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1. INTRODUCTION

The world has experienced dramatic urbanization in recent
decades. In 1950, only 30% of the world’s total population lived in
cities. However, following the baby boom after the Second World
War, dramatic global population expansion has been accompanied
by concentration of populations in cities. The latest United Nations
statistical report [1] estimates that by 2050, the global population
will surge to 9.7 billion, with 68% of the population living in urban
areas. This means the problems of traffic congestion, traffic acci-
dents, and air pollution caused by rapidly increasing numbers of
vehicles and population growth in urban areas cannot be ignored.
Although the central and local governments of many countries have
proposed various traffic management plans to alleviate traffic con-
gestion in urban areas, huge volumes of privately owned vehicles
simultaneously traversing specific popular road segments during
commute times still causes inconvenience and serious economic
losses for most societies.

In recent years, many vehicle users have come to rely on vehicle
navigation systems installed in their automobiles to recommend
less-congested routes they can follow instead of taking the short-
est paths. However, as illustrated in [2], widespread usage of vehi-
cle navigation systems often leads to network state oscillations and
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Traffic congestion in urban areas has become a critical problem that municipal governments cannot overlook. Meanwhile, mixed
traffic systems containing both autonomous and human-driven electric vehicles ramp up the challenge for traffic management
in urban areas. Although numerous researchers have proposed traffic control heuristics to alleviate traffic congestion problems
in the recent literature, scant research has addressed the joint problems of route and charging strategies for electric vehicles along
with urban traffic congestion prevention. Accordingly, this work tackles the complex task of traffic management in urban areas
during peak periods by using practical congestion prevention strategies that consider the characteristics of mixed traffic flows
and the charging demands of electric vehicle users. Notably, we apply support vector regressions to compute the charging time
at each charging point and the traverse time of an electric vehicle at each road segment/intersection, based on historical traffic
data. The simulation results reveal that the proposed algorithms are feasible because they can avoid possible occurrences of traffic
congestion during rush hours and provide the routes and charging options that are chosen by electric vehicle users.
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makes traffic congestion worse. Meanwhile, the congestion prob-
lem is exacerbated further by the unpredictability of driving behav-
ior and fluctuating traffic conditions during commute times. In the
recent literature, although researchers have presented route reserva-
tion mechanisms to prevent road traffic congestion in urban areas
[3], vehicle reservation cancellations were not considered in those
studies. In addition, early and late vehicle arrivals at the road seg-
ments caused by prediction errors also tended to weaken the con-
gestion control effect.

Besides the traffic congestion problem, owing to concern over
greenhouse gas emissions, many countries have announced and
promoted policies to ban the sale of fossil fuel-powered vehicles,
and plan to prohibit the sale of some or all such vehicles in the next
few decades. Electric vehicles (EVs) that use green energy to reduce
carbon emissions are currently recognized as the best alternative to
traditional automobiles in the future. However, an important issue
to be solved in the future development of EVs is the convenience of
EV charging. Most EVs are currently charged at charging stations,
homes or workplaces. Due to the limited capacity of EV batteries,
if their storage capacity is insufficient, EVs need to find a charging
station on the route for replenishment.

Driven by the upsurge in the popularity of EVs, self-driving tech-
nology has received more attention than ever. Although the two
are completely different technologies that do not need to be com-
bined, and both can operate independently, the major reason
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why automakers have accelerated their investment in self-driving
technology research and development is that Tesla has combined
EVs with self-driving technology, and has established an industry
benchmark, to some extent. It will be difficult for other automakers
to compete with Tesla if their EV products are not equipped with
self-driving technology to improve the safety and comfort of EVs.

In the literature, numerous studies have aimed at taking action
at congested spots to mitigate traffic jams. Researchers also have
been paying attention to traffic management of mixed traffic sys-
tems containing both connected and automated vehicles (CAVs)
and human-driven vehicles (HDVs). To the best of our knowledge,
scant research work in the literature has tackled the joint problem of
traffic congestion prevention, mixed traffic flow management, and
route/charging planning for EVs. Accordingly, this work presents
a novel traffic management scheme that integrates route/charging
planning for EVs and urban traffic congestion control. A mixed
traffic system that includes both CAVs and HDVs is considered in
this work. Notably, to reduce the number of vehicles driving on
the roads effectively, only CAV fleet vehicles are allowed to pro-
vide ride-sharing mobility-on-demand (MoD) services during peak
periods, whereas traditional vehicle drivers can own either CAV's or
HDVs.

An adaptive traffic control mechanism is applied to each express-
way or to portions of busy local roads during peak periods. Here
we adopt prerouting and rerouting reservation schemes to control
traffic flow during rush hours. An EV is required to make a prerout-
ing reservation before its departure. In the meantime, portions of
traffic volumes on each road segments under traffic control during
peak periods are reserved for the EVs that have already departed
from their origins. In the case where some EVs do not arrive at cer-
tain road segments on time after making a reservation, this kind of
reassignment mechanism can boost the traffic volumes on under-
utilized road segments during peak hours. In addition, no traf-
fic control is applied to public transportation, so as to provide an
incentive for the public to take public transportation to help medi-
ate urban traffic congestion.

If an EV needs to recharge on the way to its destination due to a
battery electricity shortage, three charging options, including plug-
in charging stations [4], battery-swapping services [5], and on-road
wireless charging [6], can be chosen according to a specific charg-
ing preference set by an EV driver. In contrast, the most convenient
charging option is selected for the CAV fleet vehicles that are offer-
ing ridesharing MoD services before recharging. A series of simula-
tions were conducted to examine the effectiveness of the proposed
work. The simulation results reveal that the proposed mechanism
can improve urban traffic flows during peak hours and meet the
demands of EV users effectively.

The remainder of this paper is organized as follows. Section 2 gives
a detailed description of the proposed mechanism. The simulation
results and the conclusions are given in Sections 3 and 4, respec-
tively.

2. RELATED WORK

In this section, we discuss on related work of this paper in three
aspects, including the recent research progress about urban

traffic control, mixed traffic flow management, and the
route/charging planning of EVs.

In the recent literature, numerous studies are being conducted to
develop solutions for improving the performance of urban traffic
networks. To name a few, Artuiledo et al. proposed an algorithm
for cooperative control of urban subsystems to provide a solution
for mobility problems in urban areas [7]. The interconnected traffic
lights controller network adapts traffic lights cycles, based on traf-
fic and air pollution sensory information, in order to improve the
performance of urban traffic networks. Godoy et al. conducted a
driverless experiment consisted of a 100-km route around Madrid
in Spain, including both urban and motorway environments [8].
A leading vehicle shares information about its route in real time.
A trailing vehicle is able to follow the leader’s trajectory using a
combination of fuzzy logic controllers. Castafo et al. presented a
self-tuning method to maximize the reliability of LiDAR sensors
network for obstacle detection in the Internet of Things mobility
scenarios [9]. The experimental results demonstrated that the self-
tuning method is an appropriate strategy to increase the reliabil-
ity of the sensor network while minimizing detection thresholds.
Chu et al. proposed an advantage actor critic based multi-agent
reinforcement learning algorithm for scalable adaptive traffic signal
control in urban traffic networks [10]. A spatial discount factor was
introduced to reduce the learning difficulty. Yao et al. proposed a
dynamic predictive control framework for traffic signal controlin a
cross-sectional vehicle infrastructure integration environment [11].
Li et al. proposed a multi-agent reinforcement learning method
to achieve optimal traffic control by enhancing the cooperation
between traffic signals [12]. By introducing the knowledge-sharing
enabled communication protocol, each agent can access to the col-
lective representation of the traffic environment collected by all
agents. Boukerche et al. employed reinforcement learning agents to
cooperatively control the traffic signals by improving the reward
and state representation based on the state-of-the-art max-pressure
control theory [13]. A traffic state prediction method was pro-
posed to address the data transmission delay issue by decreasing
the discrepancy between the real-time and delayed traffic condi-
tions. Mou developed a signal timing control model to optimize
road capacity, delay time and the number of stops at the intersec-
tions, based on total signal cycle time, green light time and the max-
imum number of vehicles in each direction of intersection [14]. Liu
et al. proposed a traffic flow control model to deal with the uncer-
tainties in the turning ratio by using distributionally robust chance
constraints [15]. The model allows one to compute the optimal
control action that maximizes some objective, under all possible
distributions of network parameters. Li et al. proposed a data aug-
mented deep behavioral cloning method to imitate the problem-
solving skills of traffic engineers [16]. Their method was under a
conceptual parallel learning framework that incorporates machine
learning techniques for solving decision-making problems in com-
plex systems. You et al. employed a stochastic Markov decision pro-
cess to model the stochastic behaviors of the vehicles in highway
traffic [17]. The state of their model is dynamically modified based
on the complicated traffic information.

In recent years, researchers started to focus on traffic management
of mixed traffic systems containing both CAVs and HDVs. To name
a few, Du et al. proposed a coupled vehicle-signal control method
to optimize the traffic signal timing and driving trajectories of
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CAVs [18]. The signal timing is continuously optimized to mini-
mize the total delay at the intersection. CAVs generate eco-driving
trajectories using the received signal timing information and the
planned arrival time to reduce fuel consumption. Feng et al. pro-
posed a robust platoon control framework for mixed traffic flow
based on tube model predictive control (MPC) [19]. The prediction
uncertainty is dynamically mitigated by the feedback control and
restricted inside a set with a high probability. Bahrami and Roorda
formulated the multi-class traffic assignment problem as a nonlin-
ear complementarity problem to find optimal traffic management
policies [20]. Zheng et al. proposed a stochastic model for mixed
traffic flow [21]. They used the proposed model to investigate the
interaction between CAVs and HDVs. Li et al. proposed a theoret-
ical model to demonstrate that road capacity can be increased with
proper Right-of-Way reallocation for the mixed flow [22]. Kamal
et al. presented an adaptive traffic signal control scheme for mixed
traffic scenario at a road intersection [23]. The traffic signals are
optimized to minimize the total crossing time of all vehicles. Qi et
al. analyzed the mixed traffic dynamics of CAVs and HDVs, and
derived the arrival-departure curves relationship using a combina-
tion of Newell car-following and Akgelik acceleration model [24].
Yang et al. proposed a hierarchical and cooperative driving frame-
work for mixed traffic flow on urban arterials [25]. The proposed
framework combined centralized and distributed control concepts,
where the infrastructure generates optimal signal timing plans and
provided high-level trajectory guidance to the CAV's while detailed
trajectories are generated by each vehicle. Sharma et al. utilized
intelligent driver model (IDM) with estimation errors to model
HDVs since it incorporates human factors such as estimation errors
[26]. Connected vehicle driving strategy integrated with IDM was
utilized to model CAV's because it incorporates driver compliance,
which is a critical human factor for the success of CAVs. Guo and
Jia proposed an inverse MPC-based approach to model and pre-
dict the longitudinal behaviors of HDV's in connected mixed traffic
environments [27]. Its predictions can be utilized by the MPC of
following CAVs for improved control accuracy, riding comfort, and
energy efficiency. Wu et al. developed a distributed control frame-
work for the cooperative control of mixed urban and freeway traffic
networks [28]. A MPC strategy was applied to optimize the traffic
signals in the urban network and the variable speed limits in the
freeway network. Ngoduy et al. proposed a dynamic system opti-
mum formulation for the multi-class dynamic traffic assignment
(DTA) problem of fixed traffic flow [29]. The proposed method
used the concept of link based approach to develop a multi-class
DTA model that equally distributes the total physical queues over
the links while considering explicitly the variations in capacity and
backward wave speeds due to class proportions. Wang et al. pro-
posed a multi-class traffic assignment problem with elastic demand
to estimate the impacts of link tolls on equilibrium flows [30]. It not
only enhances behavioral realism for modeling the route choices of
HDV and CAV travelers by considering their knowledge level of
traffic conditions but also captures the elasticity of both HDV and
CAV demand in response to link toll rates.

In addition to the urban traffic management problem, the
route/charging planning of EV's has attracted researchers’ attention
in recent years due to deteriorated urban air quality. To name a
few, Zhang et al. proposed a charging guidance strategy for urgent

charging EVs to fast charging stations based on the virtual ser-
vice range [31]. Ammous et al. proposed formulated a joint prob-
lem of minimizing the average trip time for an EV and the average
cost of charging as a dual-objective convex optimization problem
[32]. Moradipari and Alizadeh designed optimal pricing and rout-
ing schemes for the setting that users choose their priority level and
energy request amount from the differentiated service offered by
EV public charging stations owned by a charging network operator
[33]. An EV routing problem with time windows was investigated
in [34] through integrating decisions on two charging options of
partial recharging and battery swapping. A mixed integer program-
ing model was developed to solve the optimization problem. Qian
et al. proposed a deep reinforcement learning-based EV charging
navigation that minimizes the total travel time and the charging
cost at charging stations [35]. They formulated EV charging navi-
gation as a Markov Decision Process with an unknown transition
probability. Chen et al. proposed a bi-level mathematical model to
derive optimal design that minimize the joint cost of facility con-
structions and EV drivers’ travel and waiting time over the net-
work [36]. Basso et al. proposed a probabilistic energy consumption
model with machine learning that can estimate the expected energy
and variance for the road links, paths, and routes [37]. A two-stage
routing model that incorporates energy prediction and plans par-
tial recharging using chance constraints was presented to provide
reliable routing of EVs. Chakraborty et al. proposed a heuristic to
ensure that the EVs can always route through a path that mini-
mizes the energy consumption and the total time to travel [38]. A
multi-objective optimization problem considering real-world spec-
ifications and constraints was formulated and a graph-based multi-
objective heuristic algorithm was proposed to obtain the desired
solutions quickly. Bac and Erdem proposed a framework of EV
routing problem with time windows [39]. Partial recharging was
considered in the framework with the multiple depots and hetero-
geneous fleet structure under real-life constraints such as multiple
customer visits.

3. URBAN TRAFFIC CONTROL
MECHANISM FOR MIXED TRAFFIC FLOW

In this work, all road segments in the whole metropolitan area are
managed by an urban traffic control center. The traffic flow at each
road segment under traffic control is divided into two categories:
one is for EVs reserving their routes before departure and the other
is for the EV's that are on the way to their destination. As shown in
the middle-left of Figure 1, a prerouting module is used by an EV
user to select and reserve the most appropriate candidate route for
an EV from its origin to the destination. This is done before depar-
ture based on the historical traffic data. In the case of a possible
electricity shortage of the EV battery during the trip, this module
determines the route and charging point based on the preset prior-
ity. Notably, support vector regressions (SVRs) are applied to com-
pute the charging time at each charging point, and the traverse time
of an EV at each road segment/intersection, based on the histori-
cal traffic data. The SVR method was chosen because it has been
proven to predict traffic flows with a high degree of accuracy and
to perform traffic data analysis well in the literature [40].
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Once the EV prerouting module computes the most appropriate
route from the origin to the destination that fits the preset prefer-
ence of an EV, the module then sends reservation requests for the
road segments on the route to the urban traffic control center. Since
deviations between the prediction computed by SVRs and the real-
time traffic and charging conditions might be significant enough to
affect the real-time urban traffic condition, especially during rush
hours, a real-time congestion control module, as shown on the right
of Figure 1, is adopted by the urban traffic control center to deal
with the volatile traffic conditions. Road segment reservation and
cancellation requests from EVs are updated at the urban traffic con-
trol center during a fixed short interval, which can be dynamically
adjusted by the urban traffic management control center during
peak periods.

At the end of the preset short interval, the urban traffic con-
trol center sorts the road segment reservation request queues and
determines whether an EV is allowed to drive on designated road
segments during rush hours. In case of no route being available due
to traffic control policies, the EVs that are declined permission to
drive on some popular routes then turn to finding another less-
saturated route to their destination. Notably, the ratios of approvals
for the road segment reservations of EVs that carry one, two, or
more passengers can be set up dynamically for different express-
ways and local roads during peak periods. In addition, the local
roads that are less saturated are not subject to traffic control in order
that the entire urban area can be connected, and late-booking EVs
that are denied permission to drive on popular expressways and
local roads are still capable of reaching their destinations during
peak periods.

In addition to the prerouting module mentioned above, this work
allows a moving EV to employ the real-time rerouting module (as
shown in the bottom-left of Figure 1) to find a better route that fits
the demand of the EV. Each moving EV regularly checks whether
the arrival time at each road intersection on the route is earlier than
or delayed from the originally estimated time. If so, the reroute
process will be activated to find a less-congested route to the des-
tination, as this work reserves a proportion of traffic volumes for
real-time driving EVs. The ratio of the prerouting EVs to the real-
time rerouting ones at a road segment can be adjusted for differ-
ent expressways and local roads. Meanwhile, this work only allows

AMoD matching service

CAV fleet
Real time congestion control
Pre-routing >
Urban traffic control center
Cellphone/Computer

Real-time rerouting

On-board unit

Figure1  Architecture of urban traffic control mechanism for

mixed traffic flow.

CAUVs to drive on expressways during peak hours to ensure smooth
traffic flow on expressways in the urban area.

As shown in the top-left of Figure 1, in the case of there being no
satisfactory route due to traffic congestion in the urban area, the EV
users will request rideshare service from an autonomous mobility-
on-demand (AMoD) fleet. If no rideshare service suits a passenger’s
need, scheduled information about public transportation is sug-
gested as an alternative means of transportation.

A brief flow chart of the proposed urban traffic control mechanism
for mixed traffic flow is illustrated in Figure 2. The detailed descrip-
tions of the above-mentioned modules are given below.

3.1. Prerouting of an EV

This module is used to set up the route of an EV before its depar-
ture. The updated traffic information can be downloaded to any
cellphone or computer that is running the module. The road map
of the urban area is expressed as a directed graph. Each node of the
directed graph stands for the position of a road intersection. During
the route computation, the EV checks whether the capacity of its
battery, denoted as the state of charge (SOC), is sufficient to arrive at
the destination without depleting the electricity of the battery. The
battery charging option that suits the need of the EV is arranged in
this module if recharging is required before the EV reaches the des-
tination.

This work assumes three charging options, including plug-in charg-
ing, battery-swapping, or on-roads wireless charging, which can be
chosen to fit the need of an EV. The option of on-road wireless
charging would be the most popular during rush periods, especially
for the AMoD fleets. However, while a CAV in an AMoD fleet is
off duty, a plug-in charging option might suit its need. This latter
option also fits the preference of an EV owner while she/he stays at
work/home for some period of time. Before the prerouting is initi-
ated, the EV will request the updated traffic and charging informa-
tion from the urban traffic control center. This work also assumes
real-time electricity charging prices are regularly updated by the
charging stations/services.

Accordingly, a route that suits the demand of an EV can be obtained
by
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where the definitions of the parameters used in the above equations
are given below:

(i) Three parameters used in Eq. (1) from left to right stand
for the total route length, the total traveling time, and the
charging costs, respectively. Three weights @,, ®,, and w; are
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used to indicate the significance of the each minimization
objective. wj is set to zero if battery electricity is sufficient for
the EV to arrive at its destination.

¢; and ¢, represent the origin and the destination, respec-
tively. r/ denotes the total route distance, and s/, . ~denotes
the road segment length connecting ¢; and c;, ;. rt, is the
time that the EV arrives at the road intersection ;. This mod-
ule assumes there are g pickup/drop-off points on the route,
and pd, represents the index of the road intersection where
the EV stops at the pickup/drop-off points. Here pd,, and pd,
denote the origin and the destination, respectively.

SD, . (1) stands for the travel time of the vehicle traversing
the road segment that connects ¢; and ¢, at time ¢, whereas
ID, . (1) represents the traverse time of the EV that goes
through the road intersection c; before entering the road seg-
ment that connects ¢; and c;,, at time t. Here we assume that
ID, . (1) and SD_ . () are predicted by using SVRs, and
their values are kept at the database of the urban traffic con-

trol center.

SOC™* denotes the full battery capacity, SoC_ represents the
SOC of the battery when the EV reaches c;, whereas SOC™"
is the minimal capacity of the battery. wes, .~ denotes the
wireless charging service on the road segment between c;
and ¢;;, whereas bss. , and pes,, p, represent the battery-
swapping service and the plug-in charging station that are
close to or located at road intersection c;, respectively. d)PCS/;i,pj ,

wes > and , are binary decision variables that indi-
ci-Pk

CirCitl

cate whether pcs »and bss_ ,, are chosen for bat-

Cjs,

Pj’ WESe i1

tery charging for the EV, respectively.

RCP, (1) represents the real-time charging electricity price
at charging point g at time ¢. CPPCSK,,W and Pucs,.,.,, stand for

the charging electricity per second for the on-road wireless
charging, wes, ., and the plug-in charging station, pcs, , ,
ioli. iFj

respectively. Ct;ﬁ?ip} and Clyes, stand for the upper limit of

Pj

charging time and the actual charging time of the EV at the
plug-in charging station peseps respectively. Notably, this
work assumes the EV is kept charged with an on-road wire-
less charging service while it moves along the whole road
segment. Thus, the traverse time SD_ . (f) is equal to
the charging time of an on-road wireless charging service.
BSDbsquPk () stands for the battery-swapping time of bss ,

at time t. Here, it should be noted that BSD;, , (+) is pre-
ci-pk

dicted by using SVRs, and the values of BSD, , ) along
<i-Pk

with ct%* are kept at the database of the urban traffic con-
i pj

trol center. Meanwhile, all charging points continually report
the real-time charging prices to the urban traffic control cen-
ter during a preset fixed short interval.

K(rtci) denotes a binary flag that indicates whether a HDV
is allowed to drive on an expressway during peak periods. In
the case where the EV is a HDV, and HDV:s are not allowed
to drive on the road segment during peak periods, K(rtcx_) is
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set to zero when rf, falls within a peak period. pﬁtcwnp ®

and p‘:’ﬁ?fnp (t) denote the updated traffic density of the road
segment that connects c; and ¢;;,, for the permitted prerout-
ing traffic flow traffic flow of EVs that carry np passengers,
and the threshold of the traffic density for the permitted pre-
routing traffic flow of EV's that carry np passengers, at time t,
respectively. ap is the electricity consumption of the EV bat-
tery per kilometer. Notably, p!""™"  (¢) is set to infinity if the
road segment between ¢; and c;,, is free from traffic control
at time £.

The three optimization objectives to be achieved in Eq. (1), from left
to right, stand for the total route length, the total traveling time, and
the charging cost, respectively. Each coefficient of the three opti-
mization objectives presents the weight of the corresponding pref-
erence set by the EV user. As shown in the top-center of Figure 2,
we first employ the well-known k-shortest path algorithm [41] to
generate at most k- shortest candidate routes in real time. Then the
candidate routes that exceed the preset deadline to reach the des-
tination are removed from the list in accordance with the list of
constraints given in Egs. (2-9). Next, we derive the value inside
the Min (-) operator in Eq. (1) for each qualified candidate route
by computing the inner product of the three weights and the cor-
responding objectives. The candidate routes are then sorted in
ascending order, based on the computation result obtained above.

After the most appropriate route is derived from the abovemen-
tioned equations, a route reservation request is submitted to the
urban traffic control center. The EV confirms with the urban traffic
control center whether the road segment reservation requests are all
approved. In the case where any of the road segments that the EV
attempts to reserve is declined, the EV rules out all at-capacity road
segments and looks for an alternative route that is less congested.

The prerouting process iterates until the route is found. In the case
where the travel time is much longer than expected due to traffic
congestion, the alternative of a rideshare or public transport is sug-
gested to the EV user.

3.2. Real-Time Rerouting of an EV

As mentioned above, some EVs might be absent from the desig-
nated road intersections at the expected arrival times after mak-
ing route reservations, or their arrival times might be earlier than
or delayed from the originally estimated times due to fluctuating
traffic conditions. Accordingly, this module is executed at an EV’s
on-board unit (OBU) at every fixed interval, set as five minutes or
fewer, to deal with the abovementioned unexpected situations after
an EV starts moving. As shown in the bottom of Figure 2, this mod-
ule first receives updated traffic information from the urban traf-
tic control center and checks whether the time for an EV arriving
at each road intersection on the route is shifted from an off-peak
period to a peak period:

rt =rt (10)

[ €
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rt;_+1 = rtix_ +ID, . (rt;) + (1 - q)l,csqvpj) . (1 - q;bssq_p)
SD, . <rt;> e, - [ctpwcﬁpj
+8D,,, (£, ) + 5D, (rt. +5D,, () )] (11)
Wi, [BSDy, (7)) + 5D, (7))

, .
+5D,,.., (7, +5D,,, (rt’))] J1<i<v

rr,max

ifpzl’chnp (”tc,) <Pec.mp (rtcx_) and

1,
— r7,max
M e = Pecrrrnp (rti{) <P (rt;) (12)
0, Otherwise
v—1
ri = Z cme . (13)
i=1

where ¢, and ¢, denote the indices of the approaching road inter-
section and the destination, respectively. rt/ represents the updated
arrival timestamp at the road intersection c:-, v is the updated index
node for the destination. pzl_’,cwnp (t) and PZ,’ZTnp (t) stand for the
updated traffic density for the admitted rerouting traftic flow of EV's
that carry np passengers and the permitted traffic density of the
admitted rerouting traffic flow of EVs that carry np passengers, set
for the road segment connecting ¢; and ¢, at time t, respectively.

Eq. (12) examines whether the estimated arrival time at ¢; is shifted
from an off-peak period to a peak period. This situation must be
dealt with to prevent any possible traffic congestion from increasing
traffic volumes during rush hours. As a result, this module executes
Eqgs. (1-9) again to look for an alternative route if ri > 0. Notably,
at this moment, pﬁtcminp (rtci) and pf:’ct'ffnp (rtci) in Eq. (4) should

7, max

be replaced by the corresponding p;”clﬂ’n ) <rt£ , ) andp. 7" <rt£' ),

respectively.

3.3. Real-Time Congestion Control of the
Urban Traffic Control Center

Within a fixed short interval, which can be dynamically tuned
during peak periods and off-peak periods, the urban traffic con-
trol center keeps track of prerouting and rerouting road segment
reservation and cancellation requests. The prerouting and rerout-
ing reservation queues for each road segment are then resorted,
in ascending order, based on the updated arrival times of EVs at
the end of each fixed interval. The attributes of the two reserva-
tion queues for each road segment under traffic control include
the arrival timestamp of each incoming EV, the number of passen-
gers carried by the EV, the time that the EV issued the reservation
request, the traffic density at the arrival time of the EV, and the
approval status of the EV.

As shown in the right of Figure 2, after the two queues are resorted,
this module initializes the variables needed during the computation
of the traffic density of the road segment between [ and m:

=1 (14)

T, = PRQy,, [1].arr (15)
Mls,m =1 (16)
o.n = RRQy,, [1] .arr (17)

where PRQ,,, and RRQ,, stand for the prerouting and rerouting
reservation requests, sorted by the arrival times of the EVs over the
road segment connecting [ and m, respectively. 7, and o, stand
for the arrival times of the EVs in the sorted prerouting and rerout-
ing reservation queues for the road segment connecting 1 and m,
respectively. Here PRQ,, [-] .arr and RRQy,, [] .arr represent the
attribute of each EV’s arrival time in the prerouting and rerouting
queues, respectively. U, and Hy,,, Tepresent the starting indices of
the sorted prerouting and rerouting reservation queues for the road
segment connecting / and m at time 7;,, and oy, respectively.

As mentioned earlier, the granting of a road segment reservation
for an EV depends upon the number of passengers in the EV. The
approval ratios for the road segment reservations of EVs with one,
two, or more passengers are adjusted dynamically during peak peri-
ods. Based on the arrival times of EVs, the traffic densities of pre-
routing and rerouting traffic flows with different numbers of EV
passengers can be computed by

”Zm = uim (18)
Hi = M, (19)

)\'{:n,l (Tl,m) = 7‘117,:»1,2 (Tl,m) = }‘{:nj (Tl,m) =0 (20)
}‘lr,rm,l (O-l,m) = }‘Zr,rm,z (Gl,m) = }\'Zrmj (O-Lrn) =0 @1

arg (PRQl,m [ulm] .arr <, +1<PRQ,, [u;m + 1] .arr)

Wm

(22)

o pr r,max
= mn (pl,m,PRQl.m [uzm].np (Tl,m) +1 pim,PRQ,,m [”Zm] np (Tl,m))

(23)

AT (Tim) =N"

LnPRQ [, 17 Lm.PRQy, [uf, | np () +1 (24)

c
ul,m

=u +1 (25)
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arg (RRQLm [ﬂfm] .arr <o), +1 <RRQ,,, [ylem + 1] .arr)

e
Him

(26)

rr
pl,m,RRQLm [Mf,m] p (Ul,m )

= i " rr,max
= min <pl,m,RRQLm [”Zm]ﬂp (o1m) + 1, pl’m,RRQLm [”Zm]»np (Uz,m))

(27)

AT (Ul,m) =\

1,m,RRQ,,, [”Zm]'"l’ LmRRQ,, [”Zm]"’P (Gz,m) +1 (28)

Mim = /,tlfm +1 (29)

where 1, and u] = represent the current index and the last index

of the stib—queue of PRQ,,, with the arrival times of EVs at the
road segment connecting [ and m falling within the period of
[Tim» Tim + 1), Whereas pj and pj = respectively stand for the
current index and the last index of the sub-queue of RRQ,,,
with the arrival times of EVs falling within [6),.0,,, + 1).
Meanwhile, }»{:mp (,m) and }»lrpr
ber of the EVs that carry np passengers within the intervals
[T\ T + 1 and [o),,0;,, + 1), respectively. The attributes
PRQ,,, [-].np and RRQ,,, [-].np denote the number of passen-
gers carried by the EV in PRQ;, and RRQ,, respectively.

r rr
L RQ,, [, | 0 (Tim) and pl,m’RRQLm[/‘Zm]'"p (61,,) stand for the

current traffic densities of the traffic flows of the EVs that carry

(6),,) stand for the num-

PRQ,,, [u;m] .np and RRQ,, [yl‘m] .np passengers within the

period [t,,,,T;,, + 1) and [o,,,0,,, + 1), respectively; whereas

prmax
1m,PRQy,, [“im]»np (Tz,m) and p

mitted traffic densities set for the prerouting and rerouting requests
with the traffic flow of the corresponding number of passengers
within [z, 7, + 1) and [0}, 6/, + 1), respectively.

rr,max

1mRRQ,,, [,r’ ].np

Lm

o denote the per-
( l,m) p

Eqgs. (22-25) are iterated until ufm > uzm, and Egs. (26-29) are
iterated until ,uim > ﬂim. At this moment, the traffic densities
for the pre-routing and rerouting requests with the traffic flow of
the corresponding number of passengers within [z, ,,,7;,, + 1) and

[6),> 01 + 1) are derived.
Next, this module determines whether the EVs in the two queues
are granted permission to enter the road segment connecting / and

:,+1)and
m

mwithin [z, ., 7, +1)and [0}, 6/, +1). The <ufm —u
( Wi = Hy,, T 1) elements at the prerouting and rerouting queues

with the traffic flow of the corresponding number of passengers
within [t;,,,7;,, + 1) and [0},,,0,, + 1) are resorted based on
the order in which the EVs issued the prerouting and rerouting
requests, respectively.

The settings of traffic density approval statuses for the
(”zem —u,, + 1) prerouting requests and (,ulem — M, T 1> rerout-
ing requests during the interval [t . 7;,, + 1) and [5} ., 6;,,, + 1)

can be expressed by

PRQ,,, [APR}; [¢]] . as

{ 1, if1 <¢ < pf (Tim) (30)

Lm,PRQ,,, [uzm] np
0, otherwise

PRQ,,, [ARR;;"I [g’]] td

(31)
— .
= pl,m,PRQ,_m [u,fm].np (Tz,m) , 158 < }\[,m,PRQLm [”Zm]ﬂp (Tz,m)
RRQ,,, [ARRZ;-;‘ [g]] .as
M rr,max 32
s (o1m) (32)
0, otherwise
RRQ,,, [ARR;’;"* [gf]] td
= rr , 1 S ! S }\‘pT
Plnrra, [1,.] 70 (%) : L. RRQy, 1, | np (01)
(33)

where APR, " and ARR:}",’" denote the sorted prerouting and rerout-
ing sub-queues with np passengers based on the order in which
the EVs issued the requests during [z, ,,, T, + 1) and [o,,, 5/, +
1), respectively. Notably, each record of APR;’;" and the record
of ARRZ;',"‘ are mapped into the original indices of the request-
ing EVs in PRQ,,, and RRQ,,,, respectively. The attributes of
PRQ,,, [-].as and PRQ,,, [‘].td represent the approval status of
the requesting EV and the traffic density of the traffic flow with
the corresponding number of passengers carried by the EV, respec-
tively; whereas RRQ,, [-]. as and RRQ,,, [-]. td represent the cor-
responding attributes in the rerouting queue. Here, PRQ,, [-] . as is
set to one if the prerouting reservation request of the corresponding
EV is approved. Otherwise, it is set to zero. In other words, no more
prerouting reservation requests for an EV with np passengers will
be granted if the traffic density of the traffic flows with the corre-
sponding number of passengers carried by the EV in the prerouting
reservation reaches an upper bound. RRQ;, [-]. td is treated like-
wise.

Next, the variables ufm, w

1w Tumo and o, are updated as follows:

S — 1€ —
ul’m = ul’m, Tl,m = Tl,m +1 (34)

H} = M s Ot = O + 1 (35)

Eqs. (18-35) are iterated until the traffic density is set for the road
segment connecting [ and m, and approval statuses are marked for
the EVs in the prerouting and rerouting reservation queues.
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3.4. AMoD Matching Service

As mentioned before, this work prohibits late-booking EVs from
traversing through a saturated road segment during peak periods.
Meanwhile, HDV's are disallowed to drive on expressways during
peak periods to keep traffic flows of expressways under control.
Accordingly, this work allows an EV owner to request a rideshare
service from a designated AMoD fleet if the EV owner is pressed
for time, and a CAV that matches the requirements of the EV owner
will pick up the EV owner at the designated time and location.

We assume that the routes assigned for a CAV in the AMoD fleet
indexed by a is expressed by a list as follows:

g = { | (o ) (ot ) oo (ot )]
[( CRERL ) <n22’”g,3>’ ’<ng,d2—1’ng,d2>]""’
[t ) () oo (oot )]
[( i :+12) <”?+1,2’”?+1,3>’ ’<”?+1,d,+1—1’n?+1,d,+1>]’
ACema) (o) (o) }

(36)

where the items from left to right in the list denote the follow-
ing: &* indicates the sequence of the passenger pickups for a CAV
indexed by a on the timeline. n“) denotes the jth road intersection
of the ith route assigned to CAV o, and f , stands for the d;th road
intersection, which is the last stop of the 1th route. p is the number of
the rideshare routes assigned to CAV a. Accordingly, no rideshare
service is assigned to CAV a within the interval between the CAV’s
arrival time at ne 4 and the CAV’s departure time at n, | |

As shown in the top-left of Figure 2, once a rideshare request is
received, this module first looks for an existing rideshare route that
suits the need of the requester:

a;:g,Min {X1 . [ (x40 p) = (xng],yn?j)
( e’ye) ( ,Jﬂ’yn;{ﬁe) ] +%x (I’tn

‘”1,)}

(37)
subject to
1<i<my, 1<e<d —j (38)
(xs’ys) - (xn“.’yn".> <A (39)
ij ij
(xe’ye) - (xn‘,’ s Ve >‘ <A (40)
ij+e ijt+e
pt o« < 1t (41)

’J

Phg (rtn;;) < pnii™ (42)

where x, and y, represent the weights of the two minimization
objectives set by the rideshare requester, and ¢ is a positive inte-
ger. (xs, yS) and (xe, ¥.) stand for the coordinates of the location
of the requester’s origin and the destination, respectively; whereas

(xngj, Vs, ) and < oI ) denote the coordinates of the pickup

point and drop-off point, respectively. A represents the maximal
distance that is tolerable by the rideshare requester to move forward
to the pickup/drop-off point. rt,« and Pl denote the time for CAV
a arriving at 17 and the time that the rideshare requester arrives
at nw, respectlvely rn, stands for the number of the rideshare
routes assigned to CAV a. pn, () and pn/'®* denote the number of
rideshare passengers at time rt,.« and the seating capacity of CAV a,
respectively. ’

The first minimization objective in Eq. (37) denotes the distance
that the rideshare requester moves when departing from the origin
to the pickup point plus the time that the requester departs from
the drop-off point to the destination. The second one represents
the time required by CAV a to drive from the pickup point to the
drop-oft point. The weight of each optimization objective stands for
the preference set by the rideshare passenger. This work first goes
through the list of the rideshare routes maintained by the company
operating the AMoD fleet, &%, and selects the qualified candidate
routes in accordance with the list of constraints given in Egs. (38-
42). Next, we derive the value inside the Min (-) operator in Eq. (37)
for each qualified candidate route by computing the inner product
of the two weights and the corresponding objectives. The candidate
routes are then sorted in ascending order, based on the computa-
tion result obtained above. Accordingly, the rideshare route infor-
mation for the qualified route with the smallest index in the sorted
list will be delivered to the rideshare requester for reference.

If a route that fits the need of the requester is found, the information
for the selected route will be sent to the rideshare requester for con-
firmation. In the case where no satisfactory route is available, this
module assigns a CAV that is not on duty at the designated pickup
time by

argMin { B, -

a,i

X —| X
( S’ys) ( n:diﬂ’dl ’yn?dﬁrﬂ‘il )‘

+ (x@’ye) - (xn?fdﬁpdz’yn:dﬁpdz) ] (43)

+ BZ ' <rtn?di+1’dz _Ptn:41+l>dl > }

subject to

rl* = Z ( Z Sl > (44)
xd+m xd,+m+1
0<r<3 \pd,<m<pd,,,

pdy =0 (45)

o L,
ni,d,v+pd3 =g (46)
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« X ptoa

f't Mg i pt idj+pdy (47)

rt o t o (48)
ui +pd3 x+1 1

rt

n(rfd,'+m+l
— T’t N ID o ne (T’t o >
Midjtm + Midyemdiem1 idj+m (b‘DCS r‘d +mPi
.SD (rt )
( \Ijbss ?d +mPi > nﬁd1+m’ngdi+m+l ngdﬁ'"‘ * q)pcsﬂzdﬁm'l’j
ot SD, (rt . ) SD
PCSn?,ldi‘f P + demPi idj+m + Pi My
(I’t - + D, M gem P <rt rd+M))] +Wbss"“ Tk
"idj+m
BSD (e, )+ 5D ()
bss, ?d +mPk M diem + Id b iy
SD, . (rt« 8D, (rt“ ))]
+ Ly idrm + M dyem Pk idjrm ’
1<i<rn, 0<m<pdy;—1
(49)
o pr,max
rta < 1t , 1<np<3
pn:d,+m'”ﬁd,+m+1*"l7 < ”i,d,‘+m> pn;x,di-#m’nfd;-#m-#l’ﬂp ( n‘*de"") =S
(50)
SOC o
xd+m+1
= 80Cy  +n*- "¢ “ o
idj+m g (I)pcs,,gdﬁm Pj ppcs":d,m‘pf pes ?dﬁr"‘ K !
ewcs o Cp WCS o o SD “ (rtci)

1d +m’ 1d+m+1

1d,+m xd +m+1 :dﬁrm V’xd +m+1

. X,max __ _
+Wbss :xd — <SOO SOC - dj+m ) ap rd +m’ :d +ml
1<i<rng, 0<m<pd;,—1
(51)
max p—
0<Lc¢ tpcs ?d ot < Ctpcs :’dﬁml’), lfq)pcs o I =1 (52)
SOC*™" < §oCe < SOC™™*, 1 <i<rng, 0<m<pdy—1

xd+m

(53)

Z <¢pcsn:‘xd+mﬂ + ewcs «
1<i<rn, '
0<m<pd;—1
if SOC*"¢ — ap®

+Wb55u > 21

idj+m’ nd +m+1 "idj+m Pk

1 < SOC™n
(54)

(55)
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where B, and P, represent the weights of the two minimization

objectives set by the rideshare requester. (xn«d Ve ) and
idj+pdy idjtpd)

(x « Y ) stand for the coordinates of the pickup point
idj+pdy idj+pdy
L pd, and nldﬂ)d stand for the
indices of two road intersections extending from the end of the ith
route of CAV «. Notably, n* L +pd, and n, +pd, correspond with the
pickup and drop-off points of the rideshare requester, respectively.
nd dtpd also represents the start of the (i + 1) th route of CAV a.
i 3
Here, the route from the drop-off point of the requester to the start
of (i + 1) th route is computed to ensure that CAV « can arrive at
the start of the (i + 1) th route, nf, | |, in time. pt, " denotes the
time the requester arrives at n L tpd,” and rf,. ", is the tlme that CAV

. The definitions of the rest of the parameters are

and drop-off point, respectively. n{

o arrives at n
identical to those used in Egs. (2-9).

The first minimization objective in Eq. (43) denotes the distance
that the rideshare requester moves when departing from the origin
to the pickup point plus the time that the requester departs from
the drop-off point to the destination. The second one represents the
time required by CAV « to drive from the pickup point to the drop-
off point. This work first goes through %* and selects the qualified
candidate routes in accordance with the list of constraints given in
Egs. (44-55). Next, we derive the value inside the Min (-) opera-
tor in Eq. (43) for each qualified candidate route by computing the
inner product of the two weights and the corresponding objectives.
The candidate routes are then sorted in ascending order, based on
the computation result obtained above. Accordingly, the rideshare
route information for the qualified route with the smallest index
in the sorted list will be delivered to the rideshare requester for
reference. In the case where no rideshare solution is available, the
requester can take public transportation instead.

4. SIMULATION EXPERIMENTS

Here, we describe the experimental details and parameter settings
of the proposed work. We ran a series of simulations by using the
Python programing language to verify the feasibility and effective-
ness of our proposed work. All experiments were performed on a
personal computer built with Win10 OS, 17-10700 4.8GHz CPU
and 8GB RAM.

4.1. Experimental Setup

In this section, we use the real traffic flow datasets for the exper-
iment to evaluate the proposed work. The historical driving data
were obtained from a real-time traffic information web site of the
Ministry of Transportation and Communications, Taiwan [42]. The
attributes of the database are the average vehicle speed and traffic
density measured at the entrance of each road segment during five-
minute intervals. The road segments involved in the simulations
include three expressways and twelve local roads. One expressway
is parallel to two other connected expressways. There is a battery-
swapping station deployed at the entrance to each of the two con-
nected expressways, and on-road wireless charging is embedded
in the pavement on the paralleled expressway. Five plug-in charg-
ing stations are evenly distributed in the area that encompasses the
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twelve local roads. The ratio of the number of HDVs to the number
of CAVs is set as one to five, and the type of each departed EV is
randomly assigned as a HDV or CAV based on this ratio. The ori-
gin and destination of each EV were generated with uniform dis-
tribution within the area encompassing the 15 road segments. The
average charging time at a plug-in charging station, and the battery
switching time at a battery-swapping station, are 30 minutes [43]
and 3 minutes [44], respectively. The total number of records in the
dataset was 12672, and the dataset was trained with SVRs. The time
spent for pickup and drop-off at a road intersection was randomly
set between 10 and 15 seconds. The time for an EV stopped waiting
for a traffic light to turn from red to green at the entrance to each
road segment was randomly set within the interval of 15 seconds.
The upper limit of the traffic density permitted on each of the three
expressways was set to 50 vehicles per kilometer [45].

4.2. Experimental Results and Analysis

Figure 3 illustrates the traffic volumes on the three expressways
and local roads before ridesharing and traftic control strategies are
applied. Expressway 3 runs parallel with the connected expressways
1 and 2. Meanwhile, only CAVss are allowed to drive on expressway
3 to ensure the speed of each CAV on expressway 3 can be dynam-
ically adjusted by the traffic control center in this work to main-
tain the smooth traffic flow during rush hours. This is consistent
with the presumption that a majority of EV owners tend to com-
mute via expressway 3 owing to the permitted higher driving speed.
In addition, the on-road wireless charging facility embedded in the
pavement on expressway 3 also attracts the majority of EV owners
because their vehicles can still drive while charging their batteries.
Accordingly, this resulted in a surge of traffic volume occurring on
expressway 3 during the morning and evening peak hours. In con-
trast, the traffic flow on local roads is relatively smoother than those
of each expressway during rush hours because an EVs owner takes
a route via local road(s) if the origin is nearby the destination, or if
a detour is required to access an expressway.

Figure 4 shows the average travel times of EVs that correspond with
the traffic volumes observed over all road segments. Notably, the
travel time of an EV in the figure includes its driving time over all
road segments on the route and the charging time of the EV if it

U o i)

K
(\Il <Ir Lll) o o~ < (o] o o~ -
o N A |
0 o o~ < (\] (o] o o~
i - - — — (g\]
hr
K Expressway 1 & Expressway 2 H Expressway 3 # Local roads

Figure 3
segments.

Original traffic volumes over the four types of road
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needs recharging during its trip owing to a shortage of battery elec-
tricity. Recall that expressway 1 is parallel to the connected express-
way 2 and expressway 3. A dramatic increase in the travel times of
EVs driving on the three expressways during the typical morning
and evening peak hours is evident in Figure 4, especially for express-
way 3, which provides an EV with the longest high-speed travel dis-
tance on the route. Meanwhile, the length of expressway 1 is shorter
than that of expressway 2, which is why the average travel time of an
EV on expressway 1 is shorter than that observed on expressway 2. It
can be inferred that three expressways are chosen by a large propor-
tion of EV drivers during rush hours because this choice involves
less travel time and charging time for an EV on the route to its des-
tination. Accordingly, prolonged traffic times occur on the three
expressways during the morning and evening rush hours before
ridesharing and traffic control strategies are enforced. The traffic
congestion on expressway 3 is more serious than it is on the other
two expressways because of the favorable on-road wireless charging
service embedded in the pavement on Expressway 3.

The traffic volumes that correspond with the travel times over all
road segments are given in Figure 5. Compared to the original traf-
fic volumes as given in Figure 3, the number of EVs dropped dra-
matically after the EV users turned to taking rideshare services
offered by AMoD fleets. However, most EVs still chose the route via
expressway 3, owing to it having the shortest driving time compared
to other road segments, not to mention the convenience of on-road
wireless charging being supported on expressway 3. Accordingly,
traffic jams were still serious on expressway 3 during the morning
and evening rush hours, even though the total number of EV's driv-
ing over all road segments during the two peak periods was effec-
tively reduced.

The average travel times of EVs after utilizing the proposed AMoD
rideshare service are contrasted in Figure 6. Compared with Figure
4, the traveling times of EV's on expressway 1, expressway 2, express-
way 3, and local roads after utilizing AMoD rideshare service
decreased 21%, 19%, 23%, and 18% on average, respectively. It can
be seen that the travel times over all road segments after utilizing
AMoD rideshare service improved, as expected. The reduction of
the travel times of EVs traversing each expressway is more notice-
able than the reduction observed on the local roads. However, traf-
fic jams on the three expressways, especially expressway 3, are still
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Figure4 Original travel times of electric vehicles (EVs) over the
four types of road segments.



C. -J. Huang et al. / International Journal of Computational Intelligence Systems 14(1) 1714-1727 1725

3250
o 9% f
‘6 2000
1750 = =T - AN = NN - e ~ R~ m -
o 1500 BNE—H 88 f & f
© 1250 P EE B H B OB os
£ 1000 FINE T B o IR = BB
s 750 =R = = R = L R =
2 50 SRR s&,s LN
250wl B o T N P N OV REE IWEL RO VD e
o < (s 0 o o < (o) 0 o o~ o
S A & b F T T g A
[oe] o o < [(o] [oe] o o
hFi — — — — [a\]

M Expressway 1 P Expressway 2 H Expressway 3 [ Local roads

Figure 5 Traffic volumes on the four types of road segments after
invoking AMoD rideshare service.
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Figure 6 Travel times of electric vehicles (EVs) after invoking
AMoD ridesharing service.

apparent during rush hours because of large traffic volumes of EV's
flowing onto the expressways during commute times. In contrast,
the increase of the travel times of EV's on the local roads is not obvi-
ous at commute times because the traffic volumes of EVs on the
local roads are not impacted to a large extent during the morning
and evening peak periods.

Figure 7 gives the traffic volumes of EV's after implementing AMoD
rideshare service along with appropriate traffic control strategies.
The curve for the traffic volumes of EVs on expressway 3 became
flat during the morning and evening rush hours. A contributing
factor to this flattening is almost surely the addition of the further
effect of congestion control after a sizable number of commuters
opt to use AMoD rideshare services as an alternative mode of trans-
portation for their daily commute. Although expressway 3 is still
the top choice of EVs for their routes during the pre-routing and
real-time rerouting processes, the late-booking EV's were allocated
to alternative routes via the congestion control mechanism being
enforced during the morning and evening rush hours.

Figure 8 contrasts the travel times of EVs over all road segments
that correspond with the traffic volumes observed over all road seg-
ments as given in Figure 7. Compared with Figure 6, the traveling
times of EV's on expressway 1, expressway 2, expressway 3, and local
roads after implementing AMoD ridesharing plus congestion con-
trol decreased 9%, 7%, 12%, and 5% on average, respectively. It can
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Figure 7 Traffic volumes after implementing AMoD ridesharing
plus congestion control.
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Figure 8 Travel times of electric vehicles (EVs) after implementing
AMoD ridesharing plus congestion control.

be observed that the curve for the travel times of EVs on express-
way 3 became much smoother during the morning and evening
rush hours, owing to the congestion control being carried out on
the saturated road segments during peak periods. The travel times
for EVs traversing over all local roads were still much longer than
those of EVs using each expressway owing to the low speed lim-
its being enforced on local roads and traffic light delays at the local
road intersections. Meanwhile, the charging time spent at the plug-
in charging stations by the proportion of the EVs requiring charging
prolonged the delays experienced by those EVs to some extent.

Figure 9 contrasts the average travel times of EV passengers under
the three scenarios mentioned above. Compared with the original
scenario, the average traveling times of EV passengers after apply-
ing the mechanisms of AMoD ridesharing and AMoD ridesharing
plus congestion control decreased by 20% and 26%, respectively. To
some degree, the three curves are consistent with the distribution of
travel times of EV's over all types of road segments observed in the
corresponding figures given above. Notably, it can be seen from this
figure that the EV travel times spent on expressway 3 and on local
roads dropped significantly during the morning and evening peak
hours, after the proposed rideshare and traffic control strategies
were put into practice. However, the disparity in the travel times
between off-peak periods and peak periods cannot be overlooked
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because the driving speeds of CAV fleet vehicles can be automat-
ically raised owing to the low traffic volumes of EV's over all road
segments during off-peak periods.

5. CONCLUSION

To the best of our knowledge, little research work has tackled the
problems of traffic congestion prevention in an urban area along
with the routing and charging strategies of EV's. This work not only
proposes a traffic congestion prevention mechanism for an urban
area, but also accommodates the routing and charging planning
for mixed traffic consisting of human-driven EVs and autonomous
EVs. Each EV is required to make road segment reservations for its
route before its departure time. The prerouting can be initiated via a
cellphone owned by a traditional EV driver or a server installed for
the management of an AMoD fleet. Then, a rerouting module will
be activated at the OBU of the EV after it starts moving. The rerout-
ing is used to respond to a situation where the EV is earlier than
or delayed from the originally estimated off-peak hours to the peak
hours. In the meantime, the rideshare matching service provided by
an AMoD fleet is adopted to provide an alternative for an EV user
who is unsatisfied with a delayed arrival time at her/his destination
during the prerouting process. The simulation results indicate that
this research can effectively ease the traffic congestion problem in
an urban area and provide an acceptable transportation solution for
EV users.
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