro (Pande et al. 2000 and 2001). The mutation R114C resulted in the presence of an

extra solvent-exposed cysteine that formed a disulfide bond with the endogenous solvent-

exposed cysteine, Cys 110 (Pande et al. 2000). The disulfide linkage caused the

formation of high molecular weight oligomers that precipitated out-of solution in vitro.

The mutations R38H and R36S are associated with aculeiform and congenital juvenile-

onset cataracts, respectively. These juvenile cataracts have distinctive morphologies that
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suggest protein crystallization occurs within the lens. The purified mutant proteins

exhibited decreased solubility in vitro (Pande et al. 2001). This alteration in the phase

separation characteristics was due to an increased crystal nucleation rate of HyD-Crys,

consistent with the pathology of the inherited amino acid substitutions. Based on the

importance of HyD-Crys in juvenile-onset cataracts, the protein is likely to be an

important substrate in the formation of age-onset cataracts as well.

Numerous studies using polypeptides, including many conferring disease

phenotypes, such as ca-synuclein, transthyretin, and the A-42 peptide have demonstrated

that protein aggregation is often an ordered polymerization process that proceeds via a

distinct mechanistic pathway involving a series of specific non-native interactions (Betts,

et al. 1999; Harper et al. 1997; Li et al. 2001; Lashuel et al. 1998, Speed et al. 1995). The

aggregation pathway of the P-sheet P22 tailspike protein is known to proceed from a

destabilized folding intermediate (Haase-Pettingell and King 1988; Speed et al. 1995).

We were interested in the possibility that the mechanism of aggregation of HyD-Crys in

the aging lens differed from juvenile onset genetic cataracts and proceeded from a

partially unfolded conformer of the wild type protein (Mitraki and King 1989; Wetzel

1994).

The unfolding and refolding of bovine yB crystallin has been carefully studied by

Jaenicke and his colleagues (Rudolph et al. 1990; Mayr et al. 1997; Jaenicke 1999). They

described a complex unfolding transition suggesting the presence of a partially folded

intermediate with one of the domains ordered and the other disordered.

To explore the possible relationship of protein folding to cataract formation, we

have performed a series of unfolding/refolding studies on HyD-Crys at or near

physiological pH and temperature (pH 7.0, 37°C). The experiments identify an

aggregation-prone state of HyD-Crys populated in low concentration of guanidine

hydrochloride (GdnHCl). We present direct evidence from atomic force microscopy that

the aggregation pathway of human yD crystallin is ordered and the protein forms fibrils in

vitro.
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B

Figure 2-1

Hypothetical ribbon structure of human yD crystallin showing the location of the four
tryptophans at positions 43,69,131, and 157. The structure was determined by threading
the HyD-Crys through the known bovine yD crystallin structure (Guex, et al. 1997,
Peitsch, 1995 & 1996). The structure is shown from the side (A) and the top (B).
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B. MATERIALS AND METHODS

i. Expression and purification

Recombinant human yD crystallin was prepared from E. Coli as described (Pande

et al. 2000). Briefly, the protein was purified by fractionating cell lysate on a size

exclusion column followed by cation-exchange chromatography as described (Broide et

al. 1991).

ii. Circular dichroism

CD spectra of native and refolded protein were collected on an Aviv Associates

(Lakewood, NJ) model 202 circular dichroism spectrometer. All readings were

performed on 0.1 mg/mL HyD-Crys protein samples.

iii. Equilibrium refolding and unfolding

For the unfolding equilibrium titration, purified HyD-Crys was diluted to 10

gg/ml in increasing amounts of GdnHCl in S buffer from 0 to 5.5 M. S buffer contained

10 mM NaPO 4, 5 mM DTT, 1 mM EDTA, pH 7.0. The samples were incubated at 37°C

until equilibrium was reached (about 6 hours). For the refolding titration, 100 gg/ml

protein was denatured in 5.5 M GdnHCl in S buffer at 370C for 5 hours. The protein was

subsequently refolded by dilution to 10 gg/ml into decreasing concentrations of GdnHCI

from 5.5 to 0.55 M. The fluorescence spectra of the equilibrated samples were

determined using a Hitachi F-4500 fluorimeter equipped with a continuous temperature

control system with excitation at 295 nm and emission from 310 to 420 nm. The

emission intensities at 350 nm were used for data analysis. The excitation and emission

slits were both set to 10 nm.
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iv. Unfolding fluorescence kinetics

Tryptophan environment changes with refolding were monitored using a Hitachi

F-4500 fluorimeter equipped with a continuous temperature control system. Native

protein (100 pgg/ml in S buffer at 370C) was unfolded by dilution into S buffer to final

concentrations of 10 gg/ml HyD-Crys and 5.5 M GdnHCl. Loss of global structure was

monitored with continuous excitation at 295 nm and emission at 350 nm at 37C.

v. Refolding fluorescence kinetics

Tryptophan environment changes with refolding were monitored using a Hitachi

F-4500 fluorimeter equipped with a continuous temperature control system. Native

protein was denatured at 100 gg/ml concentration in 5.5 M GdnHCl in S buffer at 37°C

for 5 hours. The unfolded protein was refolded by dilution into S buffer to final

concentrations of 10 gg/ml HyD-Crys and 0.55 M GdnHC1 or 1.5 M GdnHCl. Increase

in global structure while refolding was monitored with continuous excitation at 295 nm

and emission at 350 nm. Fluorescence wavelength spectra were obtained after 5 hours of

refolding both before and after a 20-minute spin at 12,000 rpm. A background

fluorescence correction was made by obtaining spectra of S buffer containing 0.55 M

GdnHCl and subtracting it from the refolded sample data.

vi. Refolding solution turbidity kinetics

Solution turbidity changes caused by formation of high molecular weight species

were monitored with refolding in a Cary 50 Bio UV/Vis spectrophotometer. Samples

were prepared as discussed for the refolding fluorescence kinetic experiments.

Absorbance spectra from 260 to 350 nm were monitored at various time intervals.

Absorbance values at 280 nm were used for data analysis. Samples were stirred

throughout the refolding process.
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vii. Atomicforce microscopy

AFM analysis was performed using the tapping method as described (Marini et al.

2002). Ten gl of sample was allowed to nonspecifically bind to a mica surface for a total

drying time of 75 seconds. The mica was then washed with 150 gl of milli-Q water and

allowed to air-dry before imaging.

viii. BisANS binding assay

The character of the HyD-Crys aggregate was probed by monitoring bisANS

fluorescence changes upon binding. HyD-Crys aggregates were prepared by refolding

denatured protein in 0.55 M GdnHCl in S buffer at 10 jgg/ml HyD-Crys at 370 C. Samples

were removed at refolding time intervals ranging from 30 seconds to 4 hour. BisANS

was added to the resulting sample to reach a final small molecule concentration of 20 nM.

The fluorescence spectrum of the sample was determined by excitation at 350 nm and

emission from 400 to 600 nm on a Hitachi 4500 fluorimeter. Background fluorescence of

bisANS in 0.55 M GdnHCl was subtracted from the resulting spectrum for data analysis

purposes.

C. RESULTS

i. Purification

Recombinant human yD crystallin was expressed from a pET. 16 plasmid in E.

Coli strain BL21(DE3). The recombinant HyD-Crys expressed in E. coli folded into

soluble protein subunits that were stable in the bacterial cytoplasm. Methods developed

for the purification of yD crystallin from the bovine lens were used to purify the crystallin

subunits from the bacterial lysate (Pande et al. 2000). Recombinant HyD-Crys contained

an N-terminal methionine that is post-translationally cleaved in the native protein. The

crystallin purified from E. Coli had far-UV CD (Figure 2-2) and absorption spectra (data
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not shown) similar to those observed for soluble bovine yD crystallin extracted from calf

lenses (Hay et al. 1994). X-ray diffraction studies of crystals grown from the

recombinant protein indicated the same fold as that found for the bovine protein (Basak et

al. 2003).

ii. Equilibrium unfolding and refolding

Human yD crystallin did not denature in urea at concentrations in excess of 8 M,

but did exhibit a denaturation transition in GdnHCl. Unfolding and refolding transitions

were examined using GdnHCl as the denaturant in equilibrium analyses. Buffers were

maintained at pH 7 and temperatures of 25°C or 37°C. Under these conditions a

cooperative unfolding transition occurred in the range of 2.0 to 3.3 M GdnHC1.

With respect to the overall tryptophan fluorescence, the native-state of the protein

was quenched to a greater extent than the denatured state (Figure 2-3A). Based on the

hypothesized structure of HyD-Crys, that native-state fluorescence quenching may occur

because each of the four tryptophan side-chains present in the protein are within close

proximity to polar residues. The maximum fluorescence intensity of native HyD-Crys

occurred at 325 nm while the maximum fluorescence intensity of denatured protein

occurred at 348 nm.

At 37°C, the unfolding equilibrium transition of HyD-Crys at 350 nm showed that

protein unfolding was a two-state process (Figure 2-3B). Control titrations with sodium

chloride demonstrated that fluorescence changes observed in high and low denaturant

concentrations reflected structural alterations in the protein as opposed to high salt effects

from GdnHCl (data not shown). UV/Vis solution turbidity experiments did not reveal the

presence of any high molecular weight aggregates.
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Far-UV CD spectrum of 0.1 mg/mL recombinant HyD-Crys in S Buffer purified from E.
Coli lysates.
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Figure 2-3

Equilibrium unfolding and refolding of HyD-Crys in GdnHCl. Intrinsic tryptophan
fluorescence was monitored of HyD-Crys during folding and refolding and all samples
were equilibrated in S buffer at a protein concentration of 10 llg/ml. (A) Fluorescence

wavelength spectra of native protein (0), denatured protein in 5.5 M GdnHCI (_), HyD-

Crys refolded at 0.55 M GdnHCI before a 12,000 rev/min centrifugation (.), and after a

20 minute centrifugation (x) at 37°C. (B) Relative fluorescence intensity of unfolding

(.) and refolding (0) at 350 nm at 37°C. (C) Fraction unfolded intensity of unfolding

(.) and refolding (0) at 350 nm at 25°C. Fraction unfolded values were calculated from
raw fluorescence intensity measurements using the method described by Pace et al.
(1989). Samples were allowed to equilibrate for 6 hours in the appropriate conditions.
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At 37°C, the refolding transition of HyD-Crys appeared to be reversible in

GdnHC1 concentrations above 1.0 M GdnHCl, though with the suggestion of a hysteresis

in the transition region (Figure 2-3B). Dilution of denatured protein to GdnHCl

concentrations lower than 1.0 M gave rise to a protein species with non-native tryptophan

environments as demonstrated by increased fluorescence intensity and wavelength

maximum shifts to 330 nm (Figure 2-3A). These samples contained high molecular

weight protein aggregates as evidenced by solution turbidity measurements.

Equilibrium refolding and unfolding of HyD-Crys as a function of GdnHCl

concentration at 25C was similar to 370 C, but the refolding and unfolding transition

curves did not overlay and exhibited hysteresis. The midpoint of the unfolding transition

at 25°C was 3.7 M GdnHCl while the midpoint of the refolding transition was 2.7 M. At

37°C the midpoints of both the unfolding and refolding transitions were approximately

2.7 M GdnHCl. The refolding aggregation reaction at low GdnHCl concentration

observed at 37C was also visible at 250 C.

To further examine the nature of the aggregation reaction, we characterized the

aggregation reaction as a function of sample incubation time after initiation of refolding

at 37°C. Native protein exhibited no appreciable increase in solution turbidity after 40

hours of incubation under these conditions. The location of the aggregation transition

was not altered with increasing times of incubation after dilution from 3 to 40 hours.

This suggested that the reaction depended on the population of a distinct conformer

during refolding in 1 M GdnHCl and did not require a rate-limiting nucleation event

(Figure 2-4). Samples containing a final GdnHCl concentration greater than 1.0 M did

not exhibit appreciable solution turbidity even after 40 hours. We did not observe

aggregation in the major conformational transition occurring from 2 to 3.3 M GdnHCl

indicating that intermediates populated in this transition were not the precursors of the

aggregated state.

The HyD-Crys protein refolded in aggregation-prone conditions (0.55 M

GdnHCl) was centrifuged at 12,000 rev/min. Solution turbidity measurements measured

at 280 nm and 350 nm indicated no high molecular weight aggregates remained in the

supernatant after centrifugation (data not shown). The fluorescence spectrum of the

resulting supernatant revealed that a significant portion of the protein was lost to

69



precipitation, but the fraction remaining had a maximum intensity wavelength

indistinguishable from native (Figure 2-3A). This indicated that there was a native-like

species present at the end of the reaction and that the off-pathway aggregation process

competed with a productive refolding pathway under aggregation-prone conditions.

Integration of the fluorescence wavelength spectra of the resulting supernatant in the

experiment shown in figure 2-3 revealed that 50% +/- 2% of the protein was refolded

productively and 50% +/- 2% of the protein became incorporated into the aggregate.

iii. Kinetic unfolding through a partially unfolded intermediate

The unfolding of HyD-Crys was monitored over time with fluorescence at 37°C

(Figure 2-5, Table 2-1). A possible early intermediate (Iul) may have been populated

within the dead-time of the experiment as indicated by the burst fluorescence intensity at

the on-set of the experiment. The only observable intermediate (Iu2) formed with a t/ 2 of

55 s. This intermediate was not as quenched as native indicating the polar-tryptophan

interaction had been disrupted. In the final unfolding transition (Iu2 -- denatured),

occurring with a t1/2 of 2700 s, a slow re-quenching took place indicative of solvent

rearrangement or isolated local restructuring in the unfolded state. The unfolding process

was completed in -2 hours.

kul? ku 2 ku 3

N -r Iul? -- Iu2 Denatured (2.1)

Solution turbidity measurements showed no evidence of aggregation during this process.

HyD-Crys showed the same kinetic rates and intermediates during unfolding regardless of

pH, temperature, starting concentration of protein, and presence or absence of DTT (data

not shown).
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Behavior of refolding HyD-Crys species as a function of incubation of the reactions. The
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S buffer for 3 hours (0), 6 hours (~), 17 hours (+), and 41 hours (D).

71



72



~~
enc
Q)~c
Q)
uc
Q)u
en
Q)
l-e
~

LL

2000

1800 ,:
I,,

I1600 ;
I
j

I,
1400J

J
J

1200

10000 1000 2000 3000 4000 5000 6000
Time (seconds)

Figure 2-5

Unfolding kinetics of HyD-Crys monitoring intrinsic tryptophan fluorescence with
excitation at 295 nm and emission at 350 nm. HyD-Crys was denatured by rapid dilution
into 5.5 M GdnHCl at 37°C in S buffer to a final protein concentration of 10 Jlg/ml. The
unfolding protein time course is shown in gray with the resulting three-state curve fit
(dashed line).
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Table 2-1

Kinetic rate constants for unfolding, productive refolding and aggregation of Human yD

Crystallin

kI__1/2 k2 t1/2tl2 k3 tl/2

Unfolding <0.46 <15 s 0.013 55 s 0.00027 2700 s
Refolding/Aggregation <0.46 <15 s 0.012 60 s 0.00028 2500 s
Productive Refolding <0.46 <15 s 0.0095 73 s 0.00067 1030 s

iv. Competing productive and aggregation-prone refolding pathways

Solution turbidity was monitored at varying time intervals during refolding of

HyD-Crys under aggregation prone conditions (Figure 2-6, Table 2-1). The solution

turbidity of the first observable species was significantly higher than the native control

indicating that a high molecular weight species (I1 *) had already formed within the dead-

time of the experiment. The formation of the first visible high molecular weight species

(I2*) occurred with an approximate tli2= 60 s while the second state change (12* to

aggregate) had an approximate t/2 =3000 s. This second transition may have reflected a

slow structural transition of the multimeric protein from a highly turbid species to a less

turbid species, but also may have corresponded to the progressive precipitation of the

aggregate from solution.

kl *? k2* k3*

D -> I *? - 12* - Aggregate (2.2)

This aggregation mechanism was independent of the presence of reducing agents such as

DTT and intermediates were confirmed by fluorescence scans (data not shown).

In order to study the kinetic rates and intermediates formed during productive

refolding of HyD-Crys without the impact of light scattering, fluorescence experiments

were performed on HyD-Crys refolding to a final denaturant concentration of 1.5 M

GdnHCl (Figure 2-7, Table 2-1). Under these conditions, fluorescence equilibrium data
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revealed the refolding process favored a native-like conformation and no high molecular

weight species were detected in solution turbidity measurements. Productive refolding

had a possible early intermediate (Ii) that may have formed within the dead-time of the

experiment as evidenced by the burst in fluorescence observed at 15 seconds.

Spectroscopically, the only visible intermediate (12) formed with a t/2 of 73 s and then

was converted to native protein with a t1/2 of 1030 s. Under these conditions,

productively refolded HyD-Crys reached equilibrium in approximately 3 hours whereas

refolding HyD-Crys under aggregation-prone conditions did not reach equilibrium until 4

hours had passed.

kl ? k2 k3

D - I ? - 12 -> Native-like (2.3)

The final state of the protein under these non-aggregating refolding conditions was

native-like in terms of its fluorescence character.

v. The self-associated aggregate has a fibril structure

Atomic force microscopy was used to probe the structure and aggregation

mechanism of HyD-Crys. Native crystallin from an S buffer solution was visible upon

non-selective binding to the mica surface. The molecules had an apparent height of 0.5

nm, a length of 10 nm, and a width of 10 nm (Figure 2-8A). The discrepancy between

this value and the predicted dimensions of the protein (50 A by 30 A by 30 A) were

presumably a result of either molecular flattening upon binding, resolution limits of the

technique, or dimerization of the protein under the sample preparation conditions. The

molecules appeared to contain a region of low height in the very center.

A solution of HyD-Crys was denatured in 5.5 M GdnHCl and subsequently

refolded using the aggregation-prone conditions (dilution to 0.55 M GdnHCI). Ten gL

samples were removed and applied to a mica grid at various intervals.
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Figure 2-6

Solution turbidity measurements of refolding HyD-Crys over time. HyD-Crys was
denatured in 5.5 M GdnHCI at 37°C in S buffer for 5 hours. HyD-Crys was refolded by
rapid dilution with S buffer to a final GdnHCI concentration of 0.55 M and a final protein
concentration of 10 f.lg/ml. Relative solution turbidity was determined by measuring

refolding HyD-Crys absorbance at 280 nm at various times (.). A background buffer
scattering reference is shown for comparison (0).
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Figure 2-7

Refolding kinetics of HyD-Crys monitoring intrinsic tryptophan fluorescence with
excitation at 295 nm and emission at 350 nm. HyD-Crys was denatured in 5.5 M
GdnHCI at 37°C in S buffer for 5 hours. HyD-Crys was refolded by rapid dilution with S
buffer to a final GdnHCI concentration of 0.55 M (A) and 1.5 M (B)(and a final protein
concentration of 10 J.lglml. The refolding protein time course is shown in gray with the
resulting three-state curve fit. Reference native (solid line) and denatured (dotted line)
intensities are shown for comparison.
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Figure 2-8

AFM height images of refolding HyD-Crys species absorbed to a mica surface. High
surfaces are denoted as white (5 nm) and low surfaces are shown in black (0 nm). HyD-
Crys was refolded for various times, extracted from solution, absorbed on mica, and
observed using tapping mode AFM. Native HyD-Crys (A), and protein refolded for 1
min. (B), 5 min. (C), 24 min. (D), 1 hr. (E), and 2 hr. (F) are shown. Panel A is a 300 om
x 300 om scanning area while B-F are 1 J..lmx 1 J..lm.The inset in B is a close-up of
refolded HyD-Crys.
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Within the first minute of refolding, small globular structures were visible (Figure

2-8B). In the background of this image, native-like HyD-Crys monomers are already

visible, supporting the competing aggregation and productive pathway model for

refolding under these conditions. After approximately 5 minutes of refolding, long, thin,

1 nm high, 15 nm wide, protofibril structures were observed (Figure 2-8C). The

protofibrils had an approximate width and height of the soluble crystallin. After about 24

minutes of refolding, protofibrils were visible but were found only in associated masses

(Figure 2-8D). The protofibrils had begun to associate from the center producing a

species with one thick mid-region and multiple fibril-width tail ends. By one hour of

refolding, virtually all of the protofibrils had disappeared, presumably being incorporated

into thick 5 nm high, 50 nm wide branched and unbranched fiber bundles (Figure 2-8E).

Although the exact height and width of the fiber bundles varied, their overall appearance

and approximate size was similar. After several hours of refolding, aggregated masses

were visible presumably containing associated fiber bundles (Figure 2-8F).

vi. The aggregate contains exposed hydrophobic pockets

HyD-Crys aggregates were characterized by binding assays with bisANS. All

aggregated species, including nuclei presumably present as early as 30 seconds after the

start of refolding and fiber bundles present at 4 hours, bound bisANS significantly better

than either the unfolded or folded control (Figure 2-9A and 2-9B). This indicated that all

HyD-Crys aggregates under these conditions had non-native patches of exposed

hydrophobic residues.

D. DISCUSSION

i. Crystallin refolding and aggregation in vitro

Within the eye, the lens crystallins exhibit very long lifetimes at very high

concentrations in the presence of ultraviolet and visible radiation. Recombinant human
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yD crystallin was resistant to denaturation by concentrations of urea up to 8 M at neutral

pH, but could be denatured upon incubation with high concentrations of GdnHCl. The

midpoint of the transition occurred at about 2.7 M GdnHCl, at 37°C.

Within folded HyD-Crys the fluorescence intensity is representative of quenched

tryptophans. Wistow et al. suggested that fluorescence quenching of the native state

observed in bovine y-crystallin proteins is caused by tryptophan-cysteine interactions.

The native-state quenching of HyD-Crys may be due to the interaction of cysteine thiols

19 and 79 with tryptophan 43, cysteine 33 with tryptophans 69, and/or histidine 88 with

tryptophan 131. This phenomenon has been observed in other proteins such as cellular

retinoic acid binding protein and human serum transferring N-lobe (Eyles and Gierasch

1999; He et al. 2001). The packing of cysteines against tryptophans may provide a

mechanism of protection in the eye from free radical damage initiated by ultraviolet

radiation absorption by tryptophans (Davies and Truscott 2001). However, the source of

the quenching has not been experimentally determined and may be associated with other

residues in the hydrophobic core.

The denatured chains of HyD-Crys could be refolded by dilution from GdnHCl

and the reaction was reversible with one distinct transition in the range of 1-5 M GdnHC1.

Bovine yB crystallin, which is denatured by urea at pH 2.0, but not at pH 7.0, was

reversible over all reported concentrations of GdnHCl, but exhibited a three-stage

transition in equilibrium unfolding studies, representing sequential denaturation of the C-

terminal and N-terminal domains at pH 2.0 (Rudolph et al. 1990; Jaenicke 1999). On the

other hand, the closely homologous protein S, a protein also containing two Greek key

domains, unfolded and refolded without evidence of separate domain transitions (Wenk

et al. 1998). HyD-Crys may possess differential domain stability that is not visible in the

apparent two-state unfolding transition observed during equilibrium unfolding. Future

experiments will attempt to characterize the stability of each domain of the human

protein.
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Figure 2-9

Binding of bisANS to refolding HyD-Crys using bisANS fluorescence with excitation at
360 nm. HyD-Crys was denatured in 5.5 M GdnHCl at 37°C in S buffer for 5 hours.
HyD-Crys was refolded by rapid dilution with S buffer to a final GdnHCl concentration
of 0.55 M and a final protein concentration of 10 gg/ml. Samples of refolded protein
were analyzed at various times, bisANS was added, and small molecule fluorescence was

determined at 500 nm (A). Refolded sample (), denature sample (dashed line) and
reference native (solid line) bis-ANS fluorescence are shown. A representative

fluorescence scan (B) is shown of aggregated (), native (0), and denatured HyD-Crys

crystallin ().
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The in vitro unfolding and refolding steps of human yD crystallin were relatively

slow compared to some small proteins such as RNase or barstar (Hollien and Marqusee

2002; Nolting et al. 1995), but similar to rates found for some other [5-sheet proteins like

apo-pseudoazurin (Reader et al. 2001).

During refolding, dilution into concentrations of GdnHCl below 1.0 M at 370 C,

resulted in the population of an intermediate that aggregated irreversibly. The

aggregating species was populated at low GdnHCl concentrations both at 370 C and at

25°C. At both temperatures, the major conformational transition measured by

fluorescence spectroscopy was in the range of 2 to 3.3 M GdnHCl. This was well

separated from the GdnHCl concentration in which the aggregation reaction was

detected. This suggests that the aggregation-prone intermediate differs from the species

populated in the transition or that perhaps similar intermediates are present under both

conditions but have increased solubility in higher GdnHCl concentrations.

This behavior differs somewhat from other proteins in which aggregation

competes with productive refolding, such as phosphoglycerate kinase, f3-galactosidase,

interleukin 1-3, and transthyretin (Ghelis and Yon 1982; Wetzel and Chrunyk 1994;

Colon and Kelly 1992). For these proteins, dilution to intermediate concentrations of

denaturant generated an aggregating intermediate, while dilution to lower concentrations

led to the recovery of the native fold. Equilibrium analysis with GdnHCl demonstrated

that in HyD-Crys, the aggregating species probably was not generated from a transition

intermediate.

Though not well defined at 37°C, a hysteresis between the unfolding and

refolding equilibrium curves was very clear at 25C. The refolding curves had the same

midpoint of transition at both temperatures; however, the transition midpoint of unfolding

at 37°C occurred at lower GdnHCl concentrations suggesting a thermal destabilization of

the native state.

The existence of hysteresis in protein refolding experiments is associated with

reactions that are kinetically controlled, and which exhibit high energy barriers between

conformational transitions needed for refolding. The folding of a number of P-sheet

proteins are kinetically controlled, for example the parallel 3-helical tailspike adhesin
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(Sturtevant et al., 1989; Chen and King, 1994; Steinbacher et al., 1994). Alkaline

phosphatase exhibits a continuous reorganization of the environment around tryptophan

109 to the native state that takes days under refolding conditions (Subraniam et al., 1995).

The transformation from the io- to the 13-isoform that occurs during refolding of the

recombinant mouse prion protein exhibits a high barrier between the native and the

denatured state as well (Baskakov et al., 2001). For HyD-Crys, the hysteresis was

reduced at higher temperature, consistent with overcoming a kinetic barrier. Correct

packing of the hydrophobic cores or formation of proper domain interface alignment are

candidates for the slow step. The molecular basis of the hysteresis requires further

investigation (Sinclair, et al. 1994; Lai et al. 1997).

ii. Formation offilamentous aggregates

AFM images reveal that the in vitro aggregate of HyD-Crys was ordered. The

aggregate had a filamentous appearance as would be expected from the polymerization of

defined subunits. At early times during aggregation, globular species presumably

representing soluble crystallin species were present. These were approximately 2-5 times

the size of the native crystallin, estimated from the AFM images. These species are

candidates for aggregation nuclei. The exposed surfaces at the growing tip may serve as

intermolecular interfaces. The multimeric nuclei appeared to polymerize into elongated

protofibrils. The thin protofibrils appeared to wind around each other forming fiber

bundles. All protofibrils were incorporated into fiber bundles by 4 hours of refolding.

Additional exposed hydrophobic surfaces may be the site of association or intermolecular

contacts may be made by an unknown mechanism.

The aggregation pathway competed with a productive refolding pathway under

the described conditions, suggesting that a partially folded intermediate might be the

polymerizing species. Neither equilibrium nor kinetic analyses of HyD-Crys unfolding

revealed any evidence for aggregation from the native state of the protein. The native-

like species forming during aggregation-prone refolding had a fluorescence spectra and

AFM structure similar to native HyD-Crys. Due to the low concentration of protein
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present during refolding experiments no other structural evidence was obtainable to

confirm this.

Figure 2-10 shows a model for HyD-Crys refolding and aggregation in vitro. The

initial step on the productive refolding pathway is envisaged to be a global hydrophobic

collapse (reviewed in Ptitsyn 1995; Kuwajima 1992) during which large bulky,

hydrophobic residues are sequestered away from the polar solvent as evidenced by an

increase in the overall fluorescence of the protein. A kinetic partitioning of HyD-Crys

chains occurs between the productive refolding pathway and the aggregated complexes.

The early collapsed intermediate may be the same for the two pathways. In both

aggregation-prone refolding experiments and control productive refolding experiments, a

burst phase was visible at 15 seconds that may correspond to the formation of a similar

early folding intermediate that is prone to polymerization.

The aggregation/productive refolding breakpoint in the refolding pathway must

occur relatively early with respect to the other transition times observed with HyD-Crys

as evidenced by the presence of a species that has a high solution turbidity within the

dead-time (15 seconds) of the spectroscopic kinetic experiments.

The presence of 1.5 M GdnHCl appeared to shift the equilibrium of the branch

point between productive and aggregation-prone folding to favor the productive process

as evidenced by equilibrium analysis as well as kinetic experiments in which HyD-Crys

was refolded by dilution into 1.5 M GdnHCl.

The HyD-Crys aggregate bound bisANS significantly even as early as the

formation of nuclei species, further emphasizing that these aberrant exposed hydrophobic

residues exist from the on-set of refolding. The hydrophobic bisANS binding surfaces

may correspond to the intermolecular interaction domains that facilitate protofibril and

fiber bundle formation. Further work is needed to elucidate which area of the molecule is

responsible for these aggregation-facilitating interactions and which area, if any, retains a

native-like fold.

The aggregation and refolding pathways were dependent on the concentration of

HyD-Crys whereas the unfolding pathway was concentration independent. When the

overall concentration of protein was increased by a factor of ten, the presence of 1.5 M

GdnHCl was not sufficient to quench the aggregation pathway. This high concentration
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aggregation reaction may or may not be the same as the aggregation phenomenon

previously described, but these results do suggest a significant divergence of the in vivo

and in vitro pathways. The amount of crystallin found in the eye lens is 70% (g/g wet

weight) or approximately 300-500 mg/mL whereas the amount of crystallin used for

these experiments was as low as 10 gg/ml (Jaenicke 1999).

iii. Cataractformation in the lens

Many human diseases such as glaucoma and Meretoja's syndrome result in the

expression of insoluble protein fibers in the eye (Nelson et al. 1999; Kivela et al. 1994).

Experiments performed with c-crystallin have demonstrated that a fibrous aggregate

forms when this protein is complexed with [L crystallin (Weinreb et al. 2000), and

amyloid-like protein species have been identified in situ in the mammalian ocular lens

using Congo red and thioflavin T binding assays (Fredrikse 2000). The results reported

here, suggest that old age cataracts should be re-examined for the presence of fibrillar

aggregates containing human yD crystallin.
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Figure 2-10

Model of HyD-Crys folding and aggregation. Upon rapid dilution into refolding
buffer, HyD-Crys undergoes a global hydrophobic collapse. A fraction of the refolding
molecules proceed to refold rapidly into a native state through a series of
spectroscopically observable intermediates. The remaining fraction of the refolding
chains will undergo a specific non-native interaction sequence ultimately resulting in the
formation of an elongated aggregate. Spectroscopic techniques reveal three observable
aggregation pathway states (1*, and 12*) and AFM images show three distinct
aggregation intermediates (nuclei, protofibrils, and fiber bundles). We hypothesize that
multiple-fiber bundles can associate, ultimately forming an aggregate mass.
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CHAPTER III: ASSIGNMENT OF TRYPTOPHAN FLUORESCENCE OF

HUMAN yD CRYSTALLIN USING TRIPLE TRYPTOPHAN TO

PHENYLALANINE MUTANT PROTEINS

A. INTRODUCTION

Human mature onset cataracts affect nearly 15% of the US population over 40

years of age and are the leading cause of blindness worldwide (NEI 2002). Pathological

studies of cataractous lenses have revealed that cataracts are composed of protein

aggregates that precipitate or polymerize in lens cells of the eye (Oyster 1999).

Human yD crystallin (HyD-Crys) is a protein synthesized during embryonic

development that must remain soluble in the anucleated cells of the adult human eye lens

for proper vision. Covalently modified HyD-Crys has been recovered in protein

aggregates removed from aged, cloudy lenses (Hanson et al. 2000). HyD-Crys has 173

amino acids and shows high sequence and structural similarity to other y-crystallins

(Basak et al. 2003). Mutations in the gene encoding HyD-Crys have been found in

families exhibiting juvenile onset cataracts further implicating HyD-Crys in

cataractogenesis (Nadrut et al. 2003; Heon et al. 1999; Pande et al. 2001).

HyD-Crys is composed of anti-parallel P-sheets arranged in four Greek-key

motifs separated into two domains (Figure 3-1). The two domains show high levels of

structural and sequence conservation and appear to be the result of gene duplication

during evolution (Wistow et al. 1983). Like most soluble y-crystallins, HyD-Crys is

monomeric in solution (Jaenicke 1999). HyD-Crys has four tryptophans that have been

used to probe unfolding and refolding progression with fluorescence spectroscopy

(Kosinski-Collins and King 2003).

The fluorescence signal of HyD-Crys increases when the protein is denatured in

high concentrations of guanidine hydrochloride (GdnHCl). This indicates that the

tryptophan fluorescence is quenched in the native state.
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Although this phenomenon has been observed in other proteins without metal

ligands or cofactors (Lakowicz 1999; Eyles and Gierasch 1999; He et al. 2001), it is

uncommon. Ultraviolet light has been proposed as one of the etiological agents of

cataract formation (McCarty and Taylor 2002; Sasaki et al. 2002). The presence of

tryptophan in the lens proteins may function in protecting the retina from ultraviolet light

damage (Kurzel et al. 1973). In this case, fluorescence quenching may protect the lens

proteins from ultraviolet light absorption. We have investigated which residues are

involved in the quenching reaction to provide possible insight into the ability of the lens

proteins to maintain stability and transparency over the human lifetime.

We constructed triple mutant tryptophan constructs each containing only one of

the four native tryptophans of HyD-Crys to determine the origin of the anomalous

quenching signal.

B. MATERIALS AND METHODS

i. Cloning and site-directed mutagenesis

The human yD crystallin coding sequence had been previously cloned as

described (Pande et al. 2000). The gene was excised from the pET3a plasmid and ligated

into a pQE. 1 plasmid (Qiagen) that added an N-terminal 6-His tag to the protein. The

integrity of the HyD-Crys gene was confirmed by sequencing at the facilities of

Massachusetts General Hospital.

Four triple mutant proteins containing three tryptophan to phenylalanine

substitutions at positions 42, 68, 130, and 156 were constructed using a PCR-based

mutagenesis procedure (Stratagene). Sequential mutations were made using

complementary primer pairs that altered the Trp codon TGG to Phe TTT (Invitrogen).

The mutations were confirmed by sequencing the region of the resulting plasmids

(MGH).
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Domain I Domain II

Figure 3-1

Ribbon structure of wild-type human yD crystallin showing the location of the four native
tryptophans at positions 42, 68, 130, and 156 (Basak et al. 2003).
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ii. Expression and purification of triple mutants

Recombinant HyD-Crys was prepared by pQE. 1 plasmid transformation into E.

Coli M15 (pREP4) cells. Protein production was induced by addition 1 mM IPTG and

allowing 4 hours of incubation at 37C. Cultures were pelleted by centrifugation for 15

min and cells were resuspended in a 10 mM imidazole, 10 mM Tris, 0.5 M NaCl

solution. Cells were lysed using six sequential 20 second bursts of sonication followed

by 40 second rest cycles. Lysates were spun at 17,000 RPM for 30 minutes. The

resulting supernatant was then applied to a Ni-NTA column and protein was eluted using

an increasing concentration of 250 mM imidazole, 10 mM Tris, 0.5 NaCl at room

temperature. Fractions containing protein were dialyzed four times against four liters of

10 mM ammonium acetate pH 7.0 for four hours. Maldi mass spectroscopy was

performed on all proteins to confirm the presence of the desired amino acid substitutions

(MIT-Biopolymers Lab). All proteins were transferred from ammonium acetate to S

Buffer (10 mM NaPO4, 5 mM DTT, 1 mM EDTA, pH 7.0) by dilution.

iii. Circular dichroism

CD spectra of wild type and mutant HyD-Crys proteins were collected on an Aviv

Associates (Lakewood, NJ) model 202 circular dichroism spectrometer. All readings

were performed on 0.3 mg/mL HyD-Crys protein samples in S buffer at 37°C. CD was

measured every 1 nm between 200 and 260 nm. The signals at all wavelengths were

averaged over 5 seconds.

iv. Ultraviolet light absorbance

Ultraviolet light spectra of wild-type and mutant HyD-Crys proteins were

collected on a Varian Cary 50 Bio ultraviolet light spectrometer. Readings in the peptide
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backbone region (190 nm to 240 nm) were performed on 0.1 mg/mL HyD-Crys in S

buffer. Absorbance readings in the aromatic region (240 nm to 340 nm) were taken of

0.3 mg/mL protein samples in S buffer (native) or S buffer containing 5.5 M GdnHCl

(denatured). Protein concentration was calculated by measuring denatured protein

absorbance at 280 nm and using a protein extinction coefficient of 41.04 mM-' for wild-

type and 23.97 mM-1 for triple mutant tryptophan His-tagged constructs, respectively.

v. Fluorescence emission spectra

Fluorescence emission spectra were read on a Hitachi F-4500 fluorimeter with a

continuous flow temperature control system. Proteins were diluted to a concentration of

10 gg/mL in S buffer or S buffer containing 5.5 M GdnHCl. Samples were excited at

295 nm and emission was measured from 310 nm to 420 nm. The excitation and

emission slit widths were both set to 10 nm. The background fluorescence of S buffer or

S buffer and 5.5 M GdnHCl was subtracted from the sample reading. Fluorescence

emission maxima were calculated by averaging signals over every 5 nm and selecting the

midpoint of the five signals that exhibited the highest average.

C. RESULTS

i. Purification of his-tagged crystallin

The cloned HyD-Crys gene (Pande et al. 2000) was excised from a pET3a

plasmid and ligated into a pQE. 1 plasmid as described in Material and Methods. This

plasmid added an N-terminal MKHHHHHHQ peptide to HyD-Crys. The addition of this

peptide did not affect expression of HyD-Crys or the ability of the protein to fold into a

native-like state during purification. In addition, we were not able to detect differences in

the fluorescence or circular dichroism spectra (CD) of the His-tagged protein. The

thermodynamic and kinetic unfolding and refolding properties of the His-tagged species

were identical to the wild-type protein (results not shown).
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Four triple mutant proteins were constructed using site-directed mutagenesis.

Each contained three tryptophan to phenylalanine substitutions retaining one native

tryptophan (W42-only, W68-only, W130-only, and W156-only). All mutant plasmids

were transformed into E. Coli M15(pREP4) cells and the proteins expressed during

incubation at 37C. Wild type and all four triple mutant proteins of HyD-Crys

accumulated primarily in the soluble fraction of the cell lysates (>60%). These proteins

were purified using the protocol developed for wild-type His-tagged HyD-Crys. The four

mutant proteins behaved similarly to wild type during the purification procedure.

ii. Structure assignment

CD, native gel electrophoresis, and ultraviolet light absorbance were performed to

assess the overall conformations of the mutant proteins.

Native gel electrophoresis of wild type and the triple mutant tryptophan constructs

confirmed that all proteins retained similar native conformations. His-tagged wild-type

HyD-Crys shows three distinct bands when separated on a native polyacrylamide gel due

to different charge states and/or degradation products. All mutant constructs exhibited

similar native bands running with analogous mobility as wild type (results not shown).

Far-UV CD of the native proteins showed a primarily 5-sheet structure for wild-

type HyD-Crys and all four triple mutant tryptophan constructs at 37C, pH 7.0 (Figure 3-

2). All five proteins had a characteristic [3-sheet minimum at 218 nm although the

amount of -structure appeared to vary between the different constructs. In addition,

none of the mutant proteins exhibited the inflection shown by wild-type HyD-Crys at 208

nm (Kosinski-Collins and King 2003) indicating that some of the secondary structure of

wild type was diminished in the mutant proteins. The tryptophan to phenylalanine

mutations may have slightly disrupted local 1-sheet structures, leading to the altered CD

signal at 218 nm, while maintaining overall conformations similar to wild type as

observed by native gels.

The W68-only construct displayed the characteristic inflection of wild type

observed in far-UV CD at 235 nm. W156-only showed a slight arc around this

wavelength that was not as pronounced as W68-only. This may have been due to the
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overall decreased signal of W156-only. Therefore, it seems that the inflection in the

wild-type spectrum at 235 nm reports environments around Trp 156 and Trp68.

Ultraviolet light absorbance scans in the peptide backbone region of native wild-

type, W42-only, W68-only, W130-only, and W156-only HyD-Crys showed similar

spectra between 190 nm and 240 nm at 37C, pH 7.0 (results not shown). Ultraviolet

light spectra in the region of tyrosine and tryptophan absorption were also obtained from

native and denatured proteins at 37°C, pH 7.0. All proteins had absorbance spectra

typical of polypeptides containing high numbers of tryptophan and tyrosine residues with

a maximum at 276 nm. Absorption spectra of denatured states of the triple mutant

tryptophan mutants overlaid uniformly indicating that all tryptophans were in similar

denatured environments (Figure 3-3A). Ultraviolet light absorbance spectra of native

triple mutant tryptophan proteins exhibited the same overall shape and character, but had

slightly different overall absorbance intensities (Figure 3-3B). This indicated that Trp42,

Trp68, Trp 30, and Trp156 were found in slightly different tertiary environments.

iii. Fluorescence spectra

The overall character of the fluorescence emission spectra of wild-type, W42-

only, W68-only, W130-only, and W156-only HyD-Crys were assessed by exciting the

protein at 295 nm and observing fluorescence emission intensities from 310 to 420 nm in

either S buffer or S buffer and 5.5 M GdnHCl (Figure 3-4 and Table 3-1). S buffer

contained 10 mM NaPO 4, 5 mM DTT and 1 mM EDTA and was prepared at pH 7.0.
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Figure 3-2

Far-UV CD of wild-type His-tagged HyD-Crys (), W42-only (), W68-only (),

W130-only (), and W156-only (0). Samples were prepared at a 300 g/mL protein
concentration and equilibrated in S buffer at 37C.
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Figure 3-3

Aromatic residue ultra violet light absorbance spectra of His-tagged HyD-Crys at 100

ptg/mL protein in S buffer at 370C. Wild type (*) and a representative triple mutant

tryptophan protein, W42-only (U) are shown denatured in 5.5 M GdnHCl (A). W68-
only, W130-only, and W156-only exhibit denatured spectra indistinguishable from W42-
only. Native protein aromatic absorbance is shown of wild-type His-tagged HyD-Crys

(*), W42-only (1), W68-only (O), W130-only (0), and W156-only (0) (B). Thirty
percent of the data points are shown.
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Figure 3-4

Fluorescence emission of native () and denatured (O) HyD-Crys. Protein was excited

at 295 nm and emission spectra were collected from samples of 10 gg/mL protein in S

buffer or S buffer and 5.5 M GdnHCl at 370 C. Fluorescence spectra of wild-type His-

tagged HyD-Crys (A), W42-only (B), W68-only (C), W130-only (D), and W156-only (E)

are shown.
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Wild-type His-tagged HyD-Crys had a native fluorescence emission maximum of

326 nm, and was quenched in the native state. The denatured protein exhibited a

fluorescence emission maximum of 350 nm. This is similar to data previously reported

for the non-His-tagged construct (Kosinski-Collins and King 2003) (Figure 3-4A).

Similarly, all of the triple mutant tryptophan constructs had denatured fluorescence

emission maxima of 350 nm. The native fluorescence emission maxima were 327 nm for

W42-only, 329 nm for W68-only, 318 nm for W130-only, and 327 nm for W156-only

(Table 3-1). W68-only and W156-only retained the native state quenching observed in

wild type (Figure 3-4C and 3-4E), while W42-only and W130-only were quenched in the

denatured state (Figure 3-4B and 3-4D). W130-only is significantly more fluorescent in

its native state than any of the other triple mutant constructs.

Table 3-1

Fluorescence Spectra constants for triple tryptophan mutants of HyD-Crys
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Wild type W42-only W68-only W130-only W156-only

Native 326 nm 327 nm 329 nm 318 nm 327 nm
Fluorescence
Emission Max
Denatured 350 nm 350 nm 350 nm 350 nm 350 nm
Fluorescence
Emission Max
Exhibit Native Yes No Yes No Yes
State Quenching?



D. DISCUSSION

i. Expression and structure of crystallin proteins

HyD-Crys is a highly stable protein containing four tryptophans buried within two

highly hydrophobic protein cores. Four stable, triple mutants of His-tagged HyD-Crys

were produced each containing one native tryptophan and three tryptophan to

phenylalanine substitutions. All of the mutant proteins were expressed in E. coli in the

soluble fraction of the cell lysate. In addition, each had a primarily P-sheet character by

circular dichroism measurements and displayed bands of a similar mobility as wild type

on a native polyacrylamide gel.

The triple tryptophan mutants display no increased or decreased propensity for

aggregation over wild-type HyD-Crys during either refolding or long-term storage at 40C.

The overall solubility and native-like structure of HyD-Crys with phenylalanines

substituted for tryptophans suggests that the tryptophan residues are not critical for

stability at physiological temperature. Likewise, mutation of each tryptophan and

substitution with alanine report similar stability (Veronica Zepeda, Melissa Kosinski-

Collins, Shannon Flaugh, and Jonathan King, unpublished results). Given the location of

these substitutions in the hydrophobic core of HyD-Crys, the high solubilities and native-

like structures of all mutant tryptophan constructs are surprising.

All four tryptophans in HyD-Crys show high chemical conservation throughout

the known members of the y-crystallin family. Trp42 and Trp130 are 100% conserved

throughout the y-crystallin family as aromatic residues, while Trp68 and Trp156 are 80%

and 89% conserved in aromaticity, respectively. The deviations in aromatic composition

in Trp68 and Trp156 are found in primarily aquatic animals such as carp and catfish. It is

interesting to note that the eyes of these animals are shielded from direct light by their

underwater surroundings.
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ii. The quenching of tryptophan emission in the native state

Based on fluorescence spectra data collected from the triple mutant tryptophan

proteins, it appears that Trp68 and Trp156 are responsible for the native state quenching

phenomenon in HyD-Crys. Trp68 is in domain I and Trp 156 is in domain II.

Examination of the 3-dimensional structure of HyD-Crys revealed that both are located in

similar positions within the domains.

Because both Trp68 and Trp156 exhibit anomalous quenching, it seemed likely

that the residues responsible for this reaction would be similar in the two domains, given

the high sequence similarity between domain I and domain II of HyD-Crys. Inspection of

the residues within 8 A of Trp68 and Trp 156 showed that the only potential quenchers

that were constant between the two domains were two tyrosine residues and histidine.

Tyr55, Tyr62, and His65 make a "cage" around Trp68 (Figure 3-5A), while Tyrl43,

Tyrl50, and His122 surround Trpl56 (Figure 3-5B). Chen and Barkley have suggested

that tyrosine may quench tryptophan fluorescence via a proton-transfer mechanism while

histidine may quench via excited state electron transfer (1998). Both interactions have

geometry requirements for quenching. As histidine quenches primarily when protonated

and as these experiments were performed at pH 7.0, tyrosine is the likely side chain

participating in the quenching phenomenon.

Both Trp42 and Trp 130 are located within quenching distance of cysteine and

histidine side chains. In the original report of the crystal structure of bovine yB crystallin,

Wistow et al. suggested that these interactions may have been the source of the

anomalous quenching (1983). Though the results reported here make that mechanism

less likely, the cysteine and histidine residues surrounding Trp42 and Trp 130 may protect

these tryptophans from photo damage in vivo.

iii. Tryptophan quenching and protection from UV radiation

All lens proteins are subject to irradiation in the visible and ultraviolet light range

during the human lifetime. The cornea of the eye absorbs the majority of light at

wavelengths less than 295 nm, allowing ultraviolet light at wavelengths longer than 295
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nm to pass through to the lens and to the crystallin proteins (Sliney 2002). Although the

peak of tryptophan absorbance occurs at 278 nm, like most tryptophan containing

proteins, HyD-Crys shows an absorption tail that extends well beyond 300 nm (3-3A).

It is not obvious why the tryptophan residues are conserved in the y-crystallin

family, but these residues are responsible for the major observed ultraviolet light

absorption events of y-crystallins in vitro. The well-conserved tryptophans in the y-

crystallins may have been maintained during evolution as a part of the mechanism of

protecting the retina and other eye structures from UV-B damage. This, however, would

then render the y-crystallin proteins themselves sensitive to ultraviolet light damage. In

epidemiological studies, excess UV-B exposure has been shown to be directly correlated

with an increase in mature onset cataract in humans (Taylor et al. 1988; Sliney 2002).

More specifically, photo oxidation of tryptophan residues is known to be a precursor in

the formation of brunescent cataracts and is thought to occur as a result of prolonged

exposure to ultraviolet light (Pirie 1971; Kruzel et al. 1973; Zigman et al. 1973; Davies

and Truscott 2001; Soderberg et al. 2002). To avoid covalent modification associated

with extended exposure of tryptophan residues to ultraviolet light, the crystallins would

require a means to dissipate the absorbed excited state energy.

HyD-Crys was more fluorescent in its native state than in its denatured state

(Figure 3-4). Although not emphasized in the literature, yS and yB crystallins show this

anomalous quenching of their buried tryptophans as well (Rudolf et al. 1990; Wenk et al.

2000). The existence of native-state quenching of tryptophans in a protein exposed to

ultraviolet light, but selected for its stability and solubility, may reflect a role in

protecting it from the absorption events. Prolonged exposure to ultraviolet light or other

oxidative conditions populated in the lens over time by HyD-Crys may generate ring

opening and other covalent damage well characterized in other systems

(Balasubramanian et al. 1990; Prinsze et al. 1990; Conti et al. 1988). The generation of a

charged species within the buried core of the crystallins would be expected to destabilize

the protein and cause full or partial unfolding. These species would be candidates for

precursors to the aggregated state of the crystallins found in mature onset cataracts.
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Figure 3-5

X-ray structure of Tyr-His-Tyr aromatic "cage" surrounding Trp68 (A) and Trp 156 (B).
Trp68 is enclosed by Tyr55, Tyr62, and His65, while Tyr143, Tyr150, and His122
surround Trp156 (Basak et al. 2003).
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CHAPTER IV: IDENTIFICATION OF AN INTERMEDIATE DURING

UNFOLDING AND REFOLDING OF HUMAN TD CRYSTALLIN USING

TRIPLE TRYPTOPHAN TO PHENYLALANINE MUTANT PROTEINS

A. INTRODUCTION

Human yD crystallin could be refolded to its native state at 37 °C after dilution

out of denaturant (Kosinski-Collins and King 2003). An in vitro aggregation pathway of

HyD-Crys that competed with productive refolding was identified and may be related to

the mechanism of its involvement in mature onset cataracts (Kosinski-Collins and King

2003). The structures of the intermediates in the aggregation pathway were studied

using atomic force microscopy and consisted of ordered, distinct intermediates. Using

fluorescence spectroscopy, a partially-folded hydrophobically collapsed intermediate was

also identified in the productive refolding pathway. Within the lens, partially unfolded

crystallin intermediates are likely to be recognized by the chaperone, a-crystallin (Fu and

Liang 2003; Cobb and Petrash 2002; Bron et al. 2000).

Given the two-domain structure of HyD-Crys, it seemed possible that the

intermediate identified in the aforementioned kinetic experiments had one intact domain

and one partially unfolded domain. Previous studies of a bovine homolog of HyD-Crys,

yB crystallin, showed that the protein could be denatured by urea at pH 2.0, but not at pH

7.0, and could be refolded over all reported concentrations of urea. The protein exhibited

a three-stage transition in these equilibrium studies, representing sequential denaturation

of the C-terminal and N-terminal domains at pH 2.0 (Rudolph et al. 1990; Mayr et al.

1997; Jaenicke 1999). Conversely, the closely homologous human yS crystallin, a

protein also containing two domains with four Greek keys, unfolded and refolded without

evidence of separate domain transitions (Wenk et al. 2000). HyD-Crys may possess

differential domain stability that was not detected in the apparent two-state unfolding

transition observed during equilibrium unfolding in GdnHCl. A partially-folded

intermediate with only one domain structured might be involved in the aggregation

pathway of HyD-Crys.
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We used triple mutant tryptophan constructs each containing only one of the four

native tryptophans of HyD-Crys to provide reporters of conformation for different regions

of the protein. This has made it possible to assess the thermodynamic stability and

kinetic properties of the two domains individually.

B. MATERIALS AND METHODS

i. Equilibrium refolding and unfolding

For the unfolding process, purified wild-type or mutant HyD-Crys was diluted to

10 tg/mL in increasing amounts of GdnHCl in S buffer from 0 to 5.5 M. The samples

were incubated at 37C until equilibrium was reached (about 6 hours). For the refolding

titration, 100 gg/ml protein was denatured in 5.5 M GdnHCl in S buffer at 370 C for five

hours. The protein was subsequently refolded by dilution to 10 ,gg/ml into decreasing

concentrations of GdnHCl from 5.5 to 0.55 M. The fluorescence spectra of the

equilibrated samples were determined using a Hitachi F-4500 fluorimeter equipped with

a continuous temperature control system with an excitation wavelength at 295 nm and

emission monitored from 310 to 420 nm. The excitation and emission slits were both set

to 10 nm. The ratios of emission intensities of 360 nm over 320 nm were used for data

analysis of wild type, W68-only, and W156-only, W42-only and W130-only. Fraction

unfolded values were calculated using the method of Pace et al. (1989) and denaturation

midpoints were calculated using the Kaliedagraph (Synergy Software) curve fitting

function.

ii. Unfolding fluorescence kinetics

Tryptophan environment changes with refolding were monitored using a Hitachi

4500 fluorimeter equipped with a continuous temperature control system. Native protein
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(100 ug/mL in S buffer at 370 C) was unfolded by dilution into S buffer to final

concentrations of 10 gg/ml HyD-Crys and 5.5 M GdnHCl using a syringe port injection

system exhibiting a dead-time of 1 second. Loss of global structure was monitored with

continuous excitation at 295 nm at 37C for 1 hour. Emission intensities during kinetic

unfolding were collected at 350 nm for wild type, W68-only, and W156-only while the

emission intensities were collected at 320 nm for W42-only and W130-only. The

fluorescence curves were fit to series of consecutive first-order exponentials using the

method described by Fersht (1999). The signals were all fit using the KaliedaGraph

(Synergy Software) curve fitting algorithm to mechanisms having one, two, and three

exponentials, and the best fit was selected by inspection. All proteins were unfolded in at

least two separate experiments to ensure the accuracy of the observed fluorescence and

curve fitting given the high levels of noise.

iii. Refolding fluorescence kinetics

Changes in tryptophan environment during refolding were monitored using a

Hitachi 4500 fluorimeter equipped with a continuous temperature control system. Native

protein was denatured at 100 gg/mL in 5.5 M GdnHCl in S buffer at 370 C for two hours.

The unfolded protein was refolded by dilution into S buffer to final concentrations of 10

jgg/ml HyD-Crys and 1.0 M GdnHCl using a syringe port injection system with a dead-

time of 1 second. Increase in global structure during refolding was monitored with

continuous excitation at 295 nm and emission at 350 nm for wild type, W68-only, and

W156-only and emission at 320nm for W42-only and W130-only. The fluorescence

curves were fit to series of consecutive first-order exponentials using the method

described by Fersht (1999). The signals were all fit using the KaliedaGraph (Synergy

Software) curve fitting algorithm to mechanisms having one, two, and three exponentials,

and the best fit was selected by inspection. These experiments were repeated for each

protein refolding to 1.0 M and 1.5 M GdnHC1.
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C. RESULTS

i. Equilibrium Refolding and Unfolding

Equilibrium unfolding and refolding experiments were performed on the triple

mutant tryptophan constructs of HyD-Crys to determine the stability of the individual

domains. Fluorescence spectra were collected as a function of GdnHCI concentration at

37°C as previously described (Kosinski-Collins and King 2003).

All four proteins showed a midpoint for denaturant-induced unfolding in the

range of 1-2 M GdnHCl. All four proteins also exhibited reversible refolding above 1.0

M GdnHCl. However, upon dilution to lower concentrations of denaturant, the proteins

exhibited a polymerization behavior similar to that described for wild-type HyD-Crys

(Kosinski-Collins and King 2003). Solution turbidity measurements of refolded samples

confirmed that the apparent increase in fraction unfolded values at low GdnHCl

concentrations was caused by signal obstruction due to aggregate formation (results not

shown). The equilibrium unfolding and refolding results are summarized in Table 4-1.

The equilibrium unfolding and refolding data were similar for mutant proteins

with tryptophans located in the same domain (Figure 4-1). The midpoint of the

denaturation transitions was 1.3 M for the two constructs that retain a native tryptophan

in domain I (W42-only and W68-only) and 2.0 M for those in domain II (W130-only and

W156-only). Only W156-only exhibited the slight hysteresis between unfolding and

refolding observed for wild type, having a midpoint of renaturation of 1.7 M. The

equilibrium unfolding and refolding transition of W42-only, W68-only, and W130-only

did not exhibit hysteresis. Further studies of residues in domain II near Trp156 may

elucidate the discrepancies in the unfolding and refolding pathway that are causing the

observed hysteresis.
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Figure 4-1

Equilibrium unfolding and refolding of His-tagged HyD-Crys in GdnHCl. Tryptophan
fluorescence was monitored during unfolding and refolding and all samples were
equilibrated in S buffer at a protein concentration of 10 ,gg/ml. A representative set of
fraction unfolded data is shown for wild-type (A), W42-only (B), W68-only (C), W130-
only (D), and W156-only (E). All protein data were analyzed using the ratio of
fluorescence emission intensities at 360 nm over 320 nm. Fraction unfolded values were
calculated from raw fluorescence intensity ratio measurements using the method

described by Pace et al. (1989). Unfolding (0) and refolding (0) transitions are presented
for each protein at 37°C.
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Based on the resistance of W42-only and W68-only to solvent denaturation,

domain I was less stable than domain II. Domain I exhibited an unfolding and refolding

transition midpoint at 1.3 M GdnHCl whereas domain II had a midpoint of 2.0 M

GdnHCl. This indicated that wild type equilibrium unfolding and refolding probably

contained a partially denatured intermediate not readily visible in the fluorescence spectra

of wild-type chains. However, it is important to note that if the tryptophan residues are

vital to stability of HyD-Crys, triple substitutions would likely affect the overall

thermodynamic parameters of the molecule. The altered transition midpoints of the

mutant proteins may simply reflect a global destabilization of the molecule due to these

changes.

Table 4-1

Equilibrium unfolding and refolding constants for the triple tryptophan mutant proteins of

HyD-Crys
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Wild type W42-only W68-only W130-only W156-only

Native 326 nm 327 nm 329 nm 318 nm 327 nm
Fluorescence
Emission Max
Denatured 350 nm 350 nm 350 nm 350 nm 350 nm
Fluorescence
Emission Max
Exhibit Yes No Yes No Yes
Native State
Quenching?
Exhibit Yes Yes Yes Yes Yes
Aggregation at
Low [GdnHCl]?
[GdnHC] at 1/2 2.8 M 1.3 M 1.3 M 2.0 M 2.0 M
Denaturation
[GdnHC] at 1/2 2.1 M 1.3 M 1.3 M 2.0 M 1.7 M
Renaturation



ii. Unfolding kinetics

The unfolding kinetics of HyD-Crys were studied by dilution of native protein

into 5.5 M GdnHCl and S buffer at 370C, pH 7.0 and monitoring the changes in the

fluorescence emission (Figure 4-2 and Table 4-2). A syringe injection port that exhibited

a dead-time of approximately 1 second was used as the mechanism of dilution. Figure 3-

6A shows the change in raw fluorescence signal for the four mutant proteins. Because

the quenching characteristics vary for each of the mutants, fluorescence emission of

W42-only and W130-only decreased upon denaturation whereas emission of W68-only

and W156-only increased upon unfolding. In figure 4-2B, the data have been normalized

between the native and denatured states for ease of visual comparison. As shown in

figure 4-2A, the major changes in fluorescence took place in the first thirty seconds of the

reaction. Millisecond time-scale intermediate(s) may have formed within the dead-time

of these experiments and are not directly addressed here.

The kinetic data suggest the presence of partially unfolded intermediates in the

transition between the native and unfolded states.

Wild-type His-tagged HyD-Crys was best fit with a four-state unfolding pathway

(Fersht 1999). The protein started as a native species and then formed two sequential

intermediates before becoming completely unfolded. In this model an early intermediate

(Iu1) was populated within a tl/2 of 1.0 s (Figure 4-2). A second partially unfolded

intermediate (Iu2) followed, forming with a tl/2 of 55 s. This intermediate was not as

quenched as native indicating the polar-tryptophan interaction had been disrupted. A

final unfolding transition (Iu2 -* denatured) occurred with a tl/ 2 of 120 s.

kl k2 k3

Native I Iu2 1-2 Denatured (4. 1)
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Figure 4-2

Unfolding kinetics of His-tagged HyD-Crys monitoring intrinsic tryptophan fluorescence
with excitation at 295 nm. Emission was monitored at 350 nm for wild type, W68-only
and W156-only while emission at 320 nm was used for W42-only and W130-only.
HyD-Crys was denatured by rapid dilution into 5.5 M GdnHCl at 37°C in S buffer to a
final protein concentration of 10 gg/ml. A representative protein unfolding time course is

shown for wild-type His-tagged HyD-Crys (), W42-only (U), W68-only (l), W130-

only (), and W156-only (O). Data are shown over the first 150 seconds of unfolding,
although the data were collected over the entire unfolding process (- 1 hour). Raw
fluorescence emission values (A) and data normalized between native and denatured
emission intensities (B) are shown.
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The unfolding process for the domain I tryptophan constructs, W42-only and

W68-only, exhibited two transitions corresponding to the early unfolding steps of wild

type. These two protein exhibited changes in fluorescence signal that best fit to a three-

state unfolding model. Both proteins unfolded to the intermediate conformation with an

initial t1/2 of 1.4 s. W42-only had a subsequent transition from intermediate to denatured

with a t1/2 of 18 s and W68-only had a secondary tl/2 of 46 s. These values represent rate

constants that are similar to the k, and k2 rate constants observed in wild type (Table 4-2).

In comparison, the changes in the fluorescence signals upon unfolding for the

domain II tryptophan constructs, W130-only and W156-only, proceeded more slowly

than the changes in emission for domain I. The unfolding curves for tryptophans from

domain II were best fit to a three-state unfolding process involving a partially unfolded

intermediate. Neither mutant had a kl rate constant that was as large as that observed for

wild type. Instead, the domain II mutants showed an unfolding process with rate

constants that were similar to the k2 and k3 values of wild type. W130-only had t112

values of 12 s and 150 s for its two unfolding transitions, and W156-only had comparable

values of 15 s and 36 s.

When comparing the tryptophan residues in homologous positions in the two

domains, the unfolding curve trends were similar. The fluorescence signal observed for

Trp42 was similar to that of Trp 130 in that both had two unfolding transitions and

populated an partially unfolded intermediate. The overall trend of the unfolding curve

was similar for Trp68 and Trpl56 as well and both had a hyper-fluorescent folding

intermediate. This intermediate was likely a result of rapid relaxation of the tertiary

structure surrounding Trp68 and Trp156 resulting in a partial release of the tryptophan-

quencher interaction.

In addition, examination of tryptophans in homologous domain positions showed

that domain I unfolded before domain II. Trp42 had a more rapid change of global

environment than Trp 130 while the fluorescence emission of Trp68 increased its

fluorescent signal more rapidly than Trp 156. Wild type exhibited both of these

transitions and probably underwent sequential unfolding in which domain I unfolded

before domain II and an intermediate was populated with domain II folded but domain I

denatured.
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Table 4-2

Unfolding kinetic rate constants for the triple tryptophan mutants of HyD-Crys

kl t1/2 k2 t1/2 k3 T1/2

Wild type 0.2 3.5 s 0.038 18 s 0.0057 120 s
W42-only 0.1 7.9 s 0.039 18 s NA NA

W68-only 0.2 3.5 s 0.015 46 s NA NA
W130-only NA NA 0.060 12 s 0.0045 150 s
W156-only NA NA 0.046 15 s 0.019 36 s

iii. Refolding kinetics

In order to study the kinetic rates and intermediates formed during refolding of

HyD-Crys, fluorescence emission was monitored during refolding of denatured HyD-Crys

at 37C to a final denaturant concentration of 1.0 M GdnHCl in S buffer (Figure 4-3,

Table 4-3). Solution turbidity scans affirmed that no aggregate was formed under these

conditions for any of the proteins described.

Figure 4-3A shows the changes in the raw fluorescence signal during refolding for

the four triple tryptophan mutants. The major transitions occurred within the first 500

seconds of refolding. For ease of visual comparison, Figure 4-3B shows the refolding

fluorescence signals normalized between the denatured and native states. Intermediates

formed within the first second of refolding were not detected in these experiments.

Wild-type HyD-Crys was best fit to a three-state model suggesting the presence of

one partially folded intermediate along the productive refolding pathway (Fersht 1999).

The refolding reaction exhibited an early transition from denatured to a partially refolded

intermediate with a t1/2 of 15 s and a second transition of intermediate to native with a tl/2

of 190 s. The intermediate was more fluorescent than the denatured protein and the

native state was more fluorescent than the intermediate.
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Figure 4-3

Refolding kinetics of His-tagged HyD-Crys monitoring intrinsic tryptophan
fluorescence with excitation at 295 nm. Emissions were measured at 350 nm for wild
type, W68-only and W156-only while emission wavelengths of 320 nm were used for
W42-only and W130-only. HyD-Crys was denatured in 5.5 M GdnHCl at 37°C in S
buffer for 3 hours. HyD-Crys was refolded by rapid dilution with S buffer to a final
GdnHCl concentration of 1.0 M and a final protein concentration of 10 gg/ml for wild-

type His-tagged HyD-Crys (*), W42-only (U), W68-only (n), W130-only (0), and

W156-only (O). A representative scan of raw fluorescence signals (A) and signals
normalized between native and denatured fluorescence values (B) are shown. Data are
shown over the first 5000 seconds for raw fluorescence or 500 seconds for normalized
values for refolding, although the data was collected over 2 hours.
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Native (4.2)

The fluorescence signals of the domain I tryptophans reached a native-like state

more slowly than the signals from the domain II tryptophans. The fluorescence of

unfolding curves observed for W42-only and W68-only could be best fit to one

exponential suggesting a two-state refolding pathway. These chains refolded with t2

values of 190 s and 210 s respectively and neither populated an observable intermediate.

The refolding transitions of these domain I tryptophans correspond closely with the

second transition observed in wild type. The domain I constructs do not account for the

burst fluorescence kinetics observed in wild type.

The domain II tryptophan constructs, W130-only and W156-only underwent a

refolding process which was initially faster than domain I. These two proteins had

fluorescence refolding signals that were best fit to a three-state model suggesting the

existence of an intermediate. Both had initial tl/2 values that were similar to the

transitions observed for wild type. W130-only had an initial ti 2 of 27 s and a secondary

tl/2 of 300 s while the transitions of W156-only had values of 31 s and 150 s, respectively.

W130-only had a hyper-fluorescent intermediate and was the only construct

displaying a significant transformation within the dead-time of these experiments as

shown by a very high initial fluorescence signal upon the onset of refolding (Figure 4-

3A). It is possible that a millisecond refolding intermediate was populated by W130-only

that was not readily visible using the syringe injection port system. Further studies using

stopped-flow devices should be performed on this protein to assess the significance of

this putative early transformation in the refolding pathway.

From these data, it appeared that domain II refolded first and was then followed

by refolding of domain I (Figure 4-3B). A global hydrophobic collapse likely occurred in

domain II that was then slowly followed by tight packing of the domain II tryptophans

into their proper orientation. This resulted in the population of an intermediate with a

primarily intact domain II, but a denatured domain I. While Trp130 and Trp 156 were

being tightly packed, a nearly simultaneous hydrophobic collapse of domain I occurred as

evidenced by the change in fluorescence of Trp42 and Trp68. This two-step process
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resulted in the formation of a protein with native-like tertiary structure as seen by a

stabilization in tryptophan fluorescence emission.

Table 4-3

Refolding kinetic rate constants for the triple tryptophan mutants of HyD-Crys

kl t1/2 k2 tl/2

Wild type 0.047 15 s 0.0036 190 s
W42-only NA NA 0.0036 190 s
W68-only NA NA 0.0033 210 s

W130-only 0.022 30 s 0.0023 300 s
W156-only 0.022 30 s 0.0047 150 s

D. DISCUSSION

i. Stability of crystallin triple tryptophan mutants

Equilibrium unfolding and refolding experiments in GdnHCl demonstrated that

the triple mutant tryptophan constructs were destabilized compared to wild type (Figure

4-1). Native to denatured transition midpoints of 1.3 M GdnHCl were measured for

W42-only and W68-only and 2.0 M GdnHCl for W130-only and W156-only. Wild type

had an equilibrium unfolding midpoint of 2.8 M GdnHCl. The decreased transition

midpoints of the triple tryptophan mutants are likely due to destabilization of the

molecule cause by the triple mutations. Substitution of three tryptophans for

phenylalanines probably strains the hydrophobic cores of the molecules allowing

GdnHCl to enter and denature these areas of the protein at lower concentrations than wild

type. However, HyD-Crys with single tryptophans substituted by alanine folded into

native-like soluble monomers with stabilities equal to that of wild-type HyD-Crys

(Veronica Zepeda, Melissa Kosinski-Collins, Shannon Flaugh, and Jonathan King,

unpublished results).
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Figure 4-4

Model of HyD-Crys folding and aggregation. Upon rapid dilution into refolding buffer,
denatured HyD-Crys had a putative intermediate that had domain II folded and domain I
unfolded. During unfolding in GdnHCl, domain I unfolded earlier than domain II likely
populating a similar intermediate.
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ii. Unfolding and refolding intermediates

Kinetic analysis of HyD-Crys revealed that unfolding and productive refolding

involve a similar intermediate state in which tertiary structure is absent from domain I,

but present in domain II (Figure 4-4). The population of this single domain conformer

may represent an intermediate important in the in vitro aggregation pathway previously

described (Kosinski-Collins and King 2003). Structurally distinct folding intermediates

have been shown to be important in many aggregation pathways and disease systems

(Haase-Pettingell and King 1988; Wetzel 1994; Speed et al. 1995). The domain-

swapping model would provide a mechanism to explain polymerization of such partially-

folded two-domain species into an ordered fibrillar state (Rousseau et al. 2003; Liu and

Eisenberg 2002). Additionally, such partially folded species may be related to the

crystallin conformers recognized by ao-crystallin (Das et al. 1999; Cobb and Petrash

2002). Specifically, a-crystallin has been shown to bind and recognize molten globule,

partially folded states of the fry-crystallins as well as many other non-lens proteins such

as alkaline phosphatase, alpha-lactalbumin, and apolipoprotein C-II (Tanksale et al. 2002,

Bettelheim 2002, Hatters et al. 2001)

These data provide an explanation for tertiary structure of the domain cores.

However, we do not yet know what contributions interface formation makes in the

folding of HyD-Crys. Future studies will investigate the kinetic and thermodynamic

significance of domain interface residues in folding of the molecule.
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CHAPTER V: CHARACTERIZING THE UNFOLDING AND REFOLDING

PATHWAY OF HUMAN yS CRYSTALLIN AND N143D; A DEAMIDATED

MUTANT IDENTIFIED IN AGE-ONSET CATARACTS

A. INTRODUCTION

Human mature onset cataracts affect nearly 15% of the US population over 40

years of age and are the leading cause of blindness worldwide (NEI 2002). Pathological

studies of cataractous lenses have revealed that cataracts are composed of protein

aggregates that precipitate or polymerize in lens cells of the eye (Oyster 1999).

The proteins removed from cataractous human lenses are highly covalently

modified and often have cysteine or methionine oxidations, premature truncations, and

glutamine and asparagine deamidations, and/or tryptophan ring cleavages. It is still

unclear whether these modifications are the causative agents of the cataracts or occur

after the protein aggregates. It is possible, however, that changes such as these locally or

globally destabilize the native state making it more susceptible to aggregation.

Aggregation of a few protein molecules may seed the subsequent destabilization of other

polypeptides as seen with other protein folding disorders such as Alzheimer's disease

(AD), thus facilitating cataractogenesis.

The human ao-crystallins are thought to perform chaperone-like functions in the

lens, while the y-crystallins are primarily structural proteins. The f3-crystallins are

multimeric in solution while the y-crystallins are monomeric. Human yC, yD, and yS

crystallin are three y-crystallins that are appreciably expressed in the lens.

Human yS crystallin (HyS-Crys) is the major protein component of the adult

human lens and is primarily expressed in the lens fiber cells (Harding and Crabbe 1984).

Covalently modified HyS-Crys has been recovered in protein aggregates removed from

aged, cloudy lenses. The majority of high molecular weight HyS-Crys removed from

cataractous lenses is disulfide bonded (Lapko et al. 2002, Takemoto and Boyle 2000,

Takemoto 2001).

HyS-Crys has 178 amino acids and shows high sequence similarity to other y-

crystallins. The protein is presumed to be a two domain protein with both domains
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showing high levels of sequence conservation appearing to be the result of gene

duplication during evolution (Jaenicke 2000). Like most soluble y-crystallins, HyS-Crys

is monomeric in solution, but unlike other y-crystallins, the interdomain interactions are

weak (Wenk et al. 2000).

The C-terminal domain of HyS-Crys has been crystallized and shows high

structural similarity to other members of the crystallin family of proteins (Purkiss et al.

2002). Based on the crystal packing observed in x-ray diffraction of the C-terminal

domain, a probable model of HyS-Crys structure has been constructed using two

interacting C-termini to reflect the position and structure of entire molecule. In this

model, each domain of HyS-Crys is composed of anti-parallel n-sheets arranged in two

Greek-key motifs (Figure 5-1). There are four tryptophans in HyS-Crys (two in each

domain) that may be used to monitor fluorescence changes during unfolding and

refolding.

The stability and folding of intact HyS-Crys and its isolated N- and C-terminal

domains have been studied at pH 7.0 at 200 C by Wenk et al. (2000). Equilibrium

unfolding and refolding as a function of guanidine hydrochloride (GdnHCl) concentration

demonstrated that HyS-Crys displayed two-state reversible folding under these

conditions, although Chevron plot analysis suggested the presence of a kinetic

intermediate that was not directly identified. We have further investigated this

intermediate in fluorescence studies in an attempt to elucidate its involvement in

cataractogenesis in vivo.

Deamidated variants of HyS-Crys are present in many positions in cataractous

lenses including glutamine 92, glutamine 96, and asparagine 143 (Lapko et al. 2002;

Takemoto 2001; Hanson et al. 1998). A study of the high molecular weight fraction of

the insoluble portion of cataractous lenses revealed that, of these three positions,

asparagine 143 was the preferentially deamidated polar amino acid of HyS-Crys

(Takemoto 2001). No deamidation of this residue, however, was detected in the normal

lens (Takemoto and Boyle 2000). Harding and Crabbe have suggested that the

conversion of a neutral amino acid to a charged, unprotonated amino acid occurring

during deamidation may destabilize the protein perhaps favoring protein unfolding and
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aggregation (1984). Studies of PB 1-crystallins have shown that proteins deamidated in

the connecting peptide have altered domain association characteristics (Harms et al.). We

have investigated the in vitro unfolding, refolding, and aggregation pathways of N143D

HyS-Crys and compared these to wild type to determine if an alteration in folding makes

the mutant protein more susceptible to polymerization in the lens.

B. MATERIALS AND METHODS

i. Expression and purification

Wild-type and deamidated forms of HyS-Crys were expressed from a pQE

plasmid (Qiagen) in E.Coli M15 cells. Transformed cells were grown in 100 gg/mL

Ampicillin and 25 gg/mL Kanamycin at 37°C until log phase was reached. Protein

expression was induced with addition of 1.5 mM IPTG and grown for an additional four

to six hours. The cells were pelleted by centrifugation at 5,000xg for 10 minutes. The

cells were then lysed with 50 mM Tris, 1 mM EDTA, 300 mM NaC1, pH 8.0 and subject

to eight freeze-thaw cycles. The lysed pellets were dialyzed at 40 C three times against

0.1 M Na2SO4, 0.06 M NaH 2PO4, pH 7.0. The protein was resolved on a SW3000 gel

filtration column and the yS peak was dialyzed against distilled water with three changes

at 40 C. Protein concentration was determined using a Bradford assay and then the

samples were lyophilized (Bradford 1976). The protein samples were stored at -20°C

and were weighed and diluted directly into the buffers as needed for the described

experiments.

His-tagged HyD-Crys was purified as described from a pQE. 1 plasmid (Qiagen)

(Kosinski-Collins et al. 2003). The protein contained an N-terminal 6 histidine tag to

assist with purification.
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A

Figure 5-1

Ribbon structure of the crystal packing of two C-termini of wild-type human yS crystallin
showing the location of residue 143 (Purkiss et al. 2002). Both the top view (A) and side
view (B) are shown.
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ii. Circular dichroism

CD spectra of wild-type and mutant HyS-Crys proteins were collected on an Aviv

Associates (Lakewood, NJ) model 202 circular dichroism spectrometer. All readings

were performed on 0.3 mg/mL HyD-Crys protein samples in 10 mM NaPO4, 5 mM DTT,

1 mM EDTA, pH 7.0. For wavelength spectra, CD was measured every 1 nm from 260

nm to 200 nm and averaged over 5 seconds. For thermal stability, CD was measured at

220 nm every 0.5°C between 20°C and 90°C nm. The protein was equilibrated at each

temperature for one minute and the signals were averaged over 5 seconds.

iii. Ultraviolet light absorbance

Ultraviolet light spectra of proteins were collected on a Varian Cary 50 Bio

ultraviolet light spectrometer. Concentration was calculated by measuring protein

absorbance at 280 nm and using an extinction coefficient of 41.04 mM-1 for both wild-

type and N143D HyS-Crys and 41.04 mM -1 for his-tagged HyD-Crys in 6.0 M GdnHCl.

Wild-type and N143D HyS-Crys had molecular weights of 21,006 Da. Mass

spectroscopy was performed on the purified protein to confirm that no DNA mutations

had been accumulated during the PCR plasmid preparation procedure. Isoelectric

focusing was used to confirm the presence of the deamidation mutation. His-tagged

HyD-Crys had a molecular weight of 21,844 Da.
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iv. Fluorescence emission spectra

Fluorescence emission spectra were read on a Hitachi F-4500 fluorimeter with a

continuous flow temperature control system. Proteins were diluted to a concentration of

200 mM ammonium acetate, pH 7.0 or 200 mM ammonium acetate containing 6 M

GdnHCl. Samples were excited at 295 nm and emission was measured from 310 nm to

420 nm. The excitation and emission slit widths were both set to 10 nm. The

background fluorescence of buffer or buffer and 6 M GdnHCl was subtracted out from

the sample reading. Fluorescence emission maxima were calculated by averaging signals

over every 5 nm and selecting the midpoint of the five signals that exhibited the highest

average.

v. Equilibrium refolding and unfolding

For the unfolding process, 100 gg/mL purified wild-type or N143D HyS-Crys was

diluted to 10 gg/mL in increasing amounts of GdnHCl in 10 mM NaPO4, 5 mM DTT, 1

mM EDTA, pH 7.0, from 0 to 5.5 M. The samples were incubated at 37°C until

equilibrium was reached (about 6 hours). For the refolding titration, 100 jgg/ml protein

was denatured in 5.5 M GdnHCl in at 37°C for five hours. The protein was subsequently

refolded by dilution to 10 gg/ml into decreasing concentrations of GdnHCl from 5.5 to

0.55 M. The fluorescence spectra of the equilibrated samples were determined using a

Hitachi 4500 fluorimeter equipped with a continuous temperature control system with an

excitation wavelength at 295 nm and emission monitored from 310 to 420 nm. The

excitation and emission slits were both set to 10 nm. The ratios of emission intensities of

360 nm over 320 nm were used for data analysis. Fraction unfolded values were

calculated using the method of Pace et al. (1989) and denaturation midpoints were

calculated using the Kaliedagraph (Synergy Software) curve fitting function.
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vi. Unfolding fluorescence kinetics

Tryptophan environment changes with refolding were monitored using a Hitachi

F-4500 fluorimeter equipped with a continuous temperature control system. Native

protein at 100 ug/mL in 10 mM NaPO4 5 mM DTT, 1 mM EDTA, pH 7.0 at 370C was

unfolded by dilution to final concentrations of 10 gg/ml HyD-Crys and 5.5 M GdnHCl

using a syringe port injection system exhibiting a dead-time of 1 second. Loss of global

structure was monitored with continuous excitation at 295 nm at 37C for 2 hours.

Emission intensities during kinetic unfolding were collected at 350 nm for wild-type and

N143D HyS-Crys. The fluorescence curves were fit to series of consecutive first-order

exponentials using the method described by Fersht (1999). The signals were all fit using

the Kaliedagraph (Synergy Software) curve fitting algorithm to mechanisms having one,

two, and three exponentials, and the best fit was selected by inspection. All proteins were

unfolded in at least two separate experiments to ensure the accuracy of the observed

fluorescence and curve fitting.

vii. Refolding fluorescence kinetics

Changes in tryptophan environment during refolding were monitored using a

Hitachi F-4500 fluorimeter equipped with a continuous temperature control system.

Native protein was denatured at 100 gg/mL in 5.5 M GdnHCl in 10 mM NaPO 4, 5 mM

DTT, 1 mM EDTA, pH 7.0 at 37°C for two hours. The unfolded protein was refolded by

dilution into 10 mM NaPO 4, 5 mM DTT, 1 mM EDTA, pH 7.0 to final concentrations of

10 gg/ml HyD-Crys and 0.55 M GdnHCl using a syringe port injection system with a

dead-time of 1 second. Increase in global structure during refolding was monitored with

continuous excitation at 295 nm and emission at 350 nm for both wild-type and N143D
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HyS-Crys. The fluorescence curves were fit to series of consecutive first-order

exponentials using the method described by Fersht (1999). The signals were all fit using

the Kaliedagraph (Synergy Software) curve fitting algorithm to mechanisms having one,

two, and three exponentials, and the best fit was selected by inspection. These

experiments were repeated for each protein.

viii. Refolding native gel electrophoresis

Wild-type and N143D HyS-Crys was unfolded in 10 mM NaPO4, 5 mM DTT, 1

mM EDTA, 5.5 M GdnHCl overnight at 37°C. The protein was then refolded by dilution

in 10 mM NaPO4, 5 mM DTT, 1 mM EDTA at 37°C to a final protein concentration of

10 gg/mL for various times. Native gel loading buffer containing DTT was added to

each sample and the protein was placed on ice. Samples were separated by

electrophoresis through a 9% polyacrylamide gel. The gel was run for three hours at 4°C.

Visualization was performed by silver staining as described (Rabilloud et al. 1988).

C. RESULTS

i. Purification and structure assignment of HS-Crys

Both wild-type and N143D HyS-Crys expressed in the soluble portion of the cell

lysate and folded into a native-like conformations.

Far-UV CD of the native proteins showed a primarily 5-sheet structure for wild-

type HyS-Crys and the N143D mutant protein 37C, pH 7.0 (data not shown). Both

proteins had a characteristic 5-sheet minimum at 218 nm indicating that the native states

were similar for both proteins.
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Figure 5-2

Fluorescence emission of native (·) and denatured (0) HyS-Crys. Protein was excited at
295 nm and emission spectra were collected from samples of 10 gg/mL protein in 200
mM ammonium acetate, pH 7.0 or buffer and 6 M GdnHCl at 37°C. Fluorescence
spectra of wild-type (A) and N143D (B) Hys-Crys are shown.
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The overall character of the fluorescence emission spectra of wild-type and the

N143D mutant of HyS-Crys were assessed by exciting the protein at 295 nm and

observing fluorescence emission intensities from 310 to 420 nm in either 200 mM

ammonium acetate, pH 7.0 buffer or buffer and made up to 6.0 M GdnHCl (Figure 5-2

and Table 5-1). Wild-type HyS-Crys had a native fluorescence emission maximum of

329 nm, and was quenched in the native state.

The denatured protein exhibited a fluorescence emission maximum of 350 nm.

This is similar to data previously reported (Wenk et. al. 2000). N143D displayed a

fluorescence emission maximum of 330 nm in the native state and 350 nm in the

denatured state. The N143D mutant displayed similar fluorescence and quenching

characteristics as wild-type although the overall fluorescence of the native state appeared

to be slightly higher.

ii. Stability of human yS crystallin

To assess the stability of the proteins, equilibrium unfolding and refolding

experiments were performed on both mutant and wild-type HyS-Crys as a function of

GdnHCl concentration (Figure 5-3). Fluorescence spectra were collected at 37C, pH 7.0

as previously described (Kosinski-Collins and King 2003).

Briefly, for unfolding, protein was added to increasing concentrations of GdnHCl

and allowed to incubate until equilibrium was reached. For refolding, the protein was

denatured for 5 hours and then refolded by addition to samples of decreasing GdnHCl

concentration and incubated until equilibrium was reached.

Both proteins exhibited a single, smooth transition between native and denatured

with no evidence of any stabilized intermediates. The refolding and unfolding

equilibrium curves were indistinguishable between the two proteins each having the same

transition midpoints at 37C.

These reversible, two-state protein unfolding/refolding transitions were analyzed

using the method described by Pace et al. (1997). Both proteins showed a midpoint for

denaturant-induced unfolding and refolding at 2.3 M GdnHCl with m-values of 5.5. Wild
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type had a AGH2 0 of 13 kcal/mol while N143D exhibited a AGH 20 of 12 kcal/mol. The

equilibrium unfolding and refolding results are summarized in Table 5-1.

Table 5-1

Equilibrium unfolding and refolding constants of HyS-Crys

Native Denatured AGH20 m- Concentration of Melting
Fluorescence Fluorescence value GdnHCl at /2 Temp
Emission Max Emission Max denatured

Wild type 329 nm 350 nm 13 kcal/mol 5.5 2.3 M 76°C
N143D 330 nm 350 nm 12 kcal/mol 5.5 2.3 M 76°C

Wild-type HyS-Crys showed the same characteristics at 25C as at 37°C. There

was no evidence of hysteresis in that the equilibrium unfolding and refolding equilibrium

transitions were the same (Figure 5-3C).

To further assess the stability of the proteins, CD temperature melts were

performed on wild-type and N143D HyD-Crys (Figure 5-4). CD measured at 220 nm in

10 mM NaPO4, 5 mM DTT, and 1 mM EDTA, pH 7.0 as a function of temperature.

Both proteins displayed a single unfolding transition with a midpoint 76°C. Solution

turbidity measurements indicated that both proteins aggregated at this temperature and

neither could be refolded by decreasing the temperature of the solution.
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Figure 5-3

Equilibrium unfolding and refolding of HyS-Crys in GdnHCl. Tryptophan fluorescence
was monitored during unfolding and refolding and all samples were equilibrated in 10
mM NaPO4, 5 mM DTT, 1 mM EDTA, pH 7.0 at a protein concentration of 10 ,gg/ml. A
representative set of fluorescence data is shown for wild-type HyS-Crys at 37C (A),
N143D 37°C (B), and wild-type at 250 C (C). All protein data was analyzed using the

ratio of fluorescence emission intensities at 360 nm over 320 nm. Unfolding (0) and

refolding () transitions are presented for each protein.
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Figure 5-4

Temperature denaturation of HyS-Crys monitored with circular dichroism. Protein was
prepared at 300 pg/mL in 10 mM NaPO 4, 5 mM DTT, 1 mM EDTA, pH 7.0. The far-
UV CD was monitored at 220 nm as the temperature was increased in the cuvette by
0.5°C for both wild-type HyS-Crys (A) and N143D (B).
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iii. Unfolding kinetics

The unfolding kinetics of HyS-Crys was studied by dilution of native protein into

5.5 M GdnHCl at 37°C and monitoring the changes in the fluorescence emission (Figure

5-5, Table 5-2). A syringe injection port that exhibited a dead-time of approximately 1

second was used as the mechanism of dilution. Because of the quenching characteristics

of HyS-Crys, fluorescence emission intensity increased upon unfolding for the proteins.

Millisecond time-scale intermediate(s) may have formed within the dead-time of these

experiments and are not directly addressed here.

Table 5-2

Unfolding kinetic rate constants of HyS-Crys

kl t1/2 k 2 tl1 /2
Wild type 0.13 5.3 s 0.0037 190 s
N143D 0.16 4.3 s 0.0077 90 s

The kinetic data suggest the presence of partially unfolded intermediates in the

transition between the native and unfolded states for both wild type and N143D. The

intermediates appear to be hyper-fluorescent in both species.

The wild type unfolding signals were best fit with a three-state unfolding pathway

(Fersht 1999). The protein started as a native species and then formed an intermediate

before becoming completely unfolded. In this model, an early intermediate (Iu) was

populated within a tl/2 of 5.3 s. A final unfolding transition (Iu - denatured) occurred

with a t1/2 of 190 s.

kN k2

Native > Iul - > Denatured (1)
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The N143D mutant displayed an unfolding fluorescence signal that fit with similar

unfolding kinetic rates as wild-type. The unfolding intermediate formed with a t2 of 4.3

s and the intermediate unfolded with a t/ 2 of 90 s.

These experiments were repeated in the absence of DTT and similar results were

obtained for both the wild-type and mutant HyS-Crys.

iv. Refolding kinetics

In order to study the kinetic rates and intermediates formed during refolding of

HyS-Crys, fluorescence emission was monitored during refolding of denatured HyS-Crys

at 37C to a final denaturant concentration of 0.5 M GdnHCl in 10 mM NaPO4, 5 mM

DTT, 1 mM EDTA, pH 7.0 (Figure 5-6, Table 5-3). Solution turbidity scans affirmed

that no aggregate was formed under these conditions for either wild-type or mutant HyS-

Crys.

Table 5-3

Refolding kinetic rate constants of HyS-Crys

kl tl/2 k2 t1/2

Wild type 0.084 8.3 s 0.0034 200 s
N143D 0.12 5.8 s 0.0014 490 s

Figure 6 shows the changes in the raw fluorescence signal during refolding for

both wild-type and N143D HyS-Crys. The major transitions occurred within the first 20

minutes of refolding. Intermediates formed within the first second of refolding were not

detected in these experiments.

Wild-type HyS-Crys was best fit to a three-state model suggesting the presence of

one partially folded intermediate along the productive refolding pathway (Fersht 1999).

The refolding reaction exhibited an early transition from denatured to a partially refolded

intermediate with a t1/2 of 8.3 s and a second transition of intermediate to native with a tl/2

of 200 s.
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Figure 5-5

Unfolding kinetics of HyS-Crys monitoring intrinsic tryptophan fluorescence with
excitation at 295 nm. Emissions were monitored at 350 nm for wild type and N143D.
HyS-Crys was denatured by rapid dilution into 5.5 M GdnHCl at 370 C in 10 mM NaPO 4,
5 mM DTT, 1 mM EDTA, pH 7.0 to a final protein concentration of 10 jig/ml. Raw
fluorescence signal from a representative protein unfolding time course is shown for
wild-type (A) and N143D (B). Data are shown over the first 600 seconds of unfolding,
although the data were collected over the entire unfolding process (- 1 hour).
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Figure 5-6

Refolding kinetics of HyS-Crys monitoring intrinsic tryptophan fluorescence with
excitation at 295 nm and emission at 350 nm. HyD-Crys was denatured in 5.5 M
GdnHCl at 37°C in 10 mM NaPO4, 5 mM DTT, 1 mM EDTA, pH 7.0 for 3 hours. HyS-
Crys was refolded by rapid dilution with S buffer to a final GdnHCl concentration of 0.55
M and a final protein concentration of 10 gg/ml for wild-type (A) and N143D (B) HyS-
Crys. A representative scan of raw fluorescence signals are shown over the first 600
seconds of refolding, although the data were collected over 2 hours.
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kl k2

Denatured -> I - Native (2)

The fluorescence signal observed during the refolding of N143D could be fit to a similar

three state folding pathway as that observed for wild-type. The intermediate formed with

a t/ 2 of 5.8 s and then intermediate to native transition occurred with a tl/ 2 of 490 s.

We repeated these refolding fluorescence experiments in the absence of DTT and

obtained similar results for both proteins with no evidence of aggregation.

Wild-type and N143D HyS-Crys was refolded for various times and the resulting

species were resolved on a 9% native polyacrylamide gel.

For wild-type HyS-Crys, after five minutes of refolding one band was visible in

the lanes that corresponded to productively refolded native protein (Figure 5-7). An

intermediate formed in during the first 4 minutes of refolding. The intermediate did not

resolve into a discreet band, but was visualized as a wide, smeared mass of protein that

migrated significantly farther than the native protein. The native gel observation of the

formation of an intermediate within the first few seconds of refolding that disappears

within 4 minutes is consistent within the intermediate predicted in fluorescence

experiments.

For N143D HyS-Crys, a band corresponding to the migration distance of native

N143D was observed after 4 minutes of refolding (Figure 5-8). An intermediate that

migrated a farther distance than native formed within the first few seconds of refolding

similar to wild type. Traces of this intermediate, however, were visible in lanes

corresponding to up to 15 minutes of refolding. How and why this intermediate is

stabilized in N143D may provide insight into the process and effect of deamidation in the

lens.
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IV. DISCUSSION

i. Aggregation and refolding in human yS crystallin

HyS-Crys and HyD-Crys are found in the aggregates extracted from old

cataractous lenses (Lapko et al. 2002, Takemoto and Boyle 2000, Takemoto 2001,

Hanson et al. 2000). It is not known whether these proteins are co-aggregates or whether

their aggregation pathways are independent. An in vitro aggregation pathway was

identified for HyD-Crys when the protein was unfolded in GdnHCl and then refolded by

dilution to concentrations of GdnHCl lower than 1.0 M (Kosinski-Collins and King

2003). When wild-type and N143D HyS-Crys were refolded under the same conditions,

there was no evidence of aggregation in light scattering or solution turbidity

measurements (Figure 5-2).

ii. Deamidation at position 143 in human yS crystallin

Many posttranslationally modified proteins have been identified from cataractous

lenses. Studies have revealed that deamidation at asparagine 143 in HyS-Crys is a

primary covalent modification observed in the insoluble portion of cataractous human

lenses (Takemoto 2001). It is thought that deamidation may destabilize the native state

of HyS-Crys by charge addition, or alternately, the oxidative damage may follow initial

unfolding or aggregation.

The stability of wild-type and N143D HyD-Crys were assessed through

equilibrium unfolding and refolding experiments. The AGH2O of wild type was 13

kcal/mol and was 12 kcal/mol for N143D. Both proteins exhibited a two-state

denaturation transition at 2.3 M GdnHCl and neither protein exhibited any evidence of

hysteresis as observed with HyD-Crys (Kosinski-Collins and King 2003). In addition,

temperature melt analysis in the absence of GdnHCl revealed that both proteins had the

same denaturation temperature of 76°C. Together, this data demonstrates that N143D

was not significantly destabilized as compared to wild-type HyS-Crys.
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Figure 5-7

Wild-type HyS-Crys was unfolded in 5.5 M GdnHCI overnight and then refolded by
dilution into 10 mM NaP04, 5 mM DTT, 1 mM EDTA, pH 7.0. From right to left, the
gel shows folded wild-type HyS-Crys and samples of 30 min., 25 min., 20 min., 15 min.,
10 min., 9 min., 8 min., 7 min., 6 min., 5 min., 4 min., 3 min., 2 min., 1.5 min., 1 min.,
0.5 min., and 0 min. of refolding. The location of the native protein and intermediate
bands are designated. The gel was run for three hours at 4°C.
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Figure 5-8

N143D HyS-Crys was unfolded in 5.5 M GdnHCI overnight and then refolded by dilution
into 10 mM NaP04, 5 mM DTT, 1 mM EDTA, pH 7.0. From right to left, the gel shows
folded N143D HyS-Crys and samples of30 min., 25 min., 20 min., 15 min., 10 min., 9
min., 8 min., 7 min., 6 min., 5 min., 4 min., 3 min., 2 min., 1.5 min., 1 min., 0.5 min., and
o min. of refolding. The location of the native protein and intermediate bands are
designated. The gel was run for three hours at 4°C.
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We further studied the in vitro unfolding and refolding pathway of wild-type and

N143D HyD-Crys. During unfolding, fluorescence changes revealed that both proteins

went through a partially denatured, hyper-fluorescent intermediate (Table 5-2). Based on

the time of formation of the intermediate for wild-type and N143D HyS-Crys, the

partially unfolded species more than likely had the same overall structure for both

proteins. The fluorescence signals observed during the refolding of wild-type and

N143D HyD-Crys are similar as well. Both proteins refolded through a partially

unfolded conformation and had similar kinetic rate constants (Table 5-3). This is more

than likely the intermediate proposed to exist in wild type during isolated domain studies

performed by Wenk et al. (2000). It appeared as though this intermediate was longer

lived in N143D than in wild-type HyS-Crys in native gels, although this may simply be

an artifact of the ice incubation of the protein before resolution on the gel. We cannot

precisely determine whether or not the unfolding and refolding intermediates were the

same for either protein. Overall, these data suggest that an aspartic acid at position 143

did not affect the overall characteristics of protein folding in vitro.

Our results reveal that the unfolding and refolding pathways of wild-type and

N143D HyS-Crys were very similar and N143D was not destabilized as compared to wild

type. This indicated that the final deamidated form of aspartic acid at position 143 was

not important for HyS-Crys folding and stability. This, however, does not reveal the role

of deamidation to HyS-Crys destabilization and unfolding in general. Previous studies

have suggested that deamidation in proteins may occur via a succinimide intermediate

(Fujii et al. 1999; Aswad et al. 2000). Specifically, studies by Takemoto et al. have

shown that this is likely in the N143D mutation of HyS-Crys (2001). Insoluble HyS-Crys

removed from cataractous lenses contained both L-beta-aspartate and L-alpha-aspartate

indicating that it formed through an L-Succinimidyl intermediate. It is possible that it is

the succinimidyl intermediate of N143D that alters HyS-Crys folding and stability in vivo

and future studies should examine the affect of the cyclic intermediate on the protein.
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iii. Role of chaperonin recognition

The discussion above assumes that the impact of deamidation is to perturb the

initial conformation of HyS-Crys creating a disrupted structure that is more prone to

proceed down an aggregation pathway. As noted earlier, the recovery of deamidated

proteins from the cataract leaves open the question of whether the events are primary or

secondary.

An alternate possibility is that deamidation may interfere with recognition of

HyS-Crys by the a-crystallins or a deamidated residue in HyS-Crys may serve as the a-

crystallin recognition site directly. In fact, deamidated amino acids may be among the

signals that a-crystallin uses to recognize non-native crystallin species. In such models

some initial stress would result in partial unfolding, sensitizing the protein to oxidative

damage.

Unfortunately it is not known whether the oxidized Py-crystallins found in

cataracts are complexes with a-crystallin or with each other. Inclusion in the cataract

could reflect either efficient recognition, or failure of recognition of a-crystallin. To sort

this out, we should determine the partners of oxidized crystallins within the cataract, and

study the interaction of HyS-Crys and a-crystallin in vitro.
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CHAPTER VI: RECRUITMENT OF HUMAN yS CRYSTALLIN TO THE

HUMAN yD CRYSTALLIN AGGREGATION PATHWAY

A. INTRODUCTION

HyS-Crys has 69% sequence similarity and 50% sequence identity with HyD-

Crys. HyS-Crys has a three amino acid N-terminal extension of Ser-Lys-Thr and a two

amino acid domain linker extension of His-Leu not present in HyD-Crys. HyS-Crys was

historically thought to be present only in the lens fiber cells; however, recent evidence

from Beebe and colleagues suggests that it may be in the lens epithelium as well.

HyD-Crys is expressed primarily early in life and predominately in the lens

nucleus. HyD-Crys could be refolded to its native state at 37C after dilution out of

denaturant (Kosinski-Collins and King 2003). An in vitro aggregation pathway of HyD-

Crys that competed with productive refolding was identified and may be related to the

mechanism of its involvement in mature onset cataracts (Kosinski-Collins and King

2003). It is important to note, however, that native, soluble, HyD-Crys is thought to be

more nuclear in the lens and HyS-Crys is thought to be more cortical. It is unlikely,

therefore, that disrupted HyD-Crys localized to the lens nucleus would be able to recruit

native, unsecreted HyS-Crys. But, because both HyD-Crys and HyS-Crys are found in

cataract, we have investigated whether or not aggregation of HyD-Crys can recruit or

seed HyS-Crys aggregation in vitro.

B. MATERIALS AND METHODS

HyD-Crys and HyS-Crys were unfolded in 5.5 M GdnHC1 at 100 ug/mL overnight

at 37°C. Equal amount of denatured or native HyS-Crys and denatured HyD-Crys were

mixed and then refolded by a ten-fold dilution into 10 mM NaPO 4, 5 mM DTT, 1 mM

EDTA, pH 7.0 to a final denaturant concentration of 0.55 M. For the time-dependent

aggregation recruitment experiments, samples of denatured HyS-Crys were begun
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refolding and then equivalent amounts of denatured HyD-Crys were added to the samples

after 0 minutes, 2 minutes, 10 minutes, 30 minutes, 1 hour, and 2 hours of HyS-Crys

refolding. The protein samples were allowed to refold together at 37°C for 3 hours and

then the solutions were centrifuged at 40,000 RPM for 1 hour. The supernatant was

decanted and the pellet was resolubilized in sodium dodecyl sulfate (SDS) containing P-

mercaptoethanol. The SDS containing protein samples were then boiled at 95°C for 30

minutes and resolved on a 14% SDS polyacrylamide gel. The protein bands were then

visualized using silver nitrate staining as described (Rabilloud et al. 1988).

In the case of the time-dependent aggregation recruitment experiment, the overall

amount of protein found in each lane was quantitated by measuring the intensity of the

bands. The calculated values were then corrected for the background lane intensity and

then normalized to the most intense band which was the HyD-Crys band observed from

HyS-Crys and HyD-Crys mixing at 0 minutes for each separate experiment. Final values

were calculated by averaging data collected from two separate experiments.

C. RESULTS

Though HyS-Crys did not aggregate on its own under the aforementioned

refolding conditions, we were interested in its behavior in the presence of aggregating

HyD-Crys.

Wild-type His-tagged HyD-Crys was denatured in 5.5 M GdnHCl and then

refolded to 0.55 M GdnHCl. Previous studies have shown that HyD-Crys aggregates

under these conditions (Kosinski-Collins and King, 2003). The resulting solution was

centrifuged at high speed and the aggregate was resolubilized in SDS and boiled. Lane 2

of figure 6-1A and 6-1B show the resolution of this species on a polyacrylamide gel.

There was only one band in each of these lanes corresponding to approximately 20,000

Da. There was no evidence of any high molecular weight species that were resistant to

SDS denaturation.

Wild-type His-tagged HyD-Crys and wild-type HyS-Crys were denatured

separately in 5.5 M GdnHCl at 37°C. Equivalent amounts of both protein solutions were

added together and refolded by rapid dilution into phosphate buffer at pH 7.0. When the
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resulting aggregate was resolubilized in SDS and resolved on a 14% SDS polyacrylamide

gel, it contained two major bands that migrated to slightly different distances (Figure 6-

1A, Lane 1). These bands corresponded to the migration distance of HyS-Crys

monomers and HyD-Crys monomers of approximately 20,000 Da. SDS denatured His-

tagged HyD-Crys migrates further on a polyacrylamide gel than HyS-Crys despite having

a larger molecular weight. In mass spectroscopy analysis of His-tagged HyD-Crys, we

have found that the His-tag degrades. It is possible that during SDS boiling and

denaturation, the His-tag of HyD-Crys is more susceptible to degradation thus decreasing

the predicted molecular weight of the protein and altering the gel migration distance. In

addition to the two major crystallin monomer bands, there were a large number of higher

molecular weight species resistant to SDS denaturation. The most visible bands

corresponded to species of a molecular weight between approximately 40,000 Da and

45,000 Da. This more than likely represents dimer species of various combinations of

HyS-Crys and HyD-Crys. There were several bands of lower molecular weight than

20,000 Da that probably represent degradation products of HyS-Crys and HyD-Crys. The

N143D mutant of HyS-Crys co-aggregated with HyD-Crys to approximately the same

degree as wild-type HyS-Crys and showed similar high molecular weight species (data

not shown). This data seems to indicate that the dimer is more resistant to SDS

denaturation than the aggregate.

When native HyS-Crys was added to refolding HyD-Crys, however, only one

band was visible on the SDS polyacrylamide gel corresponding to the migration distance

of HyD-Crys (Figure 6-1B, Lane 1). This indicated that native HyS-Crys could not be

recruited to the HyD-Crys in vitro aggregate under these conditions.

The recruitment of wild-type and N143D HyS-Crys to the HyD-Crys aggregate

was further studied in a time dependent manner. Denatured samples of HyS-Crys were

begun refolding and an equivalent amount of denatured HyD-Crys was added after 0, 2,

10, 30, 60, and 120 minutes. The samples were allowed to completely refold together

overnight and were then centrifuged at high speed. The resulting pellet was resolubilized

in SDS, boiled, and separated on a 14% acrylamide gel (Figure 6-2).

Both HyS-Crys and HyD-Crys were observed in all pellets although the amount of

protein incorporated into the aggregate decreased as HyS-Crys was given additional time
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to refold. Even though the overall concentrations of HyD-Crys and HyS-Crys were the

same, the amount of HyD-Crys found in the pellet was always more than HyS-Crys. The

intensity of the wild-type HyS-Crys resuspended pellet band was approximately 40-70%

of that of HyD-Crys. The intensity of the N143D HyS-Crys band was about 20-45% of

the HyD-Crys band. This data suggests that wild-type HyS-Crys is more prone to be

recruited to the HyD-Crys aggregate than N143D.

The intensity of the bands of HyS-Crys and HyD-Crys were quantitated and the

amount of protein relative to that observed when HyS-Crys and HyD-Crys were refolded

together from 0 minutes was determined (Figure 6-3). The intensity of the monomer

bands observed for wild-type and N143D HyS-Crys aggregation with HyD-Crys

decreased proportionally as a function of time. In the case of both wild-type and N143D

HyS-Crys, at least some of the protein refolded for two hours could still be pulled into the

HyD-Crys aggregate as demonstrated by the presence of a HyS-Crys monomer band in

these lanes. This indicated that perhaps some non-native protein was present in these

samples and was susceptible to aggregation.

In all samples of the time-dependent aggregation experiment, SDS-resistant, high

molecular weight aggregate formed. Additionally, there was one aggregate species that

was found in wild-type HyS-Crys samples that was not present in N143D samples. This

band is indicated on Figure 6-2.

D. DISCUSSION

HyS-Crys did not aggregate on its own when refolded by dilution out of

denaturant in vitro. Solution turbidity measurements of refolded HyS-Crys in both

kinetic and equilibrium experiments showed no evidence of polymerized protein species.

Another member of the y-crystallin protein family, HyD-Crys, aggregates when refolded

under these conditions (Kosinski-Collins and King, 2003).
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1 2

Recruitment of HyS-Crys to the HyD-Crys aggregate. Denatured (A) or native (B) HyS-
Crys protein was added to aggregating HyD-Crys. The solution was allowed to refold for
5 hours and then the resulting aggregate was resolubilized by boiling in SDS. The
resolubilized pellet was resolved on a 14% polyacrylamide gel. Lane 1 is SDS denatured
HyD-Crys aggregate alone and lane 2 is HyD-Crys aggregating with HyS-Crys.
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Figure 6-2

Time dependent recruitment of wild-type and N143D HyS-Crys to the HyD-Crys
aggregate. Refolding of denatured HyS-Crys was initiated and an equal concentration of
denatured HyD-Crys was added after 0, 2, 10, 30, 60, or 120 minutes. The protein
samples were allowed to refold together overnight and then the solutions were
centrifuged at 40,000 RPM. The resolubilized pellet was resolved on a 14%
polyacrylamide gel. Lanes 1 through 6 show the time dependent refolding and
aggregation of wild-type HyS-Crys and HyD-Crys, while lanes 7 to 12 show N143D
HyS-Crys and HyD-Crys. The time of addition of denatured HyD-Crys after HyS-Crys
refolding was begun is indicated at the top of the lanes.
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Figure 6-3

Quantitation of loss of band intensities for time dependent recruitment of HyS-Crys to the
HyD-Crys aggregate. The overall intensity of the monomer bands of both HyD-Crys and
HyS-Crys were measured and averaged from two separate refolding/aggregation
experiments. The percentages of protein found in the bands were calculated relative to
the most intense band observed in the experiment which was always the HyD-Crys
monomer band visualized at 0 minutes. Results from wild-type (A) and N143D (B) HyS-
Crys aggregation recruitment are shown. The relative amounts of the HyS-Crys (,
dotted line) and HyD-Crys (, solid line) monomers are depicted.
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Although denatured HyS-Crys did not aggregate alone in vitro, it could be

recruited to aggregating HyD-Crys as shown by the double band present in SDS gel of

the solubilized pellet. Native HyS-Crys, however, could not be recruited to the HyD-Crys

aggregate. The coaggregation phenomenon may have implications for in vivo

polymerization and cataract formation.

At least some HyS-Crys could be recruited to the HyD-Crys aggregate after it had

been refolded for up to two hours (Figure 6-2). This indicated that at least some non-

native species was present in these samples. There may have been a minutely populated

slow folding species of HyS-Crys. Kinetic refolding experiments showed that all

tryptophans had reached a native-like environment by thirty minutes. This suggested that

the non-native species of HyS-Crys that could be recruited to the HyD-Crys aggregate at

two hours had proper hydrophobic core packing but had incorrect domain interaction or

f3-strand alignment.

When HyS-Crys and HyD-Crys were refolded together, high molecular weight

species of approximately 40,000 to 45,000 Da were formed that could not be denatured

with SDS. These species were most likely dimers of various combinations of HyS-Crys

and HyD-Crys, because refolding HyD-Crys did not form any SDS resistant multimers.

These dimers may represent a highly stable species capable of nucleating further

aggregation in vitro. Further studies should address the mechanism of coaggregation of

HyS-Crys and HyD-Crys and determine the overall composition of the polymerized state.

When aggregated proteins are removed from old, cataractous lenses, they contain

many different crystallin proteins including HyS-Crys and HyD-Crys. When HyD-Crys

becomes destabilized in the lens and begins to aggregate, perhaps other destabilized

proteins that cannot necessarily polymerize on their own such as HyS-Crys can be

recruited into the oligomerizing HyD-Crys species or vise versa. As the age of the

protein increases, this results in the accumulation of covalent modifications such as

deamidation and the formation of a succinimide intermediate of HyS-Crys. These

covalent changes may provide just enough tertiary structure destabilization of HyS-Crys

to allow it to be pulled into the HyD-Crys aggregate. High molecular weight species

removed from the lens should be studied to see if they can seed in vitro crystallin

aggregation.
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CHAPTER VII: CONCLUDING DISCUSSION

A. AROMATIC-AROMATIC RING INTERACTIONS IN HUMAN yD CRYSTALLIN

The nuclear crystallins present in the human eye lens are expressed early in life

and the proteins are present at up to 700 mg/mL. There is no protein turnover in mature

lens cells and, therefore, the crystallins are exposed to electromagnetic radiation and

other oxidizing stresses throughout the human lifetime. For all of these reasons, the

crystallin proteins must be extremely stable to stay in solution for proper function.

Below we consider the possibility of a network of aromatic interactions contributing to

crystallin stability.

Human yD crystallin (HyD-Crys) is a protein containing an extensive network of

aromatic ring interactions including four tryptophans, fourteen tyrosines and six

phenylalanines (Figure 7-1). Raman spectroscopy has revealed that the tyrosine residues

from all bovine y-crystallins are marginally hydrogen bonded (Pande et al. 1991). The

interactions between the aromatic residues of HyD-Crys may function as a stabilization

"network." Each individual ring-ring contact alone probably does not contribute very

much to the stability of the molecule given the tolerance of the molecule to tryptophan

substitution. However, the sum contribution of all of the aromatic stacks may be

important. This is different from the stabilization observed in coiled-coils where isolated

amino acid contacts contribute significantly to the stability of the complex (Lupas 1996).

Our studies have shown that the four tryptophans at the center of the hydrophobic

core of this protein are not vital for stability and can be triply substituted by

phenylalanine or singly replaced with alanine with no significant destabilization in terms

of protein solubility and/or Gibb's free energy; however, the quenching of Trp 68 and

Trp 156 implies particularly intimate noncovalent native-state interactions. Perhaps it is

not any individual residue that controls or dictates the stability of the molecule, but

perhaps it is the overall impact of the pi bond interactions caused by the entire aromatic-

aromatic ring stacking network that allow HyD-Crys to remain stable.
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Figure 7-1

Ribbon structure of human yD crystallin showing the location of aromatic network
(Basak et al. 2003). The structure is shown from the top (A) and the side (B).
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Many proteins are stabilized by aromatic-aromatic ring interactions including

small globular proteins like barnase and larger fibrous proteins such as collagen. One

example is the P22 tailspike protein which is a parallel P-helix protein. This protein has a

highly aromatic stack running up the center of the helix in which the rings sit one on top

of the other and the pi bond orbitals are aligned slightly divergent from parallel (Betts et

al. 2004).

In 1985, a study was published by Burley and Petsko that analyzed the frequency

and orientation of aromatic ring interactions in proteins. They found that aromatic rings

are most often found at an interaction distance of 4.5 to 7.0 A with 90° angles separating

the pi bond orbitals. Further analysis of paired aromatic residues argued that aromatic

rings preferred to align themselves in an "off-centered parallel" arrangement whereby the

ring of one residue is perfectly stacked flat upon the ring of the adjacent but not centered

completely (McGaughey et al. 1998). In addition, studies using double mutant cycle

analysis have shown that the contribution of an aromatic-aromatic pair to protein stability

is -0.6 to -1.3 kcal/mol (Serrano et al. 1991).

There is an extensive global aromatic network in HyD-Crys, and studies using

triple tryptophan mutants showed that the fluorescence quenching observed in the

molecule's native state is most likely due to two smaller local aromatic networks. One

network surrounds Trp68 and involves Tyr55, Tyr62, and His65, while the other

surrounds Trp 156 and involves Tyrl43, Tyrl50, and His122 (Basak et al. 2003). It

seems likely that HyD-Crys has multiple levels of aromatic ring stabilization involving

local and global protein sequence and structure. Although we have not determined the

structure of aggregated HyD-Crys yet, it is likely that there is a significant reorganization

of the aromatic network in the self-associated species. Raman spectroscopy of the

aggregated protein may provide insight into the orientation of the aromatic rings in this

species.

Inspection of HyD-Crys reveals that the majority of the aromatic residues are

located near the "top" of the molecule clustering around Trp68 and Trp156. With

exception of the tryptophans, many of the aromatic amino acids are found near the outer

edges of domain I and domain II and are at least partially solvent exposed.

177



The tyrosine and phenylalanine residues of HyD-Crys seem to create a "ring"

around the outer edge of both domains. Because these residues are solvent exposed, it is

possible that the aromatic rings from one protein may interact with the tyrosine rings

from an adjacent protein. Particularly striking is the fact that the solvent exposed rings

tend to be found in pairs.

Close to the domain interface of the protein, Tyr45 interacts with Tyr5O at a 5.0 A

distance, and Tyr134 interacts with Tyr139 at a 4.9 A distance. Both of these pairs have

a side to face ring arrangement and may be important during interface formation or

domain reorganization in the folding pathway.

Of further interest in HyD-Crys are the interactions between Tyrl6 and Tyr28

located 4.5 A apart and Tyr93 and Tyr98 found 3.8 A apart. In both of these cases, the

two interacting tyrosine rings are virtually parallel to each other. The pairs are located at

opposite ends of the protein. Similarly, Tyr6 and Phel 1 interact at a distance of 4 A, and

Phel 16 and Phel 18 interact at a 3.5 A distance. These two pairs show a more typical

face to end ring configuration, but are also located at opposite ends of domain I and

domain II. Together, these four pairs create a symmetrical rectangle around the outside

edge of HyD-Crys and may provide an alignment platform for protein self association in

vivo. Aromatic ring interactions between multiple crystallin proteins may be important

for maintaining crystallin solubility and stability at the high protein concentrations found

in the eye lens.

Future studies should analyze that angle at which the rings interact in the x-ray

structure of HyD-Crys and assess the contribution of tyrosine and phenylalanine to

protein stability. It is possible that insight into ring stabilization and stacking in crystallin

may be applicable to other highly soluble proteins as well.

B. CRYSTALLIN FOLDING, AGGREGATION, AND HYSTERESIS

Cataract is caused by polymerization of the crystallin proteins. Given the high

concentration and stability of native crystallin in the lens, the aggregation-prone state of

the protein is most likely a partially unfolded or disrupted conformation. We have

investigated the thermodynamics and kinetics of HyD-Crys and human yS crystallin

178



(HyS-Crys) unfolding, refolding, and aggregation in vitro to identify the partially folded

conformation and characterize the resulting aggregation process.

HyD-Crys exhibited an unfolding and refolding hysteresis at 37C that became

more pronounced at 25C (Figure 2-3) (Kosinski-Collins and King 2003). HyS-Crys did

not have an equilibrium unfolding and refolding hysteresis at 37C or 25°C (Figure 5-3).

Recent studies by Flaugh and King have shown that the unfolding and refolding

transitions of HyD-Crys overlay exactly after a 24 hour equilibration eliminating the

hysteresis (personal communication). In all of these studies, it was the position of the

unfolding transition that changed as a function of temperature and time. This indicated

that the unfolding pathway of HyD-Crys had a kinetically controlled barrier while the

unfolding pathway of human yS crystallin (HyS-Crys) did not. In addition, aggregation

of HyD-Crys was observed when the protein was denatured in GdnHCl and then refolded

into buffer, while HyS-Crys showed no aggregation propensity. It is possible that the

observed hysteresis and aggregation are related to direct differences in sequence between

HyD-Crys and HyS-Crys. Differences between the HyS-Crys and the HyD-Crys

primary sequences must control the in vitro aggregation process. HyS-Crys has 69%

sequence similarity and 50% sequence identity with HyD-Crys. HyS-Crys has a three

amino acid N-terminal extension of Ser-Lys-Thr and a two amino acid domain linker

extension of His-Leu not present in HyD-Crys.

Studies performed in our lab have shown that the interface residues of HyD-Crys

are important in unfolding and refolding of HyD-Crys (Flaugh et al. 2004, manuscript

submitted and S. L. Flaugh and J. A. King, manuscript in preparation). When the domain

interface residues of HyD-Crys were mutated, a partially unfolded folding intermediate

was stabilized. Jaenicke has suggested that the domain interactions are weaker in HyS-

Crys than in HyD-Crys, and it seems likely that the interface may be important in the

different aggregation character between the two proteins (1999).

The domain interface of HyD-Crys contains two interacting polar pairs of residues

around the two edges of the interface surrounding three pairs of hydrophobic interactions

near the center. The polar pairs of HyD-Crys are Glu54/Gln143 and Arg79/Met147 while

the hydrophobic pairs are Met43Vall1132, Phe56/Leu145, and Iso81/Vall1170. Based on

alignments of HyS-Crys with HyD-Crys, the hydrophilic pairs of HyS-Crys are
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Met57/Gln 148 and Arg82/Asp 152 while the hydrophobic pairs are Ala46/Iso 137,

Iso59/Leu 150, and Val84/Iso 175. The only notable differences between the two

interfaces are the loss of the aromatic (Phe56) in HyS-Crys and the placement of the salt

bridge at opposite sides of the domain interface. The changes in interface residues

between HyD-Crys and HyS-Cry appear minor and most likely do not account for the

differences in aggregation propensity or hysteresis formation observed in the two

molecules.

The unfolding and refolding equilibrium hysteresis may be a clue to the

mechanism of aggregation of HyD-Crys. Studies using triple tryptophan to phenylalanine

mutants of HyD-Crys showed that the origin of the hysteresis in HyD-Crys came from

residues surrounding Trp156 (Figure 4-1). The only triple tryptophan mutant displaying

an equilibrium unfolding and refolding hysteresis was Trp 156-only. Given that a kinetic

barrier exists to productive unfolding, there is probably a rigid region in this area of the

molecule that is resistant to denaturation (Figure 2-3). Perhaps this area of the molecule

forms a structured core from which the remainder of the molecule folds, and must remain

stable even in extreme conditions to retain the native structure of the overall protein.

Alternatively, perhaps as this region of the molecule unfolds, a non-native core of

interaction is stabilized that is not necessarily a productive on-pathway conformation. As

observed in interleukin- 1 , this region may represent an aggregation-prone "micro-

domain" that is resistant to unfolding and that forms rapidly when exposed to denaturant-

free buffer upon refolding. We cannot say decisively whether the "micro-domain" is

made up of native or non-native inter-residue contacts. Formation of isolated secondary

structural loops in this region may provide not only a nucleus for productive folding, but

may also be an area where potential non-native association may occur. It is of interest to

note that a truncation at Trp156 in HyD-Crys has been implicated in juvenile onset

cataract (Kmoch et al. 2000). Perhaps elimination of the "micro-domain" in this region

decreases stability of the molecule and opens a pocket for self-association. Clearly this

region must be important for maintaining global solubility of HyD-Crys.
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Figure 7-2

Ribbon structure of human yS crystallin showing the location of the conformationally
important prolines, Pro154 and Pro162 (Purkiss et al. 2002).
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We were interested in determining the residues responsible for the unfolding and

refolding hysteresis in this "micro-domain" so we examined all residues within 8 A of

Trp156 in the crystal structure of native HyD-Crys. We then aligned these residues

between HyS-Crys and HyD-Crys to identify any differences in the two sequences within

this region (Table 8-1).

Table 7-1

The residues within 8 A of Trp 156 in HyD-Crys that have amino acid

composition differences between HyS-Crys and HyD-Crys.

Residue in HyD-Crys Residue in HyS-Crys

Glutamic Acid 96 Glycine

Leucine 124 Cysteine

Asparagine 125 Lysine

Leucine 133 Phenylalanine

Tyrosine 154 Proline
Glutamine 155 Isoleucine

Threonine 160 Alanine

Alanine 162 Proline

Arginine 163 Alanine

In general, HyS-Crys seemed to have more hydrophobic residues surrounding

Trp156 than HyD-Crys. HyD-Crys had many acidic and basic residues in this region of

the molecule. It is possible that the presence of charges actually stabilizes the domain II

core to GdnHCl denaturation. It may require a higher concentration or a longer exposure

to GdnHCl for the denaturant to out-compete the existing polar interactions present in

this area in HyD-Crys. Hydrogen-deuterium exchange experiments coupled with NMR

will determine if residual structure is present in the core surrounding Trp156 in

denaturing conditions.

There were two specific differences that were particularly striking in the sequence

alignment between HyD-Crys and HyS-Crys. Position 154 is a tyrosine and position 162
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is an alanine in HyD-Crys and both align to two different prolines in HyS-Crys (Table 8-

1). These proline residues are located at the top of the molecule in a loop forming region

of HyS-Crys and are closely associated with the B-strand which forms the domain

interface of domain II (Figure 8-2).

Proline is the only amino acid that exhibits constrained movement around the a-

carbon bond in the peptide backbone. Perhaps by constraining the folding states that the

polypeptide backbone can sample in HyS-Crys, the prolines limit the number of folding

intermediates thus eliminating the kinetic barrier to productive unfolding or refolding

observed in HyD-Crys.

If formation or destruction of the "micro-domain" is an important step for the

productive unfolding of the molecule, it seems likely that any structural rigidity either

increasing the kinetic rate of "micro-domain" formation or limiting the number of

conformations sampled by the molecule would expedite HyS-Crys productive folding and

decrease or eliminate the aggregation pathway as well. Experiments performed by Clark

and colleagues at Notre Dame have shown that proline functions to prevent aggregation

of the P-helical pertactin protein of Bortella Pertussis (M. Junker, C. Schuster, K.

Whiteman, and P. L. Clark, personal communication). Alanine scanning of the "micro-

domain" residues of HyD-Crys may elucidate which if any of these residues are

responsible for the observed hysteresis and aggregation pathway.
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C. DOMAIN SWAPPING AS A MECHANISM FOR CRYSTALLIN AGGREGATION

Given the high structural similarity between the two domains of HyD-Crys (49%

similarity and 36% identity), domain swapping is a likely mechanism of aggregation for

this protein. In addition, studies utilizing triple tryptophan to phenylalanine mutant

proteins showed that a structure formed during unfolding and refolding that had domain I

denatured and domain II in a native-like conformation (Kosinski-Collins et al. 2004).

Disruption of interface contacts have further been shown to stabilize this intermediate

(Flaugh et al. 2004). If a partially unfolded conformation of HyD-Crys exists in solution,

it is likely that slow renaturation of the N-terminal domain may involve the formation of

both native intramolecular domain formation and non-native intermolecular domain

contacts resulting in domain swapping events.

Proline has been shown to be an important residue in domain swapping in

pl3sucl (Rousseau et al. 2001). In this protein, two prolines are located in the

conformational hinge region. One proline gives the protein the flexibility to rotate into a

domain swapped structure while the other proline provides a conformational constraint

that prevents high order oligomerization and aggregation (Silow et al. 1999). We have

hypothesized that the prolines in HyS-Crys are important to the stability and refolding of

HyS-Crys in the region of the "micro-domain". It is possible that the presence of the two

prolines in HyS-Crys function as "traffic guards" limiting the ability of the protein to

domain swap as well. HyD-Crys does not, however, have these two prolines in its

"micro-domain." Instead, HyD-Crys has an alanine and a tyrosine residue in place of the

prolines. These residues (alanine especially) do not force the conformational restrictions

on HyD-Crys inherhent to proline cis/trans isomerization. Perhaps structural flexibility

related to domain interface formation in HyD-Crys allows domain swapping and

aggregation to occur in this protein.

More exhaustive study of the aforementioned prolines may elucidate the

mechanism of hysteresis and aggregation in HyD-Crys.
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D. CONCLUDING REMARKS

Studies of HyD-Crys have identified an intermediate common to both the

unfolding and refolding pathway that retains native structure of the C-terminal domain,

but a disordered conformation in the N-terminal domain at pH 7.0, 37°C (Kosinski-

Collins et al. 2004). This refolding intermediate has recently been shown to be common

to the productive refolding and aggregation pathways (I. A. Mills, S. L. Flaugh, and J. A.

King, unpublished results). Studies by Rudolph et al. with bovine yB crystallin identified

a refolding intermediate that had a structure, N-terminal domain and an unfolded C-

terminal domain, when refolded in urea at pH 2.0 (1990). Folding studies in urea at 20°C

with rat PB2 crystallin, showed that an intermediate formed during unfolding that had an

intact C-terminal domain and a denatured N-terminal domain (Wieligmann et al. 1999).

A destabilized intermediate form of P3B2 has further been shown to be preferentially

bound by a-crystallin (Sathish et al. 2004). The presence of a partially unfolded

conformer of the py-crystallins may be important to the mechanism of aggregation and

cataract formation.

If one domain is unfolded and one domain of a y-crystallin is native-like, we can

imagine several possible scenarios for protein polymerization. The unfolded domain may

remain unfolded and simply aggregate as a disordered mat surrounded by the folded other

domain. It is possible that the unstructured domain may refold into a native-like

conformation, but use an adjacent molecule for formation of the domain interface

forming a domain-swapped structure. Alternatively, the unstructured domain may form

isolated n-strands that may insert into other productively refolded 3-sheets in a loop-sheet

insertion mechanism. Perhaps though, the unfolded domain refolds into a completely

different conformation like a parallel 1-helix that has exposed interaction surfaces simply

more prone to polymerization.

These possibilities merely assess the contribution of the py-crystallins, but we

know cataracts contain the a-crystallins as well. Assessing what type of disrupted
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conformations of the y-crystallins are present in the aged lens, and the propensity with

which these structures bind a-crystallin, may elucidate how and why protein

polymerization occurs in the lens.

The exact mechanism of cataract formation in the aged lens is unknown to date.

Numerous studies have been focused on identifying the causative agent of cataract, but

we have yet to identify a clear polymerization pathway for the crystallin proteins. It is

important to note that we rarely think of cataract as a specifically organized polymer

because of the amorphous nature of the high molecular weight species removed from old

lenses, but that does not mean that an organized core structure was never present. The

fibrous protein deposits identified in the brains of patients diagnosed with AD contain

many associated proteins in aggregated mats, even though the AO peptide forms amyloid

fibrils as the aggregation initiating species. In addition, studies of many different

aggregating proteins have demonstrated that a seed of polymerized protein may recruit

other protein species to the multimerizing chain. The organized nature of hereditary,

juvenile onset cataracts and the ability of the Py-crystallins to form in vitro amyloid fibers

suggests that mature onset cataracts may involve an ordered aggregate intermediate or

nucleus for formation.

We need to approach cataract as a possible ordered aggregation mechanism to

understand the underlying basis for the disease. We may have been misled by the

"unstructured" nature of the aggregated species removed from cataractous lenses and we

need to remember that organized aggregation is still a possibility for mature onset

cataract even though it is not immediately obvious from the lack of structure of material

removed. We need to also remember that there may be multiple paths that lead to

cyrstallin polymerization and aggregation and that no one mechanism may solely be

responsible for cataract. Ultimately, the process of cataractogenesis is extremely

complex and may require years of study and experiementation to understand.
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APPENDIX A: PROTEIN PARAMETERS

Protein parameters and constants calculated for human yD crystallin and human yS

crystallin (calculated using ProtParam tool from http://us.expasy.org/cgi-bin/protparam).

Protein Molecular E280 (1/nm) Theoretical pI
Weight (Da)

WT HyD-Crys 20,634 41.04 8.25
WT* HyD-Crys 21,844 41.04 8.53
W42-only WT* HyD-Crys 21,727 23.97 8.53
W68-only WT* HyD-Crys 21,727 23.97 8.53
W130-only WT* HyD-Crys 21,727 23.97 8.53
W156-only WT* HyD-Crys 21,727 23.97 8.53
W42A WT* HyD-Crys 21,702 35.35 8.53
W68A WT* HyD-Crys 21,702 35.35 8.53
W130A WT* HyD-Crys 21,702 35.35 8.53
W156A WT* HyD-Crys 21,702 35.35 8.53
WT HyS-Crys 21,007 41.04 6.44
N143D HyS-Crys 21,007 41.04 6.11

APPENDIX B: MUTAGENIC PRIMER TABLE

Mutagenic primers utilized in site directed mutagenesis of human yD crystallin to make

triple tryptophan to phenylalanine proteins.

Mutation Primers Tm
W42F coding 5'-gcg tgg aca gcg gct gct tta tgc tct atg agc agc-3' 87°C
W42F noncoding 5'-gct gct cat aga gca taa agc agc cgc tgt cca cgc-3' 87°C
W68F coding 5'-c gac cac cag ttt atg ggc ctc agc gac tcg-3' 87°C
W68F noncoding 5'-cga gtc gct gag gcc cat aaa ctg ctg gtg gtc g-3' 87°C
W130F coding 5'-gct gga ggg ctc ctt tgt cct cta cga gct gtc c-3' 87°C
W130F noncoding 5'-g gac agc tag agg aca aag gag ccc tcc agc-3' 87°C
W156F coding 5'-ggc gct acc act ttg ggg cca cga atg cc-3' 87°C
W156F noncoding 5'-ggc att cgt ggc ccc aaa gtc ctg gta gcg cc-3' 870C
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APPENDIX C: UNFOLDING AND REFOLDING EQUILIBRIUM DATA

ANALYSIS

I. Calculate the concentration of denaturant in each sample using the refractive index and

the following equations:

[Urea]A = 117.66- AN + 29.753. AN2 + 185.56 AN3

[GdmCl]A = 57.147 -AN + 38.68 AN2 - 91.60. AN3

II. Analyze samples using the 2-state folding curve analysis method described by Pace et

al. (1989). The fluorescence light intensity ot 350 nm or of 360 nm/320 nm was plotted

versus the denaturant concentration.

A. The native and denatured baselines were calculated.

B. The fraction of protein unfolded (fu) was calculated for each point in the

curve using the equation:

(YF Y)

(YF -Yu)

In this equation, YF was the value of y determined by the calculated fraction

folded baseline, y was the observed light intensity at any given point, and yu was

the value of y determined by the calculated fraction unfolded baseline.

III. The equilibrium constant (K) and the free energy change (AG) was then calculated

for each point in the curve using the following equations:

K- fu
(l-f u)
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AG = -RT In K

In these equations, fu was the fraction of denatured protein present in any given

sample, R was the gas constant (1.987 calories/deg x mol) and T was the absolute

temperature.

IV. The resulting data were analyzed using the method described by Fersht (1999). The

light intensity of 360 nm/320 nm was plotted versus the concentration of denaturant and

then fit using the following equations:

A. To calculate the fraction unfolded curve fit:

(f fN) exp mD-N [rea]A AGH 2 })1
RT

1+ exp {mDN [Urea]A - AGH20 }

RT

B. To analyze the raw data:

([Urea]A - [Urea], )
(aN + bN [Urea]A)+(a +bD [Urea]A) exp m-N RT

F= mD ([Urea]A -[Urea]) 2
1 + exp mD- N RT

In these equations, AG is the Gibb's free energy of the protein at 0 M denaturant, f was

the fraction unfolded baseline, fn was the native baseline, aN was the intercept of the

fraction folded baseline, bN was the slope of the fraction folded baseline, aD was the

intercept of the fraction unfolded baseline, bD was the slope of the fraction unfolded

baseline, [Urea]A was the actual urea concentration calculated by the refractive index in

any given sample, mD-N was the overall resistance of the protein to solvent denaturation
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(cal/mol x M), and [Urea]l/2 was the concentration of urea when half of the protein has

been denatured (M).

For Kaliedagraph curve fitting of fraction unfolded:

(l*(exp((ml *m0-m2)/0.8)))/(+(exp((ml*m0-m2)/0.8)))

mO = concentration of denaturant

ml = m-value

m2 = AGH20

For Kaliedagraph curve fitting of raw data:

((ml+m2*mO)+(m3+m4*mO)*exp(m5*((mO-m6)/0.8))))/( 1+

exp(m5 *((m0-m6)/0.8)))

mO = concentration of denaturant

ml = intercept of native baseline

m2 = slope of native baseline

m3 = intercept of native baseline

m4 = slope of native baseline

m5 = m-value

m6 = concentration of denaturant at transition midpoint
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APPENDIX D: UNFOLDING AND REFOLDING KINETIC CURVE FIT

CALCULATIONS

Data analysis of fluorescence changes during unfolding or refolding of human y-

crystallin proteins were calculated using the following parameters as described by Dr.

Stephen Raso.

I. For the reaction having no intermediate:

A B; with a rate constant k

[A] = Aoe -kt

[B] = Ao(l-e -k t)

Yobs = YA[A] + YB[B]

Yobs = YA(A0e -k t ) + YB(Ao(I-e-kt))

Because Ao and YA or YB are simply relative fluorescence differences, they may

be combined:

Yobs = YA'(e -k t) + YB'(1-e -k t)

Yobs = YA'(e -k t) + YB'-YB'(e-kt)

Yobs = (YA'-YB')(ekt) + YB'

For Kaliedagraph curve fitting:

(m2-m3)*(exp(-ml *mO))+m3

ml=kl

m2=YA (fluorescence of state A)

m3=YB (fluorescence of state B)
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II. For the reaction having one sequential intermediate:

A B C with rate constants kl and k2

For Kaliedagraph curve fitting:

m3*exp(-m1 *mO)+[(m4*(ml *exp(-ml *mO)-exp(-m2*mO)))/(m2-

ml)]+(m5)*(1+(m2*exp(-ml *mO)-ml *exp(-m2*mO))/(ml-m2))

ml=kl

m2=k 2

m3=YA (fluorescence of state A)

m4=YB (fluorescence of state B)

m5=Yc (fluorescence of state C)
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APPENDIX E: OLIGOMERIC RING STRUCTURES OF HUMAN yD

CRYSTALLIN

Figure 9-1

AFM height images of refolding HyD-Crys species absorbed to a mica surface. High
surfaces are denoted as white (5 nm) and low surfaces are shown in black (0 nm). HyD-
Crys was refolded for various times, extracted from solution, absorbed on mica, and
observed using tapping mode AFM. Fibers of wild-type HyD-Crys refolded for 40
minutes are shown in all panels. Panel A-C are 1 Jlm x 1 Jlm scanning areas while D is a
2 Jlm x 2 Jlm scanning area.
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Figure 9-2

AFM height images of refolding his-tagged HyD-Crys species absorbed to a mica
surface. High surfaces are denoted as white (5 nm) and low surfaces are shown in black
(0 nm). HyD-Crys was refolded for various times, extracted from solution, absorbed on
mica, and observed using tapping mode AFM. Fibers of wild-type HyD-Crys refolded
for 40 minutes are shown in all panels A and B while panel C shows images collected
after 30 minutes of refolding. Panel A shows protein in a 1 J.lmx 1 J.lmscanning area,
panel B shows protein in a 400 nm x 400 nm scanning area, and panel C is a 2.5 J.lmx 2.5
J.lmscannIng area.
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Wild-type or His-tagged HyD-Crys was unfolded in 5.5 M GdnHCl 37°C. The

protein was then refolded by dilution in 10 mM NaPO 4, 5 mM DTT, 1 mM EDTA, pH

7.0 at 37°C for various times. Ten AL of protein was spotted onto a cleaved mica

surface. Samples were dried for two hours by evaporation in a high vacuum desiccator.

Samples were then rinsed with 500 L of milli-Q H2 0 and dried for an additional two

hours by desiccation. The height and phase of the samples were analyzed by atomic

force microscopy using the tapping mode. Mica disks containing adhered protein were

stored under high vacuum at room temperature.

Long fibrous species of wild-type HyD-Crys were observed after 40 minutes of

refolding (Figure 9-1). The fiber length ranged from 300 to 700 nm. The fibers tended to

be localized in clusters where multiple thin filaments had associated and wound around

one another. In addition, the fibers had a central "core" from which the individual

filaments seemed to emerge. It is unclear as to whether the core was a thickly bundled

area of fibers or a nucleation center consisting of an alternate conformation of the

molecule.

His-tagged HyD-Crys was also observed after 20 to 40 minutes of refolding.

Instead of thin fibrils, however, circular oligomeric species were observed (Figure 9-2).

All of the rings observed had areas of low height at their center that were presumed to be

open cavities. The protein edge of all of the oligomers remained constant at

approximately 25 nm despite large differences in overall diameter.

The ring structures generally fell into one of four diameter size ranges. The

species were typically 60 nm, 80 nm, or 120 nm in diameter. A few oligomers, however,

were larger than 120 nm and we have categorized them as a class of their own due to

their size variability. The larger pores tended to create "puddles" absent of protein on the

mica within their central cavities. Of the over two hundred rings measured, most fell into

the 60 nm or 80 nm category. A more detailed analysis of the aggregates formed by

wild-type HyD-Crys lacking the His-tag confirmed that circular oligomers were present

amongst those aggregates as well.

"Did it ever get funny, because the part I saw was just weird."
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