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With the growing demand for air transportation and the limited ability to increase 

capacity at key points in the air transportation system, there are concerns that, in the future, 

the system will not scale to meet demand. This situation will result in the generation and the 

propagation of delays throughout the system, impacting passengers’ quality of travel and 

more broadly the economy. There is therefore the need to investigate the mechanisms by 

which the air transportation system scaled to meet demand in the past and will do so in the 

future. In order to investigate limits to scale of current air transportation networks, theories 

of scale free and scalable networks were used. It was found that the U.S. air transportation 

network is not scalable at the airport level due to capacity constraints. However, the results 

of a case study analysis of multi-airport systems that led to the aggregation of these multiple 

airports into single nodes and the analysis of this network showed that the air transportation 

network was scalable at the regional level. In order to understand how the network evolves, 

an analysis of the scaling dynamics that influence the structure of the network was 

conducted. Initially the air transportation network scales according to airport level 

mechanisms –through the addition of capacity and the improvement of efficiency- but as 

infrastructure constraints are reached; higher level scaling mechanisms such as the 

emergence of secondary airports and the construction of new high capacity airports are 

triggered. These findings suggest that, given current and future limitations on the ability to 

add capacity at certain airports, regional level scaling mechanisms will be key to 

accommodating future needs for air transportation. 

I. Introduction 

ITH the growing demand for air transportation and the limited ability to increase capacity at key points in the 

air transportation system there are concerns that, in 

the future, the system will not scale to meet demand. 

Historically, air traffic has grown significantly. As shown in 

Figure 1, revenue passenger kilometers  have increased by a 

factor of 3.3 from 393 billion in 1978 to 1.304 billion in 

2005 [1]. Assuming a similar rate of growth to the rate of 

growth that prevailed between 1985 and 2005, passenger 

traffic would approach 1.9 billion RPKs by 2025. Several 

forecasts also indicate significant growth of traffic in the 

next decades [2][3][4][5]. However, infrastructure capacity 

constraints at airports create congestion that result in aircraft 

and passenger delays that propagate throughout the system. 

Figure 2 shows the evolution of delays in the United States 

from 1990 to 2007. In the 1990s, passenger and aircraft 

traffic increased and reach a peak in 2000. 
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Figure 1: Evolution of passenger traffic (RPKs) 

in the U.S. Air Transportation System. 
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Concurrently, delays increased to a reach a peak in 2000. While there was a generalized stress over the system due 

to traffic loads, a localized capacity crisis at La Guardia airport created record high delays. As a result of the 

slowdown of the economy and Sept. 11 events, 

passenger and aircraft traffic decreased in 2001 which 

relieved pressure on the system thus decreasing delays. 

Starting in 2003 with a localized capacity crisis at 

Chicago O’Hare airport and with later a general 

increase in number of operations, delays increased 

again to reach a record high of 22.1 million minutes of 

delays in 2006. Projections of delays for 2007 indicate 

that a new record is likely to be set. The generation of 

delays and their propagation throughout the system 

negatively impact air transportation quality of service, 

passenger’s quality of travel and more broadly the 

economy.  

 Given the growing demand for air transportation in 

the future and inherent key capacity constraints, there 

are concerns that, in the future, the system will not 

scale to meet demand. This motivates the need to 

investigate the mechanisms by which the air 

transportation system scaled to meet demand in the past 

and will do so in the future. 

II. Methodology & Data Used for the Network Analysis 

Because the air transportation system is fundamentally a network system (composed of thousands of 

interconnected subsystems and parts) it can be described and represented using network abstractions and tools from 

network theory. In addition, recent theories of scale free and scalable networks were used as a starting point for the 

analysis [6][7][8][9][10][11]. 

The network of interest for this research is the flight/aircraft flow network for which the nodes are airports and 

the arcs are non-stop origin-destination routes. In order to analyze the structure of the current U.S. air transport 

network, a cross sectional analysis was performed using actual aircraft traffic data from the Federal Aviation 

Administration’s (FAA) Enhanced Traffic Management System (ETMS) [12]. For each flight, this database 

provided the aircraft type, the airports of departure and arrival, the aircraft position (latitude, longitude and altitude) 

and speed information. 

For the extraction of the network structural information, data of 365 days of traffic was analyzed (from October 

1st 2004 to September 30th 2005). In addition to the detailed ETMS flight database, a library of civil airplanes 

corresponding to 869 ETMS aircraft codes was used. The ETMS airport database was crossed with the FAA Form 

5010 airport database [13] that provided additional airport information such as runway characteristics (i.e. length, 

pavement type). In the following analysis 12,007 public and private airports -of any runway length- where used for 

the extraction of flights from the ETMS flight database. An extensive data quality assurance process was used to 

filter data with missing information fields such as aircraft type and clearly flawed trajectory data.  In addition, 

international flights and military and helicopter operations were filtered out. The retained data accounted for 70% of 

the total number of flights from the original data. The data was also filtered into categories of aircraft (in order to 

understand the differences in terms of network structure between various modes of operations). These categories 

included; wide body jets (e.g. Boeing 767, Airbus 300), narrow body jets (e.g. Boeing 737s, Airbus 

318/319/320/321), regional jets (e.g. Bombardier CRJ200, Embraer E145), business jets (e.g. Cessna CJ1, Hawker 

400), turboprops (e.g. Q400, ATR42) and piston aircraft (e.g. Cessna 172, Pipers). From this detailed flight data, 

network adjacency matrices were constructed for each of the aircraft types. 

Figure 3 shows the graphical representation of the networks that were extracted from the ETMS traffic data and 

plotted according to the frequency of flights on each route (ranging from 1 to 1000 flights per year). As it can be 

observed in Figure 3, layers are not homogenous in terms of both frequency and structure. The wide body jet 

network is primarily composed of sparse long haul cross country flights with fairly high frequency. The narrow 

body jet network is denser with relatively shorter range (mid range) flights with some routes with very high 

frequency (i.e. over 900 flights per months or 30 flights per day). The network of flights flown by regional jets is 
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Figure 2: Evolution of delays in the U.S. Air 

Transportation System. 
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sparse with high frequency routes mainly centered to and from hubs such as Chicago O’Hare (ORD), Atlanta (ATL), 

Denver (DEN), etc. which is consistent with the dominant use of the regional jets as feeders to hub operations.  
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Figure 3: Air transportation networks (decomposed into layers by aircraft type). 

While the wide body, narrow body and regional jet networks are relatively sparse, the network of flights flown 

by business jets, turboprops and light piston aircraft are denser. The business jet network is dense with low 

frequency routes. However, there are a few popular (i.e. medium frequency) routes between key metropolitan 

regions such as New York, Chicago, Dallas, Atlanta, Miami, Denver, Los Angeles, etc. The turboprop network 

exhibits both a dense set of low frequency routes and a localized set of routes that are centered on key airports. This 

latter part of the network is formed by feeder flights in and out of connecting hub airports. Finally, the piston aircraft 

network which is the network that spans across the largest number of airports is composed mainly of low frequency 

routes. This is consistent with the type of use and unscheduled operations performed by light piston aircraft. 

III. Analysis of the U.S. Air Transportation Network at the Airport Level 

As shown in Figure 3 the U.S. air transportation network is a woven set of networks or layers (networks 

composed of airports -nodes- 

and origin destination routes -

arcs-). These layers can be 

recombined to form the overall 

U.S. air transportation network 

as presented in Figure 4.  

This overall network is 

composed of a large set of low 

frequency routes and a more 

limited set of very high 

frequency routes. From Figure 4, 

it can be observed that despite 

the large number of nodes 

present in this network aircraft 
Figure 4: Air transportation network with airport nodes. 

Legend

F
li
g

h
t f

re
q

u
e

n
c
y
 

(f
li
g

h
ts

 p
e

r 
m

o
n

th
) over 900

601  to  900

301  to  600

151  to  300

31    to  150

5      to  30

2      to  4

0      to  1



 

American Institute of Aeronautics and Astronautics 

Copyright  2007 by the Massachusetts Institute of Technology 

 

4

traffic is concentrated at a few key airports. In fact, 

30 airports handle almost 80 % of the overall 

traffic. 

One of the key metrics that characterizes the 

structure of a network is the degree distribution. 

The degree of a node is the number of incoming 

and outgoing arcs to and from this node (i.e. 

number of routes connecting one airport to other 

airports in the network). The degree distribution of 

the U.S. air transportation network (with airport 

nodes) presented in Figure 4 was computed and 

plotted (Figure 6). As shown in Figure 6, a large 

number of nodes (i.e. airports) exhibit low number 

of destinations (i.e. node degree) while there are 

very few airports that have large number of 

destinations.  

While the degree of a node captures 

information regarding the number of destinations 

to and from an airport, it does not capture any 

information regarding the frequency of flights on 

the arcs and ultimately the number of flights at 

each airport. The degree of a node can be weighted 

by the number of flights on incoming and outgoing 

arcs which is referred to as a flight weighted 

degree. The flight weighted degree distribution of 

this network was computed and is presented in 

Figure 5.  

It was found that there were large number of 

nodes that have very low flight weighted degree 

(i.e. flights per year) as shown on the left side of 

the distribution (Figure 5) and very few nodes that 

have large number of flights.   

From network theory, scale free and scalable 

networks are characterized by a negative power 

law distribution. A power law distribution should 

be represented as a linear relationship (strait line) 

on a log-log plot. Figure 7 shows the 

transformation of the plot in Figure 5 into a log-log 

plot. As shown in Figure 7, it was found that the 

flight weighted degree distribution did not follow a 

power law distribution across the full range of 

weighted degree (annual airport operations) which 

would have been indicative of a scale free and 

scalable network. A power law distribution was 

identified for flight weighted degree lower than 

250,000 flights per year at which point nodes do 

not fit the power law
‡
.  

The identification of a non power part in the 

distribution (ranging from 250,000 and 970,000) 

flights suggests that there are limits to scale in this 

network and that capacitated nodes (capacity 

                                                           
‡ Due to the fact that the distribution of degrees has a finite upper limit (i.e. 970,000 flights) and way the power law is constructed, the deviation 

from the power law fit (i.e. strait line) is slightly greater than it would be for a distribution of non-finite flight weighted range. In order to verify 

the validity of the observation of a non-power law part in the distribution, a test was developed. This iterative test applies a correction equal to the 

integral of the power law function from the finite upper limit of flight weighted degree to infinity. The correction function is displayed in the 

insert of Figure 7 and shows that this part of the distribution is indeed not a power law.    

Figure 5: Flight weighted degree distribution of the 

U.S. air transportation network. 
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Figure 6: Degree distribution of the U.S. air 

transportation network.  
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constrained airports) are present in this part of the 

distribution. 

There are 29 airports nodes in the non power 

law part of the distribution (Figure 8). It is clear 

that some of these nodes are constrained by 

capacity. In fact, all 4 airports that are slot 

restricted in the United States (i.e. Chicago O’Hare 

ORD, New York La Guardia LGA, John F. 

Kennedy JFK and Washington National DCA) are 

present in the non power law part of the 

distribution. In addition, many airports among the 

29 airports (i.e. Newark EWR, Philadelphia PHL, 

Boston Logan BOS and San Francisco SFO) 

exhibit high levels of delays that are indicative of 

congestion and capacity constraints.  

 

 

IV. Analysis of the U.S. Air Transportation Network at the Regional Level 

Because of the trend of emergence of secondary airports in the vicinity of primary airports, leading to the 

development multi-airport systems, additional insight can be gained by examining the system at the regional level 

[14]. The 29 airports identified in 

the non power law part of the 

distribution formed the basis for 

a case study analysis of regional 

airport systems. A regional 

airport system was defined as all 

airports within 50 miles of one of 

the identified airports (Figure 9).  

 For the purpose of this 

analysis, a primary airport was 

defined as an airport serving 

between 20% and 100% of the 

passenger traffic in the region 

and secondary airports were 

defined as serving between 1% 

and 20% of the traffic. Other 

airports serving less than 1% of 

the traffic in the region were not 

considered for further detailed analysis.  

 Figure 10 provides an illustration of two cases of regional airports systems in which multiple airports serving 

more than 1% of the passenger traffic were found.  

Primary airport

Secondary airport

Populated places

Other airport

Legend

25 

miles

50 

miles

 

Figure 10: Illustration of multi-airport systems in the United States. 

Airport 

code

Flight weighted degree 

(i.e. annual number of 

operations)

Airport 

code

Flight weighted degree 

(i.e. annual number of 

operations)
ORD 964360 BOS 381064

ATL 949708 MIA 366561

DFW 795974 IAD 361754

LAX 629735 SEA 354658

DEN 556178 MEM 343970

CVG 512830 SLC 339080

MSP 498523 SFO 331498

DTW 498053 PIT 324287

IAH 494410 JFK 311827

LAS 490290 MCO 292520

PHX 484252 MDW 280940

PHL 430218 STL 274770

EWR 420197 BWI 266166

CLT 417485 DCA 264784

LGA 386589
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Figure 9: Regional airport systems in the United States. 

 

Figure 8: Set of 29 airports present in the non power 

law part of the distribution in Figure 7. 
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As illustrated in Figure 10, 

with the Boston region, which 

is centered around Boston 

Logan (BOS) airport, this 

regional airport system features 

two other significant airports; 

Manchester (MHT) airport in 

New Hampshire and Providence 

(PVD) airport in Rhode Island. 

While Boston Logan is 

considered a primary airport, 

Manchester and Providence 

airports are considered to be 

secondary airports.  

While Boston is an example 

of a single primary airport 

system, there are more complex 

multi-airport systems with 

multiple primary airports and 

secondary airports such as the New York region. The New York airport system (Figure 10) has three primary 

airports; New York La Guardia (LGA), John F. Kennedy (JFK) and Newark (ERW). In addition, the region also has 

a secondary airport located on Long Island; Islip Mc Arthur airport (ISP).  

As shown in Figure 11, a total of 16 primary and 16 secondary airports were found in the 11 multi-airport 

systems in the United States. The remaining 15 airports of the top 29 airports are single primary airport systems as 

shown on Figure 11.  

From a network perspective, the emergence of a new primary and secondary airport implies new connections to 

the rest of the network of airports. For example, the emergence of Providence airport part of the Boston regional 

airport system has lead to the creation of origin-destination (OD) pairs such as PVD-ORD (a secondary to primary 

airport market) and PVD-MDW (a secondary to secondary airport market). These routes are parallel to the primary 

to primary airport route; BOS-ORD.  

Figure 12 shows the structure of the networks of flights from primary to primary airports, and the networks of 

flights from primary to secondary and secondary to secondary airports. Using Form 41 traffic data for the month of 

March 1990 and 2003, capturing respectively a total of 18,000 and 15,000 distinct OD pairs, the number of OD pairs 

for each category was computed for both periods [15].  

Primary to Primary airports Primary to/from Secondary airports Secondary to Secondary airports

Legend: Flight frequency (flights per month)

over 900

601  to  900

301 to  600

151  to  300

31    to  150

5      to  30

2      to  4

0      to  1
 

Figure 12: Parallel network in the U.S. Air Transportation Network. 

It was found that semi-parallel networks (i.e. primary to secondary airport network) grew by 13 % in terms of 

number of routes served, from 439 to 193 connections between 1990 and 2003. The largest growth was observed in 

the parallel network category (i.e. secondary to secondary airport network) where a 49% growth occurred between 

1990 and 2003. This phenomenon is mainly due to the emergence and growth of secondary airports in the 1990s 

Figure 11: Primary and secondary airports in the United States (within 

the regional airport systems around the top 29 airports). 
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(e.g. Providence, Manchester, etc). The introduction of new OD pairs between secondary to secondary airports is the 

result of the strategy of carriers like Southwest that operate largely at secondary airports and connect them together 

with point to point flights.  

Because the primary and secondary airports that were 

identified in each of the regional airport system serve the 

demand for air transportation within the same region, these 

airports can be aggregated into one multi-airport system 

node. A new network composed of the 11 multi-airport 

nodes and the 2159 single airport nodes was constructed. 

Figure 14 shows the graphical network representation of 

the U.S air transportation network with multi-airport 

systems aggregated into single nodes. Similarly to the 

single airport node network (Figure 7), the flight weighted 

degree distribution of this new network was 

examined. 

As shown in Figure 13, with the analysis of the 

U.S. air transportation network at the regional 

level, the air transportation network is found to 

follow a power law distribution across the entire 

range of flight weighted degrees. This finding 

suggests that the mechanisms by which new 

airports emerged in a region are key to the ability 

of the system to scale and to meet demand. 

 

V. Historical Evolution of Nodes in the U.S. Air Transportation Network 

The presence of a power law distribution 

implies that there exists an underlying growth 

mechanism based on preferential attachment 

[6][9][10]. This preferential attachment dynamic 

implies that a node grows proportionally to its size 

in the network (in an unconstrained case). From an 

air transportation system perspective, the 

preferential attachment mechanism implies that 

new flights added to the network are added to 

airports proportionally to the size of these airports 

in the network. Airports that already have 

significant number of flights are more likely to 

attract flights than airports with no traffic. This is 

consistent with network planning behaviors that 

are generally observed in the air transportation 

industry where airlines have incentives to add 

flights to an airport that they are already serving 

rather than another closely located non-utilized 

airport.  

 

Figure 14: Air transportation network with 

multi-airport systems aggregated into single. 
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Figure 13: Flight weighted degree distribution of the 

network with aggregated multi-airport. 
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Using historical data from the FAA Terminal Area Forecast database that covers the time period from 1976 to 

2005, an analysis of the historical growth rate of airports was performed [5]. It was found that the average growth 

rate versus weight of the node in the network deviates from the linear relation for individual airports (Figure 15). 

The alignment of nodes along the linear relationship would have been indicative of preferential attachment growth. 

The observed deviation is not surprising and was 

expected due to capacity constraints that limit the 

growth of certain airports (e.g. Washington National 

DCA, John F. Kennedy JFK, New York La Guardia 

LGA, and Chicago O’Hare ORD). In fact, 4 out of 

the 29 airports are constrained by capacity through 

the use of slot restrictions. Other airports such as 

Newark (EWR), Atlanta (ATL), Boston (BOS), and 

San Francisco (SFO) exhibit delays that are signs of 

demand/capacity inadequacy. Airports above the 

linear growth line (i.e. exhibiting super linear 

growth) such as Cincinnati (CVG), Washington 

Dulles (IAD), Dallas Fort Worth (DFW) are airports 

that grew significantly because they became hubs in 

the time horizon of the analysis. 

The analysis was also extended to the average 

growth rate of regional airport systems (Figure 16). 

It was found that for multi-airport system nodes, the 

deviations from the linear relationship are 

significantly reduced which implies that preferential attachment dynamics govern the nodes of the network at the 

regional level. There are however some deviations from the linear relationship that can be explained by differences 

in regional economic growth (i.e. South West vs. North East) for the higher than linear growth rates (i.e. super linear 

growth). In addition, it is believed that the lower growth rate of New York multi-airport system node is due in part to 

regional level constraints such as airspace capacity limits. 

VI. Scaling Dynamics in the U.S. Air Transportation System 

A detailed analysis of the 15 single airport systems and 11 multi-airport systems (covering 48 airports in the 

United States) that was conducted, led to the identification of key scaling dynamics by which the air transportation 

system scales to meet demand. The summary of the results of this analysis is presented in Figure 17.  
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Figure 17: Set of solutions to address capacity inadequacy problem. 

Figure 16: Average rate of growth of single and 

multi-airport system nodes vs. traffic share in the 

network (from 1976 to 2005). 

Orlando

Tampa

Houston

Dallas

Miami

Los Angeles

San Francisco

Chicago

Boston

Washington

New  York

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5%

Traffic Share (Air Carrier & Air Taxi Operations)

A
v

g
. 
g

ro
w

th
 r

a
te

 o
f 
tr

a
ff

ic
 (
A

C
 &

 A
T

) 
a

s
 

p
e
rc

e
n

ta
g

e
 o

f 
A

n
n

u
a
l 
N

a
ti

o
n

a
l 
G

ro
w

th
 R

a
te

Meganodes
Multi-airport system nodes

Single airport system nodes



 

American Institute of Aeronautics and Astronautics 

Copyright  2007 by the Massachusetts Institute of Technology 

 

9

It can be seen in Figure 17 that latent demand for air transportation materializes into passenger traffic in the 

presence of supply of air transportation services (i.e. air transportation networks). This supply of air transportation 

services is supported by an underlying infrastructure formed by the national airport system. From a system 

performance stand point, limited capacity at airports and high demand leads to a demand/capacity inadequacy 

problem. This problem manifests itself in general with the generation of delays and their propagation throughout the 

network. As delays increase and negative impacts on quality of travel arise pressure to solve the problem grows.  

Several solutions are available to address this problem. As presented in Figure 17, the “do nothing” option 

assumes a self regulating mechanism (i.e. delay homeostasis) based on a level of delays that airlines and passengers 

are willing to bear. Another set of solutions is to implement demand management schemes whether they are 

regulatory based mechanism or market based mechanisms. However none of these solutions increase the capacity of 

the system. Rather, they attempt to address the problem by limiting demand and growth of traffic.  

A set of solutions that allow the system to scale and meet demand are scaling dynamics. As shown in Figure 17, 

there are three classes of fundamental scaling dynamics; 

• Traffic shift mechanisms that can involve both temporal and spatial shifts, 

The temporal utilization of an airport throughout a day is highly variable due to temporal demand patterns 

(i.e. early mornings and late afternoons are high peak demand periods leaving middle of the day and nights 

low demand and periods of activity), but is also due to airline scheduling behaviors. Airlines operate 

connecting hub airports with succession of banks of arrivals and departures roughly every hour. While it is 

difficult to smooth passenger demand uniformly across the day and night because of passenger traveling 

constraints and preferences, over the last 5 years airlines have been active at debanking the operations at 

connecting hub airports by smoothing the operations 

(i.e. implementation of rolling hub concept).  

While the previous mechanisms focused on 

temporal shift of traffic, traffic can also be shifted 

spatially with regional based scaling mechanisms 

(i.e. scaling “out” to existing nodes) involving the 

emergence of secondary airports. Over the last three 

decades, several key secondary airports have 

emerged in the United States serving demand for air 

transportation within a region. While passengers 

that live in secondary basins of population within a 

metropolitan region (e.g. Manchester in New 

Hampshire, Providence in Rhode Island) used to 

travel to the single primary airport serving a region, 

with the emergence of new airports serving the 

region they can fly directly from a closer and less 

congested airport. Figure 18 shows the evolutionary 

paths by which a regional airport system can evolve.  

 

• Efficiency improvements and procedural 

changes,  

Another set of scaling dynamics involve local 

efficiency improvements. From a network 

perspective, efficiency can be improved at the nodes (i.e. airports) with mechanisms such as runway 

efficiency improvements, reduction of separation of aircraft on approach, better utilization of multi-runway 

operation through greater optimization of sequencing, etc. In addition, efficiency can be improved at the arc 

level (i.e. flight/route level) by increasing the average size of aircraft (i.e. scaling “up” arcs). From a 

transportation system performance perspective the true metric of efficiency is the number of passengers 

carried by unit of capacity. Therefore, utilizing larger aircraft increases the passenger throughput while using 

the same airport resources. However, the increased competition in the airline industry in the post deregulation 

era, and the race for higher flight frequency, has driven the decrease in average aircraft size. In fact, in the 

last 16 years, the average size of aircraft in the United States -for domestic operations- has decreased from 

130 to 88 seats. One of the key phenomena underlying this trend was the entry and use of 50 to 90 seat 

Regional Jets (RJs) in the 1990s. The use of these aircraft is substantial at major airports such as Chicago 

R
e

-e
m

e
rg

e
n

ce
 o

f 
a

 

P
ri

m
a

ry
 a

ir
p

o
rt

Construction of new airport 

and transfer of traffic

Strengthening of secondary 

airport role

F
ai

lu
re

 o
f 

a
 s

e
co

n
d

ar
y

a
ir

p
o

rt
 t

o
 e

m
e

rg
e

Failure to transfer traffic to an 

external primary airport

C
lo

su
re

 /
fa

il
u

re
 o

f 
p

ri
m

a
ry

 

to
 r

e
-e

m
e

rg
e

Failure to transfer traffic to an 

external primary airport

E
m

e
rg

e
n

ce
 o

f 
 a

 

S
e

co
n

d
a

ry
 a

ir
p

o
rt

Primary Airport

Secondary airport

Legend

Primary Airport  

(Emerged)

Closed Primary

Airport

Figure 18: Transition and evolutionary paths 

of regional airport systems. 

 



 

American Institute of Aeronautics and Astronautics 

Copyright  2007 by the Massachusetts Institute of Technology 

 

10 

O’Hare (ORD) and La Guardia (LGA) for which the traffic share of regional jets was 43% and 32% 

respectively in 2005. 

• Physical capacity enhancement mechanisms.  

 Finally, the system can scale by the addition of physical capacity. As shown in Figure 17, both airport 

(i.e. local) and regional airport system based mechanisms can lead to an increase in physical capacity of 

infrastructure serving a region. The airport level based mechanism involves the construction of new runway 

if this is feasible. The incremental gain in capacity resulting from the construction of a new runway can be 

highly variable. For example, the new 14/32 runway at Boston Logan airport that entered into service in 2006 

after a 30 year planning process is only generating a capacity benefit of approximately 3% due to low annual 

utilization because of its use in certain rare wind conditions. On the other hand, new runways such as the new 

runway at Atlanta Hartsfield airport will lead to a 33% capacity increase.  

 Another physical capacity enhancement mechanism (i.e. scaling “out” to new nodes) involves the 

construction of new large capacity airports in the region. This regional level based mechanism has been 

observed in the United States in the 1970s with the construction of airports such as Washington Dulles 

(IAD), Dallas Fort Worth (DFW) and more recently with Denver international (DEN) in the 1990s.  

 

Due to strong environmental constraints, it is increasingly hard to build new large capacity airports and even 

runways at key airports. In addition, the gains in capacity due to efficiency improvements such as runway utilization 

optimization and remaining debanking opportunities are limited and can only provide marginal capacity 

improvements on the order of a few percentage points. Given the existence of a dense network of under-utilized 

airports in the United States, the scaling mechanism involving the emergence of secondary airports, using existing 

under-utilized infrastructure is seen as a key mechanism for scaling the air transportation network and system and 

meeting future demand.  

VII. Conclusions 

From the analysis of the air transportation network structure and the detailed analysis of regional airport systems, 

it was found that the U.S. air transportation network is not scalable at the airport level due to capacity constraints. 

However, the analysis of the U.S. air transportation network for which multiple airports serving a region were 

aggregated into one multi-airport system node based the analysis of case studies of regional airports systems showed 

that the network is scale free and scalable. In order to understand how the network evolves, an analysis of the 

scaling mechanisms and the factors that influence the structure of the network was performed. Initially the air 

transportation network scales according to airport level mechanisms –through the addition of capacity and the 

improvement in efficiency-. In the absence of constraints the air transportation network scales according to the 

preferential attachment scaling mechanisms. However, as infrastructure constraints are reached; higher level scaling 

mechanisms such as the emergence of secondary airports and the construction of new high capacity airports are 

triggered.  

 Given the fact that there is a limited capability for adding capacity at major airports, these findings suggest that 

regional level scaling mechanisms will be key to accommodating future needs for air transportation. The 

attractiveness of existing underutilized airports will increase leading to the growth of existing secondary airports and 

the emergence of new secondary airports. 
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