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Abstract

This thesis presents novel methods for the analysis and design of high-affinity protein
interactions using a combination of high-resolution structural data and physics-based
molecular models. First, computational analysis was used to investigate the molec-
ular basis for the affinity improvement of over 1000-fold of the fluorescein-binding
antibody variant 4M5.3, engineered previously from the antibody 4-4-20 using di-
rected evolution. Electrostatic calculations revealed mechanistic hypotheses for the
role of four mutations in a portion of the improvement, subsequently validated by
separate biochemical experiments. Next, methods were developed to computation-
ally redesign protein interactions in order to rationally improve binding affinity. In
the anti-lysozyme model antibody D1.3, modest binding improvements were achieved,
with the results indicating potentially increased sucesss using predictions that empha-
size electrostatics, as well as the need to address the over-prediction of large amino
acids. New methods, taking advantage of the computed electrostatics of binding,
yielded robust and significant improvements for both model and therapeutic antibod-
ies. The antibody D44.1 was improved 140-fold to 30 pM, and the FDA-approved
antibody cetuximab (Erbitux) was improved 10-fold to 52 pM, with an experimental
success rate of greater than 60% for single mutations designed to remove under-
satisfied polar groups or improve misbalanced electrostatic interactions. Finally, a
physics-based improvement to the calculation of the nonpolar component of solva-
tion free energy was implemented and parameterized to address the over-prediction
of large amino acids. These results demonstrate novel computational capabilities and
indicate their applicability for enhancing and accelerating development of reagents
and therapeutics.
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Chapter 1

Introduction

Antibodies are used extensively in diagnostics and as therapeutic agents. Achieving

high-affinity binding of antibodies to their antigens is important for expanding detec-

tion limits, extending dissociation half-times, decreasing drug dosages, and increasing

drug efficacy. However, antibodies produced from an in vivo immune response gen-

erally exhibit affinities in the 10 nM to 100 pM range [1], often necessitating further

engineering. Directed evolution can be used to engineer molecular properties, but

computational design holds the promise of far greater exploration of sequence space

than possible experimentally, enabling rapid and inexpensive antibody improvement.

The improvement of protein–ligand interactions using different molecular display

and directed evolution methods has been reviewed recently by Levin and Weiss [2].

Platforms for display include phage, bacteria, yeast, ribosome, and mRNA, each

with their respective advantages and disadvantages. These engineering strategies

require significantly more time than would be required to directly express and vali-

date computationally-designed variants. In this work we take advantage of the yeast-

display system for rapid and accurate characterization of rationally-designed antibody

variants. Equilibrium binding affinities can be measured for 1–20 variants within 1–2

weeks time, and the yeast-display method yields measured binding affinities in quan-

titative agreement with measurements from other, off-yeast methods (Figure 1.1).

This thesis presents the development of computational protein design methods for

the rational selection of mutations to improve binding affinity. Computational design

depends critically on two capabilities: accurate energetic evaluation and thorough

conformational search. Previous work has addressed many problems related to the

design of improved protein–protein binding affinity, such as the design of stable pro-

tein folds [14–18], binding pockets for peptides and small molecules [19–22], altered
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Kd other (M)

K
d
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D
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)

System and yeast-display reference(s) Off-yeast method
◦ scFvs binding to hen egg-white Fluorescence quenching [3]

lysozyme (HEL) [4]
• 10Fn3-based antibody mimics binding Equilibrium competition with

to HEL [5] purified antibody mimics [5]
+ Neutralizing scFvs binding to Surface plasmon resonance [6]

botulinum neurotoxin [6]
N scFvs binding to fluorescein [7] Fluorescence quenching [8]
¤ scFv binding to carcinoembryonic Mammalian cell-displayed

antigen (CEA) [9] CEA with soluble scFv [10]
■ scFv binding to xeroderma pigmentosum- Surface plasmon resonance [11]

complementing protein group A [11]
¦ scFvs binding to p53 peptides [11] Surface plasmon resonance [11]
∗ scFv binding to epidermal growth Surface plasmon resonance [11]

factor (EGF) [11]
× scFv binding to heparin-binding EGF [11] Surface plasmon resonance [11]
◆ Soluble T-cell receptors binding to Surface plasmon resonance [12]

staphylococcal enterotoxin C3 [12]
4 Soluble T-cell receptor binding to Surface plasmon resonance [13]

toxic shock syndrome toxin-1 [13]

Figure 1.1: Comparison of binding affinities determined by yeast surface display
(Kd YSD) and other methods (Kd other). scFv, single-chain antibody fragment.
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protein–protein specificity [23–29], and altered enzymatic activity [30–35]. The design

of improved antigen-binding affinity has met with limited success, however [36–39].

Challenges for protein–protein affinity design include conformational change upon

binding, water molecules trapped between binding partners, polar and charged side

chains, and the trade-off of protein–solvent with protein–protein interactions from the

unbound to bound state. Fine energy discrimination for redesign from nanomolar to

picomolar affinities is a particular challenge.

A robust design strategy should both produce a significant fraction of designs

that are successful when tested experimentally and yield substantial improvements

across multiple systems. Though there are potentially many mutations that confer

improved binding affinity for a particular interaction, calculations need only identify

a subset to be successful [40, 41]. Our approach utilizes thorough optimization tech-

niques that exhaustively rank-order the best solutions in a discretized search space.

Although some of these solutions are expected to be improved designs, others will be

unsuccessful but may be useful in learning about deficiencies in the energy functions,

search procedures, or other methodology.

The present work

In Chapter 2, we use computational tools to analyze a high-affinity variant of a

fluorescein-binding antibody. The motivation for the work was to gain insight into

the molecular mechanisms for the over 1000-fold binding affinity improvement. Pre-

vious biochemical and structural analyses had not elucidated the energetic role of

any of the 14 mutations accumulated by the four rounds of directed evolution [8].

At the same time, we were motivated by an interest in applying similar compu-

tational tools for the rational design of affinity-enhancing mutations. Though the

14-mutation high-affinity variant represents just one of possibly many pathways for

affinity maturation, if the calculations could explain or recapitulate even a subset of

the mutations selected, the potential applicability of similar computational methods

for design would be partially validated. Here we show that rigorous analysis us-

13



ing the Poisson–Boltzmann continuum electrostatic framework alone results in novel

hypotheses for molecular mechanisms for four of the mutations involved [42], with

subsequent, separate mutational analyses supporting our conclusions [7].

Chapter 3 introduces a two-stage hierarchical design procedure to address the lim-

itations of energy function accuracy and conformational search thoroughness. Single

mutations for improving the binding affinity of an anti-lysozyme model antibody were

computationally designed and experimentally assayed. While the affinity improve-

ments were marginal and the success rate was low, the systematic design approach

facilitated two important conclusions. First, additional emphasis on the electrostatic

term of the binding free energy may improve the predictive accuracy of the methods.

Second, an energy function improvement was needed to address the over-prediction

of unintuitive mutations to larger amino acids.

In Chapter 4, the hypothesis that prediction accuracy would improve using a

method with greater attention to calculated electrostatics was explored. Moreover,

several new antibody systems were used to investigate the dependence on system

versus the change in methods, as our goal is the development of computational meth-

ods that are robust for both high experimental success rates and transferability to

different proteins. Overall, we find significant improvements for both model and thera-

peutic antibodies, including 140-fold improvement to 30 pM and 10-fold improvement

to 52 pM, respectively, validating the methods and indicating their applicability for

enhancing and accelerating the developement of reagents and therapeutics.

Despite successful affinity maturation in Chapter 4 using computational protein

design, deficiencies in the methods clearly remain and limit their further extension

to more ambitious design challenges. The finding in Chapter 3 that predictions for

improving affinity are dominated by mutations to larger amino acids indicated a fun-

damental problem in the underlying energy function. Future computational endeavors

addressing problems involving the simultaneous design of greater numbers of protein

positions would like by limited by this accuracy issue.

Chapter 5 investigates a new model [43] for the nonpolar component of the sol-

vation free energy in order to address a hypothesized imbalance in the calculation

14



of protein–protein and protein–water interactions. The model is implemented and

parameterized, and then analyzed for its effect on the design of single mutations

for improved binding affinity. The new nonpolar model attenuates as expected the

overall prediction of larger side chains, however, it does not greatly affect the few

largest-magnitude unintuitive designs.

This thesis contributes novel and robust methods for the improvement of pro-

tein binding affinity using computationally-predicted side-chain mutations. We have

advanced the field of computational protein design in two directions: one toward

engineering, and one toward basic science. We developed prediction methods that

focus on calculated improved electrostatic free energy of binding and yield significant

affinity improvements in model and therapeutic antibodies. Also, we investigated

an improved, physics-based calculation of the nonpolar component of solvation free

energy to address a fundamental tendency of current design methods to favor muta-

tion to larger amino acids. Our improvements to current design capabilities should

enhance and accelerate the development of protein reagents and therapeutics.
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Chapter 2

Computational analysis of a
high-affinity mutant antibody1

Abstract

Computational analysis was used to study the molecular basis for affinity improve-
ment in an ultra-high-affinity single-chain antibody. Previous biochemical and struc-
tural work resulted in little insight for the 14 mutations used for over 1000-fold im-
provement. Here, electrostatic calculations reveal several mechanistic hypotheses for
the role of four mutations in a portion of the energetic improvement. Subsequent
biochemical experiments validated many of these hypotheses, supporting the role for
computation in molecular analysis. Overall, the binding affinity improvement ap-
pears to be the sum of many small changes. This work indicates potentially novel
computational capabilities for using electrostatic calculations to design high-affinity
protein interactions.

1Portions of this chapter have been previously published as:

Midelfort, K. S., Hernandez, H. H., Lippow, S. M., Tidor, B., Drennan, C. L. & Wittrup,
K. D. Substantial energetic improvement with minimal structural perturbation in a high affinity
mutant antibody. J. Mol. Biol. 343:685-701 (2004).
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2.1 Introduction

Expanding the fundamental understanding of high-affinity molecular interactions is

important for improving the ability to engineer molecules with enhanced affinity.

Analysis of protein variants with diverse binding affinities for a shared target can

reveal insights into the mechanistic, molecular basis of improved protein interactions.

Although there has been much study of the transition from micromolar to nanomolar

affinity [44–49], there are few examples of studies of improvement from nanomolar to

picomolar and higher affinity.

Boder and co-workers previously engineered the 4M5.3 variant of the 4-4-20 single-

chain antibody to bind its hapten, fluorescein, with over 1000-fold improved binding

affinity from nanomolar to femtomolar [8]. Subsequently, Midelfort and co-workers

compared the two antibodies using thermodynamic, kinetic, structural, and theoreti-

cal analyses [42]. A summary of their experimental findings is below, followed by the

details of this theoretical contribution.

Thermodynamics of the 4-4-20 and 4M5.3 interactions were studied by direct equi-

librium titration, equilibrium competition titration, and isothermal titration calorime-

try. Improvement in the change in enthalpy of binding, −4.0 (±0.1) kcal/mol, is

the majority of the −4.5 (±0.1) kcal/mol free energy difference between 4-4-20 and

4M5.3. Stopped-flow fluorescence binding kinetics demonstrate the equivalence of Kd

and koff/kon, consistent with a two-state transition from the unbound to bound states.

The kinetic data provide no evidence for an encounter complex.

The structure of 4M5.3 in complex with fluorescein was solved to 1.5 Å resolution

by molecular replacement using the previously reported 4-4-20 structure [50]. Overall,

there are no large differences between the two structures. The RSMD over backbone

atoms is 0.60 Å. Of the 14 mutations in 4M5.3, three are in the first contact shell, four

in the second, and three in the third. The final four side chains are further away and

solvent-exposed. 4-4-20 buries 25 Å2 more polar surface area and there is a negligible

difference in shape complementarity.

The results of different biochemical experiments did not lead to any mechanistic

17



Table 2.1: Computed total electrostatic contributions to binding.a

scFv Fluorescein Net
Desolvation Desolvation Interaction Binding

4-4-20 14.36 14.80 −19.97 9.20
4M5.3 14.68 16.64 −25.62 5.70
4M5.3 − 4-4-20 0.32 1.84 −5.65 −3.50
aAll values in kcal/mol.

explanations for the over three orders of magnitude binding improvement of 4M5.3.

With the crystal structure of the 4M5.3/fluorescein complex solved in collaboration

with the Drennan lab, a collaboration was started between the Wittrup and Tidor

labs to use computation to investigate the pair of antibodies.

2.2 Results

2.2.1 Contribution of electrostatics to binding

The role of improved electrostatic interactions was investigated through continuum

electrostatic binding calculations on the two prepared, unminimized crystal struc-

tures. The overall electrostatic contribution to binding computed by this model is

summarized in Table 2.1. An overall improvement of −3.5 kcal/mol for 4M5.3 relative

to 4-4-20 was computed due to improved interactions with fluorescein (−5.7 kcal/mol)

despite increased desolvation penalty for the fluorescein (+1.8 kcal/mol). Interest-

ingly, the antibody desolvation cost was very similar for both complexes and in neither

case was the full cost of desolvating the binding partners recovered in intermolecular

interactions.

To further understand the computed difference in electrostatics, the −3.5 kcal/mol

total electrostatic affinity difference was dissected into individual components. A

separate component was defined for each backbone amino (Cα–NH), each backbone

carbonyl (C=O), and each side chain group beyond Cα. The energetics for each

component were divided into desolvation (changed interactions with solvent due to

binding), indirect interactions (changed intramolecular interactions due to binding),

18



and direct interactions (changed intermolecular interactions between binding partners

in the bound state). The components provide additive contributions to the computed

difference in binding affinity. This type of dissection is possible in a strictly additive

manner because of the superposition properties of the linearized Poisson–Boltzmann

equation. After breaking the 4-4-20 and 4M5.3 energetics into their respective com-

ponents, all corresponding components between the two antibody variants were dif-

ferenced, so that non-zero values indicate components of potential interest. Table 2.2

shows the difference of component analyses between the two crystal structures. Three

of the top four components and four of the top 20 components, ranked by the metric

SumAbs (Equation 2.1), are 4M5.3 side chain mutations.

SumAbsi = |Desolv4M5.3
i −Desolv4−4−20

i |+
∑

j 6=i

|Inter4M5.3
i−j − Inter4−4−20

i−j | (2.1)

SumAbs is a measure of how different each component is between the two analy-

ses. DesolvX
i represents the desolvation penalty for component i in complex X, and

InterX
i−j represents the interaction free energy between the atoms in component i and

the atoms in component j in complex X.

The direct role of the 14 mutations together was calculated by summing to-

gether the components involving the 14 mutated side chains, revealing a total of

−1.1 kcal/mol (Table 2.3). Four side chains dominate this value: H31 Asp-to-

His, H101 Ser-to-Ala, H102 Tyr-to-Ser, and H106 Asp-to-Glu. The remaining

−2.4 kcal/mol in computed electrostatic improvement is the result of secondary ef-

fects from the mutated residues (e.g. altering the binding conformation of fluorescein

in the site). Three components dominate this −2.4 kcal/mol: L31 His, L39 Arg, and

L96 Ser, each of which exhibit slightly shortened hydrogen-bond distances in 4M5.3

relative to 4-4-20.

2.2.2 Effect of minimization on electrostatic contributions

Because the results of this analysis produced significant free energy differences that

were the sum of quite small values from individual changed interactions, further calcu-
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Table 2.2: Difference in electrostatic energy components.

Component Desolv.a Indirectb Directc Contrib.d Mut.e SumAbsf

Fluorescein 1.84 N.A. −5.65 −0.98 −3.81
L39 Arg 0.01 1.24 −1.45 −0.09 −0.20 6.57
H106 Asp-to-Glu* −0.33 0.11 −0.13 −0.34 −0.35 4.50
H101 Ser-to-Ala* −0.11 0.38 −0.79 −0.31 −0.52 4.01
H102 Tyr-to-Ser* 0.68 −0.51 −0.46 0.19 −0.29 3.59
H105 carbonyl −0.32 0.28 −0.16 −0.26 −0.20 3.13
W615 water 0.04 0.42 −0.85 −0.18 −0.40 2.53
H31 carbonyl 0.21 −0.95 0.24 −0.15 −0.50 2.36
H102 amino −0.21 0.13 0.15 −0.07 0.07 2.18
H101 carbonyl −0.04 −0.17 0.14 −0.05 −0.07 2.15
L31 His −0.15 −0.30 −0.47 −0.53 −0.91 1.85
H74 Arg 0.05 0.21 −0.18 0.07 0.08 1.68
H102 carbonyl −0.07 0.15 0.10 0.06 0.19 1.64
L96 Ser −0.02 0.15 −0.76 −0.32 −0.63 1.64
H104 amino −0.04 0.01 0.28 0.11 0.26 1.55
H53 Asn 0.27 −0.46 0.11 0.10 −0.07 1.52
H52 Arg −0.01 0.15 −0.12 0.00 0.01 1.46
H103 carbonyl −0.01 −0.00 −0.23 −0.12 −0.24 1.31
H31 Asp-to-His* −0.01 −0.04 −0.29 −0.18 −0.34 1.20
H104 carbonyl −0.06 0.17 −0.27 −0.11 −0.16 1.19
H103 amino −0.04 0.09 −0.04 −0.01 0.02 1.17

All values are the differences between analyses on 4M5.3 and 4-4-20, in kcal/mol.
Negative (positive) values correspond to a contribution toward improvement (reduc-
tion) for 4M5.3 binding relative to 4-4-20.
*Site of 4M5.3 mutation
aDesolvation penalty.
bSum of indirect interactions with all other scFv components.
cDirect interaction between scFv component(s) and fluorescein.
dContribution = desolvation + (1/2)indirect + (1/2)direct.
eMutation = desolvation + indirect + direct.
fSumbAbs, sum of the absolute value of desolvation and all interaction terms as
given by Equation 2.1.
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Table 2.3: Electrostatic impact at the mutated side-chain positions.

Position Desolv.a Ind. inb Ind. outc Directd Total

H1 Glu-to-Gly 0.00 −0.01 0.03 −0.06 −0.03
H31 Asp-to-His −0.01 0.03 −0.09 −0.29 −0.37
H51 Ile-to-Phe 0.00 0.00 0.02 −0.03 −0.02
H101 Ser-to-Ala −0.11 −0.20 0.78 −0.79 −0.31
H102 Tyr-to-Ser 0.68 0.03 −0.57 −0.46 −0.32
H106 Asp-to-Glu −0.33 −0.20 0.50 −0.13 −0.15
H108 Trp-to-Leu 0.00 0.03 −0.13 0.18 0.08
Total 0.23 −0.32 0.54 −1.58 −1.13

All values are the differences between analyses on 4M5.3 and 4-4-20, in kcal/mol.
For the mutations L60 Phe-to-Val, L81 Ser-to-Asn, H16 Arg-to-Gly, H17 Pro-to-Ala,
H24 Ala-to-Thr, H30 Ser-to-Gly, and H93 Met-to-Thr, each of the individual five
electrostatic values (in columns in Table 2.2) are ≤ 0.01 in magnitude, and these
rows are left out of the Table. Negative (positive) values indicate an improvement
(reduction) for 4M5.3.
aDesolvation penalty.
bHalf sum of indirect interactions with the 13 other mutated side-chain components.
cSum of indirect interactions with all but the 13 other mutated side-chain compo-
nents.
dDirect interaction with fluorescein.

Table 2.4: Total electrostatic contributions after minimization.a,b

scFv Fluorescein Net
Desolvation Desolvation Interaction Binding

4-4-20 14.39 (+0.03) 14.28 (−0.52) −21.57 (−1.60) 7.11 (−2.09)
4M5.3 14.66 (−0.02) 16.62 (−0.02) −25.45 (+0.17) 5.84 (+0.14)
Difference 0.27 (−0.05) 2.34 (+0.50) −3.87 (+1.78) −1.27 (+2.23)
aAll values in kcal/mol.
bValues in parentheses show change from before minimization.
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Table 2.5: Components most affected by minimization.

Specific interaction Change in strength (kcal/mol)

L39 Arg-fluorescein +0.58
L96 Ser-fluorescein +0.55
L31 His-fluorescein +0.53

Table 2.6: Net electrostatic impact of the mutated side-chain components after min-
imization

Desolv. Ind. in Ind. out Direct Total

Totala 0.29 −0.29 0.27 −1.42 −1.14
aCompared to before minimization in Table 2.3.

lations were performed to investigate sensitivities to precise crystal structure atomic

locations. The electrostatic component analyses were repeated on 4-4-20 and 4M5.3

crystal structures each subjected to a constrained minimization. Table 2.4 summa-

rizes the effects of minimization on electrostatic calculations. The net calculated

4M5.3 improvement decreased from −3.50 kcal/mol down to −1.27 kcal/mol, and

the biggest change is the interaction between 4-4-20 and fluorescein computed to be

more favorable after minimization than before.

Analysis of the effects of minimization on the component analyses reveals that

three interactions are responsible for most of the change (Table 2.5). L31 His, L39

Arg, and L96 Ser, the same three residues identified above as having shortened hydro-

gen bond lengths and a large computed role in the 4M5.3 improvement, are no longer

calculated to be as different between 4-4-20 and 4M5.3 when using the minimized

structures. The small changes in the hydrogen-bond distances due to the minimiza-

tion result in relatively large changes in the interaction differences. On the other

hand, the contribution of the 14 mutated side chain components after minimization

is predominantly unchanged, totaling −1.1 kcal/mol (Table 2.6). Thus, the calcu-

lations suggest that the subtle structural differences between the crystal structures

(“secondary effects”) appear to coalesce during minimization and may not be real,

but the direct computed effects appear robust to small structural changes.
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Figure 2.1: Diagram of all major (> 0.2 kcal/mol) electrostatic interaction and desol-
vation penalty differences (4M5.3 − 4-4-20) among components in Table 2.2. Arrows
connecting to fluorescein correspond to changes in direct interactions, whereas ar-
rows connecting scFv components correspond to changes in indirected interactions,
and changes in desolvation penalties are shown in parentheses. The three intera-
tion differences marked with * are those which dramatically decrease (become more
positive) with minimization. All other values < −0.25 kcal/mol are shown in red.
Mutated side chains (four) are labeled in blue.

A diagram of the calculated differences in electrostatic components of binding

between 4-4-20 and 4M5.3 is presented in Figure 2.1. Besides the three interaction

differences that were shown to be highly sensitive to minimization, seven out of the

nine significant energetic changes (values in red) are associated with one or more of

the four mutated residues: H31, H101, H102, or H106. The H31 and H102 side chains

are uncoupled from other side chains, whereas H101 and H106 are strongly coupled

to each other.

Four of the 14 mutations account for the majority of the electrostatic differences in

Table 2.3: H31 Asp-to-His, H101 Ser-to-Ala, H102 Tyr-to-Ser, and H106 Asp-to-Glu.

Reexamination of the 4-4-20 and 4M5.3 structures with the electrostatic results in

mind reveals several mechanistic hypotheses for the 4M5.3 improved binding affinity.

These mechanisms are outlined in the Discussion section.
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2.3 Discussion

Electrostatic components of the binding free energy were calculated using crystal

structure snapshots and the framework of a rigid binding model with continuum sol-

vent. Calculations on the two crystal structures revealed −3.5 kcal/mol in favor of

4M5.3, though subsequent analysis shows that hydrogen bonds from the non-mutated

residues L39 Arg, L96 Ser, and L31 His with fluorescein account for much of the

−3.5 kcal/mol improvement and are highly sensitive to precise atomic locations. It is

possible, but still uncertain, that mutations in 4M5.3 are responsible for small struc-

tural changes in conserved residues. At the same time, however, four of the mutated

residues dominated −1.1 kcal/mol of the binding affinity improvement, regardless of

whether the structures used for analysis had been subjected to the constrained mini-

mization. Several specific mechanisms for affinity improvement are revealed through

these four residues.

Overall, improvements are found in all three terms of the electrostatic binding free

energy: direct interactions (e.g. a hydrogen bond between the scFv and fluorescein),

indirect interactions (e.g. a hydrogen bond within the scFv that is buried upon binding

and hence strengthened due to loss of solvent-screening), and desolvation (i.e. the

penalty paid by a polar group for leaving its unbound, aqueous environment and

entering a buried environment upon binding). Binding affinity improvements can

be the result of either the introduction/strengthening of a favorable interaction, the

removal/weakening of an unfavorable interaction, or the reduction of a desolvation

penalty.

Figures 2.2A and 2.2B show the local environment of the mutated sites H101,

H106, and H108. H108 was not indicated by the electrostatic analysis for binding free

energy, although the position is clearly part of an intramolecular hydrogen-bonding

network that includes H101 and H106. Integrating the quantitative calculations in

Table 2.3 with qualitative structure analysis reveals the following mechanisms for

enhanced affinity. The H101 serine to alanine mutation eliminates the unsatisfied hy-

droxyl oxygen, removing a small desolvation penalty, yet loses the favorable indirect
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A B

C D

Figure 2.2: Molecular detail of mutated side chains, showing the two regions of the
binding site that include the four residues identified by the electrostatic analysis. (A-
B) Region of H101 and H106 together with neighboring hydrogen-bonding residues
L39, L41, and H108; (A) 4-4-20, and (B) 4M5.3. (C-D) Region of H31 and H102 with
fluorescein; (C) 4-4-20, and (D) 4M5.3.
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interaction from the H106 aspartate hydrogen bond (mutated to glutamate), for a

net favorable effect. This effect is captured in the context of the other 13 mutations,

but this analysis does not preclude the possibility of H101 serine to alanine also being

a beneficial single mutation (although some interaction with the mutation at H106 is

likely). The H106 aspartate to glutamate mutation reduces the residue desolvation

penalty by burying the negative charge further into the protein. More notably, the

H101 and H106 mutations appear to mutually maintain a satisfied intramolecular

hydrogen-bonding network and either mutation alone might disrupt antibody stabil-

ity. The differences in calculated component energies shown in Figure 2.1 support

possible cooperativity between positions H101 and H106. Likewise, the H108 tryp-

tophan to leucine mutation in the bordering region with two bound water molecules

may be coupled to the H101 and H106 mutations via hydrogen bonds.

Figures 2.2C and 2.2D show the local environments of H31 and H102. The muta-

tion at H102 from tyrosine to serine creates a new intramolecular hydrogen bond to

the backbone carbonyl at residue H31. This hydrogen bond is buried and strength-

ened upon binding, as shown by the −0.73 kcal/mol term in Figure 2.1. Though the

hydrogen bond is to a mutated position (H31), it is independent of the side chain,

making this a distinct mechanism from the actual side chain mutation at H31. The

aspartate to histidine mutation at H31 removes a negative charge, which although

solvent-exposed, was within 7 Å of the −2 charged fluorescein. This mutation is

calculated to improve the direct interaction by eliminating a long-range electrostatic

repulsion (−0.3 kcal/mol).

The electrostatic calculations indicate 4 of the 14 mutations for a role in the

affinity improvement. Mechanisms discovered include the removal of an unsatisfied

hydrogen-bonding group (H101 Ser-to-Ala), reduction of desolvation penalty (H106

Asp-to-Glu), creation of an intramolecular hydrogen bond for an indirect effect (H102

Tyr-to-Ser), and removal of long-range charge repulsion (H31 Asp-to-His). Other

hypothesized mechanisms include the maintenance of a well-ordered intramolecular

hydrogen-bonding network, though calculations of antibody stability were not per-

formed.
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The 4-4-20 and 4M5.3 structures used for computational analysis were prepared to

minimize bias from inherent crystal structure differences; however, a few differences

remain between the structures used for computational analysis and the single-chain

antibodies used in the binding experiments. The N-terminal residue of the heavy

chain in 4-4-20 is a glutamate in all experiments but the crystal structure contains an

aspartate at this position [50]. This discrepancy is most likely minimal since both side

chains are charged −1, solvent exposed, and about 20 Å from the fluorescein. Second,

the fluorescein used in all binding experiments was biotinylated at the 5 carbon posi-

tion, pointing out of the binding site, whereas both crystal structures were obtained

with neat fluorescein. A concern is whether the 4M5.3 mutations enhance binding

affinity through interaction with atoms only present in the biotinylation linker. Two

of the mutated residues, H31 Asp-to-His and H102 Tyr-to-Ser are within at least 5 Å

of the beginning of the thiourea linker with hydrogen-bonding capabilities. Previous

experiments to indicate the extent of the importance of the linker in the binding

interaction were not successful.

The experimental and computational results do not definitely elucidate the mech-

anism for the full 1,800-fold affinity improvement of 4M5.3. The binding improvement

appears to be a result of a variety of many interactions and the sum of many small

changes. Nevertheless, the electrostatic calculations reveal several mechanisms that

may account for part of the improvement.

Subsequent work by Midelfort and Wittrup investigated the individual effects of

seven of the 14 4M5.3 mutations, confirming many of the electrostatics-based hypothe-

ses [7]. The single mutations H31 Asp-to-His, H101 Ser-to-Ala, and H102 Tyr-to-Ser

are each improved as expected, with H31 and H102 energetically independent as ex-

pected. The mutations at H101, H106, and H108 show interactions, or non-additivity,

in their effects on ligand affinity, consistent with the postulated role of intramolecular

hydrogen bonding.

Two key conclusions are drawn from the complementary experimental and com-

putational work. First, calculations can be used to generate hypotheses for struc-

tural mechanisms not found by biochemical techniques. Second, consistency of the
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electrostatic analysis with energetics of improved binding support the use of electro-

statics as an engineering design tool. This work indicates that it may be realistic

for structure-based calculations to correctly identify mutations that improve bind-

ing affinity. Moreover, large improvements in affinity may be designed using many

smaller, yet additive mutations.

2.4 Methods

2.4.1 Preparation of protein structures

The 1.85 Å 4-4-20 Fab structure (1FLR [50]) and the 1.5 Å structure of 4M5.3 (1X9Q

[42]) were used as the basis for molecular modeling, continuum electrostatic calcu-

lations, and theoretical analysis. The two structures were prepared in parallel to

minimize differences that might bias comparative analysis. Only residues with corre-

sponding crystallographic data in both structures were used, prompting the removal

of the 4-4-20 CL and CH1 domains (residues after L112 and after H117) and a few N-

and C-terminal residues corresponding to the flexible linker (4-4-20 VL112 and 4M5.3

VL0, VH-2, VH-1, VH0), all of which are solvent exposed and at least 15 Å from

the fluorescein binding pocket. Six water molecules were retained in each structure

(4-4-20: 606, 608, 615, 618, 676, 689; 4M5.3: 6, 3, 1, 11, 26, 47); these six solvent

molecules make corresponding interactions in the two structures. All other water

molecules were removed from the structure files and were modeled implicitly. Side

chain titration states, single conformations for all multiple-occupancy residues, and

the crystallographic carbon/nitrogen/oxygen uncertainties in asparagine, glutamine,

and histidine side chains were resolved based on examination of side chain local envi-

ronments. The fluorescein was modeled in its net charge −2 state reflecting the pH of

8 in the binding experiments, and this choice is supported by the local environments

of the fluorescein protonatable sites in each structure.

Molecular mechanics was used to prepare the protein structures. The HBUILD

facility [51] in the program CHARMM [52] was used to build all hydrogen atoms onto
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each structure. The CHARMm22 all-atom parameter set [53] with the CHARMM-

adapted TIP3P water model was used for molecular mechanics calculations, assigning

appropriate general atom types for the fluorescein (Figure 2.3). Fluorescein partial

atomic charges (Figure 2.3) were obtained as described by Green and Tidor [54] by

first using the program GAUSSIAN98 [55] with restricted Hartree–Fock and the 6-

31G* basis set to optimize the geometry of fluorescein starting from that in the 4-4-20

structure, and subsequently fitting the electrostatic potential using the restrained-

fitting methods (RESP) of Bayly et al [56].

A second set of 4-4-20 and 4M5.3 structures for comparison were prepared by

subjecting each to a harmonically restrained minimization to convergence with 10

kcal/mol/Å2 force constants on every atom in the system, no non-bonded cut-offs,

and a 4r distance-dependent dielectric constant. The root-mean-square deviation for

structures before and after minimization were 0.093 Å (0.094 Å) and 0.053 Å (0.053 Å)

for 4-4-20 and 4M5.3, respectively, taken over all atoms (taken over side chain atoms

only).

2.4.2 Electrostatic calculations

Electrostatic contributions of individual functional groups to the binding free energy

were computed using a rigid binding model with continuum solvent following pre-

vious work [57]. A locally modified version of the DELPHI program [58–61] was

used to solve the linearized Poisson–Boltzmann equation with finite-difference meth-

ods. PARSE parameters [62] were used for atomic radii and partial atomic charges

of protein. Fluorescein partial atomic charges were obtained from the RESP fitting

procedure described above, and radii were assigned based on the PARSE convention.

PARSE parameters do not include aliphatic hydrogen atoms and thus the appropri-

ate hydrogen atoms were removed from the system. Fluorescein does not contain any

aliphatic hydrogens. The dielectric constant was assigned to 4 for protein, ligand, and

explicit water, and 80 for the implicit solvent regions. A salt concentration of 0.145

M was used with a 2.0-Å Stern layer and a molecular surface generated with a 1.4-Å

probe sphere. Each molecule was oriented to minimize the volume of the bounding
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Name Atom Type Charge Radius Name Atom Type Charge Radius
C1 C6R 0.69369 1.7 C19 C6R 0.15207 1.7
C2 C6R -0.56851 1.7 C20 C 0.68940 1.7
C3 CR66 0.30935 1.7 O1 OC -0.72934 1.4
C4 CR66 0.30921 1.7 O2 O6R -0.27339 1.4
C5 C6R -0.56775 1.7 O3 OC -0.72934 1.4
C6 C6R 0.69370 1.7 O4 OC -0.68458 1.4
C7 C6R -0.39479 1.7 O5 OC -0.78647 1.4
C8 C6R -0.19359 1.7 HC2 HA 0.15375 1.0
C9 CR66 0.02389 1.7 HC5 HA 0.15338 1.0
C10 C6RP 0.03161 1.7 HC7 HA 0.12383 1.0
C11 CR66 0.02436 1.7 HC8 HA 0.18721 1.0
C12 C6R -0.19481 1.7 HC12 HA 0.18765 1.0
C13 C6R -0.39421 1.7 HC13 HA 0.12377 1.0
C14 C6RP -0.09826 1.7 HC15 HA 0.10480 1.0
C15 C6R -0.19170 1.7 HC16 HA 0.10643 1.0
C16 C6R -0.09936 1.7 HC17 HA 0.12460 1.0
C17 C6R -0.24327 1.7 HC18 HA 0.14604 1.0
C18 C6R -0.18937 1.7

B

Figure 2.3: Computational parameterization of fluorescein. The appropriate general
atom types from the CHARMm22 all-atom parameter set were used for molecular
mechanics calculations. The partial atomic charge distribution used in both molec-
ular mechanics and continuum electrostatics calculations was obtained by quantum-
mechanical geometry minimization followed by restrained fitting of the electrostatic
potential. Radii for continuum electrostatic calculations were assigned following
PARSE convention.
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cube. A focusing procedure was used that includes a low grid spacing using 23% fill

and Debye–Hückel boundary conditions followed sequentially by higher resolution cal-

culations first at 92% and then at 184% fill centered on the specific functional group

of interest. Ten translations relative to the grid were performed and averages were

used. The standard error of the mean was on the order of 0.001 kcal/mol, much less

than the 0.1-1.0 kcal/mol range of differences identified between 4-4-20 and 4M5.3

components. A 129× 129× 129 grid was used, resulting in final grid spacings of 4.49

and 4.40 grid units per Å for 4-4-20 and 4M5.3, respectively. Convergence of free

energies with respect to grid resolution (data not shown) indicate that a difference

of 0.09 grid units per Å results in about 0.01 kcal/mol change in net binding free en-

ergy. Therefore, the comparison between 4-4-20 and 4M5.3 electrostatic calculations

on slightly different grids remains valid. For binding calculations, all explicit water

molecules remained associated with the antibody in the unbound state. Overall elec-

trostatic contributions to binding were dissected into component contributions from

individual chemical groups and physical sources based on the work of Hendsch and

Tidor [57].
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Chapter 3

Development of computational
methods for the design of
improved protein binding affinity

Abstract

The development of computational methods for the redesign of high-affinity protein
interactions is an important problem that is both fundamental to the advancement
of protein design and directly applicable to solving pressing biotechnology needs.
Here we have developed structure-based computational methods for the redesign of
proteins with improved binding affinity for their protein or small-molecule targets.
These methods were applied to the redesign of the model anti-lysozyme antibody
D1.3. The results of design calculations to improve binding affinity were unintu-
itively dominated by mutations to larger amino acids. Predictions of antibody single
mutations to improve binding were tested experimentally, yielding a low success-
rate and only marginal improvements. Nevertheless, the results validated predictions
based on improved binding electrostatics, suggesting an altered design procedure
that emphasizes electrostatic predictions (Chapter 4). The results also validated ini-
tial energy-function concerns, leading to a subsequent investigation of an improved
nonpolar solvation model (Chapter 5).
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3.1 Introduction

A fundamental challenge in computational protein design is balancing the accurate

evaluation of atomic interactions and the efficient search of a combinatorially-complex

space. Early progress in the field addressed the redesign of hydrophobic protein cores

in which the physical interactions could be well-approximated by straight-forward

pairwise-additive van der Waals interactions, allowing the adoption and development

of dead-end elimination algorithms for finding the global minimum energy conforma-

tion (GMEC) in a rotamerized discrete side chain space [14, 16, 17, 63–67]. As more

complex problems were addressed, such as binding affinity and specificity, enzymatic

activity, and de novo structures, increasingly complex energy functions were intro-

duced to more accurately evaluate interactions [15, 20–24, 26–29, 68–82]. However,

the constraint of a pairwise-additive energy function has limited the development of

accurate electrostatics in protein design [83–87].

A two-stage hierarchical design procedure was used to overcome the combined

limitations of energy function accuracy and conformational search thoroughness [88].

In the first stage, approximations are made such that the problem is amenable to a

suite of algorithms adept at pruning large combinatorial search spaces. In the second

stage, with conformational space greatly reduced, low-energy structures are enumer-

ated using more accurate, yet more computationally-demanding models. Together,

these steps allow us to examine problems of significant conformational complexity

without sacrificing our choice of energy function for final evaluation.

3.2 Methods

Conformational search is initially simplified by assuming a rigid protein backbone

and allowing only discrete side chain rotamers. The physics-based energy function is

pairwise-decomposable, permitting application of dead-end elimination and A* search

algorithms. For each protein sequence, we find its global minimum energy conforma-

tion (GMEC), and if this energy is within a specified energy cut-off of the wild-type
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GMEC energy, then a continued list of lowest-energy structures are found for that

sequence. Second, we reevaluate the lowest-energy structures of each sequence using

more accurate, yet more more computationally-demanding models, such as Poisson–

Boltzmann continuum electrostatics, unbound state side chain conformation search,

and minimization. Structures are reranked based on these latter calculations. Binding

energy is initially predicted from the bound state conformation and a rigid binding

model. The unbound state search is used to approximate flexible binding and esti-

mate a deformation penalty which offsets binding. Changes to protein fold stability

are approximated from the energetic difference between the folded state and isolated

model compounds.

3.2.1 Structure preparation

The crystal structure of the complex between the Fv fragment (light chain “L”, heavy

chain “H”, and lysozyme “C”) of the antibody D1.3 and hen egg-white lysozyme was

obtained from the Protein Data Bank (1VFB [89]). Most crystallographic water

molecules were removed, except for 19 that bridge the binding interface or are buried

away from bulk solvent. For calculations of two-state rigid binding, water molecules

were either assigned to the antibody (water numbers 145, 149, 150, 173, 174, 177,

178, 179, 180, 223, 257, 748) or to lysozyme (water numbers 152, 155, 169, 181,

200, 222, 228). Titration states, multiple occupancies, and asparagine, glutamine,

and histidine carbon/nitrogen/oxygen crystallographic uncertainties were resolved

based on optimization of hydrogen-bonding in the side-chain local environments. All

side chains remained in their default protonation state, with the histidine tautomers

as follows. Proton on Nε: positions L90 and H86; proton on Nδ: C15 and L30.

The terminal dihedral angle of the histidine, asparagine, or glutamine side chains

at the following positions were rotated 180◦: H56, H77, L37, L90, C19, C37, C59,

C93. Hydrogen-atom positions were assigned using the HBUILD facility [51] in the

computer program package CHARMM [52] with the PARAM22 all-atom parameter

set [90] and the CHARMM-adapted TIP3P water model.
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3.2.2 Search space

The Kabat definition for antibody complementarity determining region (CDR) posi-

tions was used to select antibody sites for potential computational mutation. This

presented 61 positions spanning the six contiguous stretches in primary sequence, as

shown in Figure 3.1. The proline at position L95 was left as wild type in all designs.

For the design of single mutants, each of these residues was individually mutated

to 17 other amino acids (proline and cysteine excluded). For the design of double

mutations, the only pairs of positions considered were those with at least one pair of

side-chain atoms within 4.75 Å (non-hydrogen atoms beyond Cβ, or the Hα1 atom

for glycine). For each independent design, the one or two mutated positions were

given rotameric degrees of freedom, as were side chains at nearby positions (same

definition of nearby as used above). The two neutral tautomers and the protonated

form of histidine were allowed.

The rotamer library was based on the backbone-independent May 2002 library

from Dunbrack [91, 92], expanded by ± 10◦ in both χ1 and χ2. Prior to expansion,

three histidine rotamers were added for an unsampled ring flip (64.8, -13.8; -172.8, 9.7;

-68.1, -11.3), and two asparagine rotamers were added to increase sampling of the final

dihedral angle rotation (-169.3, -155.7; -170.8, 159.8). Hydroxyls of serine, threonine,

and tyrosine were sampled every 30◦. The library contained 4,025 side-chain rotamers.

A novel water library allowed for conformational freedom of crystallographic water

molecules. The oxygen atom location was fixed and the hydrogen atoms were placed

to create 60 symmetric water molecule rotations. A 61st water rotamer allowed for the

water to no longer exist in the structure. In addition, each crystallographic wild-type

rotamer was added in a position-specific manner to the library, using the complete

cartesian representation of the side chain, rather than just the dihedral angles.

3.2.3 Energy function and model

The energy function for initial search (named “low-resolution”) was the CHARMM

PARAM22 all-atom parameter set [90] with no cut-offs for non-bonded interactions
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A B

CDR-H1 CDR-H2 CDR-H3 CDR-L1 CDR-L2 CDR-L3

H26-34 H50-65 H98-105 L24-34 L50-56 L89-97
green pink purple orange yellow ochre

Figure 3.1: D1.3 CDR positions. The protein backbones are depicted by ribbons
(red: lysozyme; iceblue: antibody heavy chain; cyan: antibody light chain; blue:
CDRs). The D1.3 wild type side chains at the CDR positions are color-coded. (A)
Antibody/lysozyme complex. (B) Antibody-only, looking down on interface in (A).

and a 4r distance-dependent dielectric constant. All energy terms were used (bond,

angle, Urey-Bradley, dihedral, improper, Lennard-Jones, and electrostatic). The ob-

jective function was the difference between the bound state energy and a sum of

isolated, model compounds. Each model compound conformation was the lowest en-

ergy of all side-chain rotamers with the local single amino acid backbone with an

acetylated N-terminus and an N-methylamide C-terminus. The model compounds

are important for canceling intrinsic side-chain energies such as ring strain (especially

in PARAM22) when comparing the state energy of different protein sequences; how-

ever, the model compounds do not affect actual binding free energy predictions. In
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the procedure, which enumerates all possible amino acid sequences during design,

the model compounds become irrelevant; when using approximate methods to order

sequences in a design with non-enumerable sequence space, the model compounds are

important for sequence-to-sequence comparison.

This low-resolution energy and objective function satisfies pairwise-additivity

(Equation 3.1) and is readily used in dead-end elimination algorithms.

Etotal = Econst +

p∑
i=1

Eselfi
+

p∑
i=1

p∑
j>i

Epairi,j
(3.1)

Each summation is over the conformational search positions, p. Eselfi
is the inter-

action between the residue and the fixed positions, subtracting off the energy of the

isolated, model compound for that amino-acid type. The self interaction term includes

intra-rotamer molecular mechanics covalent bonding terms (bonds, angles, etc.) and

bonding terms to the backbone atoms of −1 or +1 positions if those positions are

fixed. Epairi,j
is the nonbonded interaction between two positions, plus bonding terms

only if the two positions are neighbors in primary sequence. Even though molecular

mechanics covalent bonding terms span more than two atoms, e.g. four-atom dihedral

angles, each energy term is always a function of the conformation of no more than

two positions (made possible by a three-atom long backbone repeat unit), thereby

maintaining pairwise additivity.

3.2.4 Initial conformational search

Each protein sequence was explicitly considered, for example, all 1,080 single muta-

tions from 60 CDR positions with 18 amino acids each. Side chain rotamers that

clashed, either with backbone atoms or with the side chains of positions not given

conformational flexibility, were eliminated from the search space. The dead-end elim-

ination and A* algorithms were used to find the global minimum energy conformation

(GMEC) of each sequence and up to 10 kcal/mol of lowest-energy structures [93–99].

To select the single conformation of each sequence to be used for binding energy

calculation, low-energy structures were reevaluated and reranked according to more
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accurate energy functions. However, because of the extra 10◦ torsional sampling in

the rotamer library, the strictly next-lowest-energy structures from the GMEC are

usually not qualitatively different. We used the low-resolution energy function to

rank-order structures that only differ by 10◦ dihedral angle rotations; we used a high-

resolution energy function to reevaluate different low-energy side chain conformations

that may, for example, exhibit different burial and trade-off between electrostatic in-

teraction and desolvation. The expansion of χ1 and χ2 by ± 10◦ generally created

families of nine rotamers (a “fleximer” [100]); we reevaluated the 30 lowest-energy

structures within 10 kcal/mol that contain at least one rotamer from a new rotamer

family (contain at least one new fleximer).

An in-house implementation of dead-end elimination and A* (DEE/A*) was at

the core of the conformation search [101]. A novel procedure was developed to balance

the speed, memory, and disk issues. A fundamental difficulty was that the input to

DEE/A* is an energy cutoff from the GMEC specifying the energetic range of struc-

tures to be output, rather than upfront specifying the desired number of structures.

Furthermore, even if one could specify the number of lowest-energy structures, we

actually had to look through an a priori unknown number structures to find the 30

structures of unique fleximers. Our solution was to progressively increase the energy

cutoff from near-zero to 10 kcal/mol. For each energy cutoff, the lowest-energy struc-

tures were output from DEE/A*. To avoid memory limitations, iterative deepening

A* was used, but as a consequence, the structures were not output in order of energy.

As each structure was output, it was determined if the structure contained at least

one new fleximer as compared to already kept structures. If so, the structure was

kept. If not, the structure only replaced the already-kept same-fleximer structure if

the new structure was of lower energy. Once all structures within the energy cutoff

were output, if 30 unique structures had not been obtained, then the energy cut-

off was heuristically increased according to how many more unique structures were

needed. The progression was stopped once 30 unique structures were obtained or the

energy cutoff reached 10 kcal/mol. By evaluating structures as they were output from

DEE/A*, it was not required to have a large amount of disk space for storage of all

38



lowest-energy structures.

Each execution of DEE/A* requires parameters specifying the schedule of different

elimination routines. One can think of the different schedules as falling somewhere

on a single axis of increasing/decreasing complexity. Increased scheduling complexity

is necessary to solve more difficult conformational search problems, yet yields much

less efficient solving of less difficult problems as compared to the time it would take

for a less complex schedule. Our solution was to progressively increase the scheduling

complexity. After a first attempt with a less-complex schedule, if DEE/A* did not

complete within a specified amount of time, the process was aborted and a higher

level of scheduling complexity was started with a longer allowed execution time.

3.2.5 Reevaluation of electrostatics

Structures were reevaluated using Poisson–Boltzmann continuum electrostatics as a

substitute for the distance-dependent electrostatic energy from the molecular me-

chanics force field. The PARSE parameters were used for partial atomic charges and

radii [62]. A locally modified version of the DELPHI computer program was used

to solve the linearized Poisson–Boltzmann equation [58–61]. A dielectric constant of

4 was used for protein and explicit water, and 80 for implicit solvent regions. Ionic

strength was set to match experiments at 0.145 M, modeled with a 2.0-Å Stern layer

and a molecular surface generated with a 1.4-Å probe sphere. Calculations were per-

formed with two-step focusing from 23% to 92% molecular fill of the grid. All initial

calculations used one translation of a 129 × 129 × 129 grid; interesting sequences

were reevaluated with 10 translations of a 161× 161× 161 grid. The nonpolar com-

ponent of the solvation free energy was added as a solvent-accessible surface area

(SASA) term of 5 cal/mol/Å2 [62], calculated using the analytical surface area rou-

tine in the program CHARMM; the constant intercept of this linear model cancels

for two-component binding and referencing energies to wild type. In total, the typical

“high-resolution” energy function for rigid binding was comprised of van der Waals,

electrostatic, and nonpolar terms. Folding energies include additional molecular me-

chanics covalent bonding terms for conformational change. The nonpolar term for
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binding relative to wild type is typically less than 0.2 kcal/mol in magnitude and

rarely as large as 0.5 kcal/mol.

3.2.6 Prediction of binding and folding

A standard calculation yielded prediction of binding affinity relative to wild type,

using the predicted bound-state structure and assuming rigid binding, as well as

prediction of folding stability relative to wild type, using the same structure and sub-

tracting off energies for isolated, model compounds. The sensitivity of a prediction to

the conformation of neighboring side chains was mitigated by matching neighboring

side-chain conformations between mutant and wild type where possible. Inclusion of

rotamers from the crystal structure for each position was critical; the wild type was

given the benefit of the doubt for predicting relative binding free energies. In gen-

eral, mutations predicted to destabilize the antibody by more than 3 kcal/mol were

disregarded. In addition, we modeled conformational change upon binding by ap-

proximating the lower-energy unbound state with a second side-chain conformational

search. The same positions from the bound-state design were allowed conformational

relaxation, again with a fixed backbone but without the binding partner present.

Binding free energy was the difference between the bound and unbound states. Fi-

nally, the structures for select sequences were subjected to energy-minimization of the

designed positions and reevaluation of binding. All calculations for single mutations

across 60 positions finished within 24 hours on a 100-CPU cluster.

3.2.7 Prediction of cooperative mutations

Double mutations predicted to be favorably cooperative were distinguished by en-

suring that predicted favorability was greater than the predicted energetics for any

mutation subset. Double mutation energetics were required to exceed each single

mutation as well as the computed sum of each single mutation. Within the design of

182 = 324 sequences, the 18−1 = 17 single mutations were used for computing cooper-

ativity of the 324−18 = 306 double mutations. Cooperativity was required to exceed
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Figure 3.2: Yeast surface display schematic. The dashed box highlights the interaction
of interest, the single-chain variable fragment antibody (scFv) with its antigen.

0.2 kcal/mol to avoid marginal positives, e.g. a double mutation at −0.7 kcal/mol

was not considered cooperative if the two single mutations were −0.3 kcal/mol each,

but would be titled cooperative if the double mutation exceeded −0.8 kcal/mol.

3.2.8 Binding affinity measurements

The single-chain format of D1.3 [4] was displayed on the surface of yeast [102, 103].

A schematic is shown in Figure 3.2. Antibody variants were constructed using site-

directed mutagenesis (Stratagene, La Jolla, CA) with oligonucleotide primers from

MWG Biotech (High Point, NC). Sequences were confirmed with forward and reverse

sequencing (MIT CCR Biopolymers Laboratory).

The yeast strain EBY-100 was transformed with each surface-display plasmid and

binding affinities were measured as previously described [104]. Briefly, each titra-

tion used 10–16 tubes with equal amounts of antibody-displaying cells and varying

lysozyme concentration. Experiments were carried out at 25 ◦C in phosphate-buffered

saline (PBS), pH 7.3–7.5, 0.145 M salt (0.167 M ionic strength). Three or more hours

elapsed as binding approached equilibrium. Cells were then pelleted and washed

ice-cold, and incubated with secondary reagents for detection of antibody–lysozyme
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complexes.

Binding to lysozyme (Sigma Aldrich, St. Louis, MO) was detected through sec-

ondary labeling with biotinylated rabbit polyclonal anti-lysozyme antibodies (Re-

search Diagnostics, now Fitzgerald Industries, Concord, MA) and tertiary labeling

with streptavidin-phycoerythrin (Invitrogen, Eugene, OR). Polyclonal antibodies that

bound yeast nonspecifically were removed prior to use. Though binding was detected

of D1.3 to biotinylated lysozyme, neat lysozyme was used for all titrations to avoid

any effects of biotinylated lysines near the binding interface.

The equilibrium dissociation constant (Kd) was fit using the mean fluorescence of

only the fraction of cells that display antibody (MFUdisp) as a function of antigen

concentration ([Ag]). The data were fit to Equation 3.2 as a function of the three free

parameters by minimizing the sum of the squared residuals using the Solver tool in

the program Excel.

MFUdisp = MFUmin +
MFUrange[Ag]

[Ag] + Kd

(3.2)

MFUdisp was determined by subtracting the autofluorescence of the nondisplaying

cells from the total fluorescence. Data from high concentrations of lysozyme where the

displaying fraction was distinctly separated form the nondisplaying fraction were used

to measure the nondisplaying fraction (fnon) and its mean fluorescence (MFUnon),

where both values were assumed to be constant within tubes of a titration because

the displaying cells were the same. MFUdisp was then determined using Equation 3.3.

MFUdisp =
MFUtot − fnonMFUnon

1− fnon

(3.3)

Data fitting using MFUtot directly instead of MFUdisp yields an identical Kd value,

but MFUmin and MFUrange values change. Reported Kd values use the average and

standard deviation from independent experiments, performed with different inocula-

tions of yeast cells and typically on different days.
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Figure 3.3: Correlation of low- and high-resolution bound-statea free energies within
a protein sequence. Each equi-density contour encompasses an additional 5% of the
data, with the outer contour containing 95% of the data. All sequences and structures
designed in D1.3 are shown. Low- and high-resolution free energies are normalized to
the corresponding energies of the low-resolution global minimum energy conformation
(GMEC). The strong correlation demonstrates that the high-resolution minimum-
energy structure for each sequence will very likely be found within the first 10 kcal/mol
of low-resolution lowest-energy structures.
a Within a sequence, subtracting off model compound energies does not affect rank-
ordering.

3.3 Results

First we attempted to redesign the model antibody D1.3 for improved binding to

its antigen, hen egg-white lysozyme. The effect of single mutation to side chains

excluding proline and cysteine at each of 60 complementarity determining region

(CDR) positions was calculated using our two-stage hierarchical procedure.

A first result of the calculations is the correlation between the low- and high-

resolution energy functions. Correlation, or rank-ordering, within a sequence is neces-

sary for the lowest-energy structure of each sequence as ranked in the high-resolution

energy function to be found by structure reevaluation. As shown in Figure 3.3,

correlation within a sequence is strong (correlation coefficient of 0.77). Within the

lowest 10 kcal/mol of low-resolution structures, the lowest-energy structure in high-

resolution is very likely to be found.

On the other hand, if there was strong low- to high-resolution correlation of bind-
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Figure 3.4: Reevaluation of relative binding energies with the high-resolution free
energy function. All sequences designed in D1.3 are shown. For each sequence,
the structure of lowest low- or high-resolution energy, respectively, is used to cal-
culate the rigid binding energy relative to wild type. Though roughly correlated,
the low-resolution energy function lacks quantitative accuracy for prediction within
2 kcal/mol.

ing energies from sequence-to-sequence, then the high-resolution reevaluation stage

would be unnecessary. As shown in Figure 3.4, although the data are correlated (0.66

and 0.84 for total and electrostatics-only energies, respectively), there is significant

deviation from the y = x line. Each average absolute deviation is 1.2 kcal/mol. More

importantly, for sequences with relative binding free energy less than −1 kcal/mol in

low-resolution, the average absolute deviation is 1.9 and 2.1 kcal/mol, respectively,

and the percentage of sequences that change from less than −1 kcal/mol to greater

than 0 kcal/mol is 30% and 49%, respectively. These latter statistics indicate that

predictions based on calculations with only the low-resolution energy function would

not be reflective of the high-resolution and presumably more accurate energy function.

Figure 3.5 summarizes the predicted effect on binding energy relative to wild type

of single mutations in D1.3. Mutations that are predicted to disrupt antibody stability

by more than 3 kcal/mol are disregarded and displayed as unfavorable. Figure 3.6 dis-

plays the predictions as categorized by the solvent-accessibility of the position. Each

position is classified as either interface, periphery, surface, or core. In Figure 3.6C,

though the wild-type side chain does not contact lysozyme upon binding, the side
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Figure 3.5: Design of single mutations in D1.3. Each column the result of design at
one position in D1.3; each row is the effect of mutation to a different amino acid.
Binding free energy is relative to wild type in kcal/mol. Mutations predicted to
disrupt antibody stability are shown as red, unfavorable.

chains predicted to improve binding often are larger and do contact lysozyme, similar

to the positions in Figure 3.6A. Therefore, the majority of mutations predicted to

improved binding are at the periphery of the interface.

A striking feature of the single mutation designs is that the predictions for im-

proved binding are dominated by mutations to large amino acids. Figure 3.7 shows the

mutations that are predicted to be favorable, arranged by size of amino acid. Lysine

and arginine are likely underrepresented because their net positive charge incurs in

general less favorable electrostatic interaction with the positively-charged lysozyme.

Many of the predictions of favorable binding from mutation to a large amino

acid exhibit improved van der Waals packing interactions outweighing disfavored

net electrostatic solvation and interaction. Figure 3.8 displays the structures and

energetics of three mutation examples. In all three cases, the antibody position is at

the periphery of the binding interface, where fewer packing constraints allow mutation

to bigger or smaller side chains, but close proximity to lysozyme facilitates improved

interactions. Also, all three cases have significant predicted improvement dominated

by improved van der Waals interactions. For the first two cases, the electrostatics is

unfavorable.
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Figure 3.6: Designs arranged by type of position, from Figure 3.5. The solvent-
accessibility of the wild-type side chain, before and after binding, was used to classify
each position. (A) Periphery of binding interface. (B) Interior antibody core, not
solvent-exposed. (C) Surface of antibody, not in contact with lysozyme. (D) Interface,
full burial upon binding.
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Figure 3.7: Proliferation of large amino acids. Histogram of single amino acid muta-
tions predicted to be favorable from Figure 3.5. Relative binding free energies are in
kcal/mol.
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A B

C D

E F

∆∆Gi (kcal/mol)
Figure Mutation vdW nonpolar elec. Total

A-B Gly(H31)Trp −7.04 −0.56 +2.71 −4.89
C-D Thr(L52)Phe −1.49 −0.06 +0.20 −1.34
E-F Gly(H31)Glu −3.00 −0.29 −0.42 −3.71

Figure 3.8: Examples of D1.3 single mutation designs. Each pair of figures displays
the wild type and a design. Binding energetics are given beneath.
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Figure 3.9: Representative experimental binding affinity curves for D1.3 mutations.
Each antibody variant is displayed on the surface of yeast and lysozyme is provided
in solution. After approaching equilibrium, bound complexes are detected with sec-
ondary antibodies and analyzed with flow cytometry.

Our confidence in these designs was low because many had unsatisfied hydrogen

bonding, or a predicted packing improvement of a magnitude uncharacteristically

large for a single amino-acid substitution. Nevertheless, 17 single mutations, most

with calculated improved total binding free energy, were selected for experimental

binding affinity measurement. Figure 3.9 shows representative experimental binding

affinity data and Table 3.1 displays the predicted and measured energetics for the

mutations. The standard deviation for most measurements is approximately 10%

of the average value. In the first preliminary design round, the mutations at H32

and L53 were selected based on alignment of results from a 7-site design (data not

shown). The second round consisted of positions H28, L32, L46, and L50. The third

round consisted of positions H31, H99, L31, and L52. Only three mutations improved

binding affinity, with 2.4-fold improvement (−0.51 kcal/mol) for the best mutation,

Gly(H31)Glu.

Double mutations were computationally designed in D1.3. Instead of selecting

all 1770 pairs of positions (60 choose 2), where most pairs would be out of contact

with each other, we selected only the 86 pairs of nearby positions. A comparison of

the number and general difficulty of designs between single and double mutations is

shown in Figure 3.10. For each pair of positions, 182 = 324 sequences were considered.
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Table 3.1: Predicted and experimental D1.3 single mutation binding affinities.

∆∆Ga
binding ∆∆Ga

folding

Position Mut’n Kd (nM) Exp. Calctotal Calcelec Calctotal Calcelec

wild type 1.49 ± 0.09
H32 Tyr Gluc 37 +1.9 −1.52 −1.54 +10.73 +3.20
L53 Thr Arg 24 +1.6 +0.43 +3.99 −1.32 −0.90
H28 Ser Asnb 1.9 ± 0.2 +0.15 −0.18 −0.19 +0.30 +0.17
H28 Ser Glnb 1.70 ± 0.06 +0.08 +0.03 +0.01 −1.26 +0.15
H28 Ser Asp 1.49 ± 0.11 +0.00 −0.75 −0.77 −0.70 −0.40
H28 Ser Glu 1.25 ± 0.15 −0.11 −0.56 +0.09 −1.38 +0.44
L32 Tyr Trpc >20µM > +5 +18.58 +1.14 +15.03 +0.07
L46 Leu Aspc >20µM > +5 −0.24 −0.28 +11.38 +2.78
L46 Leu Gluc >20µM > +5 −0.38 −0.38 +11.50 +6.89
L50 Tyr Argc 6.2 ± 1.8 +0.85 −1.55 +0.76 +7.29 +0.77
L50 Tyr Lysc 27 ± 7 +1.71 +1.52 +0.67 +0.68 +1.46
H31 Gly Alab 2.5 ± 0.3 +0.30 −0.07 −0.15 −1.47 +0.33
H31 Gly Glu 0.63 ± 0.13 −0.51 −3.71 −0.42 −0.46 +0.66
H31 Gly Trp 1.5 ± 0.8 +0.00 −4.89 +2.71 −0.04 +1.37
H58 Asp Asn 1.2 ± 0.2 −0.13 −0.16 −0.13 −0.08 −0.44
H58 Asp Glu 1.7 ± 0.4 +0.09 −0.25 −0.21 +0.05 −1.12
H99 Arg Tyrc 12 +1.2 −2.19 −1.87 +15.79 +1.17
H99 Arg Trpc 4.9 +0.7 −2.91 −0.35 +1.86 +0.87
L31 Asn Trp 2.0 +0.2 −1.22 +1.25 −1.38 +0.25
L52 Thr Phe 3.3 ± 0.5 +0.48 −1.34 +0.20 −1.41 +0.68

aAll values in kcal/mol.
bControl mutation to test shape change away from wild type.
cExcluded from Figure 4.5, comparison of binding energetics, due to unfavorable
calculated ∆∆Gfolding.

The difficulty of obtaining lowest-energy conformations of each sequence is related to

the number of protein positions and crystallographic water molecules allowed confor-

mational flexibility. Predictions of improved binding affinity were filtered to select

cooperative double mutations with energy improvement exceeding either single mu-

tation or their additive sum. The only double mutations computed to be cooperative

exhibited a trade-off of improved van der Waals interactions at the cost of disfavored

electrostatic interactions.

49



0
1

2
3

4
5

6
7

8
9

10
11

12
13

14

0
1

2
3

4
5

6
7

8
9

10
11

1

2

3

4

5

6

7

8

# protein positions# water positions

# 
su

ch
 d

es
ig

ns

A
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
160

1
2

3
4

5
6

7
8

9
10

11

1

2

3

4

5

6

7

# protein positions# water positions

# 
su

ch
 d

es
ig

ns

B

Figure 3.10: Number and difficulty of single and double mutation designs. Each design
is characterized by the number of positions, water and protein, with conformational
flexibility.

3.4 Discussion

Our goal for protein design is to predict amino-acid mutations that enhance protein–

protein interactions. As an inverse design problem, we only need to find a subset of

the likely many possible solutions, and it is not necessary to accurately predict the

effect of all possible mutations. Predictions of unfavorability may be inaccurate as

a result of conformational search approximations, such as a rigid protein backbone

and discrete side chain rotamers, limiting the identification of low-energy states. Our

systemic exploration of mutations throughout an interface is a tool to find mutation

opportunities and not an attempt to recapitulate all possible effects on binding.

A key challenge in computational protein design is overcoming large confor-

mational search complexity while evaluating atomic interactions with an accurate,

physics-based energy function. We have addressed this problem with a two-stage

hierarchical search procedure that takes advantage of the deterministic and powerful

dead-end elimination and A* search algorithms in combination with the well-validated

Poisson–Boltzmann continuum electrostatic model. Figures 3.3 and 3.4 illustrate the

validity and utility of this approach. Correlation of the low- and high-resolution en-

ergy functions is necessary within a sequence and is demonstrated in Figure 3.3, but
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at the same time, Figure 3.4 shows that the high-resolution reevaluation provides

critical, new energetic information.

A main finding of this work is that predictions for improved binding are domi-

nated by mutations to large amino acids (Figure 3.7), many of which exhibit improved

van der Waals packing interactions outweighing disfavored net electrostatic solvation

and interaction. Intuitively, a prediction for improvement is more robust if each

term in the energy function is equal or favorable relative to wild type, as opposed to

overall favorability as a consequence of a trade-off between individual energy terms.

Moreover, examination of predicted structures made us less confident in many of

the designs; qualitative hydrogen-bond analysis supported the calculated unfavorable

electrostatics, but the calculated favorable van der Waals energies were less intuitive.

Nevertheless, there was no fundamental reason why such predictions would be incor-

rect, and we therefore experimentally measured the binding affinity for a variety of

designed mutations (Table 3.1).

The experimental measurements confirmed our concerns for the unreliability of

predictions based on a calculated trade-off of improved van der Waals interactions

at the cost of disfavored electrostatics. In addition, experiments highlighted the

importance of the prediction of antibody folding stability.

Mutations at position H31 Gly provide an example of the importance of binding

electrostatics. Glutamate and tryptophan are among many side chains predicted to be

very favorable, mostly as a result of improved van der Waals interactions (Figure 3.8).

First, experimental mutation to alanine confirmed that substitution away from the

flexible glycine at the tip of the CDR H1 loop was not catastrophic, but did result in

a +0.30 kcal/mol affinity loss. Next, we find that glutamate and tryptophan are not

substantially improved, but instead the tryptophan is the same as wild type and the

glutamate is 2.4-fold improved (−0.51 kcal/mol) relative to wild type. Only for the

glutamate was the electrostatics of binding predicted to be favorable.

Mutation from aspartate to asparagine at position H58 further illustrates the

potential capabilities of binding predictions based on electrostatics. Though the im-

provement was very modest (−0.13 kcal/mol), it was in agreement with the calculated
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electrostatics (−0.13 kcal/mol). This type of mutation isolates electrostatic effects as

both side chains are the same size and shape.

Two mutations were chosen to directly test the hypothesis that prediction

of improved van der Waals interactions is unreliable. For Asn(L31)Trp and

Thr(L52)Phe, the total binding energy is predicted to be improved (−1.22 kcal/mol

and −1.34 kcal/mol, respectively), dominated by improved van der Waals inter-

actions (−2.24 kcal/mol and −1.49 kcal/mol, respectively). The electrostatics

for each is predicted to be unfavorable by differing degrees (+1.25 kcal/mol and

+0.20 kcal/mol, respectively). Experimentally, neither mutant binds better than

wild type (+0.2 kcal/mol and +0.48 kcal/mol, respectively).

At position H28 Ser, calculations indicated that either negatively-charge side chain

would be favorable as a result of electrostatic interactions with lysozyme, particularly

Lys 116. However, removal of the serine breaks an intramolecular hydrogen bond

with backbone. Both asparagine and glutamine, mutations designed to test the loss

of serine while remaining polar and neutral, slightly decrease binding affinity, yet

asparate and glutamate, which morph isosterically from neutral to negatively-charged,

recover binding affinity. The solvent-exposure of this site should negate effects of

the dipole switch at the amine. This example adds evidence to support the role of

antibody stability and electrostatics in binding energy prediction.

Insufficient conformational search in the bound state is unlikely to be the cause

of the unreliable van der Waals predicted improvements. The typical inaccuracy is

for mutation from a small amino acid (e.g. Gly, Ser, Thr) to a large amino acid

(e.g. Phe, Trp). The fixed backbone and discrete rotamer approximations may result

in a sub-optimal conformation for the designed larger amino acid, with additional

conformation search or minimization leading to a lower energy state. However, to

fix the scoring problem, energies would have to become less favorable. A more likely

explanation is that improvements in interactions in the bound state by larger amino

acids are realized, though these increases coincide with improvements in interactions

with solvent in the unbound state and modeled insufficiently.

We found that improvements from larger amino acids were mostly not realized,
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the calculated Poisson–Boltzmann continuum electrostatics term of binding seemed

to be a better predictor for improvement, and that avoiding potentially destabiliz-

ing mutations was important. This led to two questions: Can electrostatics-based

predictions alone be used to design binding affinity improvements in other antibod-

ies (Chapter 4)? Is there a physics-based explanation for the seemingly inaccurate

calculated packing improvements (Chapter 5)?
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Chapter 4

Computational design of antibody
improvement beyond in vivo
maturation

Abstract

In Chapter 3 we presented novel methodology for the computational design of protein–
protein interactions. Although the overall hierarchical approach was validated, the
success rate for improved single mutations was low and affinity enhancements were
small. Results indicated that selecting mutations based on the calculated Poisson–
Boltzmann continuum electrostatic term for binding would yield improved results.
Here we implement that idea and present designed improvement in affinity by over
two orders of magnitude using iterative computational design. Four designed muta-
tions in the anti-lysozyme model antibody D44.1 were combined to improve affinity
from 4.4 nM to 43 pM, and subsequent design added a pair of mutations for net
140-fold improvement to 30 pM. We also combined three designed mutations in the
clinically-approved antibody cetuximab (Erbitux) for 10-fold improvement to 52 pM,
and validated predictions in two additional systems. A greater than 60% experimen-
tal success rate for single mutations was achieved using design criteria that focus on
electrostatics. These results demonstrate novel computational capabilities and indi-
cate their applicability for enhancing and accelerating development of reagents and
therapeutics.
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4.1 Introduction

The robust design of mutations to improve protein–protein binding affinity using

computational methods remains a challenge. Success would directly impact biotech-

nology by accelerating the development time of reagent and therapeutic molecules,

and possibly opening up the development of novel molecules inaccessible to compet-

ing technologies. The current technologies for affinity maturation are dominated by

selection methods using either an in vivo immune response or in vitro directed evolu-

tion [2]. Computational techniques, while demonstrating significant progress in many

applications, have not provided reliable results, that is, they have not consistently

produced a list of predicted mutations that yield both a high success rate and an

overall large magnitude effect [39].

The computational protein design methods developed in Chapter 3 produced

marginal affinity enhancements in the anti-lysozyme model antibody D1.3. The re-

sults indicated that a revised design protocol, selecting mutations based on the calcu-

lated Poisson–Boltzmann continuum electrostatic term for binding, would improve the

success rate. Here we investigate a refined computational method for designing affinity

improvements in several new antibody systems. Results for computational prediction

and experimental validation across different protein complexes should broaden the

applicability of our conclusions for future work.

4.2 Results

In our second design attempt, we used only the electrostatic term of the computed

binding free energy to predict improvements in affinity, but kept the original design

procedure and full energy function for side-chain conformational search. Since there

were few computed opportunities for improving D1.3 based on electrostatics, new

antibodies were chosen to explore both the new method and the possibility that D1.3

is anomalous. Our second target for redesign was the antibody D44.1; like D1.3,

it binds lysozyme, facilitating experiments, but its epitope is different from that of
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Table 4.1: Predicted and experimental D44.1 single mutation binding affinities.

∆∆Gbinding (kcal/mol)
Position Mut’n Kd (nM) Ratio Exp. Calctot Calcelec

wild type 4.4 ± 0.5
Selected based on Calcelec

L32 Asn Gly 1.03 ± 0.12 4.2 ± 0.5 −0.86± 0.07 +0.99 −1.03
L92 Asn Ala 0.53 ± 0.09 8.3 ± 1.3 −1.25± 0.10 −0.02 −0.86
H28 Thr Asp 3.39 ± 0.15 1.29 ± 0.06 −0.15± 0.03 −0.30 −0.26
H31 Thr Ala 9.4 ± 1.4 0.47 ± 0.07 +0.45± 0.09 +0.31 −0.97
H31 Thr Val 11 ± 2 0.41 ± 0.09 +0.53± 0.13 −2.06 −0.36
H57 Ser Ala 2.3 ± 0.6 1.9 ± 0.5 −0.37± 0.16 −0.59 −1.44
H57 Ser Val 1.9 ± 0.4 2.3 ± 0.4 −0.49± 0.12 −2.29 −1.34
H58 Thr Asp 1.70 ± 0.10 2.58 ± 0.16 −0.56± 0.04 −0.59 −0.53
H65 Lys Asp 4.5 ± 0.5 0.97 ± 0.12 +0.02± 0.07 −0.38 −0.42
Selected based on Calctot

L32 Asn Tyr 4.4 ± 1.0 1.0 ± 0.2 +0.00± 0.13 −0.29 +2.59
H31 Thr Trp 5 ± 2 0.8 ± 0.3 +0.13± 0.2 −3.75 +1.56

D1.3. In addition, D44.1 has low nanomolar affinity, maintaining the challenge of

nanomolar to picomolar affinity maturation.

Single mutations were designed at all D44.1 non-proline CDR positions and then

mutations were ranked by electrostatic binding free energy term. In contrast to the

results for the D1.3 design, there were many computed opportunities for electrostatic

improvement. Binding affinity was measured for the nine largest-magnitude predic-

tions, choosing no more than two mutations per position. Six out of the nine mutants

were found to bind tighter than wild type, and the best mutation, Asn(L92)Ala,

exhibits 8-fold improvement (Table 4.1). In addition, following the original design

procedure, two mutations predicted to increase packing interactions were tested; as

expected, neither mutation led to an improvement in affinity (Table 4.1; this is further

investigated in Chapter 5).

The successful D44.1 single mutations were combined and tested experimentally.

The six favorable mutations span five positions, where L32 and L92 are the only

positions in direct contact with each other in the wild-type crystal structure. Con-

trary to prediction, this double mutant is not as improved as the L92 single mutant
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Table 4.2: Predicted and experimental D44.1 combination mutations.
∆∆Gbinding (kcal/mol)

Mutationsa Kd (nM) Ratio Exp. Calctot Calcelec

wild type 4.4 ± 0.5
(L32)G, (L92)A 1.37 ± 0.12 3.2± 0.3 −0.69± 0.05 +1.23 −1.68
(H57)V, (H58)D 0.83 ± 0.06 5.3± 0.4 −0.99± 0.04 −2.88 −1.87
(L32)G, (L92)A, (H57)V, (H58)D 0.23 ± 0.02 18.7± 1.9 −1.74± 0.06 −1.65 −3.55
(L92)A, (H57)V, (H58)D 0.076 ± 0.007 57± 5 −2.40± 0.05 −2.90 −2.73
(L92)A, (H28)D, (H57)V, (H58)Db 0.0430 ± 0.0013 102± 3 −2.74± 0.02 −3.18 −2.96

aShorthand is (position) and new amino acid, e.g. (L32)G is VL32 mutated to
glycine.
bReferred to as “Quad”.

A B C

Figure 4.1: Predicted structures for D44.1 mutations. green ribbon: lysozyme back-
bone; magenta ribbon: antibody backbone; atom color: wild type; grey: design. (A)
Asn(L92)Ala. (B) Ser(H57)Val, top; Thr(H58)Asp, bottom. (C) Thr(H28)Asp.

alone. The mutations at the other three positions are additive with L92, yielding a

quadruple mutant with 43-pM affinity, 100-fold improved over wild type (Table 4.2).

Figure 4.1 displays the predicted interactions for these four mutations. Measurements

of dissociation and association rate constants for D44.1 and the high-affinity quadru-

ple mutant reveal that both kinetic steps were improved, including a 23-fold slower

off-rate (Table 4.3). Each ratio of koff to kon is in agreement with the independently

measured Kd. Increasing ionic strength from 167 mM to 1.67 M screens the designed

quadruple-mutant interaction by approximately 4-fold, in agreement with calcula-

tion (+0.9 kcal/mol), whereas the wild type is marginally improved at high salt, in

constrast to calculation (+0.3 kcal/mol; Table 4.3).
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Table 4.3: Characterization of D44.1 quadruple mutant.

koff kon koff/kon Kd High-salt
(10−3 s−1) (106 M−1s−1) (nM) (nM) Kd (nM)

D44.1 10.7 ± 1.0 2.52 ± 0.13 4.3 ± 0.5 4.4 ± 0.5 3.0 ± 0.8
Quad 0.466 ± 0.014 8.4 ± 1.7 0.055 ± 0.012 0.0430 ± 0.0013 0.18 ± 0.08

Two sets of calculations were made in an attempt to further improve the high-

affinity D44.1 quadruple mutant. First, single mutations were designed based on

the predicted structure of the quadruple mutant. These calculations reiterated many

predictions seen in the original D44.1 design that were lower-ranked and not tested

experimentally, as well as predictions for mutating position L32, which neighbors the

Asn(L92)Ala mutation and was found experimentally to not be additive. Second,

double mutations were designed at all 93 pairs of contacting positions, and triple mu-

tations were designed at positions H32, H98, and H100 based on cooperative packing

among these three positions. The double- and triple-mutant designs were filtered for

favorable, cooperative predictions, requiring the double or triple mutation to exceed

each single mutation and their energetic sum. Four single mutations, three dou-

ble mutations, and one triple mutation were selected for experimental testing in the

quadruple-mutant context (Table 4.4). Only the H35+H99 double mutant was im-

proved relative to the quadruple mutant, at 30-nM affinity, 140-fold improved over

wild type. Measurement of the individual H35 and H99 mutations revealed high co-

operativity (Table 4.5), consistent with the predicted salt-bridge and hydrogen-bond

rearrangements (Figure 4.2). Experimental binding affinity titrations are shown in

Figure 4.3. The diminished success rate of this subsequent design round may be due

to smaller magnitude predictions, antibody destabilization, or design in a modeled

rather than experimentally-determined structure.

The improved double mutation in the context of the quadruple mutant, a sex-

tuple mutant overall, is predicted to exhibit a large salt-bridge and hydrogen-bond

rearrangement. The redesigned region of the antibody forms a small binding pocket

for an arginine of lysozyme, using two glutamate side chains, one arginine, two tryp-

tophans, one tyrosine, and a crystallographic water molecule. The design moves a
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Table 4.4: Second round design in D44.1 quadruple mutant.
∆∆Gbinding

a ∆∆Gfolding
a

Mutation Kd (nM) Exp. Calctot Calcelec Calctot Calcelec

Quad 0.0430 ± 0.0013
(L32)L 0.056 ± 0.002 +0.16 −1.37 −0.81 +0.26 −0.28
(H30)G 0.082 ± 0.006 +0.38 +0.09 −0.26 +0.14 −1.39
(H59)E 0.37 ± 0.07 +1.28 +0.49 −0.49 +3.45 +0.97
(L91)N > 100 > +4 −2.00 −1.06 −0.67 +1.46
(L91)N, (L93)Ab 0.29 ± 0.04 +1.13 −1.91 −1.10 −2.10 +0.39
(H98)M, (H100)Q 2.2 ± 0.2 +2.33 −0.57 −0.77 +0.30 −2.83
(H32)R, (H98)S > 100 > +4 −2.46 −0.66 +10.86 −2.80
(H35)S, (H99)D 0.030 ± 0.003 −0.21 −4.30c −4.69c

(H32)W, (H98)V, (H100)Qc 8.1 +3.1

aAll values in kcal/mol, relative to the Quad mutant.
b(L93)A mutation introduced to remove inadvertant glycosylation site from (L91)N.
cAfter minimization of design positions.
dSelected based on qualitative structure examination.

Table 4.5: Double mutant cycle added to D44.1 quadruple mutant.

Mutant Kd (nM) ∆∆Gexp
a Ratio

Wild type 4.4 ± 0.5
Quad 0.0430 ± 0.0013 −2.74± 0.02 102± 3
Quad+(H35)S > 100 > +2 < 0.04
Quad+(H99)D 3.1 ± 0.4 −0.20± 0.07 1.41± 0.17
Quad+(H35)S+(H99)D (“Hex”) 0.030 ± 0.003 −2.95± 0.07 145± 17

aAll values in kcal/mol, relative to the D44.1 wild type.
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A B

Figure 4.2: Predicted structure for D44.1 cooperative double mutation. (A) Wild
type in region of double mutation. The top-center arginine is from lysozyme and all
other residues are from the antibody. (B) Designed double mutation: Gly(H99)Asp
in back, Glu(H35)Ser in front. The Asp is predicted to displace a crystallographic
water molecule

negatively-charged side chain from the H1 loop to the H3 loop and places a serine

side chain to complete intramolecular hydrogen bonding. The glutamate to aspartate

mutation maintains interaction with the lysozyme arginine and an intramolecular

arginine, but at a new geometry in each case. The new aspartate is also predicted

to replace crystallographic water 743 and interact directly with the protein backbone

amine at position H101 in its place. The design maintains an equivalent number of

non-hydrogen atoms overall.

Next, we applied our electrostatics-based methods to the therapeutic antibody

cetuximab (Erbitux), which binds epidermal growth factor receptor (EGFR) to block

ligand binding [105–107]. Calculations revealed nine positions with opportunities for

affinity-enhancing single mutations. The five mutations of largest magnitude were

selected for experimental testing in the single-chain antibody format, with one muta-

tion per position, and no two positions in close proximity. The EGFR extracellular

domain (EGFR-ECD) mutant used in the assays [108] contains the point mutation

Ser(418)Gly that is directly across the interface from the designed Asn(H56)Ala mu-

tation, likely interfering with the prediction. Three of the other four mutants bind

EGFR tighter than does cetuximab; there three mutations were combined to produce

a triple mutant with 10-fold overall improvement, from 490 pM to 52 pM (Table 4.6,
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Figure 4.4).

The transferability and utility of these methods were further demonstrated by

designs for which published data validates the predictions. One of our test cases was

the antibody 4-4-20, which binds its small-molecule hapten, fluorescein, with 1.2 nM

affinity, and was previously engineered using directed evolution to yield the antibody

4M5.3 with over 1,000-fold affinity improvement and 14 mutations [8]. Our designed

single mutations in 4-4-20 revealed opportunities for improvement based on com-

puted electrostatics at nine positions. Two of the predicted mutations, Asp(H31)His

and Ser(H101)Ala, have already been shown to improve binding affinity as single

mutations in 4M5.3 [7]. Interestingly, the design missed the Tyr(H102)Ser muta-

tion in 4M5.3 due to the rigid backbone constraint. Another test case was beva-

cizumab (Avastin), a therapeutic antibody that binds vascular endothelial growth fac-

tor (VEGF) [109, 110], where we found five positions suitable for electrostatics-based

improvement. The mutation Thr(H28)Asp and mutations at H31 and H101 are found

in a published high-affinity variant of bevacizumab [111]. Our other electrostatics-

based predictions in both test systems remain to be tested.
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Table 4.6: Predicted and experimental cetuximab binding affinities.
∆∆Gbinding(kcal/mol)

Position Mutation Kd (nM) Ratio Exp. Calctot Calcelec

wild type 0.49 ± 0.06
L26 Ser Asp 0.36 ± 0.17 1.4± 0.7 −0.2± 0.3 −0.40 −0.38
L31 Thr Glu 0.20 ± 0.07 2.4± 0.8 −0.53± 0.19 −0.50 −0.48
L93 Asn Ala 0.14 ± 0.06 3.5± 1.4 −0.7± 0.2 +1.06 −0.75
H56 Asn Alaa 0.46 ± 0.16 1.1± 0.4 −0.04± 0.2 +2.25 −0.27
H61 Thr Glu 0.44 ± 0.13 1.1± 0.3 −0.07± 0.17 −0.77 −0.77
Combinations of single mutations
L31E, L93A 0.12 ± 0.07b 4± 2b −0.8± 0.3b +0.51 −1.28
L26D, L31E, L93A 0.052 ± 0.002 9.5± 0.3 −1.33± 0.02 +0.13 −1.64
L26D, L31E, L93A, H56A, H61E 0.15 ±0.13b 3± 3b −0.7± 0.5b +1.69 −2.61

aComplicated by the Ser(418)Gly mutation in the EGFR-ECD variant.
bUnusually large errors, by percent.
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Figure 4.4: Designed high-affinity cetuximab mutant. Triangles: wild type cetuximab;
squares: 10-fold improved triple mutant.
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4.3 Discussion

The single mutations designed and experimentally validated in this work lead to

enhanced binding affinity through one of two electrostatic mechanisms. In one mech-

anism, the removal of a poorly-satisfied polar group, a polar residue calculated to lose

more free energy from desolvation than is recovered by interaction is mutated to a hy-

drophobic residue. These mutations account for the majority of improved energetics.

In the second mechanism, the addition of a charged residue, net charge is changed to

increase electrostatic interaction, often at the periphery of the antibody–antigen inter-

face where desolvation is minimal. Unlike previous work using electrostatics to guide

design [112, 113], these methods explicitly model the mutation, calculate a binding

free energy relative to wild type, include positions that are partially or fully buried

upon binding, and avoid opportunities where the mutation is predicted to destabilize

the mutant protein. We find that within electrostatics-based predictions, it is equally

important to consider depolarizing mutations, to reduce desolvation penalty, as it is

to consider charged mutations that increase favorable interactions.

This work presents a computational alternative to directed evolution for affinity

maturation. Directed evolution is adept at accumulating successive, additive muta-

tions, but (with the exception of large-scale shuffling) is less well suited for selecting

variants whose encoding DNA is further from wild type . Experimental libraries

generated using error-prone PCR generally do not cover all single amino-acid mu-

tations, let alone all pairs or greater combinations of mutations, as 13 of the 19

possible single mutations require more than one base pair change, on average. Some

classes of mutation require two base pair changes — for example, mutation to either

negatively-charged residue from any codon of 10 of the 18 candidate side chains. Of

the 12 single mutations found to improve D1.3, D44.1, or cetuximab, 10 required

two base pair changes and would therefore have been significantly more difficult to

identify by experimental directed evolution. Also, the H35+H99 cooperative double

mutation required concerted amino-acid mutation and three total base-pair changes.

Computation has the capability to search a vastly larger space than accessible to ei-
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Figure 4.5: Comparison of calculated and experimental binding energetics. Energies
are in kcal/mol relative to wild type, with y = x, y = 0, and x = 0 lines shown
for clarity. Closed symbols are used for all single mutation data with a different
shape for each system (D1.3 included from Chapter 3). Open symbols are used for
combination mutants. (A) Calculated total free energy of binding relative to wild
type. (B) Calculated electrostatic free energy term of binding relative to wild type.

ther in vivo maturation or experimental selection techniques, potentially discovering

larger and more beneficial evolutionary steps.

Our results present several design lessons. We find that computed electrostatics

alone is a better predictor for improved binding than is computed total free energy.

Electrostatics-based predictions yielded fewer false positives, additional true positives,

and a greater than 60% success rate for single mutations from wild type (Figure 4.5).

Initial results in Chapter 3 demonstrated that predictions based on improved total free

energy were dominated by mutations to larger amino acids that did not experimentally

improve affinity; incorporation of improved nonpolar hydration models may improve

accuracy of predicted packing changes (Chapter 5) [114–116]. Currently, predictions

based on total free energy are plagued by mutations that are measured to be equal

or worse than wild type, despite favorable calculation. Electrostatics does not agree

well for predictions of unfavorability, but this is not our goal for designing improved

affinity.

In addition, we find that designing single and double mutations allows for in-
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depth conformational search and avoids having any particular design flaw spoiling

all results. This work shows that it is possible to achieve large overall affinity im-

provements (1–2 orders of magnitude) by combining individual mutations that are

predominantly additive, consistent with the conclusion in Chapter 2 that the 1800-fold

affinity improvement was the result of the cumulative effect of many small changes.

Mutations in close proximity to each other, such as the L32 and L92 pair, may not be

additive, supporting additional work for directly predicting double and larger combi-

nation mutations, such as the cooperative and improved H35+H99 double mutation.

Also, avoiding destabilizing mutations was important and crystal structure resolution

did not have a significant effect, as the D44.1 and cetuximab structures are of 2.5-

and 2.8-Å resolution, respectively, whereas the D1.3 structure is 1.8-Å resolution.

Calculations in D1.3 showed few opportunities for electrostatics-based improvement,

and accumulated evidence indicates that D1.3 is the anomaly, possibly because of

the combination of the many large side chains and buried water molecules at the

antibody–antigen interface.

Our results demonstrate novel capabilities for improving protein binding affinity

using computational design. Maturation of the model system D44.1 by 140-fold to

30 pM, maturation of the therapeutic antibody cetuximab by 10-fold to 52 pM, and

identification of known mutations in 4-4-20 and bevacizumab together indicate that

our method is a significant advance for antibody design and should be effective for

other antibodies and protein interactions.

4.4 Methods

4.4.1 Structure preparation

The following crystal structures were used from the Protein Data Bank: D44.1:

1MLC [117], Erbitux/cetuximab/IMC-C225: 1YY9 [106], 4-4-20: 1FLR [50],

Avastin/bevacizumab/Fab-12: 1BJ1 [118]. Only the variable region (Fv) of each

antibody and appropriate domain(s) of its binding partner were kept for calcula-
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tions, patching exposed chain termini as either an acetylated N-terminus or an N-

methylamide C-terminus. Most crystallographic water molecules and ions were re-

moved, except for water molecules bridging the binding interface or buried away

from bulk solvent. Titration states, multiple occupancies, and asparagine, glutamine,

and histidine carbon/nitrogen/oxygen crystallographic uncertainties were resolved

based on optimization of hydrogen-bonding in the side-chain local environments.

Hydrogen-atom positions were assigned using the HBUILD facility [51] in the program

CHARMM [52] with the PARAM22 all-atom parameter set [90] and the CHARMM-

adapted TIP3P water model. For the fluorescein in the 4-4-20 complex, appropriate

PARAM22 atom types were chosen and the partial atomic charges determined previ-

ously in Chapter 2 through fitting quantum-mechanical potentials were used.

4.4.2 Design of mutations

The methods developed in Chapter 3 were used to design antibody mutations. At

the end of the procedure, mutation predictions were sorted to select those with an

improved electrostatic binding free energy term. We eliminated by hand mutations

that opened up significant cavities at the interface, as a continuum dielectric 80 model

may be inadequate in a confined space. The removal of mutations predicted to lose

significant folding or binding van der Waals energy is usually sufficient to identify

these positions. One could implement a surface area method to automatically detect

and eliminate cavity creation.

4.4.3 Yeast surface display constructs

The single-chain formats of D44.1 and Erbitux/cetuximab/IMC-C225 [119] were dis-

played on the surface of yeast [102]. The D44.1 gene was designed to match the

sequence in the crystal structure [117], with a linker inserted between the heavy and

light chains, and codon-optimized for yeast (DNA 2.0, Menlo Park, CA). The linker

was based on the conventional (Gly4Ser)3, but modified to include 5’ and 3’ unique

restrictions sites with conservative amino-acid changes (see Table 4.7 for details). The
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gene was inserted into the pCTCON2 vector [104], a variant of pCTCON [120] with

reduced genetic homology between the N-terminal and typical inter-chain glycine-

rich linkers. The D44.1 journal article and structure file disagree at position H112

between a valine and a leucine, respectively. All work here used a leucine at H112,

though mutation to valine was tested and did not alter binding affinity. Antibody

variants were constructed using site-directed mutagenesis (Stratagene, La Jolla, CA)

with oligonucleotide primers from MWG Biotech (High Point, NC). Sequences were

confirmed with forward and reverse sequencing (MIT CCR Biopolymers Laboratory).

4.4.4 Measurement of binding affinity

The yeast strain EBY-100 was transformed with each surface-display plasmid and

binding affinities were measured as previously described in Chapter 3. Binding to

lysozyme (Sigma Aldrich, St. Louis, MO) was detected through secondary labeling

with biotinylated rabbit polyclonal anti-lysozyme antibodies (Research Diagnostics,

now Fitzgerald Industries, Concord, MA) and tertiary labeling with streptavidin-

phycoerythrin (Invitrogen, Eugene, OR). Polyclonal antibodies that bound yeast

nonspecifically were removed prior to use. Experiments were carried out at 25 ◦C in

phosphate-buffered saline (PBS), pH 7.3–7.5, 0.145 M salt (0.167 M ionic strength),

except for high-salt experiments where NaCl was added to reach 1.67 M ionic strength.

For cetuximab, the variant 404SG engineered for expression in yeast of the extracel-

lular domain of epidermal growth factor receptor was produced solubly [108]. This

variant contains two mutations in domain III, Phe(380)Ser, and Ser(418)Gly at the

interface with cetuximab. Binding was detected through secondary labeling with a

biotinylated mouse monoclonal anti-FLAG antibody (Sigma Aldrich, St. Louis, MO)

and tertiary labeling with streptavidin-phycoerythrin.

4.4.5 Measurement of binding kinetics

Off-rates were determined by labeling displaying cells with excess lysozyme, washing

free lysozyme from solution, and then labeling with excess biotinylated lysozyme
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Table 4.7: Sequence details for new D44.1 surface display plasmid within pCTCON2.

DNA sequence Amino-acid sequence

HA TACCCATACGACGTTCCAGACTACGCT YPYDVPDYA

linker CTGCAGGCTAGTGGTGGAGGAGGCTCTGGTGGA LQASGGGGSGGGGSGGGGS

GGCGGTAGCGGAGGCGGAGGGTCG

NheI GCTAGC AS

VH CAAGTTCAGTTACAAGAAAGTGGTGCCGAAGTT QVQLQESGAEVMKPGASVKI

ATGAAGCCAGGTGCATCCGTCAAGATCTCTTGT SCKATGYTFSTYWIEWVKQR

AAGGCTACTGGTTATACATTTTCAACTTACTGG PGHGLEWIGEILPGSGSTYY

ATTGAATGGGTTAAACAAAGACCCGGTCATGGT NEKFKGKATFTADTSSNTAY

CTAGAATGGATTGGTGAAATTTTACCAGGTAGT MQLSSLTSEDSAVYYCARGD

GGAAGCACTTACTATAATGAGAAATTCAAAGGC GNYGYWGQGTTLTVSS

AAAGCCACTTTTACAGCAGATACTTCTTCAAAT

ACCGCTTATATGCAACTGTCTAGCCTAACCAGC

GAAGATAGTGCAGTTTATTATTGCGCTAGAGGT

GATGGAAATTATGGATATTGGGGTCAAGGAACA

ACATTGACTGTTTCTAGT

KasI- GGCGCCGGAGGTTCAGGCGGCGGTGGTTCCGGT GAGGSGGGGSGGGTS

linker-SpeI GGAGGTACTAGT

VL GATATTGAACTGACCCAAAGTCCAGCTACTTTA DIELTQSPATLSVTPGDSVS

TCTGTCACCCCTGGTGATTCCGTTTCTTTGTCA LSCRASQSISNNLHWYQQKS

TGCAGAGCATCTCAAAGCATTTCCAACAACTTA HESPRLLIKYVSQSSSGIPS

CATTGGTATCAACAAAAGTCCCATGAGTCCCCT RFSGSGSGTDFTLSINSVET

CGTCTACTTATCAAGTACGTATCTCAGAGTTCA EDFGMYFCQQSNSWPRTFGG

AGCGGAATACCTTCACGTTTCTCAGGTTCCGGT GTKLEIK

TCAGGCACAGATTTTACATTAAGCATCAACTCC

GTTGAAACTGAAGACTTCGGTATGTATTTTTGT

CAGCAATCTAACAGCTGGCCCAGAACATTCGGC

GGTGGCACCAAGCTTGAAATTAAG

linker GCTGGCGCT AGA

BamHI GGATCC GS

c-MYC GAACAAAAGCTTATTTCTGAAGAGGACTTG EQKLISEEDL

stop-stop TAATAG **

XhoI CTCGAG LE
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as a function of time. Mean fluorescence data were fit to a single exponential for

dissociation time. On-rates were determined by labeling displaying cells with set

lysozyme concentrations and then washing away free lysozyme as a function of time

and labeling with the anti-lysozyme antibodies. Mean fluorescence data were fit to

a single exponential for apparent association time, and a linear plot of this time

constant versus initial lysozyme concentration yielded the intrinsic on-rate.
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Chapter 5

Development of an improved
nonpolar solvation model

Abstract

In Chapter 3, computational protein design methods were developed for the ratio-
nal improvement of binding affinity. The procedure was extended in Chapter 4 to
focus on the electrostatic free energy term of binding, resulting in significant affinity
improvements. However, the problem of mutations to larger side chains dominating
thet predictions due to seemingly inaccurate calculated packing interactions remained.
Here we investigate a physics-based improvement to the nonpolar term of solvation
free energy. A continuum van der Waals interaction energy model was implemented
efficiency and combined with a surface area cavitation model to form a new nonpo-
lar free energy model. The model was parameterized to reproduce the experimental
solvation free energies of alkanes. The two nonpolar models were compared for single
mutation protein design calculations in the D1.3–lysozyme system and three addi-
tion anti-lysozyme antibodies. The new nonpolar model attenuates the prediction of
larger side chains as expected, but does not address the few most egregious designs.
Possible improvements to the model are outlined.
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5.1 Introduction

In Chapter 3 we developed methods for the computational design of improved protein–

protein binding affinity. Predictions in the anti-lysozyme model antibody D1.3 were

dominated by unintuitive mutations to large amino acids calculated to make improved

van der Waals packing interactions at the binding site periphery. Experimental char-

acterization of 17 single mutations, as well as two mutations to larger amino acids

in D44.1 in Chapter 4, led us to conclude that improvement was indeed necessary in

the methods or energy function. At the same time, predictions based on calculated

electrostatics improvements were taken advantage of to achieve single mutation high

success rates and combination mutants with greatly improved affinities (Chapter 4).

In this chapter we explore a physics-based improvement to the energy function to

address the design of larger amino acids.

The two main limitations in computational protein design are conformational

search thoroughness and energy function accuracy. Insufficient conformational sam-

pling, such as from fixed backbone or discrete rotameric side chain assumptions, or

from heuristic search algorithms, can cause the true low energy conformation of a

sequence to be missed. On the other hand, an inaccurate energy function can result

in the correct low energy conformation to be scored worse than decoy conformations,

or can produce an incorrect relative binding energy for the correct conformation of a

mutant sequence.

The over-prediction of large amino acids in affinity design is most likely an en-

ergy function issue. The calculated favorable van der Waals interactions from larger

residues will not be attentuated by increased conformational search, rather, the cal-

culated interactions would only improve given more sampling. Since improvement is

relative to wild type, this argument makes the reasonable assumption that the small

wild type side chain will not likely find a better conformation for interaction than that

of the crystal structure or the repacking of the wild-type sequence. More likely, the

error is from the energy function in correctly selecting the lowest-energy conformation

of a sequence or in calculating the binding energy for that lowest-energy structure.
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Since the characteristic feature of the large amino acids predictions is the calcu-

lation of greatly improved van der Waals interactions, the appropriate question is:

Are the improved van der Waals interactions too large, or should there be a different

term in the energy function that counteracts the van der Waals? Four types of in-

teraction to be accounted for are protein–protein and protein–water, van der Waals

and electrostatics. Side chain entropy loss upon binding, though ignored in the en-

ergy functions, is unlikely to change the predictions based on an order of magnitude

analysis: a glycine to tryptophan mutation at most completely fixes two dihedral

degrees of freedom for approximately 1.2 kcal/mol, compared to the several kcal/mol

van der Waals interaction differences being calculated. Calculation of binding re-

quires the trade-off of bound-state and unbound-state interactions. Upon mutation

from a small to large amino acid, increased bound-state protein–protein interactions

are in principle counteracted by increased unbound-state protein–water interactions,

but these offseting energetics are often calculated asymmetrically using an atomistic

Lennard-Jones potential and a non-atomistic nonpolar term of solvation, respectively.

The interactions of a protein with its aqueous environment are accounted for using

a continuum solvation model, necessarily avoiding the computational complexity of

explicit water. As depicted in Figure 5.1, solvation can be broken down into four

steps, grouped as net electrostatics (∆Gelec), cavitation (∆Gcav), and van der Waals

(∆GvdW). Cavitation and van der Waals are commonly further grouped into a total

nonpolar solvation term (∆Gnonpolar). With the electrostatics modeled with Poisson–

Boltzmann continuum solvation, we had adopted the common solvent-accessible sur-

face area (SASA) nonpolar term shown in Equation 5.1.

Gnonpolar = γSASA + b (5.1)

A variety of work has indicated deficiencies in and developed alternatives to the

surface-area approach to the nonpolar term of solvation [43, 114, 115, 121–126]. The

main limitation of a surface-area approach is that atoms that contribute little or

no solvent-exposed surface area can in fact interact favorably with solvent. Second,
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Figure 5.1: Stepwise solvation process. Transfer of a protein from vacuum (gray) to
water (blue). Left to right: electrostatic work to neutralize charges in vacuum envi-
ronment, cavitation energy to create a solvent cavity, van der Waals energy between
protein and solvent upon transfer from vacuum into solvent, electrostatic work to
re-charge the protein in the aqueous environment.

surface-area approaches tend to use a single energy per unit area independent of atom-

type, or a parameterized value for each of hydrophilic and hydrophobic surface area,

but do not account for the full chemical diversity of atom types and their different

parameterizations within molecular mechanics force fields.

We implemented a continuum solvent van der Waals interaction energy model

based on work by Levy and co-workers [43]. This continuum van der Waals model

aims to combine the computational efficiency of continuum models with the detail of

explicit solvent calculations. We combined it with a surface area cavitation model

to create a full nonpolar solvation model and parameterized it to match the experi-

mental solvation free energies of alkanes. Unlike the solvent van der Waals term, the

cavitation term is expected to be modeled adequately by a simple surface area term

[124, 125, 127].
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5.2 Methods

5.2.1 Continuum van der Waals model

The continuum van der Waals model as described by Levy and co-workers [43] assumes

that the average water atom number density outside of the protein volume is constant.

The protein is modeled with a standard molecular mechanics force field and the

solvent region is modeled as a continuous smear of atoms of a water model. The

interaction energy between protein and solvent is the sum of the interactions of each

protein atom with solvent; the interaction of a protein atom with solvent is computed

by an integral from point to volume, rather than the traditional point-to-point van

der Waals evaluation. Nevertheless, the same force field parameters are used.

Atom–solvent interaction is calculated using Equation 5.2,

UvdW(i) =

∫

solvent

ρwu
(i)
vdW(r− ri)d

3r (5.2)

where ρw is the water bulk number density taken to be 0.0336 Å−3 and u
(i)
vdW is

the Lennard-Jones pair potential for atom type i and water. For the CHARMM-

adapted TIP3P water model, Equation 5.2 is modified to count both water oxygen

and water hydrogen interactions, where the hydrogen bulk number density is twice

that of water/oxygen density. The total protein–solvent interaction energy is then

simply the sum over all protein atoms,

UvdW =
n∑

i=1

UvdW(i) (5.3)

where n is the number of atoms in the protein.

The boundary between protein and solvent is taken as the solvent-accessible sur-

face, which is the closest approach of the center of a probe sphere rolled over the

protein set of spherical atoms. However, the radius of this probe sphere, though com-

monly taken to be 1.4 Å to approximate a water molecule, is left as a free parameter.

This is the only free parameter of the continuum van der Waals interaction model
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and is used to balance the assumptions that the solvent region is of constant density

and approaches the protein to a discrete, solvent-accessible surface.

Levy and co-workers used the continuum van der Waals model with the OPLS

force field [128] and TIP4P water model [129], parameterizing the solvent probe ra-

dius to match protein–solvent interaction energies from explicit solvent molecular

dynamics calculations. Since we were to add a cavitation term to address the full

nonpolar solvation energy, which adds one or two parameters itself, we decided to

fit all free parameters simultaneously to the experimental solvation free energies of

alkane molecules.

5.2.2 Numerical solution

To compute the interaction given by Equation 5.2, the integral was converted to one

with a bounded region as done previously [43]. The integral from an atom to the

unbounded region of solvent is equivalent to the analytical integral from the atom

to all space, minus the overcounted interaction from the atom to the interior protein

region. In Equation 5.4,

U
(i)
vdW = U

(i)
vdW(isolated)−

∫

protein

ρwΘ(|r− ri| −Ri)u
(i)
vdW(r− ri)d

3r (5.4)

the first term can be computed analytically for atom i with radius Ri. The second

term corrects for overcounted interaction in the region outside atom i yet inside the

protein region, and the step function Θ handles integrating only outside of atom i.

A C++ program was written for numerically solving the continuum van der Waals

integration given by the second term in Equation 5.4. The basic approach was to

divide the bounded region into volume elements and sum the analytical integral to

each volume element. Cubic volume elements were inadequate for the inherently

spherical geometries. In one implementation, spherical volume elements based on the

atom of integration were used, with fixed divisions in θ and φ angular space, and

progressively-spaced radial divisions to take advantage of the r−6 dependence of the

interaction. The fine three-dimensional discretization was set in advance, and setup
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new for each atom. In a second implementation, a coarse initial discretization was

used, and elements that were not provably all-inside or all-outside were recursively

subdivided until the value of their integral fell below a threshold.

5.2.3 Cavitation model

The cavitation energy was modeled as directly proportional to the molecular (solvent-

excluded) surface area [124, 125, 127] as given by Equation 5.5.

Gcav = γMSA + b (5.5)

The molecular surface area was calculated using a solvent probe radius of 1.4 Å in the

analytical surface routine of the program MSMS [130]. The slope, γ, and intercept,

b, of this model were free parameters.

5.2.4 Fit to alkane experimental data

To determine the free parameters of the new nonpolar solvation model, we sought

to recapitulate the experimental solvation free energies of different alkanes. Alkanes

are well-suited for the task because their minimal electrostatic component of solva-

tion means that the nonpolar component is critical for matching the experimental

data. In addition, the linear alkanes have been used previously to determine the

solvent-accessible surface area nonpolar model parameters for the PARSE parame-

ter set for Poisson–Boltzmann continuum electrostatics [62]. The branched and cyclic

alkanes can not be modeled adequately by a SASA model for nonpolar solvation, data

that support the adoption of a more physics-based energy function. Some atoms in

branched and cyclic alkanes are partially buried from solvent and contribute more to

solute-solvent interaction than their contribution to the surface area would otherwise

indicate.

Alkane data from Cabani et al. were used [131]. Alkanes that contained a qua-

ternary carbon were skipped due to lack of CHARMM parameters. Each alkane was

modeled in its lowest-energy conformation, selected after minimizing all possible all-
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staggered conformations for acyclic compounds and minimizing known low-energy

states for cyclic compounds. The small but non-zero electrostatic contribution to the

solvation free energy was calculated using Poisson–Boltzmann continuum electrostat-

ics with an internal dielectric constant of 2 and transfer from dielectric 80 to vacuum

dielectric 1.

There were three free parameters in total: cavitation slope, cavitation intercept,

and continuum van der Waals solvent probe radius. These parameters were deter-

mined by best fit to the experimental solvation free energies of the linear, branched,

and cyclic alkanes. Values for the solvent probe radius were enumerated in 0.01 Å

increments from 0.6 Å to 1.5 Å. For each value, the optimal cavitation slope and

intercept value were determined using analytical linear best-fitting, and the sum of

squared residuals was recorded. The three parameters that gave the lowest overall

residual were selected. The fit was repeated for both PARAM22 and PARAM19

molecular mechanics, but all work here used the all-atom PARAM22 set.

5.2.5 Protein test systems

In addition to the anti-lysozyme model antibody D1.3 used in Chapter 3, three more

anti-lysozyme antibodies were used for the computational evaluation of the new non-

polar model. The antibodies HyHEL-5, HyHEL-8, and D44.1 bind at a second and

third lysozyme epitope, and crystal structures are available (Protein Data Bank codes

1YQV [132], 1NDG [48], and 1MLC [117], respectively). The structures were prepared

for calculation following the procedures outlined in Chapter 3.

5.3 Results

The first step for investigation of the new nonpolar solvation term was the efficient

implementation of a numerical solver for the integration in Equation 5.4. The integral

was calculated using a spherical grid centered on each atom. The refinement of the

grid was controlled by two parameters corresponding to the radial volume element

size, ∆ρ, and the angular divisions, ∆φ. Division of the angular coordinate θ was
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Figure 5.2: Convergence of continuum van der Waals numerical solution. Radial

discretization controls initial width in Å of volume elements; angular discretization
controls angular sweep of φ and θ. Error is relative to the finest discretization. Surface
is colored according to time in solver, on a log 10 scale.

coupled to φ for simplicity. Figure 5.2 shows the convergence with increasing dis-

cretization for the interaction between the D1.3–lysozyme complex and water. The

relative error steadily decreases as the two grid parameters are reduced together.

Along any particular slice in contant ∆ρ or ∆φ, the relative error reaches a plateau

due to the accuracy limitation of the current value of the other parameter. The solver

performs optimally with parameters chosen along the crease in the surface where the

shortest time is used for a given relative error tolerance.

The solver accuracy was set to achieve 0.1 kcal/mol accuracy in the calculation

of relative binding energies. Figure 5.3 shows the comparison of faster, less accurate

solver settings with a more accurate solver setting for the calculation of the continuum

van der Waals of binding for D1.3 sequence and structure variants. The deviation of

each data set from y = x (taking into account the 1 kcal/mol vertical offset for plotting

clarity) was used to evaluated the accuracy in relative binding energy prediction for

particular solver parameters.

The continuum van der Waals interaction model with the surface area cavitation

model were parameterized to reproduce the experimental solvation free energies of
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Figure 5.3: Convergence of relative binding energies for D1.3 sequence and structure
variants. A more accurate and more computationally expensive discretization was
used to calculate the continuum van der Waals on the x-axis. Less accurate yet
faster solutions are plotted on the y-axis, with 1 kcal/mol offsets for clarity. The
legend refers to the radial discretization (e.g. 0.02 Å) and the angular discretization
in number per 180 degrees (e.g. 50 produces 3.6 degrees).

alkanes. There were 7 linear alkanes (C2–C8), 5 branched alkanes, and 7 cyclic alka-

nes. The previous, simple solvent-accessible surface area (SASA) model for nonpolar

solvation adequately fit the linear alkane data (Figure 5.4A) as has been demonstrated

previously. However, the SASA model could not fit the full set of alkanes because of

the cyclic molecules (Figure 5.4B). On the other hand, the new nonpolar model with

continuum van der Waals interaction and cavitation was capable of fitting all of the

alkane data (Figure 5.4C). Figure 5.4D shows the details of the fit, illustrating that

the favorable van der Waals interaction with solvent is greater for the cyclic alka-

nes than otherwise predicted based on surface area. The experimental values (open

squares) are not described well by solvent-accessible surface area, nor by molecular

(solvent-excluded) surface area (data not shown). The fit parameters are: continuum

van der Waals probe radius = 0.75 Å, cavitation slope = 52.5 cal/mol/Å2, cavitation

intercept = −1.6 kcal/mol (PARAM19 fit values were 0.73 Å, 103.5 cal/mol/Å2, and

−1.4 kcal/mol, respectively).
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Figure 5.4: Parameterization of nonpolar solvation models to alkane data. In (A–C),
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Figure 5.5: Effect of continuum van der Waals on D1.3 single mutation designs. (A)
Each column is a position in the antibody and the rows are the predicted effects on
binding energy relative to wild type in kcal/mol for each single mutation. Each energy
is the difference between the solvent-accessible surface area (SASA) nonpolar model
and the continuum van der Waals plus cavitation nonpolar model, with yellow/red
indicating that the mutation is predicted to be less favorable for binding in the new
model. (B) Results are sorted by row to highlight the overall attenuation of large
amino acids with the new nonpolar model.

The new nonpolar model, combining continuum van der Waals interaction with

cavitation, was applied to the reevaluation of designed D1.3 single mutations for

improving binding affinity to its antigen, hen egg-white lysozyme. Previously, designs

were dominated by mutation to larger amino acids. Replacing the solvent-accessible

surface area (SASA) nonpolar term with the new nonpolar term resulted in the overall

attenuation of large amino acids as shown in Figure 5.5. Figure 5.5A reports the effect

of the new nonpolar model and Figure 5.5B arranges the same data by row to highlight

the effect by amino acid. The accumulation of yellow/red less-favorable energies for

the design of large amino acids is consistent with the goal that large amino acids

would not be as highly ranked with a new, more physics-based energy function.

A direct comparison of the old and new nonpolar models for predicting the effect

of mutating a small residue to a larger side chain is shown in Figure 5.6. Small is

defined as a wild-type side chain with four or less non-hydrogen atoms (Ala, Cys,

Asp, Gly, Ile, Leu, Met, Asn, Pro, Ser, Thr, Val), and large is defined as five or more

non-hydrogen atoms (His, Phe, Tyr, Trp) excluding arginine to avoid complications
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Figure 5.6: Effect of CVDW for small-to-big mutations. The total binding energy
relative to wild type in kcal/mol is plotted with the nonpolar term evaluated with
either the old or new models.

in analysis due to the positive charge. There are two main points about this data.

First, the three mutations that are predicted to be distinctly favorable for binding

relative to wild type (H31 Gly mutated to Trp, Phe, Tyr) are not attenuated in the

new model as had been thought; those predictions are in fact larger in magnitude

than before. Second, the overall effect is nevertheless to attenuate the predictions

as had been thought. Predictions that were at least −0.5 kcal/mol favorable in the

original energy function exhibit an average attenuation of +0.36 kcal/mol.

The new nonpolar model was next applied to the reevaluation of designs in three

additional anti-lysozyme antibody systems. The effect of the new model on the rela-

tive binding free energies as sorted by type of amino acid is shown in Figure 5.7. The

three new systems do not show the strong preference for attenuating large side chains

as for D1.3. There are fewer changes in HyHEL-5 (Figure 5.7B) with a slight prefer-

ence to attenuate the larger side chains, and the changes in HyHEL-8 (Figure 5.7C)

are also more spread out, but with some preference to attenuation of the larger side

chains. The new nonpolar model changes the D44.1 designs much less (Figure 5.7D)

and surprisingly attenuates the two smallest side chains the most. These results will
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be discussed below.

5.4 Discussion

We explored an improved model for nonpolar solvation after computational design

for improved binding affinity (Chapter 3) revealed predictions that were dominated

by mutation to larger amino acids. Analysis of the physical interactions involved in

binding, the calculation techniques, and recent progress in the field of biophysical

modeling suggested that this direction was necessary.

This work consisted of three steps: (1) development of software for the efficient

and accurate numerical solution of the improved model, (2) determination of the free

parameters in the model, and (3) evaluation of the parameterized model for protein–

protein relative binding free energy predictions.

A C++ solver for the irregular-geometry integration in Equation 5.4 was de-

veloped that satisfies accuracy and efficiency goals. A single protein–protein relative

binding free energy can be calculated to within 0.1 kcal/mol on the order of 1 minute,

which is less time than required for the Poisson–Boltzmann continuum electrostatics

calculation that is executed in parallel.

The new nonpolar model, a combination of the continuum van der Waals interac-

tion model of Levy and co-workers [43] and a surface-area cavitation model, contains

three free parameters. Parameter values were fit to reproduce the experimental sol-

vation free energies of linear, branched, and cyclic alkanes, as the previous model was

incapable of capturing this data. This fit was necessary for the success of the new

model, but possibly not sufficient.

The new nonpolar model was evaluated for its effect on the predicted binding free

energies relative to wild type for single mutations compared to the previous solvent-

accessible surface area (SASA) model. The results were mixed. On one hand, the

few, most notable predictions of large favorability from mutation from a small to

large amino acid were not greatly altered by the new nonpolar model, but we had

expected these predictions to be decreased in magnitude. Nevertheless, as a whole,

83



−3

−2

−1

0 

1 

2 

3 G
A
S
T
V
D
I

L
M
N
E
K
Q
H
F
R
Y
W

A
−3

−2

−1

0 

1 

2 

3 G
A
S
T
V
D
I

L
M
N
E
K
Q
H
F
R
Y
W

B

−3

−2

−1

0 

1 

2 

3 G
A
S
T
V
D
I

L
M
N
E
K
Q
H
F
R
Y
W

C
−3

−2

−1

0 

1 

2 

3 G
A
S
T
V
D
I

L
M
N
E
K
Q
H
F
R
Y
W

D

Figure 5.7: Continuum van der Waals effect in four systems. Single mutations were
designed at each antibody position and the difference between the old and new non-
polar models for binding free energy relative to wild-type is shown in kcal/mol. The
results were are sorted by amino acid. (A) D1.3, as shown in Figure 5.5B. (B)
HyHEL-5. (C) HyHEL-8. (D) D44.1.
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the new model did attenuate the predictions of large amino acids. The fourth test

system, D44.1–lysozyme, is the only exception, as several mutations to glycine and

alanine are made less favorable with the new nonpolar model.

Further work should be continued to explore the new nonpolar energy model.

The current parameterization exhibits the desired qualitative behavior, but lacks

quantitative success for the few largest-magnitude predictions of large amino acids.

Simultaneous fitting of the one continuum van der Waals and two cavitation model

parameters to the alkane data may be sufficiently consistent with a family of parame-

ter sets and not contrained enough for a particular most-effective parameter set. The

fact that the PARAM19 and PARAM22 independent fits yielded different cavitation

slope parameters indicates a possible problem; one might expect the cavitation term

to be independed of the molecular mechanics parameter set. Instead, one could fit

the probe radius in the continuum van der Waals term directly to interactions from

explicit water molecular dynamics simulations, as done by Levy and co-workers [43].

In a second step, the cavitation slope and intercept parameters could be determined

by fitting the alkane experimental solvation free energy data as in this work, only

with the continuum van der Waals probe radius pre-determined.

In addition, one should investigate whether alternate conformations of the alkanes

with Boltzmann-weighting would improve the fit [133]. Also, it may be necessary to

add a second continuum van der Waals parameter, fourth overall, to allow a different

probe radius and corresponding molecular surface boundary for the continuous water

oxygen atoms versus the water hydrogen atoms. Previous work used a TIP4P water

model with Lennard-Jones parameters only on the oxygen, whereas the CHARMM-

adapted TIP3P water model includes van der Waals interactions from all three atoms.
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Chapter 6

General conclusions

This thesis has presented novel methods for the analysis and design of high-affinity

protein interactions. Analysis of the electrostatic component of binding in a high-

affinity antibody variant elucidated original mechanisms for the role of mutations that

had been accumulated through directed evolution. Development of computational

protein design methods and their application to the design of affinity-enhancing mu-

tations met with mild success in the first anti-lysozyme model antibody D1.3. The

calculations and experimental measurements identified two directions that were each

subsequently explored. First, new prediction methods that focused on a calculated

improved electrostatic component of binding free energy led to robust and significant

improvements in binding affinity in a number of systems, including a 10-fold im-

provement in binding of the therapeutic antibody cetuximab (Erbitux) to its ligand,

epidermal growth factor receptor (EGFR). Second, an investigation of a new model

for the nonpolar component of the solvation free energy showed encouraging progress

but necessary future work.

One theme in this thesis was the use of the Poisson–Boltzmann continuum elec-

trostatic model. This model was at the core of tools used in Chapter 2 to analyze

anti-fluorescein antibodies and reveal novel insights into the molecular mechanisms

of four affinity-enhancing mutations. This successful analysis lent credibility to the

use of the model within protein design methods. A central conclusion of Chapter 3

was that the developed protein design methods might be improved using a particular

focus on calculated electrostatic free energies. In Chapter 4 we implemented that idea

and created large and robust binding affinity improvements in several systems. The

mutations were either polar to hydrophobic side chains, e. g. asparagine to alanine, or

polar to charged side chains, e. g. threonine to aspartate. We found it as important
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to consider depolarizing mutations, to reduce the side chain desolvation penalty, as

to consider charged mutations that increase favorable interactions. The electrostatic

term of the binding free energy was a better predictor for experimental improvement

than the calculated total binding free energy, and prediction based on the naive total

computed energy would have missed some of the most favorable mutations that were

predicted to lose van der Waals interactions. As an inverse design problem, we only

needed to use a subset of all possible ways to improve binding affinity. There were

likely to be multiple affinity-enhancing mutations, with design success only needing to

identify a subset that achieved overall improvement. At the same time, however, our

scientific interest for the long-term development of protein design led us subsequently

to an investigation of the underlying physical models.

A tenet of this thesis was the use of thorough and guaranteed optimization tools

to address the protein design methods and energy function. In the protein design

development described in Chapter 3, we chose to consider many small search spaces,

single and double mutations across a protein–protein interface, instead of a few large

regions of the interface or a single full interface design. With multiple independent

and small problems, we were able to use computational optimization to rank-order

the structures with the lowest calculated energy in each space. In Chapter 3 this

approach led to unintuitive mutations to large side chains dominating the predictions

for improved binding free energy. We could isolate the problem as an energy function

issue apart from conformational sampling because of our exhaustive search approach.

Larger side chains were calculated to make radically improved van der Waals packing

interactions across the periphery of the binding interface, and designs of multiple

simultaneous positions were saturated by these unintuitive predictions. We concluded

that an investigation was necessary, and this conclusion was greatly facilitated by the

use of optimization.

In Chapter 5 we investigated the over-prediction of large side chains by addressing

a physical deficiency in the model. A new model for the nonpolar component of

solvation free energy was developed using a continuum van der Waals interaction

model from Levy and co-workers combined with a surface area cavitation model.
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The new nonpolar model attenuated the prediction of larger side chains, as expected,

but did not address the few most egregious designs. This work was an improvement

overall, but future work is needed. More rigorous parameterizations are expected to

give improved results, and alternate related work may address the problems as well.

We expect that physics-based developments in the underlying model will improve not

only our own results, but work in other systems and problems as well.

A goal of this thesis was the development of robust computational design methods.

We sought a method that would produce a high success rate for designed improve-

ments, as well as a method that would be transferable for successful use in other pro-

tein systems. Initial work in the anti-lysozyme model antibody D1.3 gave marginal

improvements. On the other hand, improvements of 1–2 orders of magnitude were

achieved in anti-lysozyme D44.1 and anti-EGFR cetuximab with their binding part-

ners. The method was further validated with anti-fluorescein 4-4-20 and anti-vascular

endothelial growth factor (VEGF) bevacizumab (Avastin). Moreover, calculations on

HyHEL-5, HyHEL-8, and Herceptin with their respective ligands indicate oppor-

tunities for single mutations to improve binding affinity, yet untested. Therefore,

the electrostatics-based design method appears generally capable of improving the

binding affinity of an antibody/antigen system starting from low-nanomolar binding

affinity, with D1.3 as a notable exception. We explored a possible structural basis for

D1.3 as an anomaly and its implications on the design procedure.

We postulate that the antibody D1.3 might not be a “model” system, representa-

tive of low-nanomolar antibody–protein interactions in general. The D1.3–lysozyme

interface contains a much greater-than-average number of interfacial buried water

molecules, many of which interact with each other in small pools. In addition, D1.3

presents primarily large side chains at the interface (tyrosine, tryptophan, arginine).

The binding-site interactions may be at a type of local minimum for the generic

packing problem, where a large number of concerted mutations would be necessary

to repack the binding interface into a lower-energy state. Our single- and double-

mutation designs are possibly less adept at mutating away from the largest residues;

they are possibly more adept at mutating away from the small- or medium-sized side
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chains, where options for mutation to bigger, smaller, hydrophobic, and charged side

chains all exist without dramatic shape change. We expect that some small fraction

of cases may be like D1.3, at least in the general aspect of poor designability with

the methods developed here.

Results in this thesis have implications for the protein and nucleotide libraries used

in directed evolution experiments and the future of computational protein design. A

protein variant library generated using error-prone PCR at the DNA level generally

does not translate to covering all single amino acid mutations, let alone all possible

double mutations. The nature of the genetic code results in peculiarities in mutation

frequencies. For example, 10 of the 18 neutral or positively-charged protein side chains

can not be mutated to either negatively-charged side chain via any single DNA base

pair change. Computation is not fundamentally biased to the genetic code. We found

overall that 10 of the 12 single mutations that improve binding affinity in systems that

had been previously optimized by in vivo maturation required two base pair changes,

where the likelihood by chance for 10 or more out of 12 is approximately 20%. Also,

the designed affinity-enhancing double mutation requires three base-pair changes.

Computation is an engineering approach complementary to directed evolution that

has the capability of addressing a vastly larger protein sequence space, capable of

discovering unique and valuable protein variants.

This thesis has presented novel methods for the rational improvement of bind-

ing affinity. Order-of-magnitude improvements were accessible in most systems

by the combination of additive single mutations. Methods were validated on the

therapeutically-relevant FDA-approved anti-EGFR antibody cetuximab, where 10-

fold improvement in binding was achieved, and on the model anti-lysozyme antibody

D44.1 with 140-fold improvement in binding free energy. Improvements were made in

both on- and off-rates, which may be important for applications that require specifi-

cally faster association or slower dissociation rates. Overall, these results demonstrate

novel computational capabilities and indicate their applicability for enhancing and ac-

celerating development of reagents and therapeutics.
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Appendix A

Evolution of an interloop disulfide
bond in high-affinity fibronectin
type III antibody mimics:
Molecular convergence with
single-domain camelid and shark
antibodies1

Abstract

Antibody mimics based on the 10Fn3 immunoglobulin-like scaffold were previously
selected by yeast surface display to bind with high affinity to the model antigen hen
egg-white lysozyme. A striking feature of the highest-affinity, 350 pM variant was a
pair of selected cysteine residues at positions 28 and 77 in adjacent binding loops.
Here we use molecular modeling to estimate the likelihood for each inter-loop pair of
positions forming a disulfide bond. The modeling results and previous mutagenesis
and evolution experiments all support the hypothesis that the two cysteines selected
in the high-affinity 10Fn3 variant form a disulfide bond required for the strong protein–
protein interaction. The selection of this cysteine pair is structurally analogous to the
natural evolution of disulfide bonds found in new antigen receptors of cartilaginous
fish and in camelid heavy-chain variable domains.

1Portions of this chapter have been accepted as:

Lipovsek D., Lippow, S. M., Hackel, B. J., Gregson, M. W., Cheng, P., Kapila, A. & Wit-
trup, K. D. Evolution of an interloop disulfide bond in high-affinity antibody mimics based on
fibronectin type III domain and selected by yeast surface display: Molecular convergence with
single-domain camelid and shark antibodies. J. Mol. Biol. In Press (2007).
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A.1 Introduction

The tenth human fibronectin type III domain (10Fn3) has been previously engineered

to bind with high affinity and specificity to arbitrary protein targets [134–139]. This

antibody mimic has structural homology to immunoglobulin folds, resembling a VH-

only antibody with its loops BC, DE, and FG that connect beta-sheet elements anal-

ogous to antibody CDR-1, CDR-2, and CDR-3 loops [140, 141]. Wild-type 10Fn3

possesses attractive qualitives for development as a therapeutic scaffold: small size

(10 kD), high expression in E. coli, and high stability (82◦C melting temperature

[138]).

Lipovsek and Wittrup investigated the use of yeast surface display and directed

evolution for the selection and affinity maturation of 10Fn3 variants. With random-

ization of only 14 residues and libraries of size 107–109, they were able to isolate and

affinity mature molecules with binding affinities as high as 350 pM for the model

antigen hen egg-white lysozyme. A striking feature of the highest-affinity antibody

mimic was a pair of cysteine residues on adjacent loops, positions 28 and 77. This

cysteine pair was found in experiments to be critical for the high-affinity binding. We

began a collaboration to use molecular modeling to address whether the cysteine pair

is likely to be forming a disulfide bond in solution. In addition, we estimated the

potential for other inter-loop pairs of positions to form disulfide bonds.

A.2 Results

Disulfide bonds were modeled between all 49 pairs of BC loop and FG loop positions

using an NMR average structure of 10Fn3 as a template. For each pair of positions,

two free cysteines were modeled for reference in addition to the disulfide-bonded

form. Due to the lack of experimental data on side-chain conformation in the selected

loops, the remaining twelve BC-loop and FG-loop positions were modeled as either

all glycine, all alanine, or all serine. Each structure was subjected to a restrained

minimization protocol. The final total energy of the disulfide bond relative to the free
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Figure A.1: Modeling of disulfide bonds between cysteines in BC and FG loops. The
numbers on the vertical axis refer to the position of the cysteine in the BC loop, and
the numbers on the horizontal axis refer to the position of the cysteine in the FG loop.
Energies of disulfide formation for each pair of BC and FG cysteines were calculated
following restrained minimization using CHARMM, with all the remaining residues in
the BC and FG loops set to glycine (first column for a given pair of residues), alanine
(second column), or serine (third column). Calculated energies are color-coded, with
a darker shade of gray corresponding to a lower (more negative) energy, and thus to
a higher likelihood of formation of the disulfide bond. White: 0 kcal/mol or higher;
black: −6 kcal/mol or lower.

cysteines is shown in Figure A.1, and structural statistics for models with favorable

disulfides are presented in Table A.1.

A disulfide bond between the BC loop and the FG loop was calculated to be

favorable for only five pairs of positions. Only for the pair 28-77 was a disulfide bond

found to be favorable across all three side chain backgrounds, and this disulfide was

top-ranked for both the alanine and serine backgrounds. The glycine background

most favored a disulfide between positions 27 and 77.

The model of the 28-77 disulfide bond with alanine at the other twelve BC loop

and FG loop positions is shown in Figure A.2. Before minimization, this modeled

structure was deformed due to a long sulfur–sulfur bond length, but otherwise it was

free of steric clashes. A standard disulfide conformation was achieved through the

restrained minimization, primarily by rotation of the protein backbone at position 77.
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Table A.1: Disulfide bonds between BC and FG loops of 10Fn3 that are predicted to
be energetically favorable.

Cys1 Back- Cα–Cα distance3 (Å) RMSD4 (Å) Energy5

ground2 10Fn36 DiS7 Ref 8 10Fn3/diS 10Fn3/Ref DiS/Ref (kcal/mol)
27-77 Gly 9.9 5.8 9.1 1.18 1.10 0.62 −9.4
28-77 Ser 8.1 5.6 7.8 1.18 1.11 0.52 −6.9
28-77 Ala 8.1 5.6 7.8 1.20 1.12 0.53 −5.6
28-83 Ser 12.1 6.4 11.0 1.26 1.11 0.73 −1.4
27-77 Ala 9.9 6.0 9.6 1.20 1.13 0.67 −1.3
28-77 Gly 8.1 5.7 6.8 1.17 1.12 0.54 −1.2
26-77 Ala 13.2 6.1 13.3 1.27 1.12 0.95 −0.8
25-77 Ser 12.6 6.3 12.4 1.29 1.12 0.98 −0.3
27-77 Ser 9.9 6.2 10.3 1.19 1.11 0.72 −0.2

1Positions of the two modeled cysteines in loops BC and FG.
2Amino-acid residues assigned to the remaining 12 positions in BC and FG loops.
3Distance between the Cα atoms at the positions identified in column Cys.
4Root mean square distance between two structures, including all equivalent atoms.
5Calculated energy of a disulfide bond relative to the free cysteines.
6NMR solution structure of wild-type human 10Fn3.
7Modeled structure with a disulfide between the cysteines in the two positions listed
under Cys.
8Modeled structure with two free cysteines in the two positions listed under Cys.
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Figure A.2: Model of a 10Fn3 variant with a disulfide bond between Cys 28 and Cys
77, superimposed on the NMR structure of wild-type 10Fn3. The disulfide model was
generated using harmonically restrained minimization of the NMR structure with a
disulfide bond built between cysteines at positions 28 and 77, and with alanine at the
other twelve positions in BC and FG loops. Dark red: FG loop in C28-C77 model;
dark blue: BC loop in C28-C77 model; dark gray: the rest of main chain of the
C28-C77 model; yellow: disulfide bond between Cys 28 and Cys 77 in the C28-C77
model, excluding hydrogen atoms; light red: FG loop in wild-type 10Fn3; light blue:
BC loop in wild-type 10Fn3; light gray: the rest of main chain of wild-type 10Fn3.
Side chains are not shown for clarity.
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The goal of the disulfide-bond modeling was to suggest pairs of positions that are

capable of forming a disulfide bond, not to rule out pairs of positions that cannot

form a disulfide bond. Several simplifications used in the calculations may result in

missing a low-energy conformation that would favor a particular disulfide bond. The

glycine, alanine, and serine backgrounds used in modeling are only three of 4 × 1015

possible sequences for each disulfide, and the minimization protocol undersamples side

chain and backbone conformational space. Nevertheless, the modeling demonstrates

that disulfide bonds can be introduced between several positions on the BC and the

FG loop without disrupting the 10Fn3 fold. The cysteine pair found in the high-

affinity clone, Cys 28 and Cys 77, corresponds to the lowest disulfide-bond energy

in the alanine and serine backgrounds, and to one of the two favorable disulfide-

bond energies in the glycine background. Interestingly, Cys 27 and Cys 77, which

correspond to the lowest calculated disulfide-bond energy in the glycine background,

were found in another selected clone.

A.3 Discussion

The most striking feature in the sequences in lysozyme-binding antibody mimics was

the prevalence of cysteine, which was present in selected clones at more than twice its

frequency in naive libraries. We hypothesized that two cysteines on adjacent CDR-

like loops of 10Fn3 form a disulfide bond, which contributes to both thermodynamic

stability of the 10Fn3 fold and to its binding to hen egg-white lysozyme. The hypoth-

esis that two cysteines on adjacent CDR-like loops of 10Fn3 form a disulfide bond was

tested using structural modeling, separate affinity-maturation experiments, and sep-

arate site-directed mutagenesis; all three approaches yielded results consistent with

such a disulfide bond.

The most likely mechanism in which the 28-77 disulfide contributes to lysozyme

binding is entropic, by reducing the flexibility of loops BC and FG in unbound state.

Nevertheless, it is also possible that the disulfide itself is a part of the lysozyme-

binding surface on the antibody-mimic molecule. Indirect support for this possibility
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comes from the presence of two adjacent cysteines in the BC loop of a different

isolated variant (Kd = 10 nM), which may form a vicinal disulfide bond [142]. An

affinity maturation strategy that fixed the FG loop (except for position 77, which

was randomized between serine and cysteine) and re-randomized the BC loop did not

yield any mutants with a Cys 28 – Cys 77 pair, suggesting that most of the binding

energy of the variant to lysozyme was provided by its selected BC loop, or by the

combination of its BC loop and the 28-77 disulfide.

Whereas this is the first report of an interloop disulfide bond selected in 10Fn3-

based antibody mimics, analogous disulfides have been discovered in naturally evolved

variable antibody domains from camelids (llamas and camels) [143, 144] and in new

antigen receptors (IgNAR) from cartilaginous fish (sharks, skates, rays, and chi-

maeras) [145, 146]. In contrast to variable domains produced by immune systems

of most other animals, which bind antigens in VH/VL pairs , camelid and IgNAR

variable domains bind antigens singly. A possible explanation for the prevalence of

interloop disulfides in these domains is that the added structural constraint of an

interloop disulfide contributes to domain stability [146–149], rigidity of the antigen-

binding site [144, 147, 148], or structural diversity [145, 147, 149], all of which may

contribute to antigen binding. The evolutionary distance between camelids and car-

tilaginous fish and the rarity of interloop disulfides in non-camelid mammals suggest

that the interloop disulfides present in both types of single-variable-domain antibodies

arose by convergent evolution [146, 148].

The in-vitro selection of 10Fn3-based antibody mimics is the third example of

convergent evolution to an interloop disulfide under pressure of antigen binding by a

single-domain, immunoglobulin-like structure. Furthermore, this is the first system

in which the role of such a disulfide bond has been tested experimentally; we have

demonstrated the loss of antigen binding when the disulfide is disrupted by site-

directed mutagenesis, and the tendency of the system to re-evolve the disulfide after

the cysteine positions are randomized during affinity maturation. We expect that

the analogous interloop disulfides in natural camelid and shark antibodies will prove

similarly critical for their antigen binding.
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A.4 Methods

The NMR, restrained energy-minimized average structure of the tenth type III mod-

ule of human fibronectin (PDB code 1TTG [140]) was prepared for computational

modeling by removing all water molecules and building on hydrogen atoms using the

HBUILD facility [51] and the PARAM22 all-atom parameter set [90] in CHARMM

[52]. Disulfide bonds were modeled between all 49 pairs of BC loop and FG loop

positions. For each pair of positions, two models were created: one with a disulfide

bond, and one with two free cysteines. The remaining twelve positions in BC and FG

loop were modeled as either all glycine, all alanine, or all serine. The cysteine and

serine side chains were built in their default conformation.

The structure with two free cysteines and the structure with a disulfide bond were

each energy-minimized using no non-bonded cut-offs and a 4r distance-dependent

dielectric constant. The minimization protocol included a harmonic restraint of

0.1 kcal/mol/Å2 on each atom in the protein to preserve the native structure where

possible and to reduce the effects of the imperfect energy function. Each structure was

minimized to convergence, the harmonic restraints were then reset for the new atomic

coordinates, and the process was repeated for a total of three complete minimizations.

Similar results were obtained with two or four rounds of minimization.

The energy reported for a disulfide bond between a particular pair of positions

is the difference between total energies, after minimization, of the disulfide-bonded

structure and the corresponding structure with two free cysteines. Similar results were

obtained when directly using the final energy after minimization for each disulfide.

RMSD calculations were performed between all atoms common to both structures,

using the McLachlan algorithm [150] as implemented in the program ProFit V2.2

(Martin, A.C.R., http://www.bioinf.org.uk/software/profit/). Figure A.2 was drawn

using Visual Molecular Dynamics [151].
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