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ABSTRACT
Diagnosing incipient faults of rotating machines is very important for reducing economic losses and avoiding accidents caused
by faults. However, diagnoses of locations and sizes of incipient faults are very difficult in a noisy background. In this paper, we
propose a fault diagnosis method that combines kernel principal component analysis (KPCA) and deep belief network (DBN)
to detect sizes and locations of incipient faults on rolling bearings. Effective information of raw vibration signals processed by
KPCA method is used as input signals of the DBN of which weights of the first RBM are initialized by contribution rates of
principal components. A DBN with complex structures can be cut into a briefer network by KPCA-DBN model. That model
reduces network structure and increases convergence rate. As a result, an average test accuracy by KPCA-DBN can reach 99.1%
for identification of 12 labels including incipient faults and the training time is 28s which is half of that by DBN model. The
average accuracy of rolling bearing location detection nearly gets to 100% and the average accuracy of fault size detection is
above 99%. Comparedwith SVM, BP, CNN,Deep EMD-PCA (EmpiricalModeDecomposition-Principal Component Analysis),
CNN-SVM and DBN, it is found that training time can be shortened and detection accuracy can be improved by KPCA-DBN
model. The proposed method is beneficial to realize sizes and locations detection of incipient faults online.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The vibration signal of incipient fault [1] belongs to weak signals
with low signal to noise ratio (SNR). The dynamic characteristics
generated by incipient faults are usually submerged in noise signals.
Hereby, it is a focused problem to accurately identifying the incip-
ient faults mixed with serious faults and normal signals in a noisy
background. If incipient faults are failed to detect, opportunity for
maintenance may be missed leading to a serious fault.

In recent years, with research on artificial intelligence (AI), the
intelligent algorithms [2] were applied to fault diagnosis of rolling
bearings. Features can be automatically extracted by wavelet trans-
form (WT) [3], spectral analysis (SA) [4], etc. A relationship
between features and states was established based on machine
learning [5] or neural network for diagnose faults. Although these
methods [6–8] can classify machine faults, there are still some dis-
advantages as follows: (1) The fault diagnosis results are depended
on massive raw data. For example, a novel method [9] combin-
ing the Z-number and Dempster–Shafer (D-S) evidence theory
was proposed to provide reliable information from massive sensor
data for fault diagnosis. The intelligent methods [10] of machine
learning and shallow neural network [11] are limited in learning
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so they depend on enough information to extract representative
features and be trained fully. (2) A multi-step (feature extraction,
feature selection and training classifier) process of fault diagno-
sis reduced efficiency. Normally, those methods need to extract
time-domain, frequency-domain and time-frequency-domain fea-
tures [12] of vibration signals. Furthermore, a feature selection tech-
nique was employed to obtain a feature subset and a cost-sensitive
learning method was designed for a classifier. All the processes
actually weakened overall efficiency of the methods. (3) Feature
selection brings about the interference of human factors. Canfei et
al. [13] adopted two criteria for measuring diagnostic performance
which were assessed by sparse Bayesian extreme learning machine
(SBELM). Further, F-measure was adopted to identify the opti-
mal feature subset. As a result, some useful information may have
been filtered by human factors. (4) Representative features are only
retained but incipient fault features are easily ignored [10]. As an
incipient fault is not distinct, it may be missed in feature selection
or noise reduction.

In view of those problems above, deep learning [14–16] was pro-
posed by Hinton, et al, which no longer relied on manual feature
selection. Deep learning can directly extracted features from raw
data automatically [17] and showed great intelligence and effective-
ness in fault diagnosis. Yu et al. [18] proved that features inherent
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in raw temporal signals were extracted hierarchically and automat-
ically by stacking LSTM, which can achieve up to 99% accuracy
for fault diagnosis of rolling bearings. A new roller bearing fault
diagnosis algorithm was presented based on a sparsity and neigh-
borhood preserving deep extreme learning machine (SNP-DELM)
[19], by which deep features were extracted layer by layer without
supervision. A model of CNN with less learnable parameters was
proposed by Verstraete [20], which achieved better diagnosis accu-
racy on fault diagnosis of rolling element bearings. A method was
presented of denoising stacked auto-encoder (DSAE) in deep learn-
ing without principal components analysis [21]. Recently, a novel
adaptive Fisher-based deep convolutional neural network (AFD-
CNN) [22]methodwas proposedwhichwas an improvement of the
FDCNN and used to diagnose faults of small samples.

Furthermore, deep belief network (DBN) which is one of deep
learning is widely adopted in fault diagnosis for its classification
capability of multiple types [23,24]. Compared with feed-forward
multi-layer perceptron neural network, Dedinec et al. [25] pro-
vided superior calculation results by DBN in hourly electricity load
forecasting of the Macedonian electric power system. An enhanced
intelligent fault diagnosis method was proposed based on pair-
wise graph regularized deep belief network (PG-DBN) model [26],
which got a better classification result of fault diagnosis. A frame-
work of SOM-DBN was applied to fault early warning system for
dispatching automation [27]. Feature vectors which were fused
by sparse autoencoder (SAE) neural networks were used to train
a DBN to distinguish faults. Tran et al. [28] indicated statistical
features were extracted from all signals to represent the charac-
teristics in conditions and a DBNs was built to classify faults of
compressor valves. A novel method called adaptive DBN with
dual-tree complex wavelet packet (DTCWPT) was developed [29]
to improve identification accuracy. There are also a lot of other suc-
cessful applications in fault diagnosis of rotating machinery [30,31]
based on DBN. Researches show that DBN has good characteristics
in automatic feature extraction and multi-task classification. How-
ever, they all built a multi-layer DBN structure for feature learning
and extraction, which would lead a long time duration for train-
ing and testing. For rapid worsening incipient faults, fault features
change from time to time. If it takes long time to train and test a
DBNmodel, it would have a negative impact on real-time detection
of incipient faults. In addition, they did not focus on the location
identification of incipient faults in a noisy background by DBN.

We focus on sizes and locations diagnosis of incipient faults, which
can help to reduce work of faults checking and maintenance. In this
paper, we propose a method of kernel principal component analy-
sis (KPCA)-DBN to diagnose incipient faults rapidly and accurately
without artificial features extraction and selection. For the proposed
method, effective information of raw data is kept by KPCA [32,33]
instead of feature statistics and feature extraction without destroy-
ing structures and distributions of raw data. The method of KPCA-
DBN can simplify the network structure of DBN and adjust initial
values of weights, which improves convergence speed and diagno-
sis accuracy. Diagnosis accuracy can be increased and training time
can be shortened by KPCA-DBN, which solves the problem of real-
time detection of incipient fault. Furthermore, the diagnosis results
by the method of KPCA-DBN for fault diagnosis of 12 failure types
including incipient faults are compared with those by the common
methods which involves SVM, BP, KNN [34], Deep EMD-PCA [5],

CNN-SVM [35] andDBN.Diagnosis results show that KPCA-DBN
model is more effective than the other methods mentioned in both
efficiency and accuracy.

Besides, noise is an important factor for identification of incip-
ient faults. Wavelet threshold denoising [36] is one of common
denoising measures and it has been limited for lacking of adap-
tive decomposition [37]. In view of the problem, variational modal
decomposition (VMD) [38] was presented.

In this paper, we propose a denoising method of VMD-Sample
entropy–wavelet threshold denoising to process raw data for
enhance signal noise ratio of vibration signals without losing incipi-
ent fault features of rolling bearing. Thenwe useKPCA-DBNmodel
to diagnose incipient faults. In a noisy background, thismethod can
also reduce training time for identifying different sizes and loca-
tions of the incipient faults even mixed with multiple failures.

2. BRIEF REVIEW OF KPCA-DBN

2.1. Kernel Principal Component Analysis

KPCA method can map input data to high-dimensional space by
nonlinear kernel functions. The data linearly indivisible in original
sample space can be separated in feature space and nonlinear prin-
cipal components [39] are separated.

X is a sample space and H is a characteristic space (Hilbert space).
If map X to Η by K

(
x, y

)
, make X × X → R, where x, y ∈

R,K
(
x, y

)
=< 𝜑 (x) , 𝜑

(
y
)
> andK

(
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)
is defined as kernel func-

tion.

1) Given a kernel function for a training set S.

2) A covariance matrix in high-dimensional space and kernel
matrix.
The covariance matrix CF of the mapping matrix𝜑

(
xk
)
calcu-

lated by original data xk
(
k = 1, 2, ...,m, xk ∈ RN) is expressed

by Eqs. (1) and (2)
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)
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where F represents high-dimensional feature space, 𝜆 is the
eigenvalue, V is the eigenvector, M represents dimension of
original data.

3) The projection of an eigenvector by mapping data in original
space is expressed by Eq. (3).
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where 𝛼k
i (i = 1, 2, ...,m) represents a set of coefficients.
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Figure 1 DBN structure with three hidden layers.

Eq. (3) is carried out on the premise of assuming that the aver-
age value ofmapped data is equal to zero [40], so it is necessary
to realize centralization of mapped data by K replaced by K̃.

K̃ = K − LMK − KLM + LMKLM (4)

where LM is a matrix of M ×M and
(
LM

)
i,j = 1∕M.

4) The nonlinear principal components tm (m = 1, 2… ,M) can
be expressed by Eq. (5).

tm = (Vm, 𝜑(x)) =
M∑
i=1

K
(
x, xi

)
(5)

2.2. Deep Belief Network

DBN is regarded as a multi-layer perceptron neural networks com-
posed of restricted Boltzmannmachines (RBMs) [41,42] in the first
stage. In Figure 1, each RBM consists of a visible layer (v) and a
hidden layer (h). v =

(
v1, v2,… , vp

)T is a state vector in the visi-
ble layer. h =

(
h1, h2,… , ht

)T is a state vector in the hidden layer.
a =

(
a1, a2,… , am

)T represents an offset vector in the visible layer
and b =

(
b1, b2,… , bn

)T represents that in the hidden layer. Units
of a same layer are independent but those of two adjacent layers are
connected. An output of hidden layer serves as an input of visible
layer of the second RBM. It goes layer by layer in that way. That is
greedy learning [43], which has a strong ability for characterizing
features of sample.

Greedy learning is an unsupervised training process. Second stage
[44] is to regard the tag layer as the top layer and conduct supervised
fine-tuning from the top to the bottom.

Energy model is adopted as a measure of system in the steady-
state. The process of training RBM is constantly to change the scalar
energy. Energy function E is defined as Eq. (6).

E𝜃 (v, h) = −
m∑
i=1

aivi −
n∑
j=1

bjhj −
m∑
i=1

n∑
j=1

hj𝜔ijvi (6)

where 𝜃 =
{
𝜔ij, ai, bj; 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
, 𝜔ij represents the

weights between the nodes(i) in visible layer and nodes(j) in hidden
layer.

Joint probability distribution of states (v, h) is given in Eqs. (7–9).

P (v, h|𝜃) = 1
Z(𝜃)

∑
h

e(−E𝜃 (v,h)) (7)

P (h, v|𝜃) = 1
Z(𝜃)

∑
v

e(−E𝜃 (v,h)) (8)

Z(𝜃) =
∑
v,h

e−E𝜃 (v,h) (9)

where Z(𝜃) is distribution function.

Conditional probability distribution is expressed by Eqs. (10)
and (11).

P (h|v; 𝜃) = P(v, h; 𝜃)
P(v; 𝜃)

=
∏
j
P
(
hj|v; 𝜃) (10)

P (v|h; 𝜃) = P(v, h; 𝜃)
P(h; 𝜃)

=
∏
j
P
(
vj|h; 𝜃) (11)

The purpose of training RBM structure is to meet the distribution
of training data. Calculating the maximum likelihood estimation of
parameter 𝜃 is shown as Eqs. (12) and (13).

L(𝜃) =
N∏
l=1

L (v|𝜃) = N∏
l=1

P(v) (12)
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A method of contrastive divergence (CD) [14] is proposed by Hin-
ton to speed up the calculation of the log-likelihood gradient to
solve the problem of low calculation efficiency.

Step 1: Set network structure and initialize parameters.

Step 2: Training.

A training sample x =
{
x1, x2,… xm

}
for units of visual layer v(0)

produce vi and the hidden units hjare sampled by conditional prob-
ability distribution which are expressed by Eqs. (14) and (15).

P
(
v(i)i = 1|h(0)) = sigmoid

( m∑
i=1

𝜔ijh
(0)
j + ai

)
(14)

P
(
h(1)j = 1|v(1)) = sigmoid

( m∑
i=1

𝜔ijv
(1)
i + bj

)
(15)

Update weights and offsets.

𝜔 = 𝜔 + 𝛼
(
P
(
h(0)j = 1|v(0)) (

v(0)
)T

−P
(
h(1)j = 1|v(1)) (

v(1)
)T) (16)

a = a + 𝛼
(
v(0) − v(1)

)
(17)

b = b + 𝛼
(
P
(
h(0)j = 1|v(0)) − P

(
h(1)j = 1|v(1))) (18)

where 𝛼 is learning rate.

Update of parameters by Eqs. (14–18).

Step 3: The labels are attached to the top layer to fine tune with a
back-propagation algorithm.

In fact, there is an error between outputs of model and labels.
When the output layer of DBN is regarded as the first layer of back-
propagation neural network, the error will be propagated from the
top layer down to each layer of RBM for fining tune the whole DBN.
Obviously, fine-tuning is a supervised training process in the sec-
ond stage, which is different from the unsupervised self-learning
process in the first stage. It can be seen that DBN is a deep model
with feature learning and classification by the two-stage training.

3. GENERAL PROCEDURES OF BUILDING
A MODEL FOR BEARING FAULT
DIAGNOSIS

The general procedures of the proposedmethod are summarized as
Figure 2.

Figure 2 The flow chart of diagnosis model by
proposed method.

Step 1: Bearing vibration signals are decomposed by VMD. Sample
entropy of IMFs is sorted from large to small and the first two IMFs
are selected to be processed by wavelet threshold denoising.

Step 2: Reconstructed signals after denoising are processed by
Hilbert transform and by FFT.

Step 3: Choose kernel function and dimensions of raw data set. The
raw data is dimensioned by KPCA to form input data into DBN.

Step 4: Structure a DBN for diagnosis.

Step 5: Further improve accuracy and training speed by optimiz-
ing the network parameters. Specifically weight matrix of DBN is
initialed by a contribution rate of principal components and key
parameters of KPCA-DBN are adjusted.

4. EXPERIMENTAL DATA DESCRIPTION

The vibration signals of rolling bearing are from experimental data
of Case Western Reserve University [45]. The test bench consists
of a 2hp three-phase induction motor shaft and a dynamometer for
generating rated load in Figure 3. The vibration signals of drive end
bearing are generated at a 1750 rpm motor speed. The sampling
frequency fris 12 kHz. All vibration signals have 12 states in total,
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Table 1 Classification description of case western reserve bearing [45].

Bearing Position Fault Diam-
eter (in)

Fault Placement Label Category

Normal 0 0 1 Class1 (Class1)
0.007 2 Class2-2 (Class1)
0.014 3 Class2-2Inner race faults
0.021

0
4 Class2-2

0.007 5 Class2-3 (Class1)
0.014 6 Class2-3Ball faults
0.021

0
7 Class2-3

@3:00 8 Class3 (Class1)
@6:00 9 Class3 (Class2-1)0.007
@12:00 10 Class3

0.014 @6:00 11 Class2-1
Outer race faults

0.021 @6:00 12 Class2-1

Figure 3 Experimental device.

which are labeled from 1 to 12. Some labeled states are combined to
form different categories (ClassX or ClassX-X) with different fault
locations and sizes. Class1 is for distinguish four faults on different
positions of a rolling bearing. Class2 is for distinguish different fault
sizes at a same location of rolling bearings. Fault states can be sub-
divided into three groups, Class2-1, Class2-2 andClass2-3, depend-
ing on different positions of rolling bearing. Class3 is for distinguish
different locations of faults on outer race with different angles rel-
ative to the load zone. The last category marked by “All class” rep-
resents a data set containing all 12 labels. Each faults contain 115
samples and each sample consists of 1024 data points. All the labels
are shown in Table 1.

5. RESULTS AND ANALYSIS

5.1. VMD and Wavelet Threshold Denoising

The average SNR of all signals is 5 when signals are added strong
noise, and the SNRs of signals with label 1, 2, 8, 9 and 10 are nega-
tive. That means signal power is less than noise power. In addition,
signals with label 2, 8, 9 and 10 is the vibration signals which crack
diameter of rolling bearings are only 0.007 in and the fault features
are easy to be submerged in noise so they are considered as incipi-
ent faults.

Each sample of above signals is decomposed into 5 IMFs by VMD.
The sample entropy of IMFs is calculated and listed in descend-
ing order. Then the first two IMFs are selected to be processed by
wavelet threshold denoising to reduce noise and prevent incipient
fault features from being filtered. Select “db3” wavelet function and
choose the number of wavelet decomposition layers to be 4. Noise
is concentrated in a high-frequency coefficient and that part is fil-
tered out in a reconstructed signal through an appropriate thresh-
old. Finally, noise is suppressed.

Denoising performance is evaluated by SNR and root mean square
error (RMSE). At first, 75000 sampling points of signals with label
2 are taken for experiment and the SNR is −0.85. The theoretical
failure frequency of the fault on inner race is 159.4 Hz [46]. It can
be seen from Figure 4(b) that the amplitude of failure frequency
is too small to identify in IMF1. Besides, failure frequency is eas-
ily confused with a several peaks in the neighborhood of the fre-
quency in IMF5. However, the tagged frequency of 158.2 Hz in
IMF1 and IMF5 can be clearly identifiedwhen signals are processed
by the proposed noise-reducing method in Figure 4(c). A tagged
frequency is almost equal to 159.4 Hz and they are considered to be
consistent. In addition, the fault feature is more obvious by denois-
ing. SNR is increased from −0.85 to 6.6 by denoising.

Secondly, denoising results of signals with “Class3” by different
methods are compared in Table 2. It shows that the performance
by VMD-sample entropy–wavelet threshold denoising is superior
to others.

If wavelet threshold denoising is applied to each IMF by VMD-
wavelet threshold denoising,most noisewill be eliminated but some
useful information including incipient fault featuresmay be lost.We
use signals of “Class3” to test useful information lost. Themeasured
vibration signals added with noise and the signals denoising by the
following two methods are input into DBN to obtain the fault diag-
nosis results for comparisons. Mean accurate rates of diagnosis are
shown in Table 3. Network structure of DBN has three hidden lay-
ers and the number of hidden layer nodes is set as [500, 300, 100].
Learning rate is 0.001 and iteration number is 1000. Each experi-
ment is calculated 10 times.
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Figure 4 Vibration signals and corresponding spectrum of noisy IMFs and denoised IMFs. (a) Measured vibration signal and the
signal added noise; (b) spectrum of IMFs decomposed from signal added noise; and (c) spectrum of IMFs decomposed from
denoising signal.

Table 2 Denoising effect of signals with “Class3.”

Class3
Methods Evaluation

Indicator 8 9 10
SNR −0.16 −0.41 −2.92Measured vibration

signals added with noise RMSE 0.0502 0.0502 0.0504
SNR 3.59 3.44 0.94

VMD
RMSE 0.0325 0.0323 0.0422
SNR 0.23 0.17 0.11Wavelet threshold

denoising RMSE 0.0441 0.0467 0.0475
SNR 6.80 7.20 5.07VMD-sample

entropy-wavelet
threshold denoising RMSE 0.0281 0.0268 0.0293

Table 3 Effect of denoising methods on diagnosis results.

Methods Fault
Diagnosis
Times

Average
Accuracy

Measured vibration signals
added with noise

10 31%

VMD-sample entropy-
wavelet threshold denoising

10 48%

VMD-wavelet threshold
denoising

10 38%

From Table 3, the proposed noise-reduction method is effective to
filter strong noise of vibration signals of incipient faults and helpful
to improve diagnosis accuracy.

5.2. The Proposed Method of KPCA-DBN

Fault features in time-domain are difficult to be recognized effec-
tively, by which diagnosis results of DBN show low classification
accuracy in Table 3. However, the fault diagnosis results [27] by
DBN for frequency-domain signals have been improved signifi-
cantly. In this paper, the denoised vibration signal is transformed
into an analytical signal by Hilbert transformation and then con-
verted to a frequency-domain signal by fast Fourier transform
(FFT). In addition, richer information in low frequency and less
interference in high frequency of frequency-domain are shown by
Hilbert transform-FFT in compared with that only transformed by
FFT when processing the data of label 9.

The data set from “All class” involving 12 labels is preprocessed to
reduce dimension from 1024 to 513. Two methods of traditional
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Figure 5 Hilbert transformation and Fourier transform. (a) Denoised vibration signal and (b) spectrum of preprocessed
signal by Hilbert transformation and FFT and Spectrum of preprocessed signal by FFT.

Table 4 Average accuracy and training time by traditional DBN and KPCA-DBN for “All class.”

Hidden
Layer Nodes

Methods Input Layer
Nodes

Output
Layer Nodes

Average Test
Accuracy (%)

Average Training
Time (s)

DBN 513 12 96.5 151
500-300-100

KPCA-DBN 300 12 87.4 104
DBN 513 12 95.3 57

300-100
KPCA-DBN 300 12 94.1 35
DBN 513 12 95.1 42

100-50
KPCA-DBN 300 12 94.6 21

DBN and KPCA-DBN are adopted to classify 12 labels. For the
method of KPCA-DBN, data set firstly is divided into 2 categories
and each category contains only 6 faults because the KPCA method
is an unsupervised dimensional reduction method which deter-
mines the limitations in dealing with multi-label data. KPCA algo-
rithm is applied to reduce dimension for each category and then
combine them into a matrix as input data of DBN. The number of
principal components retained by KPCA is set as 300, then train-
ing set is an 870 × 300 matrix and test set is a 345 × 300 matrix. For
the method of traditional DBN, the data dimension keeps to 513
so the data set is divided into an 870 × 513 matrix for training and
a 345 × 513 matrix for testing. Data dimension will determine the
number of nodes in visible layer of the first RBM in DBN. Structure
of DBN is very important for feature extraction and states recogni-
tion. In this paper, DBN has three hidden layers and the number of
hidden layer nodes is set as [500, 300, 100]. Learning efficiency is
0.001 and the number of iterations is 1000. Average accuracy and
average training times are calculated for ten test to ensure reliability.
In comparison, DBN is designed to has two hidden layers and the
number of hidden layers nodes are respectively [300, 100] and [100,
50] without changing network parameters and data form. Average
accuracy and training time by traditional DBN andKPCA-DBN for
“All class” are shown in Table 4.

In Table 4, the test accuracy obtained by KPCA-DBN increases sig-
nificantly when reducing the number of hidden layers of DBN. It
indicates that overfitting may occur when hidden layers is three. It
shows that the test accuracy by the KPCA-DBN which DBN has
two hidden layers is close to that by traditional DBN which has

three hidden layers but the training time is only one fifth (35/151)
of that taken by traditional DBN in Table 4. With decreasing the
number of nodes of two hidden layers, the network is simplified
further and the classification accuracy by KPCA-DBN is increased
slightly from 94.1% to 94.6%. It shows that the proposed method of
KPCA-DBN can simplify network and shorten training time to 21s
meanwhile it still reaches above 94% diagnosis accuracy for multi-
ple faults including incipient faults.

5.2.1. Analysis of kernel function

The recognition accuracy by the proposed method isn’t getting
enough accurate as it is mainly limited in DBN structure and set-
tings of KPCA. KPCA maps samples from low- dimensional space
to high one. The mapping function 𝜑 (x) is unknown but the next
step requires to calculate a covariance matrix, in which each ele-
ment is equal to inner product of 𝜑 (x). So how do we get the inner
product of 𝜑 (x)? The problem is solved by substituting a specific
mapping function with K

(
x, y

)
=< 𝜑 (x) , 𝜑

(
y
)

>. There are
several common kernel functions K

(
x, y

)
and four kinds of ker-

nel functions are selected for comparisons. Experimental data con-
sist of a total of 870 samples including six failure types which are
labeled one by one and different labels are marked by different col-
ors. Then the first three principal components of data are kept. In
three-dimensional coordinate, the distribution of points on each
plane expresses clustering generated by one principal component in
Figure 6.
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Figure 6 Projection of the first three principal components (■ Label 1 ■ Label 2 ■ Label 3 ■ Label 4 ■ Label 5 ■ Label
6). (a) Linear kernel; (b) polynomial kernel; (c) Laplacian kernel; and (d) Gaussian kernel.

Table 5 Description of output data size.

Structure of DBN Class1 Class2-1 Class2-2 Class2-3 Class3 All Class
Units of output layer 4 3 3 3 3 12

The top three principal components show good performance of
clustering in space by both Gaussian kernel function and linear ker-
nel function. However, clustering by Polynomial Kernel is not ideal.
The clustering points of label 2 and 4 are scattered that the principal
components extracted from different samples with the same label
by Polynomial Kernel are distributed or scattered in some differ-
ent directions in the space. Oppositely the principal component can
basically cluster by Laplacian Kernel function but centers of cluster-
ing in different colors are heavily overlapped so that different labels
cannot be separated. The overlapping shows that different features
of multi-label samples are hard to characterize by Laplacian Ker-
nel function. ComparedwithGaussian kernel function, the distance
between the clustering centers of different labels is smaller than that
by linear kernel function so linear kernel function is selected. It fol-
lows then that a suitable kernel function is beneficial to linear sep-
arability of multi-label data in feature space.

5.2.2. Analysis of the number of principal
components

Theprocess of forming input samples byKPCAnot only determines
dimension of input sample but also the validity of data information.
The number of principal components is set as 300, 200, 100, 10 and
5 so input matrix with different dimensions are formed to input
into DBN. DBN is constructed with two hidden layers and nodes of

hidden layers is [100, 50]. Units of output layer in DBN are adjusted
to meet data of different fault types shown in Table 5. Learning rate
is 0.001, iterations is 1000 and loss detection period is 10. Each
experiment is repeated 10 times and the average accuracy and train-
ing time are recorded.

Average training time is shownby bar graph and average accuracy of
different categories is plotted in Figure 7 by calculation of 10 times.
With decrease of number of principal components, dimensions of
inputmatrix in DBN is getting small and training time is shortened.
When the number of principal components reduces from 300 to
100, the training times for “All class” are 19.2s, 15.7s, 8.9s in order
and average accuracy increase from 94.9% to 96.7%. Therefore, the
computing time can be reduced without decreasing accuracy if the
principal components kept from measured data are enable to cover
the primary features. When the number of principal components is
reduced to only 2% of dimensions of measured data, average accu-
racies of all classification are plotted in gray line and the values
of points are 98.8%, 98.8%, 96.6%, 97.6%, 98.6% and 93.1%. Com-
paredwith results of 100 dimensions, average accuracy has reduced.
The decline of average accuracy is very obvious when the principal
components are only 1% of dimensions of measured data. Take “All
class,” e.g., whose average accuracy has dropped to 90.72%. Seen
from the average accuracies, the principal components which rank
the top 20% of the eigenvalue contribution rate have represented
sensitive features of measured data and redundant interference
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Figure 7 Average accuracy and training time with different number of
principal components.

Table 6 Average accuracy and training time of four different methods data.

Class1 Class2-1 Class2-2 Class2-3 Class3 All Class
Methods

A (%) T (s) A (%) T (s) A (%) T (s) A (%) T (s) A (%) T (s) A (%) T (s)
BP 78.3 3.1 79.6 3.5 81.7 2.8 79.4 3.6 76.1 4.3 78.9 8.7
SVM 82.8 2.9 86.8 3.1 85.8 2.2 86.2 2.1 81.1 3.3 83.7 8.2
KNN 91.4 10.3 87.3 9.9 89.1 9.7 88.1 10.4 87.4 9.8 84.1 54.7
CNN-SVM 100 16.8 100 16.3 99.8 15.9 100 17.2 99.7 16.9 99.4 73.8
Deep EMD-
PCA

88.6 25.6 86.2 25.3 86.9 24.3 87.5 25.5 87.9 25.8 84.8 142.1

DBN 98.3 9.2 99.6 7.2 99.1 7.7 98.1 8.4 97.4 8.9 95.1 42
KPCA-DBN 98.8 4.2 99.4 3.7 99.3 3.5 98.9 3.9 98.2 4.6 95.3 9.3

features can be removed by KPCA. However, when principal com-
ponents are kept a little, too much data filtered will lose a lot of
information and decreases accuracy. As a result, it is reasonable to
generate input sample with 100 dimensions by KPCA in this paper.

5.3. Comparison with Other Methods

We will compare KPCA-DBN method to other intelligent methods
by the same fault data shown in Table 6. BP, SVM, KNN, CNN-
SVM,Deep EMD-PCAandDBNare compared. 85 samples are ran-
domly selected from each category to train and the rest 30 samples
for testing.

Results of fault diagnosis by SVM, BP and KNN are based on train-
ing the statistical features. 14 statistical features of each bearing fault
sample are calculated by the method in the literature [47] and the
detailed parameters are listed in Table 7. Then, the 14 statistical fea-
tures are input into BP, SVM and KNN for fault diagnosis. BP neu-
ral network has a one hidden layer with 100 nodes. For the method
of Deep EMD-PCA, principal space and residual space of dataset
are decomposed two times to obtain the 4-layer subspace by EMD.
Then, constitute input matrix by IMFs decomposed from EMD,
which is input data of PCA to cluster different fault types. When
using CNN-SVM method to diagnose faults the details about the
structure of CNNare shown in Table 8.We also use traditional DBN
for comparisons. DBN has three hidden layers and the number of
hidden layer nodes is [100, 100, 50]. Other parameters of DBN are

same as that of KPCA-DBN. The number of principal components
of KPCA-DBN is 100. Hidden layer of this model is decrease to be
1 and the nodes of the hidden layer are 50. Units of output layer are
set according to the number of fault types involved in different data
categories. Diagnosis results by sevenmethods are shown inTable 6.

All classification results are shown in Figure 8(a–f). Accuracy is
plotted by a line and training time is shown by a histogram. “A” is
average accuracy and “T” is average training time in Table 6.

Seen from Figure 8, four lines are basically below 90% and other
three lines are above 95% and they are divided into regions 1 and
2 in Figure 8(a). Results of CNN-SVM, DBN and KPCA-DBN are
in region 1 and results of BP, SVM, KNN and Deep EMD-PCA are
concentrated in region 2. The average classification accuracies clas-
sified by BP, SVM, KNN and Deep EMD-PCA for “Class3” respec-
tively are 76.1%, 81.1%, 87.4% and 87.9% and the classification
accuracy of DBN is improved to nearly 97%. The average accuracy
of KPCA-DBN reaches 98.2% and the accuracy of CNN-SVM is the
highest even more than 99%. The three methods can distinguish
the distribution orientation of incipient faults on rolling bearing.
Compared with traditional machine learning and statistic-based
algorithms, deep learning network shows a more comprehensive
learning performance and is easier to identify the features of vibra-
tion signals with low SNRs.

Nevertheless, DBN method takes more than five times as that by
SVM (42/8.2) when dealing with data of “All class.” CNN-SVM
takes much more time to train which is about 18.5(73.8/42) times
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Table 7 14 Statistical features.
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Table 8 The descriptions of the hyper-parameters of CNN.

CNN-Softmax Model Structure

Layer Type Parameter Settings
Input layer (Batch, 25 × 20, 2)
Convolution layer 1 Filter = (3 × 3, 2, 64), strides

= (1, 1), padding = same
Activation layer 1 ReLU activation function
Max-pooling layer 1 ksize = (1, 2 × 2, 1), strides =

(2, 2), padding = same
Convolution layer 2 Filter = (3 × 3, 2, 64), strides

= (1, 1), padding = same
Activation layer 2 ReLU activation function
Max-pooling layer 2 ksize = (1, 2 × 2, 1), strides =

(2, 2), padding = same
Convolution layer 3 Filter = (3 × 3, 2, 64), strides

= (1, 1), padding = same
Activation layer 3 ReLU activation function
Global average polling layer ksize = (1, 5 × 4, 1), strides =

(5, 4), padding = same
Flatten layer Flatten global average polling

layer to 1-D shape
FC-Dense layer 1 128 hidden layer neuron

nodes
FC-Active layer 1 Activation function
FC-Dense layer 2 12 hidden layer neuron

nodes
Softmax output layer Softmax activation function

than that of DBN, which is the most training time among the three
methods in region 2.

It’s worth noting that an average diagnosis accuracy of KPCA-DBN
for classifying “All class” data reaches 95.3% which is higher than
that of DBN. Moreover, KPCA-DBN takes only a quarter (9.3/42)
of the training time by DBN and only 13% (9.3/73.8) of the train-
ing time by CNN-SVM. Thatmeans accuracy diagnosis accuracy of
KPCA-DBN is above 95%belonging to region 2 and training time of
KPCA-DBN is within 10s closing to that of shallow network. From

above, the model of KPCA-DBN gets both high precision and high
efficiency.

KPCA-DBN can accurately identify locations and sizes of incipi-
ent faults and improve an efficiency of training. It is attributed to
that it maps fault data to high-dimensional space when fault data is
difficult to be separated in linear space. That overcomes the short-
coming of SVM and EMD-PCA which can only process linearly
separable data. Moreover, KPCA algorithm not only preserves the
principal components but also eliminates interference of redundant
information. The process doesn’t depend on the artificial feature
selection or feature statistics but an automatic retention for effective
information based on data distribution. At the same time, KPCA-
DBN model exerts the powerful function of DBN in automatically
extracting and learning features. As a result, the proposed method
is better than other intelligent algorithms compared with efficiency
and accuracy of incipient faults diagnosis. It successfully makes up
for the long time-consuming shortcomings of deep learning net-
work (e.g., CNN/DBN).

5.4. Classification Results of KPCA-DBN

5.4.1. DBN structure

Combination of units in hidden layers are divided into stationary,
increasing and decreasing type. KPCA-DBN with three different
structure types are applied to diagnose faults with data of “All class”
shown in Table 9. Each experiment is repeated 10 times and diag-
nosis results are shown in Figure 9.

The accuracy results of decreasing and stationary type are not less
95%.However, the average accuracy of KPCA-DBNwith increasing
type drops to 93.9% in Table 9. With an increased nodes of layer by
layer the classifier is tend to over fitting which will weaken general-
ization ability of the model. In the view of computational stability,
the average accuracy and computing time of stationary type are lit-
tle fluctuations within ten repeated experiments in Figure 9 due to
the same nodes of layers. However, the volatility of other two types
is relative to larger. As for training time, the training time of DBN
with increasing type is more than 20 times than that of stationary
and decreasing type by the same input sample shown in Table 9, so
smaller number of units will take less computing time. As a result,
the DBN structure with same number of unit nodes in hidden layer
is adopted.
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Figure 8 Diagnosis results by four different methods for processing each category data. (a) Class1; (b) Class2-1; (c) Class2-2; (d) Class2-3; (e)
Class3; and (f) All class.

5.4.2. Initialization of RBM weights

We intend to shorten training time by simplifying network struc-
ture and initializing RBM weights by contribution rate of princi-
pal components. For traditional initialization of RBM weights, the
neurons of DBN in first visible layer are randomly assigned values

within [0 − 1] during training. Then, they will be adjusted by the
offset vector a =

(
a1, a2,… , am

)T which is calculated by the devi-
ation between the reverse structure reconstructed by hidden layer
and the actual input. In the model of KPCA-DBN, the input data is
a matrix consisting of the principal components which are retained
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Table 9 Comparison of DBN structure by KPCA-DBN method.

Units per Layer (KPCA-DBN) Number of
Iterations

Training Time Average Accuracy

100-50-20-12 (decreasing type) 1000 7.3 95.3%
100-100-100-12 (stationary type) 1000 9.8 95.4%
100-500-1000-12 (increasing type) 1000 206.5 93.9%

Figure 9 Diagnosis results of KPCA-DBN with different DBN structure.

from raw data in an order of contribution rate, so it has implic-
itly presented a sort. The maximum among the random numbers
in [0 − 1] should be assigned to the principal component with the
largest contribution rate as weight value. Similarly, the rest weights
are allocated by the contribution rate of principal components in
turn so that the initial weights appear in an order matching the fea-
tures of input data.

With same DBN structure and same parameters, the training pro-
cesses ofDBNby random initial weight values and those by adjusted
initial weight values based on KPCA are compared through cal-
culating data of “Class 3” and “All class” shown in Figure 10.
Whether locations identification of incipient faults or multi-type
fault diagnosis, the training accuracy of DBNwith weight initializa-
tion adjusted by KPCA can approach to 1 quickly, which illustrates
that convergence speed is faster than that with random weight val-
ues. In addition, fluctuation of accuracy curve is slight during the
training processwithweight initialization adjusted byKPCA,which
means the fitting to data distribution is more accurate. It follows
that weight initialization adjusted by KPCA can reduce the number
of adjustments to the neurons in first RBM and fit to the charac-
teristics of input data more quickly and accurately, which helps to
further improve efficiency of model training.

5.4.3. Key parameters of KPCA-DBN

Parameters selection is very important in training model of KPCA-
DBNand some of them are determined based on above analysis.We
choose linear kernel function, 100 principal components, a three-
layer structure and 100 nodes of hidden layer. The number of nodes
in hidden layer is equal to that of input layer nodes. The results of
fault diagnosis normally can be further improved by setting pre-
ferred parameters value in training DBN. The training process is
affected easily by parameters of loss detection period and iterations

from our experience. Loss detection period (number of batch train-
ing) is defined as 5, 10, 20 or 30 for comparisons and the maximum
iterations are chosen to be 1000, 2000, 3000, 4000, 5000 or 10000.
The experimental data are from “All class” and each experiment
is repeated 5 times. In Figure 11, x axis is divided into four seg-
ments to show the results of different loss detection periods and the
results obtained by KPCA-DBN in different maximum iterations
are marked by six colors. The training time is plotted as bar graph
and diagnosis accuracy is plotted as line graph.

Compared heights of same color bars in Figure 11, training time
is 9.42s, 13.72s, 18.03s, 20.92s, 22.80s or 41.41s in different itera-
tions when loss detection period is 5. When loss detection period is
30, training time is 19.87s, 21.03s, 23.73s, 33.85s, 41.26s or 49.41s.
We can conclude that training time increase with increase of loss
detection period. For diagnosis accuracy, values of points in the
six lines in the first segment of x axis are smaller than those in
other segments. As loss detection period increases to 10, the value
of each point in the blue line is almost equal to 99%. Neverthe-
less, when loss detection period is increase to 30 the lowest test-
ing accuracy is only 93.3% (336/360) and six lines fluctuate greatly,
which indicates accuracy falls and stability of calculation decreases.
Loss detection period represents howmany training times are taken
before checking error to confirm whether to stop training. If loss
detection period is too large, weights of RBMcannot be updated fre-
quently enough, which leads to inadequate learning and more cal-
culating time. Conversely, it is easy to fall into local optimum and
reduce the generalization.

From Figure 11, black line is almost at the bottom of six lines. In
the line, the maximum value is 96.9% (349/360) and the minimum
one is 93.3% (336/360), which shows wider wave range than other
lines. We can conclude that when the number of iterations is 1000,
the performance of classifier is sensitive to loss detection period.
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Figure 10 Training process under different initialization of RBM weights. (a)
Class 3 and (b) All class.

Figure 11 Diagnosis results of training process with different loss detection period and maximum
iteration.

Therefore, classifier remains undertrained in 1000 iterations so
that the performance of classifier is poor and easily affected by
parameters in training process. When number of iterations is 3000,
the classifier has been almost adequately trained and the average

accuracy can reach 98.4%. The average accuracy is close to 99.1%
and testing results are stable until it increases to 5000. While
iteration is increased to 10000, testing accuracy is not improved
instead of degradation of stability. The testing accuracies are 96.4%
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(347/360), 98% (347/360), 96.1% (346/360), 95.8% (345/360),
96.4% (347/360) in 10000 iterations as loss detection period is 30.
We can conclude that fitting error is small enough when the num-
ber of iterations is 5000. If continue to increase iterations, there is
little improvement on classification accuracy and even decline in
efficiency and classifier stability.

Loss detection period and iterations are two key parameters for
training DBN and they are set depended on complexity and sizes of
samples. In this paper, when the loss detection period is 10 and the
number of iterations is 3000, DBN can be fully trained to achieve
high efficiency and high accuracy of both training and testing.

6. CONCLUSIONS

An approach of KPCA- DBN is proposed to solve the problem of
low recognition rate and long training time for detecting incipient
faults submerged in strongly noisy background.

The method of VMD-Sample entropy–wavelet threshold denois-
ing is effective to separate noises from raw data and SNR of vibra-
tion signals of rolling bearing is obvious improved. The denoised
signals are transformed by Hilbert transform and FFT to form the
frequency-domain experimental signals. A KPCA-DBN method is
used to diagnose incipient faults of rolling bearings.

Firstly, kernel function is introduced to perform nonlinear oper-
ation in mapping space and principal components of experimen-
tal signals are preserved. Secondly, principal components are made
input signals of DBN to diagnose sizes and locations of incipient
faults of rolling bearings. The improvedDBN through network sim-
plification and weight initialization adjustment is used as feature
extractors to learn and extract representative features of training
data. During unsupervised self-learning process, weights of DBN
are adjusted in reverse by BP and Softmax is constructed in the
last layer to output classification results. The results are shown as
follows:

1) The proposedmethod of KPCA-DBN can automatically retain
the principal components that represent data characteristics
according to data distribution without depending on manual
feature extraction by expert experience. The method reduces
data dimension and eliminates interference information.

2) The model of combining of KPCA and DBN can shorten net-
work structure and increase convergence rate. Identification
accuracy achieved by KPCA-DBNwith only two hidden layers
and fewer nodes comes up to that by DBN with three hidden
layers and more nodes. Weights of DBN are initialized by con-
tribution rate of principal components calculated by KPCA,
which accelerates the convergence rate of the network.

3) By optimizing parameters of KPCA-DBN, the average test
accuracy by KPCA-DBN reaches 99.1% for identification of
12 labels including incipient faults and the training time is 28s
which is half of that by DBN model. The locations detection of
incipient faults on outer race gets to average accuracy of 98.9%.
Besides, the average accuracy of fault size detection is above
99%.

4) The calculation results show the proposed method is supe-
rior to other existing intelligence diagnosis methods including

BP, SVM, KNN, Deep-EMD-PCA, CNN-SVM and traditional
DBN in meeting real-time fault diagnosis.

The paper provides an application in detecting sizes and locations
of incipient faults of rolling bearings by the proposedmethod.How-
ever, it is also especially suitable for rotating equipment with high
requirement for operation safety, such as rolling bearing of axle
box in high-speed emu or main shaft bearing of aircraft engines.
These rotating equipment are required to have efficient judgment
on incipient faults during operation, which provides effective guar-
antee to avoid malignant development of the faults. The proposed
method is also universal for multi-task classification and it can be
applied to other scenarios as well because of the ability of automat-
ically learning.
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