
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-047 September 17, 2007

Pluggable type-checking for custom type
qualifiers in Java
Matthew M. Papi, Mahmood Ali, Telmo Luis Correa
Jr., Jeff H. Perkins, and Michael D. Ernst

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4403633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pluggable Type-checking for Custom Type Qualifiers in
Java

Matthew M. Papi Mahmood Ali Telmo Luis Correa Jr. Jeff H. Perkins Michael D. Ernst
MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA, USA

{mpapi,mali,telmo,jhp,mernst}@csail.mit.edu

ABSTRACT
We have created a framework for adding custom type qual-
ifiers to the Java language in a backward-compatible way.
The type system designer defines the qualifiers and creates
a compiler plug-in that enforces their semantics. Program-
mers can write the type qualifiers in their programs and be
informed of errors or assured that the program is free of
those errors. The system builds on existing Java tools and
APIs.

In order to evaluate our framework, we have written four
type-checkers using the framework: for a non-null type sys-
tem that can detect and prevent null pointer errors; for an
interned type system that can detect and prevent equality-
checking errors; for a reference immutability type system,
Javari, that can detect and prevent mutation errors; and for
a reference and object immutability type system, IGJ, that
can detect and prevent even more mutation errors. We have
conducted case studies using each checker to find real errors
in existing software. These case studies demonstrate that
the checkers and the framework are practical and useful.

Categories and Subject Descriptors
D3.3 [Programming Languages]: Language Constructs
and Features—data types and structures; F3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs; D1.5 [Programming Tech-
niques]: Object-oriented Programming

General Terms
Languages, Theory

Keywords
annotation, compiler, Java, javac, NonNull, type qualifier,
type system, verification

1. Introduction
Types help to detect and prevent errors: types help pro-

grammers to organize and document data, and types allow
tools to verify that a program does not violate the type
system’s constraints. However there is often much infor-
mation about a type that a programmer cannot express.
User-defined type qualifiers can enrich the built-in type sys-
tem, permitting more expressive compile-time checking and
guaranteeing the absence of certain errors.

Type qualifiers are modifiers that provide extra informa-
tion about a type or variable. We present a framework that

1 @NonNullDefault
2 class DAG {
3 Set<Edge> edges;
4

5 // ...
6

7 List<Vertex>
8 getNeighbors(@Interned @ReadOnly Vertex v) @ReadOnly {
9 List<Vertex> neighbors = new LinkedList<Vertex>();

10 for (Edge e : edges)
11 if (e.from() == v)
12 neighbors.add(e.to());
13 return neighbors;
14 }
15 }

Figure 1: Part of a DAG class that represents a directed acyclic
graph. The code illustrates how a programmer may use
three type qualifiers: @NonNull, @Interned, and @ReadOnly.
Then, a type-checking plug-in detects, or verifies the absence
of, program errors.

allows a type system designer to define new type qualifiers,
and to create compiler plug-ins that check their semantics
and issue lint-like warnings. A programmer can then use
these type qualifiers throughout a program to obtain ad-
ditional guarantees about the program. The type system
defined by the type qualifiers does not change Java seman-
tics, nor is it used by the Java compiler or run-time system.
Rather, it is used by the checking tool (a compiler plug-in),
which can be viewed as performing type-checking using this
richer type system. (The qualified type is usually treated
as a subtype or a supertype of the unqualified type, but our
system is general enough to accommodate type systems that
do not abide by this restriction or that add additional rules.)
Since they are user-defined, developers can create and use
the type qualifiers that are most appropriate for their soft-
ware.

Figure 1 shows example uses of three type qualifiers.
(1) The @NonNullDefault annotation (line 1) indicates that
no reference in the DAG class may be null unless otherwise
annotated. It is equivalent to writing line 3 as “@NonNull
Set<@NonNull Edge> edges;”, for example. This guarantees
that the uses of edges (line 10) and e (lines 11 and 12) can-
not cause a null pointer exception. Similarly, the @NonNull

return type of getNeighbors (line 7) enables its clients to de-
pend on the fact that it always returns a List, even if v has
no neighbors.
(2) The two @ReadOnly annotations on method getNeighbors

(line 8) guarantee to clients that the method does not mod-

1

ify its Vertex argument or its DAG receiver. The lack of a
@ReadOnly annotation on the return value (line 7) indicates
that clients are free to modify the returned List.
(3) The @Interned annotation on line 8 (along with an @In-

terned annotation on the return type in the declaration of
Edge.from, not shown) indicates that the use of object equal-
ity (==) on line 11 is a valid optimization. In the absence of
such annotations, use of the equals method is preferred to
==.

Our key goal is to create a type qualifier framework that is
compatible with the Java language, virtual machine (JVM),
and toolchain. Previous proposals for Java type qualifiers
are incompatible with the existing Java language or tools,
are too inexpressive, or both. We found that integrating
with the Java toolchain required extra engineering effort,
but resulted in better usability, robustness, maintainabil-
ity, and portability. Our framework builds upon 4 key Java
technologies: the JSR 175/308 annotations syntax, the JSR
269 annotation processing API, the Tree API for compiler
ASTs, and the JSR 199/269 error reporting mechanism. No
modifications to the virtual machine are necessary.

Our framework uses Java annotations to express type qual-
ifiers. Java 5 annotations [4] are too inexpressive, so we use
the JSR 308 [14] annotation extension, which is planned for
inclusion in Java 7. JSR 308 permits annotations to be writ-
ten on any use of a type, including generic type arguments,
array elements, method receivers, class literals, casts, etc.
JSR 308 specifies the syntax of the annotations, but not
their semantics (that is the role of our framework). JSR 308
also extends the Java class file format so that all annotations
are represented in the class file. This permits type-checking
against binary versions of annotated classes (e.g., an anno-
tated library) and will facilitate type-checking of Java byte-
code. The JSR 308 changes are backward-compatible with
Java 5. Furthermore, the JSR 308 compiler permits anno-
tations to be enclosed in comments (/*. . . */) so that Java
code that uses these annotations can be processed by com-
pilers for earlier Java versions. Our framework requires no
compiler changes beyond these planned for inclusion in Java
7. Our framework is currently implemented for Sun’s javac,
which is the standard Java compiler. Eclipse and other IDEs
can use javac as their compiler.

In our framework, a type-checker is implemented as a
compiler plug-in, using the standard annotation processing
API [8]. A compiler plug-in (also known as an “annota-
tion processor”) is invoked by specifying one extra compiler
argument (see Section 2). Use of this API means that pro-
grammers do not need to use an external tool (or, worse,
a custom compiler) to obtain the benefits of type-checking;
running the compiler and fixing the errors that it reports is
part of ordinary developer practice. Use of the annotation
processing framework rather than hard-coding changes deep
in the compiler implementation required re-implementing
some compiler functionality in our framework, but the result
is more modular, is easier to extend to new type qualifiers,
and is less sensitive to javac changes.

The Tree API (part of Sun’s Mustang Java 6 implementa-
tion) gives a compiler plug-in access to the program’s AST.
The plug-in uses this to visit each expression, method decla-
ration, and other elements of the program, performing type-
checking as it goes.

A compiler plug-in reports warnings and errors through
the same reporting mechanism that the compiler itself uses [36,

8]. As a result, all errors are displayed in a uniform fashion
and the compiler is aware of whether a warning or error has
been issued during a particular compilation.

To demonstrate the practicality of our system, we have
developed type-checkers for four useful type qualifiers and
have performed case studies with each checker. The Non-
Null qualifier provides an implicit subtype of each Java type
that excludes the value null (i.e., a reference whose type is
NonNull can never be null, and dereferencing it can never
throw a null pointer exception); see Section 3. The Interned
qualifier provides an implicit subtype denoting that a vari-
able contains a canonical value and may be safely tested
using the == operator (versus the equals method); see Sec-
tion 4. The Javari [34] language provides a ReadOnly type
qualifier for reference immutability (a reference may not be
used to modify its referent) that is an implicit supertype
of each Java type; see Section 5. The IGJ [38] language
provides ReadOnly and Immutable type qualifiers that per-
mit specification of both reference immutability and object
immutability (an object may not be mutated through any
reference to it) and that includes qualified types that are nei-
ther supertypes nor subtypes of the unqualified Java types;
see Section 6.

Although some of the four type systems described above
are conceptually simple, building a scalable version of each
one required flexibility in our framework: the NonNull checker
implements flow-sensitivity; the Interned checker treats enu-
merated types and primitives specially; and the reference im-
mutability checkers implement type systems that are more
than a simple sub- or super-type of existing Java types.

The four type-checker plug-ins (non-null, interned, Javari,
and IGJ), the checkers framework, and the JSR 308 ex-
tended annotations Java compiler are publicly available for
download from the JSR 308 web site, http://pag.csail.
mit.edu/jsr308. We anticipate that our tools will both aid
practitioners and also permit researchers to experiment with
new type systems in the context of a realistic language, Java.

2. Implementation
Java 6 includes an API for pluggable annotation process-

ing [8], which is invoked via the -processor option to javac.
Our framework extends this functionality to permit annota-
tion processors (which we also call “type-checking compiler
plug-ins” or just “checkers”) to be run after the type resolu-
tion/attribution compiler phase. It is used as follows:

javac -typeprocessor NonnullChecker MyFile.java

Successful type-checking may require annotation of the
signatures of external libraries that are called by the code
being checked, and we have a suite of tools for manipulating
such annotations. Use of @SuppressWarnings annotations and
command-line arguments permits suppressing warnings by
statement, method, class, or package. Naturally, suppres-
sion of warnings compromises the checker’s guarantee that
the analyzed code is error-free. Additionally, the framework
does not reason about the target of reflective calls.

Our checkers framework extends Java’s annotation pro-
cessing API [8] for compile-time type-checking of type qual-
ifier annotations. The framework provides several features
that reduce the time and effort required to create a new
type-checker. First, it provides data structures for querying
the annotations on a program element regardless of whether

2

Figure 2: Type hierarchy for the NonNull type qualifier.

that element is found in a source file or in a class file. Second,
it provides a template (using the visitor design pattern) for
applying a type qualifier’s rules to an input program, and
it interfaces this component to the Java compiler. Third,
the framework uses the Java compiler’s messaging interface
for reporting and collecting errors during type checking. Fi-
nally, the framework provides additional utilities for quali-
fiers that are either subtypes or supertypes of the unqual-
ified type. For instance, NonNull and Interned types are
subtypes of their unqualified types, and ReadOnly types are
supertypes of their unqualified types.

A checker consists of three classes. The compiler interface
class provides hooks that are called by the annotation pro-
cessing facility [8], and it reports errors via the compiler’s
messaging mechanism [36]. The visitor class is a visitor for
Java source syntax trees as provided by the Tree API. The
visitor class performs type-checking as it walks each source
file’s AST. The type factory is used by the visitor to read
annotated types out of the AST.

The checkers framework provides an abstract visitor class
that performs checking based on the type hierarchy induced
by the type qualifier. For example, it is illegal to assign
a supertype to a subtype, so both of these lines are illegal
(assuming the obvious declarations):

myInternedObject = myObject; // invalid assignment
myObject = myReadOnlyObject; // invalid assignment

The abstract visitor also checks method arguments, receivers,
return values, and overriding.

Use of the checkers framework greatly simplifies writing a
compiler plug-in. The visitor class for the NonNull checker
(Section 3) overrides only one method, to warn about deref-
erences of possibly-null expressions. The NonNull checker’s
type factory contains a flow-sensitive analysis that performs
NonNull inference after null checks, dereferences, etc. The
visitor class for the interned checker (Section 4) overrides
three methods: one that warns if either argument to == or
!= is not interned, and two that implement inference of @In-
terned annotations for final variables that are initialized to
an interned value. The interned checker’s type factory marks
all primitives, enum types, String literals, etc. as interned.

3. Nullness checker for null pointer errors
The NonNull checker implements a simple qualified type

system in which, for every Java class C, @NonNull C is a sub-
type of C (see Figure 2). As an example of the difference, A
reference of type Boolean always has one of the values TRUE,
FALSE, or null. By contrast, a reference of type @NonNull

Boolean always has one of the values TRUE or FALSE — never
null. Dereferencing an expression of type @NonNull Boolean

can never cause a null pointer exception.
The NonNull checker issues a warning in two cases:

Size Anno- Warnings
Program (Default) Files Lines ALocs tations errs AI TW
Anno. file utils (Nul) 49 4640 3700 699 3 23 12
Lookup (Nul) 8 3961 1757 248 7 7 16
Lookup (NN) 8 3961 1757 83 7 7 11
NonNull checker(NN) 7 1031 406 65 5 3 0
Chk. framework (NN) 21 5451 2513 308 29 50 20

Figure 3: Statistics from case studies of NonNull type-
checker plug-in. Columns are explained in Section 3.

1. When an expression of non-NonNull (i.e., Nullable)
type is dereferenced, because it might cause a null
pointer exception.

2. When an expression of NonNull type might become
null, because it is a misuse of the type.

The following code example illustrates both kinds of er-
rors.

Object obj; // might be null
@NonNull Object nnobj; // never null
...
nnobj.toString(); // possible null pointer exception
nnobj = obj; // nnobj may become null

The NonNull checker performs intraprocedural flow-sensitive
inference to determine which expressions of Nullable type
can be statically determined to be NonNull. In other words,
it determines when the declared type is wider than (is a su-
pertype of) the actual type. This enables programmers to
omit some annotations; it enables a single variable to have
different qualified types in different parts of its scope; and
in both cases, it suppresses false warnings that the checker
would otherwise emit.

For each Nullable reference used in a method, the flow-
sensitive analysis propagates a bit throughout the AST to
indicate, at each statement, whether that reference is known
to be NonNull. The analysis is straightforward. A reference
is known to be null after an explicit null check in an as-
sert statement or a conditional, or after a NonNull value is
assigned to it. Such a reference is known to remain null un-
til it is reassigned (including assignments to possibly-aliased
variables and calls to external methods) or until flow rejoins
a branch where the variable is not known to be null. The
flow-sensitive analysis greatly decreases the annotation bur-
den, and can completely eliminate the need to annotate a
method body.

3.1 NonNull case study
We evaluated the NonNull checker via case studies on 4

programs totaling 15083 lines of code (see Figure 3). The
annotation file utilities extract annotations from, and insert
them in, source and class files. Lookup is a featureful para-
graph grep utility; we also annotated the bodies of library
classes that it uses, except those in the JDK. The NonNull
type-checker and the checkers framework are the subject of
the current paper. We also annotated the signatures of 48
library classes that the programs use (mostly from the JDK).

The columns of Figure 3 give the default used by the
checker (Nullable or NonNull); the program size (in files,
lines, and potential annotation locations); the number of
annotations we wrote; and the number of warnings issued
by the checker (see below).

3

To obtain a broader variety of qualitative experience, we
treated the programs in several ways. We annotated the
annotation file utilities without the benefit of the NonNull
checker, then checked the results of the hand annotation.
For all other programs, we incrementally annotated the pro-
gram and fixed errors reported by the NonNull checker. We
annotated some of the programs using @Nullable as the de-
fault, and others using @NonNull as the default; we annotated
the Lookup program in both ways to better compare the two
defaults.

Warnings issued by the NonNull checker fall into three cat-
egories (see Figure 3). User errors (“errs”) are bugs — seri-
ous problems that may lead to null-pointer exceptions at run
time. Application invariants (“AI”) are uses of a possibly-
null type in a context where the value cannot be null, due to
an application-specific property that is inexpressible in the
type system. We suppressed warnings of this type by adding
a run-time assertion (e.g., assert x!=null;) for each appli-
cation invariant. Tool weaknesses (“TW”) also lead to false
positive warnings; nearly every one of these resulted from
lack of generic type inference for type qualifiers and wild-
cards. For example, Java infers the generic type T in the
return type Set<T> of the Collections.singleton() method,
but the NonNull checker does not yet infer whether T is Non-
Null. Users are always permitted to specify the generic type
of a method, and doing so eliminates these warnings.

In the Annotation File Utilities case study, there was a
fourth cause of checker warnings: user omissions in which
the programmer forgot to write a @NonNull annotation for a
NonNull type; there were 31 of them, all of which were easily
fixed after running the checker. Even though the program-
mer had thought about the NonNull annotations (and had
fixed a number of bugs while adding them), 3 bugs remained
that the checker caught.

The most common cause of errors was failure to check that
a value returned by a method was non-null. Most of the bugs
in the NonNull checker could be reduced to the following
form (which is the same form as most NullPointerException
bug reports we have received from users of the checker):

if (x.y().z())
somethingOptional();

where the return type of x.y() is Nullable, and somethingOp-

tional need not be called if x.y() == null. In many of these
cases, y was a method in an instance of a library class to
which x referred, and y returned null for only a tiny percent-
age of valid inputs. A representative example is processing
of a static block, as in:

class C {
// ...
static {

// ...
}

}

javac ultimately compiles the contents of the static block
into a static initializer method. However, a library method
for determining the enclosing method of a statement returns
null (rather than data for the static initializer) when passed
a statement in the static block. This is an unusual case that
did not appear in our test suite, but it is important that the
framework and the checkers not crash when processing that
code. One other bug in the NonNull checker was introduced
by a bug fix that added code using variable x before the null
check for x; we fixed this by reordering the statements.

Here are some example errors from the Lookup program.
The deleteDir utility method throws a null pointer excep-
tion if passed a filename that is not a directory, because
File.listFiles returns null in that case. A readLine method
can throw a null pointer exception because Matcher.group

can return null; checking for null permits a comprehensible
error message rather than a crash, and pointed out several
similar (but not null-related) problems in the same option
processing code. A final problem we discovered with Lookup
was inability to remove long options, because null is used as
a flag.

In each of the programs we annotated, we were able to
remove dead code resulting from null checks of values that
cannot be null.

We re-annotated the Lookup program using a default of
@NonNull rather than @Nullable. (The two Lookup case stud-
ies revealed the same errors, as indicated in Figure 3.) We
felt that the NonNull default made the code easier to read,
but it was sometimes easy to overlook default @NonNull anno-
tations, especially on generic types. Another positive effect
of the NonNull default is that it default biases users away
from using Nullable variables; such variables have a place in
all programs, but should be avoided when possible.

Both our own experience and the literature [7] led us to
believe that a NonNull default would reduce the number of
annotations. This was true for fields and method calls, which
made the code more readable; annotations point out excep-
tions rather than the normal case. However, we had to an-
notate more local variables. When the default was Nullable,
the flow-sensitive analysis often inferred NonNull types for
local variables (which are subtypes of the declared Nullable
types), so an unannotated method body often type-checked.
However, when the default was NonNull, it is not sensible
for the checker to silently treat a variable as a supertype
of its declared NonNull type, and we had to annotate ev-
ery local variable that could hold null. One solution to this
problem would be to use Nullable as the default for local
variables, and NonNull for all other locations. A conceptu-
ally similar solution would be to perform type inference for
all local variables; this could be intraprocedural, since we
may assume that all called methods are fully annotated. A
problem with both approaches is that an unannotated type
such as Integer would mean two different things in different
parts of a single method, which might be confusing. We plan
to experiment with such an approach to see how users react
to it.

Our biggest frustration when using the NonNull checker
was the inability to express application invariants in the
NonNull type system. Characteristic examples from the
Lookup program are that entry_stop_re is null if and only if
entry_start_re is null, and that a variable holding a factory
method for a class is non-null if the class has no constructor
and the class is not an enum. Our NonNull type system is
good at stating whether a variable can be null, but not at
stating the circumstances under which the variable can be
null. Expressing these application invariants would require a
substantially more sophisticated system, such as dependent
types [32]. We used null checks to suppress each checker
warning, which had the positive side effect of checking the
property at run time. We were very happy with the errors
that our system found, but use of the NonNull checker was
addictive: we wanted to eliminate even more possibilities for
error, such as the possibility of run-time assertion failures if

4

Figure 4: Type hierarchy for the Interned type qualifier.

we had mis-stated the conditions.
The compiler API used by the NonNull checker contains

a number of methods that return null if and only if their
single parameter is null. For these methods (and some JDK
methods such as Class.cast and Properties.getProperty), a
@NNMaybe qualifier similar to the @ROMaybe qualifier of Javari
(Section 5) would have been useful.

4. Interned checker for equality-testing errors
Interning, also known as canonicalizing or hash-consing,

finds or creates a unique concrete representation for a given
abstract value. That representative can be used in place
of any other concrete representation. For example, many
Strings could represent the 11-character sequence "Hello

world". Interning selects a particular one of these as the
canonical one; a client should use that one in preference to
all others.

Interning yields both space and time benefits. The space
benefit stems from the fact that many references can point
to the same representation. The time benefit stems from
the ability to use == instead of equals() for comparisons. As
another benefit, x == y is more readable than x.equals(y),
especially for complex expressions, and the equality test re-
minds the reader of the invariants on the underlying data
structure. The intern operation has a modest time and
space cost, so if few duplicate objects are created, or few
comparisons are performed, interning may not be beneficial.
Another potential problem is that failure to intern can lead
to bugs: use of == on distinct objects representing the same
abstract value may return false, as in new Integer(22) ==

new Integer(22) which yields false.

4.1 Interned checker
We have written a checker for an @Interned type annota-

tion. The Interned type system is similar to that for Non-
Null; see Figure 4. If the plugin issues no warnings for a
given program, then all reference equality (==) tests in that
program operate on interned types. The checker issues a
warning in two cases:

1. When a reference (in)equality operator (== or !=) com-
pares objects and the type of at least one operand is
not @Interned.

2. When a non-Interned type is used where an Interned
type is expected.

The following code example illustrates both kinds of er-
rors.

Object obj;
@Interned Object iobj;
...
if (obj == iobj) { ... } // warning: unsafe equality
iobj = obj; // warning: unsafe assignment

An @Interned annotation indicates that the annotated ref-
erence refers to an interned value, although other instances
of the class may be uninterned. Strings are often used in
this way, since clients can know which strings may be used
in multiple contexts. An annotation on the class declara-
tion indicates that every instance of a class is interned, just
as for Java enumerated classes defined with enum. String
literals, primitives, enumerated classes, the null literal, the
result of String.intern, and user-annotated object creation
expressions (using new) are considered interned.

The interned checker does not require flow-sensitivity. It
also requires no library annotations, since the only library
method that affects interning is String.intern.

4.2 Interned case study
We evaluated the Interned checker by applying it to the

source code of Daikon [13]. Daikon is a dynamic invariant
detector — that is, it observes program executions and gen-
eralizes from observed values to likely invariants. Daikon
consists of approximately 250KLOC of Java code.

Memory usage is the limiting factor in scaling Daikon to
larger programs [31]. To conserve memory, the Daikon im-
plementation uses the interning design pattern [22] exten-
sively. 1170 lines of comments or code contain “canonical”
or “intern” (or a variant of those words, but not counting
unrelated words such as “internal”). Over 200 run-time as-
sertions check that values are properly interned; 67 of those
have no other purpose (e.g., x==x.intern()); 137 others can
be viewed as checking both interning and other types of data
consistency (e.g., x.ppt==y.ppt). Daikon contains an intern

or canonicalize method for 10 classes, including both classes
defined in Daikon and static interning methods for types
defined elsewhere such as Integer and arrays. The Daikon
developers use an Emacs plug-in that checks code for String-
related interning errors whenever a file is saved.

We annotated 11 files (12KLOC) in Daikon with 167 @In-

terned annotations.1 We introduced 3 new local variables
to replace code of the form x=x.intern(). We also added
14 @SuppressWarnings annotations to eliminate false positive
(and in a few cases also a local variable, to reduce the scope
of the warning suppression): 5 due to lack of generic type in-
ference in the type-checker; 4 due to calls to other files that
had not yet been annotated; 3 due to casts in intern meth-
ods; 1 due to an application invariant (checking whether a
variable was still set to its initial value); and 1 due to a
checker bug.

This effort revealed 9 previously unknown interning-related
errors in Daikon, 2 performance bugs (unnecessary intern-
ing), and a design flaw. We fixed all but the latter. We
briefly describe these problems.

The DeclReader.read_data method, which reads trace files,
returned interned data in 4 places and uninterned data in
2 places. However, a client (WSMatch) sometimes used ==

for comparisons of uninterned results. We added 2 missing
calls to intern methods in read_data, so its result is always
interned.

A code comment indicated that the VarInfo.str_name field
was interned, but there were 5 errors in VarInfo constructors.
The uninterned field values escaped via the name() method

1Our case study focused on the parts of the code that make the most
use of interning. 72% of the files have no interning comments/calls,
and 87% have 0, 1, or 2. Thus, most files require no @Interned an-
notations. The files we annotated contain more than half of Daikon’s
1170 interning comments/calls.

5

Figure 5: Type hierarchy for Javari’s ReadOnly type quali-
fier.

(also commented as interned) to many clients that tested
them with ==.

The VarInfo.var_info_name field is also interned. Method
simplify_expression performs algebraic simplification by side
effect (which is necessary for preserving object equality).
The method contains 17 branching points and fails to re-
intern the new value of var_info_name in 2 locations.

In another case there is too much, not too little, interning.
Method FileIO.read_data_trace_record is the inner loop of
trace file reading. It interned lines as they were read from
a file, but this interning was taken advantage of in only one
location, and in two cases lines were read without intern-
ing into variables that were commented as interned. We
removed the comment and the interning, and changed one
use of == to .equals.

A design flaw relates to the complex interning behavior of
the VarInfoName class, which represents variable names and
formatting, and also their relationships to one another and
to program points. All external references to this class are
interned (and we verified that all clients treat them prop-
erly), but within the class body instances are sometimes
interned and sometimes not (for instance, in the middle of a
sequence of operations within a method). We discovered lo-
cations where uninterned instances could leak to the outside
as private fields or as subcomponents of returned references.
We have have not yet been able to determine whether this
can cause incorrect user-visible behavior. A simpler design
would be easier to understand, less error-prone, and likely
no less efficient.

Our experience so far indicates that the Interned type-
checker is easy to use and can be extremely fruitful in iden-
tifying errors.

5. Javari checker for mutation errors
Mutation errors are difficult to detect, since the unin-

tended mutation is no different from other mutations that
happen throughout the program, and a mutation error is
not immediately detected at run time. The Javari [3, 34]
type system enables detection and prevention of unintended
mutation.

Javari [34] is an extension of the Java language that per-
mits the specification and compile-time verification of im-
mutability constraints. Figure 5 shows the type hierarchy.
Programmers can state the mutability and assignability of
references using a small set of type annotations.

• The @ReadOnly annotation indicates that a reference
provides only read-only access; no side effect may be
performed through such a reference.

• The @Mutable and @Assignable annotations exclude parts
of an object’s state from the mutation guarantee — for
example, for a field that is used as a cache.

• The @QReadOnly annotation is a mutability wildcard,
much like those introduced by ? extends in Java gener-
ics; the “Q” in @QReadOnly stands for “question mark”.
This type permits only operations that are allowed for
both readonly and mutable types.

• The @RoMaybe annotation simulates mutability method
overloading, enabling return type mutability to depend
on the mutability of parameters. For example, the
identity method could be annotated with @RoMaybe to
indicate that its parameter and return value are either
both ReadOnly or both non-ReadOnly.

The plugin issues an error whenever mutation happens
through a readonly reference, when non-@Assignable fields
of a readonly reference are reassigned, or when a readonly
expression is assigned to a mutable variable.

Javari’s type system has a number of differences from pre-
vious immutability proposals; we highlight two of them. In-
stead of object immutability, it offers reference immutability,
which is more flexible: the same object may be referenced by
read-only and mutable references, and can still provide guar-
antees about code that manipulates the readonly references.
This permits, for example, returning a readonly reference
to an existing object, instead of making a copy to preserve
its original state. Javari’s guarantee is transitive: no state
may be modified when accessed through an immutable ref-
erence’s fields. This permits a programmer to reason about
objects’ abstract state, not just their concrete state.

5.1 Javari case study
We performed case studies on the JOlden benchmark pro-

grams2 [6], a selection of JDK classes, and the Javari checker
itself. We converted 55 classes (7756 LOC) of code to Javari
by adding annotations such as @ReadOnly, using a total of
520 annotations. We also annotated the signatures of 96
library classes and interfaces (4816 LOC), with a total of
1063 annotations. JOlden is written in pre-generics Java, so
we added type parameters to it.

The Javari checker found a mutability bug in its own
implementation. A global variable containing information
about the state of the checker was side-effected when the
checker entered an inner class, but was not reset upon exit-
ing. (Our fix allocated a new object instead.) The checker
test suite did contain inner classes, but did not contain the
right combination of different mutabilities on the outer and
inner classes, and additional code after the inner class, to
trigger the bug.

The Javari checker issued 3 additional warnings, all of
which were false positives issued when a varargs method
parameter (Object... args) was passed to library method
with an annotated array parameter. The current JSR 308
annotation syntax does not permit annotation of the element
type, so we could not annotate the argument.

The most difficult part of the case study was annotat-
ing undocumented third-party code. It usually lacked docu-
mentation regarding side effects. What documentation was
present addressed the receiver, but we were surprised at how
many formal parameters were mutated. Annotating our own
code was easy and fast.

The most difficult method to annotate was the generic,
reflective Collections.toArray method. It has a complex
specification about which objects get mutated, and about

2http://www-ali.cs.umass.edu/DaCapo/benchmarks.html

6

Figure 6: Type hierarchy for IGJ’s type qualifiers.

the type of its return value. The incomplete specification
did not cause a problem in our case study because of the
limited way in which the subject programs used it.

The annotations did not clutter the code, because they ap-
peared mostly on method signatures; leaving local variables
unannotated (mutable) was usually sufficient. The few local
variable annotations appeared at existing Java casts, where
the type qualifier had to be made explicit; flow-sensitive
analysis like that of the non-null checker (Section 3) would
have eliminated the need for these.

We were able to annotate more local variables in the Javari
checker than in the JOlden benchmark, due to better en-
capsulation and more use of getter methods. Most of the
annotations were @ReadOnly (288 annotations on classes, 514
annotations on libraries and interfaces). We never used the
@QReadOnly annotation; the default inherited mutability was
expressive enough. We used @RoMaybe extensively: on almost
every getter method and most constructors, but nowhere
else. We used @Mutable only 3 times; all 3 uses were in the
same class of the Javari visitor, to annotate protected fields
that are passed as arguments and mutated during initial-
ization. We used @Assignable 16 times, all while annotating
a set of inner anonymous classes in JOlden that extended
Enumeration, that could conceivably be readonly, and that
required a reference to the last visited item to be assignable.

6. IGJ checker for mutation errors
Immutability Generic Java (IGJ) [38] is a Java language

extension that expresses immutability constraints. Like the
Javari language described in Section 5, it is motivated by
the fact that a compiler-checked immutability guarantee de-
tects and prevents errors, provides useful documentation, fa-
cilitates reasoning, and enables optimizations. IGJ is more
powerful than Javari in that it expresses and enforces both
reference immutability (only mutable references can mutate
an object) and object immutability (an immutable reference
points to an immutable object).

Every reference is annotated as @Immutable, @ReadOnly, @Mu-
table (the default), or @AssignsFields; Figure 6 illustrates
the relationship among the first three of these.

• A type with an @Immutable annotation represents an
immutable object, which cannot be mutated via the
immutable reference or any aliasing reference.

• A type with a @ReadOnly annotation provides only read-
only access. No mutation may occur via the reference,
but mutation of the referent is possible via an aliasing
reference.

• A type with a @Mutable annotation represents a muta-
ble object which may be mutated via the reference.

• A method whose receiver type is annotated with @As-

signsFields is permitted to mutate the receiver in a
limited manner, for use in helper procedures called by
constructors.

• A field with an @Assignable annotation excludes the
field from the abstract state and may be reassigned,
irrespective of the enclosing object immutability.

• A type with an @I annotation simulates mutability
overloading; the annotation plays a role similar to that
of type variables in Java’s generics system.

The plugin issues an error whenever the IGJ type system
is violated: in short, mutation through a readonly reference,
reassignment of (non-@Assignable) fields of a readonly ref-
erence, or assignment of an expression to a variable of an
incompatible immutability type (e.g. a readonly expression
to a mutable variable).

6.1 Annotation IGJ dialect
The original IGJ dialect [38] was not backward-compatible

with Java, either syntactically or semantically, and could not
specify array mutability. Our checker uses the Annotation
IGJ dialect, which corrects these problems.

To express immutability constraints, Annotation IGJ uses
(JSR 308) annotations. The original IGJ syntax uses a
combination of annotations and generics: each class dec-
laration has a specially-handled type parameter called the
immutability parameter.

Annotation IGJ forbids covariant changes in generic type
arguments, for backward compatibility with Java. In ordi-
nary Java, types with different generic type arguments, such
as Vector<Integer> and Vector<Number>, have no subtype re-
lationship. The original IGJ dialect permits varying a type
argument covariantly in certain circumstances. For exam-
ple,

Vector<Mutable, Integer> <: Vector<ReadOnly, Integer>
<: Vector<ReadOnly, Number>
<: Vector<ReadOnly, Object>

Annotation IGJ supports array immutability. The origi-
nal IGJ dialect did not permit the (im)mutability of array
elements to be specified, because Java’s generics syntax does
not apply to array elements, or to several other code loca-
tions supported by Annotation IGJ.

6.2 IGJ case study
Our preliminary experience suggests that IGJ is useful in

expressing and checking important immutability properties.
We performed case studies on the JOlden benchmark pro-

grams, the htmlparser library3, the tinySQL library4, the
SVNKit Subversion client5, and the IGJ checker itself. In
all, we converted 463 classes (128 KLOC with 62,133 possi-
ble annotation locations) of code to type-correct IGJ, writ-
ing 4,760 annotations. We needed to refactor the code only
in minor ways noted below. We also annotated the signa-
tures of 201 library classes and interfaces. The IGJ checker
issued 26 warnings, which are mostly false positives caused
by limitations of our checker implementation: five were at
library calls that passed a varargs argument ((Object...

3http://htmlparser.sourceforge.net/
4http://sourceforge.net/projects/tinysql/
5http://svnkit.com/

7

args)), eight were at assignments to multidimensional ar-
rays, four were at array initializers, and the rest were at
instances where the immutability information is lost due to
casting to Object. (A previous paper [38] presented a pre-
liminary case study that considered less code and used a
different IGJ implementation that was hard-coded as javac
modifications. Lack of support for array annotations was
the biggest problem in the previous case study, particularly
because JOlden was transliterated from C and used many
arrays.)

Conversion to IGJ revealed representation exposure er-
rors. For example, in the SVNKit library, the SSH authenti-
cation class constructor takes a char array of the private key
and assigns it to a private field without copying; an acces-
sor method also returns that private field without copying.
Clients of either method can mutate the array’s contents.

Conversion to IGJ also allowed us to find and fix a con-
ceptual problem in several immutable classes, where the con-
structor left the object in an inconsistent state that was later
corrected by another method. This is illegal when the class
is immutable, because the second method is not permitted
to modify the object. We solved such problems by adding
parameters to the constructor/factory to give it access to
the complete state of the new object, or by moving all of
the logic of object construction into a single method rather
than dispersing it.

Conversion to IGJ revealed an unusual design pattern in
SVNKit: some getters have side effects, and some setters
have none! For example, getSlotsTable is actually a factory
method that returns the same SlotsTable object on each
invocation, but side-effects that object according to the ar-
gument to getSlotsTable. Method setPath is also a factory
method that returns a new SVNURL object like the receiver,
but with one field set to a different value. Documenting
these unexpected mutation facts (about both arguments and
results) made the code much more comprehensible.

Annotating the IGJ checker made the code easier to un-
derstand, because the annotations distinguished among the
uses of unmodifiable and modifiable collections.

We were able to use both immutable classes and immutable
objects. SVNKit used the latter for Date objects that rep-
resent the beginning and expiration of file locks; the URL
to the repository (IGJ could simplify the current design,
which uses an immutable SVNURL class with setter methods
that return new instances); and many Lists and Arrays of
metadata. IGJ could also permit use of immutable objects
in some places where immutable classes are currently used,
increasing flexibility.

Most fields used the containing class’s immutability pa-
rameter. We used few mutable fields; one of the rare ex-
ceptions was a collection (in SVNErrorCode) that contains all
SVNErrorCodes ever created. We used @Assignable fields only
5 times — to allow the receiver of a tree rebalancing opera-
tion, or the receiver of a method that resizes a buffer without
mutating the contents, to be marked as ReadOnly. In (only)
one case, we would have liked multiple immutability param-
eters for an object: the return value of Map.keySet allows
removal but disallows insertion.

Some classes are really collections of methods, rather than
representing a value as the object-oriented design paradigm
dictates. We found immutability types a poor fit to such
classes, but leaving them unannotated (the default is muta-
ble, for backward compatibility with Java) worked well.

To our surprise, we found we preferred Annotation IGJ to
the original IGJ dialect, despite the fact that IGJ is generics-
inspired and that its type system is explained in terms of
generics. The original IGJ dialect mixes immutability and
generic arguments in the same <...> list, and the immutabil-
ity parameter comes first but may be omitted. Thus, a pro-
grammer must stop to interpret each list of type arguments.
The new dialect was somewhat easier to write as well, and
it was easier to convert back to ordinary Java for process-
ing with a standard Java compiler. Java namespace limita-
tions force the original IGJ dialect to use a different name
for method annotations than for immutability parameters.
Java generally uses prefix modifiers, so the suffix-like form
List<ReadOnly, Date<Mutable>> felt less natural to us than
@ReadOnly List<@Mutable Date>.

Annotating existing code is an important test of IGJ, but
IGJ is likely to be even more effective on code that is de-
signed with immutability in mind. We saw many places
that a different — and better! — design would have been
encouraged by IGJ. This was characteristic of each of our
case studies. We look forward to the pleasant experience
of programming with the benefit of these checkers from the
beginning of a project.

7. Related work
There is a rich literature discussing the theoretical un-

derpinnings of qualified type systems; a good place to start
is Foster et al.’s classic paper [20]. That paper presents
type inference algorithms, but our focus is on expressing
and checking types. Another difference is that in addition
to “negative” and “positive” qualifiers that induce subtypes
and supertypes, we are interested in more complex type sys-
tems that may introduce additional rules and constraints.

Bracha’s [5] term“pluggable type system”means a dynam-
ically typed system in which all static type-checking is op-
tional and has no effect on runtime semantics, and all type-
checker messages are warnings rather than errors. A pro-
grammer can choose to use as many or as few type-checkers
as desired, depending on her needs. The latter statement
applies to our system as well, but not the former. For rea-
sons of backward compatibility, a program is required to
type-check in the ordinary Java type system when the qual-
ifiers are ignored. Rather than replacing the existing type
system, a compiler plug-in adds additional constraints and
makes additional guarantees.

Andreae et al.’s JavaCOP system [2] shares the same goal
as our work: creation of a practical framework for imple-
menting pluggable type systems [5] in Java, starting from
Java 5 annotations. JavaCOP provides a pattern-matching
language for specifying type rules for Java constructs; a type
system designer create a type-checker using a combination
of these declarative rules and procedural Java code. For
instance, to specify that a qualified type is a subtype of
an unqualified type, the designer would write separate rules
for assignments, method overriding, etc., and auxiliary Java
methods that the rules call out to. Andreae et al. [2] pro-
vide an impressive collection of a dozen checkers that can
be written with their system. However, these checkers have
been run only on toy programs; lack of flow-sensitivity, in-
complete implementations (both missing rules for certain
Java constructs and also simplified type systems), and other
problems prevent practical use of the checkers [29]. By con-
trast, we have created only four checkers to date, but have

8

demonstrated their utility on real Java programs. Our sys-
tem integrates with standard tools such as the Java Tree
API and the JSR 269 annotation-processing system, whereas
the JavaCOP authors chose to implement their own incom-
patible variants. Our system incorporates an extension to
Java’s annotation system that permits specification of qual-
ified types. Our system does not require use of a custom
Java compiler itself (though it does require a compiler that
supports the new annotation syntax, which is intended to
become a standard part of the Java 7 language). Addition-
ally, our system is publicly available, whereas JavaCOP is
not (as of Sept. 2007).

JQual [24] is another tool that adds user-defined type
qualifiers to Java. Our focus is type checking, but JQual
addresses the more difficult type inference problem by trans-
lating the ideas of earlier CQual [21] research to the object-
oriented context: JQual generates type constraints from
syntax-directed rules, then solves them to produce a new
typing of the program. JQual does not handle generic types,
but it does permit programmers to enable field-sensitivity on
a field-by-field basis (enabling it globally is not scalable) as
a stand-in. JQual also operates context-sensitively, similar
to the ROMaybe qualifier of Javari. JQual has been used in
two case studies: to identify the enums and addresses that
are part of a public JNI interface, and to infer types for a
Javari-like language (see below).

Fong [19] describes a framework for implementing plug-
gable type systems (more precisely, verification modules) for
Java bytecodes. These are implemented by the classloader
and can replace or augment the standard bytecode verifier.
By contrast, our work focuses on source-code checking. A
byte-code verifier could augment a source-code checker.

Null pointer errors are a bugaboo of programmers, and
significant effort has been devoted to tools that can eradi-
cating them. Engelen [12] ran a significant number of null-
checking tools and reports on their strengths and weak-
nesses; Chalin [7] gives another recent survey. We men-
tion four notable practical tools. ESC/Java [18] is a static
checker for null pointer dereferences, array bounds overruns,
and other errors. It translates the program to the language
of the Simplify theorem prover [9]. This is more power-
ful than a type system, but suffers from scalability limita-
tions. The JastAdd extensible Java compiler [10] includes a
module for checking and inferencing of non-null types [11].
To handle manipulation of partially-initialized objects, Jas-
tAdd implements a raw type system [16], which increases
the number of safe dereferences in the program from 69%
to 71%. The JACK Java Annotation ChecKer [27] is sim-
ilar to JastAdd in that both use flow-sensitivity and a raw
type system and have been applied to nontrivial programs.
Unlike JastAdd but like our tool, JACK is a checker rather
than an inference system. The null pointer bug module of
FindBugs [25] takes a very different approach to the other
work (and our own). Rather than trying to prove the ab-
sence of errors via an analysis that is as precise as practical,
FindBugs assumes that many errors exist and aims to find a
few of them. Like the inference systems, FindBugs requires
only a few user annotations. FindBugs uses an extremely
coarse analysis that yields mostly false positives — it would
indicate that most dereferences are of possibly-null values.
Then, FindBugs uses heuristics to discard reports about val-
ues that might result from infeasible paths, flow through a
catch clause, are returned by a method invocation, etc.

Interning (use of a canonical representation) has been used
since at least the 1950s; Ershov [15] discusses checking for
duplicate formulas in an arithmetic optimizer. Interning has
been widely used in Lisp data structures [23, 1], where the
name “hash consing” referred to the consstruction of objects
making use of a hash table. More recently, Vaziri et al. [35]
give a declarative syntax for specifying the interning pattern
in Java and found equality-checking and hash code bugs sim-
ilar to ours; they use the term“relation type” for an interned
class. Marinov and O’Callahan [28] describe a dynamic anal-
ysis that identifies interning and related optimization oppor-
tunities. Based on the results, the authors then manually
applied interning to two SpecJVM benchmarks, achieving
space savings of 38% and 47%. A more representative ex-
ample is the Eiffel compiler; interning strings resulted in a
10% speedup and 14% memory savings [37]. Our system is
more flexible than previous interning approaches [28, 17, 35]
in that it neither requires all objects of a given type to be
interned nor makes interned objects type-incomparable with
(not a subtype of) uninterned ones.

Our implementation is the first for the Javari language [34],
and incorporates several improvements that are described
in a technical report [33]. Birka [3] implemented a syn-
tactic variant of the Javari2004 language, which is a differ-
ent design than the current Javari language. JavaCOP [2]
and JQual [24] have been used to implement subsets of
Javari that do not handle method overriding, omitting fields
from the abstract state, templating, generics (in the case of
JQual), and other features that we have found important
for practical use. JavaCOP’s implementation was never ex-
ecuted on large programs, and whereas JQual’s was, the
JQual inference results were correct for only 35 out of the
50 variables that the authors examined by hand.

Our implementation is the second for IGJ, but (as de-
scribed in Section 6) our Annotation IGJ dialect is more
practical and permits more complete annotation.

Two of our checkers have been described (in a few para-
graphs) in OOPSLA posters [30, 26], but no previous pub-
lished description has appeared.

8. Conclusion
This paper has presented a framework for creating and

checking custom Java type qualifiers. Type system designers
extend the framework to create type-checking compiler plug-
ins, programmers add annotations to their programs, and
the Java compiler reports type system violations at compile-
time. Our framework builds atop existing Java tools and
APIs and on JSR 308, providing a type qualifier framework
that is compatible with the Java language, virtual machine,
and toolchain.

To evaluate our framework, we defined checkers for four
type systems — non-null, interned, Javari, and IGJ — and
performed case studies in which these checkers revealed pre-
viously unknown errors in real programs, or verified the
absence of such errors. We believe that our framework is
the first practical system for expressing and enforcing plug-
gable type systems in the Java language. The tools de-
scribed in this paper are publicly available for download from
http://pag.csail.mit.edu/jsr308/.

9. References
[1] John R. Allen. Anatomy of LISP. McGraw-Hill, New

York, 1978.

9

[2] Chris Andreae, James Noble, Shane Markstrum, and
Todd Millstein. A framework for implementing
pluggable type systems. In OOPSLA, pages 57–74,
Oct. 2006.

[3] Adrian Birka and Michael D. Ernst. A practical type
system and language for reference immutability. In
OOPSLA, pages 35–49, Oct. 2004.

[4] Gilad Bracha. JSR 175: A metadata facility for the
Java programming language.
http://jcp.org/en/jsr/detail?id=175, Sep. 30,
2004.

[5] Gilad Bracha. Pluggable type systems. In OOPSLA
Workshop on Revival of Dynamic Languages, Oct.
2004.

[6] Brendon Cahoon and Kathryn S. McKinley. Data flow
analysis for software prefetching linked data structures
in Java. In PACT, pages 280–291, Sep. 2001.

[7] Patrice Chalin and Perry R. James. Non-null
references by default in Java: Alleviating the nullity
annotation burden. In ECOOP, pages 227–247, Aug.
2007.

[8] Joe Darcy. JSR 269: Pluggable annotation processing
API. http://jcp.org/en/jsr/detail?id=269,
May 17, 2006. Public review version.

[9] David Detlefs, Greg Nelson, and James B. Saxe.
Simplify: A theorem prover for program checking.
Technical Report HPL-2003-148, HP Labs, Palo Alto,
CA, July 23, 2003.

[10] Torbjörn Ekman and Görel Hedin. The JastAdd
extensible Java compiler. In OOPSLA, Oct. 2007.

[11] Torbjörn Ekman and Görel Hedin. Pluggable checking
and inferencing of non-null types for Java. Journal of
Object Technology, 2007.

[12] Arnout F. M. Engelen. Nullness analysis of Java
source code. Master’s thesis, University of Nijmegen
Dept. of Computer Science, Aug. 10 2006.

[13] Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically discovering likely
program invariants to support program evolution.
IEEE TSE, 27(2):99–123, Feb. 2001.

[14] Michael D. Ernst and Danny Coward. JSR 308:
Annotations on Java types.
http://pag.csail.mit.edu/jsr308/, Oct. 17, 2006.

[15] A. P. Ershov. On programming of arithmetic
operations. CACM, 1(8):3–6, Aug. 1958.

[16] Manuel Fähndrich and K. Rustan M. Leino. Declaring
and checking non-null types in an object-oriented
language. In OOPSLA, pages 302–312, Nov. 2003.

[17] Jean-Christophe Filliâtre and Sylvain Conchon.
Type-safe modular hash-consing. In ML, pages 12–19,
Sep. 2006.

[18] Cormac Flanagan, K. Rustan M. Leino, Mark
Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for Java. In PLDI,
pages 234–245, June 2002.

[19] Philip W. L. Fong. Pluggable verification modules: An
extensible protection mechanism for the JVM. In
OOPSLA, pages 404–418, Oct. 2004.

[20] Jeffrey S. Foster, Manuel Fähndrich, and Alexander
Aiken. A theory of type qualifiers. In PLDI, pages
192–203, June 1999.

[21] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken.
Flow-sensitive type qualifiers. In PLDI, pages 1–12,
June 2002.

[22] Erich Gamma, Richard Helm, Ralph E. Johnson, and
John Vlissides. Design Patterns. Addison-Wesley,
Reading, MA, 1995.

[23] E. Goto. Monocopy and associative algorithms in an
extended Lisp. Technical Report 74-03, Information
Science Laboratory, University of Tokyo, Tokyo,
Japan, May 1974.

[24] David Greenfieldboyce and Jeffrey S. Foster. Type
qualifier inference for Java. In OOPSLA, Oct. 2007.

[25] David Hovemeyer, Jaime Spacco, and William Pugh.
Evaluating and tuning a static analysis to find null
pointer bugs. In PASTE, pages 13–19, Sep. 2005.

[26] Telmo Luis Correa Jr., Jaime Quinonez, and
Michael D. Ernst. Tools for enforcing and inferring
reference immutability in Java. In OOPSLA
Companion, Oct. 2007.

[27] Chris Male and David J. Pearce. Non-null type
inference with type aliasing for Java.
http://www.mcs.vuw.ac.nz/~djp/files/MP07.pdf,
Aug. 20, 2007.

[28] Darko Marinov and Robert O’Callahan. Object
equality profiling. In OOPSLA, pages 313–325, Nov.
2003.

[29] Todd Millstein. Personal communication, Aug. 5, 2007.

[30] Matthew M. Papi and Michael D. Ernst. Compile-time
type-checking for custom type qualifiers in Java. In
OOPSLA Companion, Oct. 2007.

[31] Jeff H. Perkins and Michael D. Ernst. Efficient
incremental algorithms for dynamic detection of likely
invariants. In FSE, pages 23–32, Nov. 2004.

[32] Frank Pfenning. Dependent types in logic
programming. In Frank Pfenning, editor, Types in
Logic Programming, chapter 10, pages 285–311. MIT
Press, Cambridge, MA, 1992.

[33] Matthew S. Tschantz. Javari: Adding reference
immutability to Java. Technical Report
MIT-CSAIL-TR-2006-059, MIT CSAIL, Sep. 5, 2006.

[34] Matthew S. Tschantz and Michael D. Ernst. Javari:
Adding reference immutability to Java. In OOPSLA,
pages 211–230, Oct. 2005.

[35] Mandana Vaziri, Frank Tip, Stephen Fink, and Julian
Dolby. Declarative object identity using relation types.
In ECOOP, Aug. 2007.

[36] Peter von der Ahe. JSR 199: Java compiler API.
http://jcp.org/en/jsr/detail?id=199, Dec. 11,
2006.

[37] Olivier Zendra and Dominique Colnet. Towards safer
aliasing with the Eiffel language. In IWAOOS, pages
153–154, June 1999.

[38] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi,
Adam Kieżun, and Michael D. Ernst. Object and
reference immutability using Java generics. In
ESEC/FSE, Sep. 2007.

10

