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Abstract

A computer system with a user interface based on a stylus offers many potential
benefits. A stylus is portable, usable with one hand, and works with a wide variety
of systems, from notebook-sized computers to computers with wall-sized displays.

In any new system, the methods by which a user manipulates textual informa-
tion are important. This thesis explores the utility of stylus-based input for .veral
text-related tasks, and informally studies a number of user interaction techni ues.

We describe a system for entering text with a stylus and investigate user in-
terface techniques for interfacing with a text recognizer, concluding that a stylSS
is a feasible input device for entering small amounts of text. We also inmplemen+
a simple text editing system utilizing gestural commands and explore the inter-
actions of a stylus with some additional user interface techniques: scrolling and
on-screen buttons. We discuss some alternatives in the design of such an editing
system, including the use of "markup editing."

We conclude that stylus-based systems can be easy to use and learn and lend
themselves to the incorporation of knowledge about users' tasks.

Thesis Supervisor: David Goldberg
Title: Research Scientist, Xerox Palo Alto Research Center

Thesis Supervisor: Christopher Schmandt
Title: Principal Research Scientist, Media Laboratory
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Foreword

In August of 1989, the Computer Science Laboratory (CSL) at Xerox Corporation's

Palo Alto Research Center (PARC) decided to change its charter to focus on "ubiq-

uitous computing." Their vision is that the future holds a world in which objects

with computational power are everywhere, communicating amongst themselves

and with people. No one will go to a computer; there will always be a compu-

tationally active surface nearby, already linked to any necessary computational

resources.

In such a world a keyboard and mouse will often be an inappropriate interface

to the computational network. This thesis, on the use of a stylus as a device

for interacting with computers, is a small step in the transition to the world of

ubiquitous computing.



Chapter 1

Introduction

A stylus-sensitive surface mounted over the display of a computer system allows

users to "write" directly on the screen. With the advances made in miniaturization

and display technology, a wide variety of new systems can be created, from notepad-

sized computers to computers with screens that cover entire walls. The stylus has

the potential to be the one input device that can work gracefully across this entire

range of systems, allowing them to mimic the notepads and whiteboards on which

they are based.

Initial investigation, however, reveals that such a stylus-based interface is not

trivial to develop. This thesis explores some of the issues arising in the develop-

ment of a stylus-based interface, in particular for the entry and editing of textual

information.

1.1 Outline of this thesis

This chapter begins by giving some motivations for the development of a user inter-

face based solely (or primarily) on a stylus. It then describes the study undertaken

towards this end, including methodology.

Chapter 2 explores some of the work that has already been done in this and



related fields.

Chapter 3 focuses on the entry of text into a computer system using a stylus

and some of the issues that arise in this topic.

This leads to chapter 4 on the editing of text with a stylus.

Chapter 5 describes some experiments in "markup editing," in which the user's

actions do not actually modify the text but only mark the document until the user

is satisfied with the proposed changes.

Finally, chapter 6 contains the conclusions we drew in this work.

L2 Motivation for a stylus-based system

There are many motivations for developing a system using solely stylus-based

input. For instance, a stylus is suited to a wider range of computer uses and user

interface tasks than most other input devices, both conventional and less common.

Stylus-based systems can also be fast and easy to learn and use.

1.2.1 Applicable in many scenarios

Computers can be built in many ways. A computer can be a stationary, desktop

machine; with the current advances in miniaturization, it can also be a portable,

full-function, notebook-sized computer. Or it can have a large, wall-sized screen

and be used as an electronic version of a whiteboard. In the future, a computer

could also be as small as a checkbook or watch.

There are a variety of situations in which a computer can be used. Computers

can be used as single person workstations for office work, or as organizers for

personal information. A computer with a wall-sized display can be used by one

person or by several people together. Small, portable computers can be used while

traveling, in meetings, or in other situations where a desktop or wall-mounted

machine may not be available or appropriate.



A keyboard and mouse are well suited to a desktop machine, as they require

a smooth, flat, stable, horizontal surface. And they are well suited for use as a

single person workstation. They are not so well suited to other scenarios, however.

They are difficult to carry. And it is hard to imagine using a keyboard and mouse

with a computer whose screen is the size of a checkbook, a watch, or a wall. This

last example is especially interesting. A keyboard and mouse could be used with

a wall-sized system from twenty feet away if the screen were simply a blowup of a

conventional screen, but more effective use of such screen space would be for many

people to work on it simultaneously, moving in front of it, sharing information and

resources. A keyboard and mouse do not fit in well with this image. Keyboard

and mouse systems are also very obtrusive and are sometimes inappropriate, in

meetings for example.

Voice input, on the other hand, could work with a system of any size, since it

does not put limitations on the physical characteristics of the system. It makes

just as much sense to use voice with a notebook computer as it does to use voice

with a wall-sized computer. But, like keyboard input, voice input is not always

appropriate. In a business meeting, for example, there are many reasons not to

use voice, among them that it might be distracting or that the spoken information

might be confidential.

A stylus does not suffer from these difficulties. Like voice, it works well across

the range of systems, but a stylus does not broadcast its information. It makes

sense to use a stylus with a notebook computer, with a desktop computer, and with

a computer with a large display. It even makes sense for several people to use

multiple styluses simultaneously on the same computer.

Because a stylus works across the range of devices, it provides a consistent

interface as a user moves between different sy . ms. And because a stylus is

small, a user can carry one around or one can be mounted easily near the display

of each system. In addition, the stylus requires only one hand to operate, leaving



the user's other hand free for carrying a portable computer or for performing other

activities.

1.2.2 Applicable to many tasks

There are several different sorts of tasks for which the range of computer systems

described above can be used. One task is entering a large amount of text; some-

times it is necessary to get a lot of information into a computer. At other times,

only a small amount of text needs to be entered; e.g. specifying a file name or text

string for which to search. A third task is indicating a position in a document or on

the screen, or selecting a region of a document for extracting, printing, or as part

of an editing process. And, of course, a system must be able to receive commands

and instructions.

A keyboard is good for entering text, both in large and small quantities, if its

user is a good typist. If not, the process can be slow and tedious. A keyboard is

also fairly good for entering commands, although users sometimes have difficulty

remembering the many command names and their semantics. By itself, though,

a keyboard is not a good device for positioning and selection tasks, because a user

must either indicate positions by reference (line numbers, etc.) or by tediously

directing the movements of a cursor.

The addition of a mouse allows positions and selections to be indicated much

more easily, but introduces the problem that a user must move one hand back and

forth between the mouse and the keyboard. A mouse can also be used to press on-

screen buttons, to make selections from menus, or to invoke iconically represented

programs, greatly simplifying the specification of commands.

Voice input, on the other hand, has the potential to be a much faster text entry

technique than typing on a keyboard, although the necessary technology is not yet

perfected.' It is poorly suited, however, to other tasks. It is difficult to indicate a

'People can speak comfortably at between 150 and 200 words per minute, as compared with 40



two dimensional position on a screen using voice. And a command that is simple to

invoke with another input technology can be prohibitively awkward when spoken;

e.g. "Move cursor to end of line."

Other devices also have their problems. A thumb wheel, for example, can

replace the functionality of a mouse, and without the necessity for a nearby flat

surface. Its use is limited, however, without a keyboard, since there is no good way

to enter text with a thumb wheel; it is even harder to write with a thumb wheel

than with a mouse.

A stylus is a good compromise. It is not well suited for large amounts of text

entry, but a small amount is certainly feasible: a user can write the necessary

text by hand. And a stylus is even better for positioning and selection tasks than

a mouse or thumb wheel because a user indicates positions by placing the stylus

directly on the screen at the desired location. There is no cursor acting as an

intermediary.

Plus, a stylus has the potential to be a better device for specifying commands

than a mouse, since it can be used not only to press buttons or to select from menus,

but also to draw symbolic marks representing commands and, in some cases, their

parameters.

Touch sensitive surfaces are much like stylus sensitive surfaces, except that

they do not require a user to have specialized hardware. Although it might be

possible to use a touch system like a stylus system to specify commands, such a

system would be poor for other tasks, such as text entry and positioning, because

a touch system lacks the sharp point and fine dynamic control of a stylus-based

system.

to 60 words per minute typing. These statistics are cited as "self-measurement" in an unpublished
manuscript by Mark Stefik, Ibwards the Digital Workspace ([30]).



1.2.3 Ease of use and learning

In addition to being broadly applicable, a stylus-based system is easy to learn

and use. A stylus-based system is easy to learn because it involves no unfamiliar

skills. Gaining familiarity with a keyboard-based system requires a significant

investment of time for people who do not type. Other unconventional interaction

devices also require training. A "chord" keyboard might take even longer to learn

than a normal keyboard. And getting used to a thumb wheel is no trivial task. A

stylus-based system takes advantage of skills its users already have: using a pen

or pencil.

A stylus-based system can make use of writing and drawing. Such a system

can be simple and self-explanatory. And since it is an easy system to learn, it can

also be an easy system to use. Because a stylus is well suited for direct positioning

tasks, many options can be presented to a user at once, without fear of confusion

or difficulty in expressing a choice among them. With a thumb wheel or mouse, it

is much easier to position the cursor accidentally over an incorrect selection.

1.2.4 Speed

If well designed, a stylus-based system can be very efficient to use. A user can

communicate a great deal to the system with a single drawn symbol, making use

of its position, orientation, shape, and even the style in which it is drawn. With

one horizontal line, for example, an extraneous phrase can be removed from a

document. Rather than typing out lengthy command names, or trying to remember

cryptic, short ones, users can take advantage of natural, symbolic commands,

remembering them not only with visual memory, but also with the memory of the

muscles.



1.2.5 Overall comparison to other devices

Like many input technologies, a stylus is well suited to a broad range of systems

and situations. It is superior to other devices, though, particularly a keyboard

and mouse, by being portable, usable with one hand, and appropriate in many

situations where other technologies are not. In addition, a stylus-based system is

well suited to the tasks for which a computer is used, with the exception of the

entry of large amounts of text. Indeed, a stylus-based system is better for these

tasks than most devices: any amount of text entry with a thumb wheel is difficult

and voice is poorly suited for positioning.

Because a stylus is more widely applicable and better for most tasks than many

other devices, it is a good choice as the primary input device for new systems that

cannot easily be used with a keyboard and mouse. In addition, a stylus-based

system can be easy and fast to learn and use by taking advantage of users' existing

skills and knowledge.

1.3 This study

Computer systems are used for many things, from graphics arts to cartography

to VLSI design, but an important part of most applications is text processing. A

tremendous volume of information is available on computers, and much of it is in

textual form. Users search this text, read sections of it, change it, send it to other

users, and create their own new text. In addition, text is used to specify file names

and to label drawings, diagrams, and maps.

While there are also documents of other types (graphical, audio/video, mixed,

etc.), textual documents are such an overwhelming majority that any new interac-

tion device must ensure its usability with this medium. Consequently, the focus of

this thesis is on stylus-based interactions specifically with text.

We investigate the use of a stylus for entering and editing text. The goal was



to develop interaction techniques for text manipulation with a stylus, but not to

compare the stylus with other input media.

For our experiments we had a stylus-sensitive surface mounted over a Liquid

Crystal Display (LCD) and attached as a peripheral to a Sun workstation. Thus

software mockups could be created that used the stylus on the peripheral display

screen as if it were a self-contained system, but with the computational power and

development environment of the workstation.

1.3.1 Scope

Stylus-based interactions with text is a fairly broad area. Text comes in a variety

of styles (bold, italics, etc.) as well as fonts and sizes. And a stylus could be a very

good device for handling this complexity. We felt, however, that we should limit this

initial study to plain text in a single size and font. Once this topic is reasonably

well understood, it will make a good foundation for studies of documents with

multiple fonts, sizes, and styles.

1.3.2 Methodology

The methods used for this investigation were not those of detailed user studies.

We felt that a scientific study would require more effort than would be justified

by the precise results obtained. Instead, we took the approach of implementing

software that used the stylus on the display screen and then observing various

people using it, both in unstructured sessions and while performing a particular

task. With the insights gained from these observations, we improved the software

systems. This cycle was repeated several times.



Chapter 2

Previous and Related Work

A significant amount of work has been done that is directly or indirectly related to

this study. In addition to the large body of literature on the automatic interpre-

tation of hand drawn text, there has been a great deal of investigation of gestural

interfaces. A variety of other studies about input technology are also relevant.

2.1 Entering text by hand

For more than twenty years people have been attempting to solve the problems

associated with entering text into a computer system by drawing it with a pen or

electronic equivalent. Although there are many works on this topic ([35], [4], [14],

etc.), it is not a central focus of our study, and we will not discuss this literature

at any length. The reader is referred instead to the survey works that appear

periodically, such as those by Suen, Berthod and Mori ([31]) and Tappert, Suen,

and Wakahara ([34]).



2.2 Specifying commands with a stylus

A significant amount has been written on topics related to giving instructions to a

computer system by means of hand drawn marks. We have divided this literature

into several groups, but most works contain something related to each category.

2.2.1 People and drawing

Some of the literature focuses primarily on people's ability to use hand drawn

commands. Wolf ([38]) explores the ease of such commands and the consistency

people have with themselves and each other when using them. With Morrel-

Samuels, she also studies the use of gestures especially for text editing ([391) in

some experiments with paper and pencil.

Gould and Salaun discuss more general work on hand markings ([18]) and

describe a number of experiments (also using paper and pencil) in the manipulation

of both text and graphics. And Morrel-Samuels discusses the distinction between

lexical and gestural commands ([25]).

2.2.2 Examples

Many people have built actual systems to experiment with these ideas. Some

were built over twenty years ago, such as those by Sutherland ([32]) and Coleman

([11]), while others are more recent. Buxton, Fiume, Hill, Lee, and Woo ([5])

discuss gesture driven input in the context of an editor for sketches. Welbourne

and Whitrow ([361) describe a gesture based text editor, while Kurtenbach and

Buxton ([23]) describe an editor for graphics, especially interesting for its use

of circling as a selection method. Another text editor and some of the issues

involved in its creation and use is described by Kankaanpaa ([20]). There are

many similar systems, but by far the most complete one is the Penpoint operating

system, developed by the GO Corporation ([91, [8]). This system has been developed

20



specifically for computers whose sole input device is a pen. It includes hand print

recognition and gestural commands.

2.2.3 Interpreting marks

Some work focuses more directly on the task of interpreting the marks made

by users. Rhyne ([26]), for example, discusses the management of dialogues in

gestural interfaces. In particular, however, we found Dean Rubine's PhD thesis

from Carnegie Mellon University ([27]) to be most useful. This work is extremely

complete and we refer back to it later.

2.2.4 Other related work

There have also been a variety of useful studies of different input technologies.

Goodwin ([16]), for example, compares the lightpen (a type of stylus) to the light-

gun and keyboard in three basic tasks. And Gould and Alfaro ([17]) simulate edit-

ing text with several different input techniques and compare the results. Karat,

McDonald, and Anderson ([21]) compare several ways to select items from a menu,

and Jackson and Roske-Hofstrand ([191) explore circling as a method for selecting

objects in a document. Brown, Buxton, and Murtagh ([3]) experiment with some

novel ways to use an off-screen tablet and Whitfield, Ball, and Bird ([37]) compare

off-screen and on-screen touch devices.

Finally, there was additional work that seemed useful, such as a discussion of

The Reactive Keyboard, a typing prediction system by Darragh, Witten, and James

([12]), discussed in section 3.6.3. We were also interested in work on multiple

representations of documents, such as those by Chen and Harrison ([10]), and

Brooks ([2]), discussed in section 5.3.2.

Overall the literature was helpful, but there seemed to be insufficient study of

the user interface issues related to the entry and editing of text.



Chapter 3

Text Entry

T'bxt entry with a stylus is usually considered to consist mostly of hand printing or

handwriting recognition, interpreting the marks a user makes with the stylus as

text. There is much more to it than that, however.

One unresolved issue is when to interpret the text the user writes: Never?

When the user is finished entering the text? Or as the text is being entered? We

consider the last to make the most sense and implement a system of this sort to

explore ways to make text entry natural for users.

The hand print recognition systems used in this sort of interpretation need a

way to divide the users' input into single characters. Some characters consist of

only one stroke; others have several. How can the system determine which strokes

belong to which characters? Writing text into rows of boxes divides the strokes

into characters, but is unsatisfying. Rather than using an algorithmic way to solve

this problem, we explore a user interface solution.

Another issue is how to handle mistakes in the interpretation of the entered

text. How can the frequency of these mistakes be reduced? How can users easily

correct them? We explore the use of heuristics to reduce misinterpretation and

propose a general correction paradigm.

Some systems for recognizing hand entered text are trained to users' writing.

22



This training can be tedious and does not always reflect the actual ways users

enter text. We explore a method for training the system during the text entry

process.

More generally, there are many issues involved with making text entry seem

natural, allowing it to follow the user's normal process of composition. Users

should not be limited in how much text they can enter at once and should be able

to edit the text they are entering. We describe some features of our system along

these lines.

3.1 When to recognize

When text is being entered by hand, there are several possible times that the

system could interpret the text and convert it to a form more easily manipulable

by a computer. One choice is for the system never to interpret the entered text.

That is, the text could remain in the form of a drawing, either a bitmap pattern

or a series of consecutive points as traced by the tip of the stylus. Alternately, the

system could convert the drawing into text after a user has finished writing. That

is, the user writes a complete message or section, signifies to the system that the

text is complete, and then the system converts the hand drawn marks into text. A

third choice is for the system to interpret the text as a user is entering it. While

the user makes marks with the stylus, the previous marks are interpreted and

displayed as text on the screen.

Unrecognized text has only a few advantages over paper. A short note sent from

one person to another could be in this form, but could be delivered electronically

instead of physically. Another use might be a scrawled reminder set to pop up on

a user's screen at a particular time; unlike paper, this note can draw attention to

itself.

These uses have problems, though. Inevitably, the messages get saved or refer-

23



enced and a user desires to search through them or to manipulate their contents in

some textual way. Or part of a message originally intended as transient becomes

relevant on a longer time scale and a user wishes to copy the text into some other

document. Since the text is uninterpreted, though, it is much more difficult for the

computer to do any sort of matching or formatting.

In addition, the interpreted version of a block of hand-entered text is much more

compact than the uninterpreted version. If past history is representative, more

and more information will be stored on computers and keeping this information in

its ASCII representation uses significantly less storage than keeping it in a hand

entered form.

Interpreted text is not only more useful and compact than uninterpreted text;

it is also more flexible. Interpreted text can be displayed in any font or size, and is

easily reformatted for display in various system configurations. The question then

is: When should the text be interpreted?

The Penpoint system interprets text when the user signifies that the text en-

try is complete, for example by pressing the "ok" button in a text entry window.

Although this allows for flexibility in entering the text, there are problems with

leaving the text uninterpreted until its entry is complete.

One such problem is handling errors in the interpretation of the text. Automatic

hand drawn text interpretation is, by nature, imperfect, because hand printing and

handwriting contain inherent ambiguities. For example, a hand printed symbol

might lie somewhere between two letters, such as an 'n' and an 'h'. Humans are

able to read hand drawn text by making use of higher level information about the

expected content of the text, such as spelling and grammar. Although computer

systems can make use of some of this information (discussed below in section 3.3.2),

they are far from the sophistication of human readers. Consequently, the text

produced by the system when the user has finished writing may not be precisely

the text that the user intended, and some method for correction must be included.



Correction or editing of plain text with a stylus is not difficult to imagine, except

that it must include a way to enter text, at the very least to add letters that the

system dropped, or replace letters that the system recognized incorrectly. But what

if the text entered as a correction needs correcting? Furthermore, the established

paradigm for text entry in this sort of system is geared towards entering of large

blocks of text, and is consequently awkward for entering a single character or

word, such as might be necessary in a correction. Should a new text entry window

pop up on the screen when one character needs replacing? Of course, different text

entry methods could be used for bulk entry and for correction. Perhaps bulk text

could be entered by hand and corrections chosen from a menu or palette.

This approach has problems. The entry of text requires the user to go through

two distinct phases: the initial entry of the text and the correction of that text.

Furthermore, the method of text entry in those two phases is different: in the

initial phase text entry is done by hand drawing the text, while in the correction

phase text entry is done by some other method.

An additional difficulty with not interpreting the text until a user has finished

writing it is that this does not allow the user to edit the text being entered. It

is one thing to correct a few misrecognized characters; it is another thing to add

a sentence or change several words. Because it is very difficult to edit the text

before it has been interpreted, such editing would probably be left to the correction

phase. But this is awkward, as it is desirable to be able to change the entered text

while it is being entered; while the user's thoughts are on each partially completed

sentence.

Our conclusion, then, is that text should be interpreted as the user is entering

it. This text can easily be edited and new text can be inserted smoothly, since

the established entry method is for the system to interpret the text automatically

shortly after the user enters it.

25



3.2 Segmenting

Of course, the recognition techniques used for the different interpretation paradigms

could be different. A recognizer for large blocks of hand drawn text could attempt

to recognize large pieces of the text at once, perhaps with some method of word

or phrase shape recognition, whereas an "on-the-fly" recognizer is more likely to

attempt to recognize individual characters.

In the recognition of individual characters, it is necessary to segment the drawn

strokes; that is, to determine which strokes constitute a single character. The

easiest way to do this is to require that each character be drawn in a separate

box, such as in filling out a form. Figure 3-1 shows a line of boxes, in which

several characters have been entered, some of which have been interpreted. These

boxes and the feeling that entering text is like filling out a form, however, are not

desirable in many applications.

Characters already interpreted

F" Characters not yet interpreted

Figure 3-1: Drawing each character in a separate box.

An additional problem is that the system has no way of knowing how much text

a user wishes to enter. The system might present one or more rows of boxes, into

which text can be written, such as in figure 3-2. If the user intends to enter only

a small amount of text, such as a single word or character, then there are many
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extraneous boxes. If the user intends to write several paragraphs, then there are

most likely too few boxes. In either case, the user is entering only one character

at a time, so almost none of the boxes need to be visible.

Figure 3-2: Several rows of boxes, into which text can be written.

3.2.1 The segmenting cursor

Instead, only the box into which a user is writing a character needs to be visible.

After the user has entered that character, the box moves to the next position and

the user can enter the next character.1 In our system, text is entered into boxes

one character at time and the boxes move as the characters are entered.

The problem with this idea as we have described it so far is one of synchro-

nization. How does the system know when to move the box to the next position?

Must the user wait for the system to realize a character is completed, or is the

user required to keep up as the box moves ahead at its own rate? Neither of these

techniques is desirable.

A slightly different version is one in which both the box in which a user is

writing and the boxes into which the user is likely to write next are visible, as

in figure 3-3. Thus when the user has completed a character, there is no delay

before moving on to the next character. When the user begins writing in a new

'This idea thanks to David Gifford of the MIT Laboratory for Computer Science.
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box, the system can safely assume that the user has finished with the character

in the previous box, and move the boxes. The system provides not only the box

immediately following the current character, but additional boxes in case the user

wants to skip a space or move to the next line.

Box in which current
character is being drawn

Interpreted text I

ENTERING TI

0-- Boxes for next character

Figure 3-3: Displaying only the box in which a user is writing and the
boxes into which the user is likely to write next.

These boxes behave much like a traditional cursor, "running" along the leading

edge of the entered text, marking the insertion point. They have the additional

feature, however, of segmenting the user's marks into distinct characters, easy for

the system to interpret. This is the derivation of the name "segmenting cursor."

In addition, the segmenting cursor tells the system when to interpret a charac-

ter. If a user puts the pen down outside of the current box, then the character in

that box is most likely completed and can be interpreted. 2

Another complexity of the segmenting cursor arose, however, when users ac-

cidentally put the pen down in the wrong box. A user might intend a stroke to

lie in one box, but accidentally begin it in an adjacent box. As described so far,

2Admittedly, this is not always true. Some people finish a word before dotting their i's or crossing
their t's. Although we did not have the opportunity to experiment with this, the system could delay
the interpretation of text until several characters have been entered or until the user has skipped
a space, if that were more effective. We did not encounter any problems with interpreting text
immediately, though, once we explained the constraints to our users.
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the segmenting cursor moves (and any uninterpreted character is analyzed) as

soon as the pen touches down. To compensate for this problem, we modified the

system so that a character is not interpreted until one stroke of the next character

drawn has been completed or one second has passed. In this way, if a user begins

a stroke in one box, but the stroke lies primarily in another, the system moves the

segmenting cursor to the location the user most likely intends and does not yet

interpret the character at that location (in case there are more strokes to draw

for that character). If the user's hand moves away from the screen, however, any

uninterpreted character is converted to text after one second has passed.

The segmenting cursor prevents text entry from seeming like form completion,

but is still an effective way to separate characters. Our test users had no trouble

using it to enter both text we specified and text of their own devising.

3.3 Misrecognition

Hand drawn text is ambiguous not only to computers, but also to humans, includ-

ing sometimes even the person who originally wrote it. It is no wonder, then, that

this type of software occasionally misrecognizes characters. Our system includes a

simple heuristic, based on the expected input, to reduce the frequency of misrecog-

nition and a general paradigm for correcting mistakes that is simple, effective, and

applicable to the correction of a wide variety of errors.

3.3.1 Our recognition software

The recognition software available for this study has several models of each

character.3 It interprets a group of strokes by comparing them to every model

and choosing the best match. It requires, however, that the group of strokes

comprise exactly one character.
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It is efficient enough that it can run on a Sun SPARCStation-1 and leave more

than enough computational power for tracking the stylus and handling other rou-

tine activity while still performing its recognition in real-time. That is, it is capable

of recognizing characters as fast as we can draw them.

In addition, it can return not just the character that best matches a drawn

symbol, but the best several matches, with an indication of the degree of matching.

This will become important in the discussion below of reducing and correcting

misrecognition.

3.3.2 Reducing misrecognition

Obviously, it is desirable to reduce the number of characters recognized incorrectly

by the system. Although we did not pursue this line of study extensively, we

attempted to determine if simple heuristics based on knowledge of the expected

input could make the system significantly more accurate. If the text to be entered

were known to consist only of digits, for example, the system could be much more

accurate, since there would be fewer characters to distinguish.

Rather than attempting to make a comprehensive partitioning of possible input

sets, however, we decided to ascertain merely whether the accuracy would improve

if the input were known to be English text.

For this purpose we use a table of English letter digraph frequencies generated

from a large quantity of available text. 4 The statistics thus obtained are of the form

P, = P,IP,; that is, for any two characters, x and y, the probability of character y

appearing in the text given that the previous character is known to be character x.

When interpreting a character, then, we used a heuristic based on these proba-

bilities. Rather than generating the single best interpretation for a drawn charac-

ter, the hand printing recognition software generates the four best interpretations

4An on-line version of Grolier's Encyclopedia and the New York Times monthly summaries for
most of 1990 - about 220 megabytes of text.



with an indication of their relative fits with the user's marks. When several of

these possible interpretations are roughly equally good matches with the drawn

character, and one is more than 100 times more likely to follow the previous char-

acter than the others, then the likely character is chosen as the interpretation.

For example, if the user were to write something that could be either an 'n' or an

'h', when the previous character is a 'c', then the system would interpret the marks

as an 'h', even if the 'n' were a slightly better match, because the probability of an

'h' following a 'c' is over 1400 times higher than the probability of an 'n' following

a 'c'. s This does not mean that it is difficult for a user to write "cn" because the

heuristic only fires if there is reasonable doubt as to what symbol the user drew.

This heuristic is fairly effective. The system seems much more accurate, al-

though there are still occasional errors (especially confusion between similar let-

ters that could function similarly in a word, such as 'a' and 'o', which are similar in

some people's printing). Naturally, the system is much more accurate when enter-

ing English text than when entering non-English strings of letters and numbers.

Our experiments with this heuristic showed two things. One is that this par-

ticular heuristic is useful for significantly reducing misrecognition at a very low

computational cost. The other is that such heuristics can be added on top of a hand

printing or handwriting recognition system to provide a benefit without being inte-

grated into the recognition system itself. That is, different heuristics can be used

for different classes of expected input but with the same recognition software. The

improvement in accuracy can be layered on top of a basic system.

3.3.3 Correcting misrecognition

Even with some knowledge of the expected input, a text entry system will still

sometimes come up with an interpretation of a user's writing other than what the

5According to the statistics we generated, the probability of an 'n' following a 'c' is 0.000090,
while the probability of an 'h' following a 'c' is 0.133017.



user intended. This may be caused by ambiguities in the system, or it may occur

when a user writes a particular character messily. Whatever the reason, there

are times when the interpreted text contains errors.6 Even the best systems have

accuracy rates of around 95%.7

In order for these errors to be corrected, they must first be identified. Although

it would be desirable for the system to identify errors, it is very difficult, since an

error is simply a place where the interpreted text and the user's intended text do

not match. For example, the system could check the spelling of each word in the

interpreted text. This would provide some hints as to which portions of the text

were correct and which were not, but it would not be at all reliable. The word

"cat" is spelled correctly, but might still be an error if the user intended "cot," and

"Media-lab" or "PARC" might not be in a spelling list, but might not be errors

either.

For reasons of this sort, it must therefore be left to the user to identify errors.

We now determine how the user should signify these errors to the system and what

the system should do once an error has been identified.

Whatever a user does to point out an error should be easy and quick. When

writing text with a stylus, the user should be able to correct misrecognitions while

writing, without having to stop, correct, and then try to get back on the track of

the text. We propose that the user simply tap the tip of the stylus once on any

errors to mark them. This is a quick motion and one that is easy to do accurately.

When the user indicates an erroneously recognized character, the system should

attempt to correct it. If the recognition software's first choice for the character is

not correct, one of its other choices often is. And if two of these other choices are

equally good matches with the drawn character, the same heuristics used to pick

the first choice can be used to choose between them.

6We exclude those errors which occur when a user writes a character other than the one intended.
7Appendix C of "The Power of Penpoint" ([8]) lists the character recognition of the Penpoint

system as 94%, for example.
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Consequently, as a user writes, occasional characters are interpreted incor-

rectly, but the user periodically taps on the incorrect characters and they almost

always become correct.

We experimented with other ways of making use of the different possible inter-

pretations of each character but found the above technique to be the most effective.

Displaying the system's best guess for an alternate interpretation was too distract-

ing; either the alternate characters were large enough to pull the user's attention

away from the task at hand or they were too small to be useful. We tried putting

each alternate letter in a small button near the original character and allowing

the user to press the button to select an alternate letter, but found this awkward

as well.

The system's alternate choice for a character might be wrong, so tapping on the

original error might not have fixed it. In this case we found that it made more

sense to have the user redraw the character than to present any more alternates.

In a well-trained system any character not recognized as either the system's first

or second choice is probably not drawn well enough for the system ever to recognize

it, and the user will do much better to redraw it."

Thus, if a user taps on an already corrected letter, the system moves the seg-

menting cursor (the box in which characters are drawn) back to the location of the

mis-entered character and allows the user to re-enter it. Then the cursor returns

to its previous position.

In practice we found that users redrew characters more frequently than we

had expected. This was partly because they occasionally had trouble using the

hardware and thus drew badly formed characters (especially when they were first

introduced to the system), and partly because this was an easy way to correct

8 This is not always true. In many people's handwritings, the uppercase 'O', lowercase 'o'. and
zero are all identical, so the system's second choice might not be correct, even though the character
was well drawn. The heuristics based on expected input prevent this from causing problems in
most cases, however.
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errors that they had made (as distinct from errors the system had made), such as

drawing an 'a' when they intended an 'o'.

We had not originally intended a double tap to mean "replace character," but

it fit in well with the other actions we included for correction and editing of the

entered text. (See section 3.5 for more on editing text while entering it.)

Obviously there are other things the system could do to correct errors once a user

identifies them. The system could look for words spelled similarly to the erroneous

word in a dictionary. Then it could either display them for the user to select or

make an intelligent guess as to which word the user intended (perhaps making

use of the alternate choices for characters in the incorrect word, grammatical

analysis of the text, etc.). Although we did not experiment further along these

lines, correction with the tapping gesture is easily expandable to a variety of

"intelligent" or user-guided correction mechanisms. Tapping does not specify the

scope of an error, nor does it specify what method the system should use to correct

the error. Consequently, it can be used to signify any error, and an intelligent

system can determine both the scope and an appropriate correction method for the

error. Thus a user must remember only one gesture for indicating errors and can

be confident that the system will respond reasonably, either by correcting the error

or by providing choices of corrections or correction methods.

3.4 Tuning model letters with user interactions

The hand print recognition system we used works by comparing the marks drawn

by the user with a number of models, and determining how well the user's marks

match each model. Except as adjusted by the heuristics described in section 3.3.2,

the interpretation of each character is the letter associated with the model that best

matches the drawn marks. Sometimes, the user draws marks that are interpreted

as a character other than the one the user intended, for one of two reasons. The



user could have drawn a badly formed character, one that more closely resembles

a model for a character other than the one intended. Or, the models for the two

characters that were confused could need adjustment. In the second case, either

the models for the character the user intended to draw need to look more like the

marks the user drew, or some model of the character the system thought the user

intended looks too much like another model and needs to be changed or eliminated.

Since our system can have multiple models for each character, it is possible for one

or more of those models to be incorrect or extraneous.

Sometimes two characters are actually drawn very similarly by a user. For

example, a lowercase '' might look very much like an uppercase 'I. In these cases,

the system must rely on reordering heuristics and easy correction methods to

obtain good behavior. If the user draws two characters in the same way, there is

nothing the system can do (looking only at a single character) to tell the difference

between them.

Tuning the models can be done most easily with user intervention. It is the

user who must make the determination between a well-formed and a poorly-formed

character. Since the system is attempting to recognize the user's handwriting, it

has used all its information about what those characters look like to make its

guesses about which character the user drew; it has no other information about

what a character "should" look like (although we discuss ways the system could

get around this difficulty and tune itself in section 3.6.2 below).

We decided that any character that the system interprets correctly is probably

represented by a good set of models; that is, the models for the character do not

need adjusting. If the user corrects a character, then it is possible that the marks

the user drew were actually a well-formed character and that the models need

tuning. Since the user must make this determination, the system must supply two

things: the marks the user originally drew and a way for the user to inform the

system whether or not the models should be tuned.
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To show the original marks the user drew, we simply pop up a small window

containing those marks above a character when it is corrected. This is shown

in figure 3-4. In addition we create a small button below the character that the

user can push if the displayed marks look like a well-formed character and the user

wishes to tune the models. This is less intrusive than many other methods because

if the character was poorly formed or if there is no desire to tune the models, the

user can simply continue entering text and the popped up window will disappear.

'- Original strokes

CHAPACTER

Incorrect character " Tuning button

Figure 3-4: Showing original strokes in a character being corrected.

Experimentation provided several twists on this practice. It seems to be gen-

erally the case that most people's handwriting contains at least one pair of letters

that are formed similarly. Much of the time, ambiguities between these letters

can be removed using the heuristics described in section 3.3.2. In cases where

the heuristics fail, the tap-for-second-choice gesture generally provides the correct

interpretation without disturbing the user's flow of writing. In order to maintain

this smoothness, we decided that the original strokes and model tuning button

should only pop up for characters that had to be redrawn. These were characters

for which there was a serious problem, since neither the first nor second choices

were correct. Thus, in normal writing, there aren't original strokes and tuning

buttons popping up constantly, but only in cases where gross misrecognition has

occurred.

Another slight variation is based on the observation that people often want
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to finish writing a word or phrase before tuning the model letters, even when

they are sure they wanted to do this tuning. For this reason, the tuning buttons

remain beneath redrawn letters even when a user is entering new text. The tuning

buttons serve the double function of both allowing the user to tune the models and

marking which characters were redrawn so the user can go back and tune them at

any convenient point.

3.4.1 The tuning process

When a user presses a tuning button, the system pops up a special tuning window.

A sample tuning window is shown in figure 3-5.

f - Set of buttons to indicate correct interpretation
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Figure 3-5: A sample tuning window.
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We tried including various things in this window, and eventually decided on

the following:

* The original strokes the user drew. The tuning window may have covered

the input area, and the user may wish to compare the drawn character to the

existing models.

* A set of buttons containing all possible input characters. If the system is

unable to recognize a particular character, then the user must have some

way of indicating which character was intended. When the user presses one

of these buttons, the set of models for the character in that button is displayed

and it is assumed that the character in the button is the character the user

intended to draw.

* The set of models for the letter the system thinks the user's marks represents.

If the user successfully corrected the character before pressing the tuning

button, then this is the character the user intended. If the user has pressed

one of the buttons described in the previous paragraph, then the system uses

that character. The model that most closely matches the drawn strokes is

highlighted.

* The set of models for the character that was the system's original interpre-

tation of the user's strokes. The model for this character that most closely

matches the drawn strokes is also highlighted. Along with each model, both

of this and of the correct character, is a button that allows the user to remove

the model, if it is not a good example of the character.

* Several other buttons. One button causes the drawn strokes to be included in

the models for the "current" character. Either they are added as a new model

or they are averaged into an existing model (if they resemble that model

closely enough). Another button causes the models for the system's second

38



choice for the drawn strokes to be displayed, so the user can remove any of

those that are incorrect. A third button dismisses the tuning window.

Although we were able to use this tuning method quite effectively, and quickly

tuned our character samples to get very high accuracy, the tuning process is an

additional burden on users. Some who were familiar with the character recognition

process understood the concepts behind the models and were able to use the tuning

window, but others found it confusing. Section 3.6.2, below, describes some ways

that user-directed tuning could be performed automatically.

One thing that works well about this method is that tuning happens during

text entry, so that it accurately reflects the characters users write, rather than

the characters users wrote when initializing the recognizer. Another thing that

works well about it is that the models' accuracy increases more quickly than if

this were done automatically because the user decides which models need tuning.

Also, since the user is only tuning the models for one or two characters at a time,

the tuning is just a small inconvenience, but still has dramatic results.

3.5 Making the usable useful

All these pieces put together make for a reasonable system, but it is still certainly

nothing one would want to use on a regular basis, even just for entering short

strings. Some additional functionality makes the system much more useful. Users

should not be limited in how much they can write and should be able to delete and

insert text as they are entering it.

3.5.1 Writing more

One problem with a notebook-sized computer is that the screen is very small. Add

to that the fact that in order to get reasonable recognition and to prevent hand

cramps the user must write letters at least 3ths of an inch high and it quickly



becomes apparent that there is not room to write much. In addition, it is desirable

not to use the entire screen as an input area, as the user may need to view other

material when entering text.

In a system with a keyboard, this is not a problem because the entered text

can automatically be scrolled off the screen as a user types. This doesn't work

with a stylus-based system, however, because the user directly positions the tip of

the stylus in the place where the next character goes. The system can't scroll the

entered text out from under the user's pen!

One effective solution is to add a small button marked "more" to the input area.

When the input area is filled, the user simply presses the "more" button and the

entered (large) text is pushed up out of the input area into a smaller font. The

user can still read it, but the input area is now available for more text entry. This

is analogous to pressing the "return" key on a typewriter. Figure 3-6 shows some

text that has been pushed out of the input area and some additional text that has

been entered after the more button was pushed.

The user must also be able to retrieve that text, in case it contains errors, and

edit it (see below), so the smaller text takes the form of a button. When the button

is pushed, the small text moves into the input area (where it can be manipulated)

and the current contents of the input area are pushed to below, as in figure 3-7.

This allows users to write full-sized letters, yet still enter a reasonable amount of

text.

3.5.2 Deleting text

As people write, they often edit their text. Sometimes a user will accidentally write

an extra character. Sometimes a user will misspell a word. Sometimes it may be

that the text isn't pleasing and an entire word or phrase should be removed. When

writing on paper with an ink pen, one simply crosses out the extraneous material.

This is a natural gesture with a stylus too.
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Consequently, we implemented two further editing gestures (beyond the tap-

for-second-choice gesture). One is the delete character gesture (a vertical stroke

through a character), and the other is the delete word gesture (a horizontal stroke

through several characters). These gestures are easily distinguishable from new

text because they occur over characters that have been previously entered and

interpreted. The delete character gesture removes a single character and closes

up the space it occupied - it could be used to correct "coat" to "cot." To replace a

mis-entered or misrecognized character, a user simply taps twice and redraws it -

for example, to correct "cot" to "cat." The delete word gesture actually deletes any

contiguous string of characters.

These gestures proved easy to use and easy to understand and test users got

the hang of them quickly.

3.5.3 Inserting text

Often text needs to be inserted. In some cases the text to be inserted is a single

character, such as to correct "cot" to "coat." Here the system should open up only

a single character space for the new character. In other cases, however, the user

may want to insert a whole word, or even as much as a sentence, and needs a way

to open up an unlimited amount of space. Rather than having two gestures to

remember, we formulated the following scheme. If a user makes a caret between

two characters, a single character space opens up and the segmenting cursor moves

to that space so the user can enter the new character, as shown in figure 3-8. If

the user makes a double caret, however, (by making a second caret to the left of

the space opened up by the first caret) we split the text in the input area in half,

pushing half of it upwards, as if the user had pressed the "more" button, and half of

it downwards, leaving the input area free for the insertion of an arbitrary amount

of new text. This is shown in figure 3-9.

Because these gestures (the delete marks and the insertion caret) are similar
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to common proofreading marks, our test users found them easy to understand and

make. These marks are natural for editing text as it is being entered. A more

detailed study of text editing is made in chapter 4.

3.6 Future improvements

This interface for entering text is fairly effective. Several members of the research

and secretarial staff tried it (as our test users) and found it reasonably simple to

learn and use, even with various amounts of familiarity with the project.

Although the system worked reasonably well, there are a number of improve-

ments that seem feasible and that we did not have time to implement fully. In

particular, it would be nice if users were not required to write in boxes, and if the

system were capable of tuning its model letters itself, without user intervention.

In addition, the system could possibly supply ways to reduce the amount of text

users must actually write.

3.6.1 Getting rid of the boxes

The segmenting cursor dramatically reduces the sense that one is entering text

into boxes on a form. Nonetheless, it is desirable to eliminate the necessity for

boxes altogether. Some experiments were performed along these lines with the

recognition software and it seems feasible, although somewhat more computation-

ally intensive, to recognize unsegmented characters. There are other difficulties,

however.

It is very clear to almost all users, when they are writing in boxes, that each

character must be written in a separate box. Almost no users wrote letters that

were connected. Without boxes, however, users tend to write certain familiar

groups of letters as a single character, such as 'th' or 'ing'. Even when instructed

specifically not to connect adjacent characters, users were unable to prevent this.
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The problem was even more dramatic when they were using a pen and paper. So as

stylus and screen hardware improve, this problem will become more pronounced.

Rather than attempting to prohibit this behavior, we propose that it be allowed

(or perhaps encouraged) and that these handwritten 'ligatures' be included in the

set of user characters. It is unclear how well this will work, as users may begin to

string all their characters together, but it is an approach that bears investigation.

3.6.2 Tuning without user intervention

Another inconvenience in the system as it currently stands is the process by which

the recognition system is tuned. A user must understand some key concepts about

the recognition system in order to tune it, such as the fact that it recognizes char-

acters by matching them against models and that the system maintains multiple

models of each character. It might be possible, however, to tune the recognition

models automatically without user intervention, or to tune them with a simpler

form of user intervention.

The recognition models need to be tuned while the user is writing normally,

because users do not seem to have a good sense of how they actually form char-

acters. When users were asked to write a set of sample characters, forming them

normally, they made characters very different from those they made in regular

writing.

One way to tune the model characters without user intervention is to use

heuristics to identify good and bad models. One such heuristic might be as follows:

If a model is used to identify a character that is subsequently corrected to a different

character, then that model is marked as potentially incorrect. If a model is used

to identify a character that is not corrected, then that model is marked as likely

being correct. If a model receives a large number of "incorrect" marks, but few or

no "correct" marks, then it is likely a poor model and should be removed.

Another heuristic, which is more dangerous, might be used to improve the



models. A character that is written, identified, and not corrected is possibly a good

model and could be included (or averaged) into the set of existing models. This

is dangerous because the character could have been misrecognized, but the user

could have missed the error. In this case. the set of models could become worse by

the inclusion of an erroneous character.

Alternately, some input from the user could differentiate between well-formed

and poorly formed characters. The system could periodically prompt the user to

decide which of two characters was better formed; preferably some time when the

user was not in the middle of something else. 'ITo make this less intrusive, the

prompting could be done in a small, nearby window that the user could ignore. It

is not clear how this could be done most effectively, but it is a good area for further

study, because we found incremental tuning of the recognition system to cause

dramatic improvements in recognition rates.

3.6.3 Writing less

Another problem with our current system is that, at its core, it is a tool for text

entry by the laborious process of hand printing each character. Allowing a user

to write in some form of script might make the system more natural to use, but

would probabl- , not be a significant improvement; users would still be required to

write out all the text they wished to enter. Modifications to the system to reduce

the amount of writing necessary would make text entry significantly faster. The

system could complete words partially written by a user, predict the text the user

was about to write, or provide some method of quickly copying text to the insertion

point from some other place in the document.

Completion

Many screen editors have a word completion feature. The user types part of

a word, presses the word completion key, and the editor searches for a likely
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completion for the word, either from the text already entered or from a dictionary.

This technique could also be applied to stylus input. We did some very simple

simulations, however, and found that the savings (in number of characters still

necessary to draw) was almost always insignificant, especially considering the

extra work necessary to call up the completion.9

Prediction

Another method for reducing character entry is that described in a paper by John

Darragh, Ian Witten, and Mark James ([12]) about a system called The Reactive

Keyboard. In this scheme, the system predicts what characters the user will type

after each entered character and the user has the option of accepting any number

of those characters or entering another character. An example of this scheme

adapted to a stylus-based system: At some point the user might have written

the string "A stylus-ba" in the process of entering the sentence "A stylus-based

user interface is very useful." The system at this point might be predicting that

the following characters were "sed user interface could be used," based on what

the user had entered earlier in the document. The user could accept the predicted

characters as far as they were correct, and then hand print the rest of the sentence,

for a significant savings in entered characters.

We did two tests along these lines. One was a statistical simulation of this sort of

prediction over a number of textual documents. In general, if we assumed that the

user would only accept the next few characters if the first five or more of them were

correct, then approximately 30% fewer characters needed to be entered, depending

on the sort of document. In documents with a significant amount of repetition (for

example, legal documents), this percentage could be higher.

9The simulation consisted of scanning a text document and attempting to complete words of
more than five letters, using only the first three and searching backwards in the document for the
first match. Obviously there are other, more sophisticated completion methods that might be more
effective.
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The other test was to bring this type of prediction into the existing text entry

system. We tried this by floating a small 'button' containing the predicted text

next to the segmenting cursor. As the user writes, the text in the button changes

to correspond to the next prediction. If the user wishes to accept part of the

prediction, it is necessary only to press the button at the point in the text where

the prediction is correct. In the above example, therefore, the user would have

entered "A stylus-ba" and the button floating next to the final 'a' would contain the

text "sed user interface could be used." If the user pressed on the button over the

second 'e' of "interface," then the text "sed user interface" would be included into

the entered text, as if the user had written it by hand.

This is not particularly effectiv3 in our system because the prediction is based

on the previously entered text, and in order to get reasonable prediction, a fair

amount of text must be entered. Since we were using the system to enter small

amounts of text, the prediction was not that good. This does not mean that this

method could not be used effectively; the prediction might be good for entering

text in the middle of large documents, since the prediction could be based on the

rest of the document. In fact, we did a statistical simulation of this, in which we

removed a single sentence from a document and then attempted to predict that

sentence. In general, the results were almost the same as predicting regular text

being entered: a reduction by about 30% of the entered characters. Although this

is not phenomenal, it is certainly worth considering.

Our "floating button" method is probably not the most effective way to present

the predicted text. One problem with it is that the button must be to the right of

the entered text, since that's how the text would be entered, but in that position

the user's hand sometimes covers the button. Another problem is that it is too

much trouble to decide whether the predicted text is sufficiently correct to switch

from entering characters to accepting part of the prediction. This might be a

problem in any prediction system, or it might be eliminated if the predicted text



were presented differently. In any case, text prediction could be used to reduce

the amount of text that actually needs to be entered by hand and should be given

further study.

Quick copying

A third method for reducing the number of characters entered is to give users some

quick way to copy existing parts of the document. For example, if a simple gesture

indicated that a word should be copied from its position in the document to the

insertion point, then a user could make a gesture to copy a word instead of hand

entering it if the word were easily accessible in the document. We did not have the

opportunity to experiment with techniques of this sort, but they could be useful.

3.7 Summary

There is much more to text entry with a stylus than recognition of hand printed

characters. Users must be able to edit the text they are entering, and this is

facilitated by nearly immediate feedback of the system's interpretation of their

writing. Users should also not be restricted to entering only the amount of text

that will fit into a window. Since recognition systems are imperfect, users must be

able to correct mistakes. Tapping on errors either to correct them automatically

or to re-enter a character is an easy way for users to handle misrecognition.

In addition, text entry systems are complicated by technical issues. A user's

marks must be segmented into characters; the segmenting cursor provides a way

to accomplish this without presenting the user with rows of boxes. And the ability

of the system to recognize hand entered text can be dramatically improved if its

models of each character are tuned during the text entry process.

Our implementation of these ideas provides a good system for text entry, but

there is always room for further study.



Chapter 4

Text Editing

Although the previous chapter describes ways in which a stylus-based system can

be used for text entry, a keyboard is usually better suited for this task. For the

task of text editing, however, a stylus-based system is better than most. A stylus

is well suited to the type of interactions necessary for text editing, and many of

the situations in which a stylus-based system would be useful involve text editing

and manipulation.

But how should a stylus be used for text editing? Text editing with a mouse

consists primarily of selecting regions of text and operating on them by pressing

on-screen buttons or selecting options from menus. With a stylus, however, a user

can draw marks on the text to edit it, much like editing on paper; the system can

utilize a "gestural" interface.

This brings up the issue of what gestures the system should understand. Users

must not be required to remember too many gestures and the gestures must be

sufficiently different from each other that users can tell them apart. Plus the

system must be able to recognize the gestures. This is a different problem than

the task of recognizing characters, because gestures can be made in many sizes

and orientations.

Then there is the question of how the input of new text should interact with
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the editing process. Should text entry be integrated with editing? Or should it be

a separate mode? Our system uses modal text entry, but we discuss both options.

Despite the use of gestures for most editing tasks, it is still necessary to select

regions of text. There are many different ways to select a region with a stylus,

such as circling it or marking its ends, and our system allows several of them.

In the process of building our system, we asked several test users to perform

certain editing tasks to help us ascertain the usefulness of various features and

generate ideas for improvements. With their feedback, we made some additions to

the system to make the editing process more natural.

4.1 Making a case for a "gestural" interface

There are a variety of ways to use a stylus for text editing. It could be used like a

mouse to mark regions and occasionally, with menu selections, to perform common

editing operations such as copying and moving. What seems to make more sense,

however, is an interface based on drawing marks. A stylus is similar to a pen;

when a user puts the tip of the stylus on the screen surface, it leaves a mark.

Because this is an operation with which many people are familiar, it makes sense

to use this sort of interface to communicate with a computer system.

An interface in which commands are communicated to a computer by drawing

lines with a stylus is known in most of the literature as a "gestural" interface. Of

course, it does not involve most gestures, but since it is a common term, we will

use it here.

A gestural interface makes sense C ,ause it takes advantage of the character-

istics of a stylus. Like a mouse, a stylus is good for indicating a position on a

computer screen. Rather than moving a cursor to an area to be edited, a user can

make the appropriate editing mark directly on the text in that area.

Unlike a mouse, it is easy to draw with a stylus. Thus editing changes can be



communicated to the system by drawing some representative gesture rather than

keying in a command or dragging through a menu tree to an appropriate selection.

4.1.1 "Chunking"

In the design of a system with gestural commands, it is desirable that a command

correspond to an operation in the mind of the user issuing it. For example, if a

user wants to delete a region of text, the necessary action should encompass that

entire command: the location and extent of the text, and the fact that the text is to

be deleted. The user should not need to mark the beginning of the text using one

command, the end of the text using another command, and then indicate that the

text is to be deleted with a third command. There should not be several separate

commands to perform a single action.

It is necessary to make tradeoffs, however. If each action and all the associated

parameters were indicated with a single command, then there would be too many

commands to remember. But common commands can be designed so that the

desired result is expressed in one action by the user. That is, the "chunk" of action

that occurs when a user makes a command should correspond to the "chunk" of

action that the user is trying to accomplish, at least for common commands.

Gestural editing is well suited to this requirement. Because editing marks

can be drawn directly on the text to be effected, they can include the location and

extent of the text as well as the desired change.

4.2 Choosing gestures

Once we have determined to use a gestural interface for text editing, we must

choose a set of gestures. They must be different from each other and familiar

enough for users to remember.

The gestures must be different from each other for the benefit of both the
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users and the system. If two gestures are similar, a user may have difficulty

remembering which one has which function. There might also be a problem with

people drawing a gesture that looks too much like another gesture. Gestures

that are very different from each other are also easier to distinguish during the

recognition process (described below in section 4.3).

The gestures should be familiar to users. The gesture for a particular function

should be what a user expects to draw to indicate that function and the function

of a gesture should be the one a user would expect. For these reasons we chose

gestures that are simplified versions of common proofreaders' marks. We identified

a set of simple editing commands that seemed useful in an experimental system

and chose gestures for those commands. The functions we chose include: delete

character, delete word(s), insert, and transpose, and their gestures are pictured in

Figure 4-1. The system actually understands several other gestures, but they are

described later in sections 4.5 (on selection) and 5.2.2 (on undoing).1

Gesture Function Examples

/ delete character ooft

delete word(s) * a=rLW-.- - 9- large part

A insert arprt
a prt

transpose Th. (--qu io fox

Figure 4-1: Some of our gestures for text editing.

We chose these marks because they are similar to common proofreaders' marks,

'These gestures are similar to those described in FIDS -A Flat Panel Interactive Display System
([201) and A Gesture Based Text Editor ([36]). Both of these works also use simplified proofreaders'
marks.



but much simpler, and because they are very different from each other and, con-

sequently, easy for users to remember, easy for users to make, and easy for the

system to interpret.

Actual proofreaders' marks are not well suited to gestural editing. Because

they are designed to communicate clear corrections on pages set with lead type,

proofreaders' marks include many extraneous strokes. For example, the mark for

deleting a character is a strike through the character (indicating that it should be

removed), and two other marks indicating that the space the character occupied

should be closed up. In a computer system, however, the space occupied by a

deleted character should almost always be closed up, so this should not require a

three stroke gesture. With our gestures the common case can be communicated

in one stroke, and the uncommon case, in which the character should be removed

and a space left in its place, can be communicated in only two (a delete gesture

followed by an insert or a double tap).

Most proofreaders' marks suffer from similar unnecessary complexity. And

many of them consist not only of marks on the text, but several character de-

scriptions of the required changes written in the margin. To delete a phrase, for

example, a proofreader marks the phrase as it occurs in the text, and then writes

"del." or some similar abbreviation in the margin. Stylus-based editing has the

capacity to be much simpler than this, so gestures can be based on proofreaders'

xnvarks, because many people are familiar with them, but should not be those marks

eilsJy.

4.3 Recognizing gestures

When a user makes a mark on the screen with the stylus, some method must

be used to interpret that mark. This is not as constrained a problem as the

interpretation of characters, because some gestures can be formed in a variety of
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styles, sizes, and orientations, all by the same user. In addition, even if a gesture

has been identified as belonging to a certain class (e.g. a delete gesture), the system

must still identify the parameters to that class (what to delete).

4.3.1 Nonsensical gestures

One issue that came up early in this exploration was the question of how the system

should react to a gesture it cannot identify. We came up with two reasonable

responses: the system can ignore the gesture or the system can do whatever it

thinks makes the most sense. There are justifications for both of these.

If the user makes a mark that the system does not understand, then the system

could ignore it. This prevents the system from interpreting the user's gestures in

some way other than that which the user intended. If the user thinks that the

system understands a class of gestures that it doesn't, the system can signify that

simply by not responding to the gesture. 2 If the user is doodling, then the system

is likely not to do anything destructive, since it will ignore most marks.

On the other hand, it is unlikely that a user, especially one with some experience

on the system, will make a mark that is not intended to be a gesture that the

system understands. That is, users trying to get work done will almost always

make gestures intended to have some function. The system, therefore, should not

ignore any gestures, but should do its best to interpret them.

In our original implementation, we used the latter approach. Any mark was

interpreted as a valid gesture belonging to one of the recognized classes and the

system went on to attempt to determine the parameters to the command that class

of gestures indicated. What we discovered, both in using the system ourselves, and

in observing others attempting to use the system, was that the system sometimes

misinterpreted gestures. Because our system included the ability to undo edits (see

2The Penpoint system ignores nonsensical gestures, but flashes a question mark to indicate that
the gesture was not understood.
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below, in section 5.2.2), this was not a major problem, but the system attempted to

interpret even completely nonsensical gestures and this seemed strange.

Our first conclusion, then, is that the system should respond in a predictable

way. The interpretation of a gesture should make sense. If a human observer

would not put a gesture into a particular class, then the system should not either.

The current system, therefore, is fairly lax about the gestures it accepts, but we

ensure that the most obviously meaningless gestures are rejected.

4.3.2 Our recognition method

The method we use to classify gestures is very similar to that described in Dean

Rubine's PhD thesis ([27]). 3 First off we restrict ourselves to gestures consisting

of a single mark. No gesture requires that the user make a mark on the screen,

lift the pen, and then make another mark. In addition to making the system easy

to use, this simplifies the recognition task.

While the user is making a mark, the system does nothing but show the mark

on the screen while recording in memory the path traced out by the stylus tip.

When the user lifts the stylus off the screen, the system erases the mark and

then analyzes the stylus' path. After the path is smoothed, the values of several

statistical functions are computed. These values are then fed into several tests,

each of which returns a Boolean result. A gesture class is described as a mask

(signifying which tests are important to identify the class) and a set of values (what

the results of those tests should be).

We determined by hand which functions to compute, which tests to use, and

what the values of those tests should be for each gesture class we wanted to

describe. Dean Rubine's thesis describes a more systematic way to specify gesture

classes (although his system requires training by users) and incorporates more

functions. Appendix A includes tables of the functions we compute and the tests

3 Our simpler version is inspired by a draft of his thesis and was implemented separately.
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we perform, along with the gestures we interpret and the masks and values for

those gestures.

4.3.3 Interpreting gestures

Once a user's mark has been classified as belonging to a particular gesture class,

the system still must determine the parameters to the command that the gesture

indicates. For this we built algorithms for each gesture based on the assumption

that the user is editing English text. As an example, consider a delete word gesture.

Since that gesture is intended for deleting one or more words, it makes sense to

extend the region deleted to include entire words. Since a user is likely to make

a mark at least most of the way through a word, howevier, the system should also

restrict the region deleted so as not to include those words into which the user's

mark does not sufficiently penetrate. This is shown in Figure 4-2.

shcald _1_ _r..rit the rcgi on should •a-l--or -rit the region
1 1,

..hould A.. z .A •O - -rit-thezr should als ore-triet the region

Figure 4-2: Using heuristics to interpret delete gestures. If a user
makes a mark such as those in the top row, the system interprets them
as shown in the bottom row.

Although the addition of these heuristics improves the system's behavior signif-

icantly, it is clear that more powerful heuristics are desirable. The system should

have as much knowledge of the language being edited as possible. This harkens

back to the discussion of "chunking" in section 4.1 above. Wherever possible, the

system should use its knowledge of the task to interpret a user's mark in what is

most likely the way the user intends it.

In our observations of people using the system to make some changes to a

document (described in section 4.6), we noted that no users mentioned the presence
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of these heuristics. Indeed, they only noticed that something unexpected happened

when our heuristics were not sufficiently sophisticated to divine their intent. Most

of the time, the user's marks were not precise enough to be interpreted correctly

without the heuristics, but with the heuristics, the system behaved as desired.

4.4 Input while editing

During the editing of a document, there are various tasks that necessitate entering

text. The most obvious of these is adding new text to the document, but there are

others, such as specifying a string for which to search a large document, or a file

name in which to save the document.

4.4.1 Modal input

The simplest way to implement text input while editing is by having a special

"mode" for text entry. Text entry is usually not allowed; a separate mode presents

an opportunity to enter text, possibly restricting what else the user can do. For

example, if the user signifies that some text is to be inserted in the document, the

system could pop up a special window in which the user can enter the new text.

This is simple because there is no interaction between the marks a user makes

during text entry and the marks a user makes during text editing.

This also has the advantage of allowing the text entry process to take up a

significant amount of screen real estate, since the user won't be using the screen

for anything else. If text entry were to be integrated with the rest of the editing

process, then it would not be able to use as much of the screen, since a user would

need to be able to perform whatever other tasks were in progress. Since text

entry requires that the user write fairly large letters, it makes more sense for text

entry to have access to a large portion of the screen, especially on a notebook-sized

computer.



Another benefit of modal input is that the clear distinction between the process

of editing text and the process of entering it allows the system to use multiple text

entry techniques. Sometimes a user might enter text by hand printing it; other

times the user might enter text by tapping letters in the image of a keyboard on

the screen. Other parts of the system would not need to be concerned about what

method was being used.

The system we constructed employed modal text entry. There was a clear

distinction between the process of entering text and the process of editing it. Users

who had had experience with the text entry described in chapter 3 were able to

use the skills they had developed with the editing system. They did not have any

trouble distinguishing between those actions that were allowed during text entry

and those that were allowed during text editing, because they were presented with

a distinct display during each of these modes.

4.4.2 Non-modal input

On the other hand, it might be desirable to integrate text entry with text editing,

especially for purposes of adding new text to a document. This adds significant

complexity. Such a system must not have significant overlap between the gestures

used in the text entry process and those used in the text editing process, because a

gesture should have only one meaning. If text entry and text editing are integrated,

there should not be any gesture that means one thing when entering text and

something different when editing it.

For example, it might be desirable to use a single tap gesture in the text editing

process. This would be dangerous because the single tap gesture is used to correct

misrecognitions during text entry. If this gesture had some similar effect while

editing, though, it might be possible to use it for something slightly different, such

as checking and correcting the spelling of a word, which has a similar effect to

correcting a misrecognition: changing the text from incorrect to correct.
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Non-modal text entry might make more extensive use of the segmenting cursor.

In standard, keyboard-based text editors, a cursor signifies, among other things,

the point of insertion. Instead of having a cursor the size of the text being edited,

the line of text containing the insertion point could have a large, segmenting

cursor instead, and a user could write directly into this cursor. This idea is shown

in figure 4-3.

oombines the single reed of the olarinet with the bore and

fingering patterns of the oboe, produoing the tonal

qualities of nrither. T h e i n

Saxophones are made in eight sizes and pitol

Figure 4-3: Using the segmenting cursor instead of a regular cursor in a
text editor. This would allow text to be entered directly into a document
being edited without necessitating a text entry mode.

We were not able to experiment with this idea, but it shows some promise. Of

course, for some things, it might still be desirable to pop up text entry windows

(specifying file names, for example), but the use of the segmenting cursor could

blur the distinction between text entry and text editing.

4.5 Selection

Although very common commands, such as deleting and inserting text, can include

the scope of the command in the gesture that specifies the command, this is neither

possible nor desirable for all commands. For example, the command to move a
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paragraph from one section of the document to another will be used rarely enough

that having a special gesture for it would not be practical. Users would not be able

to remember the gesture, and, because there would be so many different gestures,

it would probably be complex and difficult to draw.

Instead, as in many editing systems, a region of the document can be selected

using one command and then various other commands can be used to operate on

the selected region. An issue in a gesture-based editing system, therefore, is how

to use a stylus to select a region of text.

One method is circling. This especially makes sense when the region of text to

be selected is small, or roughly circilar (like a paragraph or element of a table).

Users commonly use a pen to circle things on paper and it is natural to do the same

on a pen-based computer. We therefore include the circling gesture in our system

in addition to those described in section 4.2. This gesture is easy to identify using

the recognition method described above, and it is also easy to interpret.

Circling is an excellent method for selecting several words all on the same line.

It is awkward, however, for selecting oddly shaped regions of text, such as a phrase

that is broken across two lines, or a sentence out of the middle of a paragraph,

Figure 4-4 shows two different regions of text being circled.

Easy: The (unation:l speoiciactions of the system

it is an excellent method. For selecting
Difficult: a phras that is broken across two lines,

however, or for...

Figure 4-4: Circling text. This is easy for small regions of text, but many
regions of text are awkwardly shaped.

An alternate method of selecting text is to mark the beginning and end of the



region. In a keyboard based system, this is often done by moving the cursor to

one end of the region of text, marking it with a special keystroke, then moving the

cursor to the other end of the region. This can be slow and time consuming. With a

stylus, however, this operation is simpler, since indicating a point in the document

requires that a user merely point the stylus there - much faster than moving a

cursor.

We implemented this selection method by including two new gestures for se-

lecting a region. One gesture indicates the beginning of a region and looks like a

left bracket. The other looks like a right bracket and indicates the end of a region.

They were simple to recognize using our established methods.

The interpretation of these gestures is interesting. When a user draws a circling

gesture to indicate a region, it is clear that this region is distinct from any other

region that has previously been selected. Since the bracket gestures are used

to mark the beginning and end of a region, they could conceivably also be used to

extend or restrict a region. Thus, if a user makes a left bracket before the beginning

of an existing region, then it is possible to interpret this gesture as extending the

existing region to include more text at the beginning. If the left bracket is within

the existing selection, then it could mean that the user intends to shrink the

current selection so that it begins at the point where the left bracket was drawn.

If the user makes a left bracket past the end of an existing selection, however, it is

clear that the gesture indicates a new region. A similar interpretation is used for

the right bracket, or end of region, gesture. An example of this type of interaction

is shown in figure 4-5.

These gestures were easy to use, both to select an awkwardly shaped region of

text and to extend or restrict an existing selection.

Another method that can be used to make selections is "wipe-through." In a

single gesture, the user draws a mark beginning at the beginning of the region

and extending to the end of the region. This gesture is possibly faster and easier
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The family of sazophones patented in 1846 by Adolph* Sax

Combines the single reed of the clarinet with the bore and

New beginning • i. ,.......................................
of selection fingering p rns of the oboe, producing the tonal

: qualities of nei r. The instruments fit well into bands,
Existing -xisting ......................................................selection :
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Figure 4-5: In this example, the selected region will be extended so that
it begins where the left bracket mark is made.

to make than either the circling or bracket gestures.

The problem with wipe-through is that the gesture does not have any distin-

guishing shape. Not only does this make it difficult to identify, but allowing a

wipe-through gesture for selection conflicts with having any other gestures. Be-

cause of this difficulty, we decided not to implement wipe-through selection in our

system. The Penpoint system implements wipe-through selection by having a user

hold the stylus in one position for a short delay, and then begin moving it. Our

simple recognition method was not able to recognize this gesture, but the method

described in Dean Rubine's thesis is.

Another way in which wipe-through selection could be made feasible, however,

is if the stylus had a button on it (in addition to its tip). Such a button could be used

to distinguish between regular editing gestures and wipe-through selection. For

example, when a user held the stylus normally, it could be used for text entry and

normal gestural editing. When the user held the stylus with the button pressed,

it could be used for selecting text.

It is not clear, though, whether this is an effective way to use such a button.

We had the opportunity to use several styluses with buttons on them and found it

difficult to write and draw while holding a button down. And if the button is used
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to toggle between interaction modes, it might confuse users.

4.6 Observation of various users

To get a wider variety of opinions, we asked several people with various back-

grounds to participate in informal user studies. These people all had some ex-

perience using computers, but varied widely in their understanding of the issues

involved in a system such as this one because of their different backgrounds. Some

were researchers in related areas, some were researchers in unrelated areas, and

some were support staff.

For purposes of evaluating the systems we built, we sometimes invited these

people to use the system without instructions about any specific task. We let

them experiment with the system, while giving some explanation of the system's

capabilities. At other times, we asked them to perform a particular task.

In the case of the editing system, the task we asked them to perform involved

making several changes to a small document. The system presented them with

a paragraph containing some errors and a list of instructions about the changes

to make, all on the computer's screen. The paragraph contained five spelling or

typographical errors to be corrected in various manners. In addition they were

asked to transpose two words, delete an extraneous phrase, insert a missing word,

and remove a sentence. The document used for this test is included as appendix B.

When they were presented with this task, most of the users had previously used

the system at least once to get the feel of the editing gestures. For the most part

they did not have much trouble completing the task and used the editing gestures

as we had anticipated. There were some problems with the parallax between the

tip of the pen and the computer's display screen (because of the intervening surface

used to track the pen), but once users overcame these difficulties, they were able

to perform our editing gestures easily.
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They reported that the gestures are easy to remember (there are only a few) and

that they were sensible. One user even asked to be allowed to attempt the system

without any description of the editing gestures and was successfully able to guess

most of them (although the system was not intended to be used without at least

minimal training). Users found that, for the most part, the system interpreted

their marks as they had intended, and we noted that this was primarily because of

our interpretation heuristics as their marks did not precisely correspond to their

intents.

4.7 Making the usable useful

As with our text entry system, this editing process seemed to work well, but was

missing some desirable features. We did not have the opportunity to extend it into

as complete an editor as we would have liked, but we did experiment with two

relevant user interaction techniques: scrolling and on-screen buttons.

4.7.1 Scrolling

We chose to experiment with scrolling because it is a general technique for moving

around in a document, and some such technique was necessary to explore the

editing of documents larger than one page. The question then arises whether

scroll bars should behave at all differently in a stylus-based system than they do

in a mouse-based system. We believe that they should.

There are many different features found in scroll bars in existing systems.

Essentially, these features allow, in some manner, the following actions:

* Skipping to the next or previous page,

* Moving to an arbitrary position in the document,

* Scanning rapidly through the document, and
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* Repositioning the current page with respect to the screen.

To perform the last three of these actions, a user can move a "thumb" in the

middle of the scroll bar.4 In most systems, moving the thumb downward causes

the displayed area to move downward (farther towards the end) of the document.

This has the visual effect of moving the text on the screen upward.

On a system with a keyboard and mouse, this is perfectly reasonable behavior.

We quickly discovered with a stylus, however, that it seems strange to put the

stylus onto the screen, move it downward, and have the text move upward. Because

of the close link between the stylus and the screen, a user expects correspondence

between the movements of the stylus tip and the information on the screen - such

a correspondence is the basis of this sort of system.

Consequently, we experimented with a scrolling system in which the text on

the screen moves the same direction as the stylus. We call it "direct scrolling." It

is extremely well suited to repositioning the area of the document being displayed,

although in this system it is the document that is being repositioned, not the

screen. This is a principal difference. Instead of focusing on the document as a

fixed object and moving a virtual window on it, this type of scrolling views the user

as fixed, and allows the document to be moved through the field of view. Thus the

user can directly manipulate the document, as is desirable in a direct manipulation

system.

We did not have the opportunity to implement a complete direct scrolling sys-

tem, but only a part that allows local repositioning of the document with respect

to the screen. In the part of the system we implemented, the displayed text moves

directly with the stylus; if the stylus begins at the middle of the screen and moves

to the top (in the direct scroll bar), then the text at the middle of the screen slides

to the top along with it. Figure 4-6 shows two examples of how we envision a

complete system. Direct scroll bars are much like conventional scroll bars, but

4A "thumb" in a scroll bar indicates the user's current position in the document.
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with the focus on moving the document rather than the screen.

These marks
indicate the
portion of the
document
displayed on
the screen.
They do not
move, because
the screen
does not move.
The document
moves beneath
them. Note
that the screen
is a much
larger portion
of the small
document
than of the
larger
document.

Large document
(near the bottom)

In a conventional
scroll bar, this button
would move the screen
upwards with respect
to the document and the
displayed text would
move downward. In
a direct scroll bar,
this button moves the
document and the text
on the screen upwards.

The shaded area
represents the
document. A user
can drag this area to
move the document
with respect to
the screen. This
is the equivalent
of a conventional
scroll bar's "thumb."

Small document
(at the top)

Figure 4-6: Direct scroll bars focus on moving the document rather than
the screen. This figure shows examples of direct scroll bars for two
different sized documents. Direct scrolling is better suited to a stylus-
based system than conventional scrolling because the text on the screen
moves the same direction as the tip of the stylus.

4.7.2 Buttons

Another common virtual device is the on-screen button. In principle, these are very

simple: a button has an action associated with it, and a user positions the cursor
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over the button and clicks it with the mouse, or other device, to initiate that action.

In practice, however, these buttons can be fairly complex. Some buttons activate

when a user's finger presses down on the mouse. Other buttons merely highlight

when this happens, and activate only when the user's finger is released, allowing

the user to back out of the action halfway through if desired. More complex buttons

may allow multiple actions, depending on pressed keys on the keyboard and the

use of different mouse buttons, and some even pop up menus of choices if the user's

finger is held down past a certain threshold.

Some of this complexity is transferred to the world of stylus-based systems. All

of these types of buttons work well with a mouse. How are they with a stylus? We

came to the following conclusions:

* Unlike buttons in many mouse-based systems, buttons in a stylus-based

system should activate when pressed, rather than when released.

* Instead of relying on a cursor, like a mouse-based system, stylus buttons

should highlight when the stylus tip is positioned above them, to provide

feedback to the user.

* Although stylus buttons should unhighlight if the stylus tip is moved away

without pressing down, they should activate if the stylus is pressed down

near the button when the button is highlighted. That is, the active region of

the button should be larger than the image of the button.

Activation when pressed

Although most virtual buttons in mouse based systems activate when released,

most physical buttons activate when they are pressed (e.g. a doorbell, a touchtone

phone, or a keyboard). Since stylus-based systems are very closely linked to the

user, they need to function this way too. We tried using a stylus with buttons that

highlight when pressed and activate when released and found them to be very
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awkward. Buttons that activate when pressed worked much better.

Highlighting buttons

It turns out that although people sometimes dial a telephone with the eraser of a

pencil or the back of a pen, they are unfamiliar with pressing buttons using the tip.

The designers of a stylus-based system should not require that users change their

grip on the stylus whenever they wish to press a button, so the buttons must be

pressed while the stylus is held in a writing position. This is an unfamiliar action,

however, and can make it difficult to position the tip of the stylus accurately in a

button.

Highlighting the buttons helps. Instead of highlighting a button when it is

pressed, as in some mouse-based systems, however, it is much more effective to

highlight the button when the stylus is positioned above it. Then the user can

have some confidence about what will happen when the stylus tip is pressed down,

but can still have the option of backing out of the operation. This requires that

the mechanism used to track the stylus can do so even when the stylus tip is not

touching the screen surface. Not all stylus tracking mechanisms can do this, but

it is important for this sort of application.

The alternative is to have a cursor tracking the position of the stylus tip when

the tip is not touching the screen. Positioning the cursor in a button is equivalent

to the button highlighting when the pen is above it. We believe, however, as do

others, like the makers of the Penpoint system, that a cursor is out of place in a

stylus-based system, because it is so natural to indicate a position on the screen

with a stylus. Highlighting makes more sense.

Buttons with a large active region

When we built buttons this way, though, we encountered the following problem:

When a user is holding the stylus in a writing grip and has positioned the tip of the



stylus over a button and then presses the tip down, the tip sometimes leaves the

button before contacting the screen. This is because the action of pressing down

with the tip is one of rotating the hand slightly, and can move the tip laterally.

This was one of the principle reasons users had trouble pressing buttons that didn't

highlight, and they continued to have some trouble, even with buttons that did

highlight.

The obvious solution is simply to make the buttons larger, under the assumption

that if the buttons were big enough, users would have no problems pressing them.

Although this is true, of course, screen real estate on some devices is limited, and

having very large buttons may not be desirable. We would like to increase the size

of the buttons as little as possible. A solution that works fairly well is to make the

region associated with the button larger, but to leave the image of the button the

same size. Thus when a user has positioned the tip of the stylus over the image of

a button, the image highlights. Now the user can press the tip of the stylus down,

and the button will activate as long as the tip is inside the active region of the

button. Even if the stylus tip does not contact the screen inside the image of the

button, the button will still be pressed because the button's active region is larger

than its image. The active region cannot be too large, however, because there must

be some way to back out of pressing a button.

'lb fit more buttons in a restricted area, the active regions can overlap, as long

as they do not overlap with the images, because any highlighted button should

unhighlight if the user move the stylus tip over the image of another button,

causing the new button to highlight. Only one button should be highlighted at a

time. An example of this configuration is shown in figure 4-7.



Active region of
"Ok" button

.. °
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The "Cancel" butt
highlighted while

Active region of
"Cancel" button

stIdi in the active region after
being over the button.

Figure 4-7: Two buttons with larger active regions than their images.
The active regions can overlap with each other, but not with the im-
ages of the buttons because a button is highlighted once the stylus is
positioned over its image, but it does not unhighlight until the stylus
tip leaves its active region. This allows users to "miss" when pressing
a button and still have the button activate, as long as the button was
highlighted when the user pressed the stylus down.
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4.8 Summary

Stylus-based editing can be easy and effective. Executing common editing com-

mands by drawing marks on the text to be edited works well. There should not be

too many of these marks and they should be easy to make and remember, perhaps

simplified proofreaders' marks.

Our system allows the editing of text with a few simple gestures: delete char-

acter, delete word(s), insert, and transpose. These gestures are recognized by

statistical analysis of the path traced by the stylus tip. For less common edits, a

user can select a region of text either by circling it or by marking its ends. The

region can then be operated upon.

New text can be entered either in a special mode that is separate from editing,

or text entry can be integrated with the editing process. Our system uses modal

text entry, but either is feasible.

We asked several users to perform a series of edits on a sample document, and

they were able to do so quickly and easily, making use of the various features of

the system, including text entry. There is some question, however, about the tasks

for which this sort of editing system is best suited.

4.8.1 What's it good for?

What is text editing? To some it is making minor changes to a document that is al-

most in final form, or changing a document slightly to produce a similar document.

To others it encompasses the process of document creation and revision, including

large amounts of text entry and major changes. The text editing described in this

chapter falls somewhere between these two extremes.

Certainly this type of system is useful for making modifications to an existing

document, either for purposes of revision, or in changing a copy into a new doc-

ument. Deleting and inserting small amounts of text are easy and reorganizing



the information in the document can be done quickly and efficiently. This system

would also be good for combining two documents together.

For creating an entirely new document, however, this system may not be ideal.

It would be useful for creating documents based on templates or for creating doc-

uments that involve a significant amount of material drawn from other sources.

But it might not be the best choice for writing a free-form letter or other document

with a large amount of new text. Since its primary weakness is in text entry,

it will become more useful as it is integrated with more sophisticated text entry

techniques, such as voice entry or the features described as future improvements

in section 3.6.



Chapter 5

Markup Editing

In this thesis "markup editing" refers to the process of editing a document by

making marks on it rather than changing the document directly. This is similar

to the process many people go through when editing a document on paper. They

read through the document and mark the suggested changes or problem areas,

and then produce a new version of the document later.

This practice has some advantages over editing a document on a computer,

but has some drawbacks as well. We experimented with implementing this sort

of editing system on a stylus-based computer, marking up an electronic version

of a document rather than a paper one. This chapter describes our system and

discusses some benefits and drawbacks of markup editing.

This is not a topic that has been extensively explored before because most

existing editors have been keyboard based. One can imagine a system marking a

word as deleted when the key sequence to delete it is pressed (rather than actually

removing the word), but there are few, if any, keyboard-based systems that do

this. This is probably because no one could think of any advantages such a system

would have over one in which edits happen immediately as they are keyed in.

In a stylus-based system, using gestural editing techniques, markup editing

makes a lot more sense. When editing on paper, a user might mark a word to



be deleted by crossing it out. That same gesture can be used to delete a word on

the screen of a stylus-based editor. Why not combine the two? Instead of actually

removing the deleted word, why not simply mark it as deleted?

This makes more sense in a stylus-based system than in a keyboard-based

system because the gestures indicating the edits are similar to the marks a user

makes to specify those edits. In a keyboard-based system, there would be no

relationship between a mark indicating a change and the keystroke that caused

that mark to appear.

5.1 A markup editing system

We built such a system, combining the gestural editing techniques described in

chapter 4 and the text entry techniques described in chapter 3. Instead of actually

changing a document, however, it merely places edit marks over the image of the

document.

5.1.1 Marking changes

One way for the system to indicate where changes are to occur is to leave the edit

marks drawn by the user on the document. That is, a user might cross out a word,

and then instead of the "crossing out" mark disappearing along with the word, as it

would in a conventional editor, both would stay. If the user scrolled that part of the

document away and returned to it later, the mark would still be there, signifying

that the word was to be deleted.

The problem here is that a user cannot tell how the system has interpreted

a gesture. As described in chapter 4, gestures can have complex interpretations,

and a user may need to know exactly how the system has interpreted a particular

gesture. Consequently, our system removes the user's mark and draws a stylized

version of the mark to indicate its precise interpretation. This is shown in fig-



ure 5-1. This process is analogous to removing the characters a user draws and

redisplaying them in a nice font, as described in chapter 3, so the user knows how

the system has interpreted the gestures drawn on the screen.

User's mark: Th*e foxz

Stylized replacement: The ( quiok ox

Figure 5-1: A user's mark, in this case indicating a transposition, is re-
placed by a stylized version of that mark showing precisely what change
is to occur.

One concern about this practice is that it may be hard to see the stylized marks,

although an advantage of marking up the document rather than changing it is

that these changes should be easy to see (this is described further in section 5.2.3

below). If the stylized version of these marks is too much like the underlying text,

it may be hard to notice changes. This is an important concern, but one that is

easy handled. Because the marks are generated by the system, they can be made

arbitrarily different from the underlying text, including (in future systems) being

in different colors. Thus the changes can be in high contrast to the text.

Since our system does not have color, we use marks that employ much thicker

lines than the text being edited. Figure 5-2 shows some of the marks our system

used to signify edits.

5.1.2 Insertions

One of the biggest problems with editing a document on paper is that there is not

much room to write new text. If the document is double spaced, there is room for

one line of text, and there is sometimes space in the margins, but inserted text is

inevitably squashed awkwardly onto the page. An electronic version of this editing
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transpose

System's marks

co/t

a -r-1 '!F M OVlarg* part

large
a part
A

a
a prt

A
Trh(ao;" quick fox

940&"

qtqw4i

Figure 5-2: Some of the system's editing marks.

practice need not have these problems. In our system, when text is inserted, the

insertion point is clearly marked with a stylized caret (as shown in figure 5-2) and

the inserted text is positioned between two lines of text, expanding this space if

necessary. Figure 5-3 shows a phrase inserted between two lines of text.

more limited, beooause saxophones tend to dominate the

varied tonal characteristics of that ensemble. Saxophones

eight completely different

are made in sises and pitcah levels, spanning the entire
A

spectrum of wind-instrument pitch*e. rhe most common are

Figure 5-3: Inserted text need not be cramped. Existing lines of text
can be pushed apart to make space.

5.1.3 The new document

Because the system knows what change each mark on the document signifies, it

can implement those changes at any time to produce a new document. Of course,



the user can still go back and view the marked up document if desired.

5.2 Benefits

Markup editing has many advantages over traditional editing. Essentially, it pro-

vides most of the advantages of editing on paper, but without the major drawback

that the edits must later be entered into a computer. A markup system provides a

record of all changes that have been made to a document. It also allows much more

flexible "undoing" than other types of editing. Furthermore, this visible record is

a good way to communicate changes to a doctunent or proposed changes that can

then be automatically accepted either all at once or selectively.

5.2.1 Audit trail

One major advantage of markup editing is that it leaves a clear audit trail of all of

the changes that have been made to the document. Many document revision control

systems keep track of periodic versions of a document, but there is generally no

record of how one version was changed into another. If many changes were made,

it can be quite difficult to follow this trail. With a markup editing system, however,

each previous version can also include all the changes that were made to obtain

the next version.

In addition, markup editing allows the tracking of changes made by several

people, or several people simultaneously. If changes made by different people are

displayed in different styles (or colors), it can be easy to look at a document and tell

immediately which changes were made by whom. This might be especially useful

for collaborative editing systems.

Also, because the changes are not actually made to the document, but only

marked on it, a document could be passed from one person to another, with changes

being added or removed at each step, and allow a better process of working together.



5.2.2 Non-chronological "undoing"

One feature of many editors is the ability to "undo" some change, either because it

was a change made in error (e.g. the user pressed the wrong key) or because the

change is no longer desired. The problem with these systems is that it is difficult

to describe which change is to be undone. In some systems, only the last change

may be undone, and all other changes are permanent. In most systems, though,

a record of the past few changes is kept, and these may be undone in reverse

chronological order. This is enforced for two reasons. First, changes to a document

are often affected by those changes which occurred after them. That is, an earlier

change cannot be undone without undoing what came later. Second, a user has no

way to specify which edit is to be undone. A system could also present a list of the

edits (described in some language) and allow a user to choose one to undo, but this

would not solve the problem of overlapping edits and it would require the user to

understand the description of each edit.1

Because of the enforcement of reverse chronological undoing, most users undo

only edits that were made in error, since they notice them almost immediately If

an edit is made and the user realizes immediately that it is not a desirable edit,

then it is undone. This is unfortunate because revising a document is an iterative

process and a user may go over a document many times making revisions. If some

revision is made and then decided against much later, it is often difficult to undo it.

Sometimes a user might need to search through a previous version of the document

to find an unchanged copy of the section being edited.

Markup editing solves this problem. Because all edits are visible on the docu-

ment, it is easy to see the original version and the changes, and to specify which

change to undo. The user can simply point to the offending edit.

Th implement this, we added a gesture that does not produce an editing mark.

'The Tioga editor, as described in A Structural View of the Cedar Programming Environment
([33]), has this facility.
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The "scribble out" gesture, pictured in figure 5-4, simply lifts an edit mark off the

page, as if it had been erased. There is no added complexity and none of the edits

made later need to be redone. Any changes that are no longer desired can easily

be removed, regardless of the order in which they were made.

..* - Unwanted edit
This ·aetal practice

Undo gestureThis Qi practice

T s a u -i No edit
This useful practice

Figure 5-4: The undo gesture removes unwanted edits.

5.2.3 Obvious editing changes

When presented with a new version of a document, people familiar with the old

version often wish to know what has changed. The changed sections may be

indicated by drawing a line in the margin, but this is not nearly so descriptive as

seeing the old version with all the changes marked. Of course, this is not desirable

for all purposes, but simply glancing at the marked up version can communicate a

great deal about what was changed, and how it was changed.

5.2.4 Automatic acceptance of proposed changes

Finally, this sort of system can be used to review changes proposed by someone else,

perhaps a collaborative author. Because the changes have not yet been made, some

of them can be rejected (perhaps using the undo gesture described in section 5.2.2),

and others can be accepted. But once a set of changes is agreed upon, they are

already in the computer and a simple button press effects them.

In general, a markup system has almost all of the advantages of editing on



paper, but with the additional benefit that changes do not need to be entered into

a computer.

5.3 Problems with markup editing

Markup editing does have some problems, however. Because of its natural feel,

users tend to have higher expectations of such a system than are feasible. And

once the changes described by the marks are made, users feel lost without the

marks.

5.3.1 Complexity

One of the disadvantages of editing on paper is that it is often difficult to determine

what the final version of a document will look or sound like. Because the flow of

the text is important, it is sometimes necessary to read through the new version

of a sentence or paragraph to see if any further changes need to be made.

On paper this is difficult, but users do it anyway because it is necessary. With

a computer, though, this should be easy. Once a change is marked, why not look at

the new version to see how it looks or sounds? Of course, this is easy to implement

too, but it produces some significant complexity.

If a user makes changes to version n of a document, it may be desirable to

look at version n + 1 to see those changes and modify or add to them if necessary.

In addition, however, users naturally assume that they can make the necessary

changes to version n + 1 and then go back to version n and view both sets of

changes. But how should the second set of changes be displayed? The changes

made to version n + 1 of the document may not make any sense in version n of

the document. Figure 5-5 shows a simple example of how overlapping edits can be

difficult to display simultaneously.

This difficulty is not intractable. It is certainly possible to come up with a
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Figure 5-5: Making changes to a changed document. How should over-
lapping edits be displayed if they were made to different versions of
a document? In this example, version n of the document contains an
insertion. In version n + 1, the user makes a transposition. Returning
to version n, how should the transposition be displayed? What is dis-
played in this figure does not correspond well to the mark the user made
to indicate the transposition.
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representation of all changes to a docul.zt. even if some of those changes were

made on a later version of the document, as in figure 5-5. The problem, however, is

that the representation of the secondary changes is unlikely to correspond closely

to the marks drawn by the user to indicate those changes. It would seem strange

to indicate one set of changes and view another. This problem occurs because users

naturally expect more from this sort of system than is feasible.

Another complexity introduced by this sort of system is that of major changes to

a document. Local changes such as deletions and insertions are easy to show with

marks on the page. More dramatic changes, however, are not so easy. How should

the document display the fact that chapters two and three have been switched?

How should this be shown on a printed version of the document? And what about

moving a paragraph from page 27 to page 118? This is very different from moving

a paragraph from immediately before a figure to immediately after the figure.

Like the problems with overlapping edits, all these difficulties are surmountable,

but they introduce complexity into the system that may make it hard for users to

understand.

5.3.2 Miraculousness

Once a user is satisfied with the marked changes to a document, all that remains

is to push a button to create a new version of the document with all those changes

made. Surprisingly, people did not react well to this. When the button is pushed,

the document is instantly transformed, miraculously. The system has made all the

changes.

The natural reaction was to look for those changes, to confirm that they were

actually made and that they had the desired effect. But the changes are very

hard to find. There are no marks by which to locate them and the structure of

the document may have changed radically. It really is a new document. This

is very disconcerting, and several of our test users commented on it. We could



tell when observing them that the change from a version of the document with

edits to another version of the document without was shocking. They skimmed

through the document, looking for the changes, making sure that the changes had

happened correctly.

It is possible that this phenomenon is caused by a lack of confidence in the

system, and that as users gain experience with it, they will become more confident

and be more comfortable with the idea. The only difference between this and

handing a marked up copy of a document to a secretary is the suddenness of it.

Nonetheless, stylus-based systems are intended to be easier and more natural to

use than existing systems. They should not be designed such that users need to get

used to them and significantly change their expectations and the way they think

about document processing.

One possible solution to this problem is to use a two-view approach to document

editing. This sort of approach has been used before, for example, in a system de-

veloped by Kenneth Brooks ([2]), but it has not been applied to markup editing. In

a two-view approach to markup editing, there would be two versionls of a document

on the screen. One would be a version of the document showing the marks, and the

other would be a version showing the changes. Thus a user could see the results

of the edits, solving some of the problems of complexity described in section 5.3.1,

and would also get used to the new version of the document as it was created.

There would be no miraculous button press, the user would simply move to the

new version.

Of course, this would also have problems. For one thing, in Brooks' system,

both versions of the document can be changed and changes in one are reflected

in the other. In this system, the user would probably be prohibited from making

changes in the new version of the document, to eliminate many of the problems

described in section 5.3.1, and this might be frustrating. In addition, users might

have the problem of looking back and forth between the two versions, similar to
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the problem of moving a hand back and forth between the keyboard and mouse.

5.4 Summary

Although it offers some attractions, markup editing requires a significant amount

of study before it will be practical. And even if most of the implementation problems

were solved, it still has inherent obstacles to being as useful as might be desired.

Its benefits include R clear record of changes to a document, non-chronological

"undoing," a good way to present those changes, and an easy way to communicate

proposed changes. Its difficulties, however, are significant complexity and the

miraculousness of the transformation from a marked up document to a new version

of the document.



Chapter 6

Conclusions

Interaction with a stylus-based computer is easy and intuitive. Although entering

text is fairly slow and tedious, it is feasible for small amounts of text entry and

we found some ways to make it easier. Editing text with a stylus, however, makes

a lot of sense and is well suited to "intelligent" techniques in text editing that do

not make as much sense in a keyboard-based system. Markup editing has the

potential to be useful for some applications, but it is not practical for general text

editing, at least not without significant further study.

6.1 Text entry

The main difficulty with text entry by stylus is speed, making it most feasible for

such tasks as entering a search string or file name, or adding a word, sentence or

paragraph to a document. Without clever methods of reducing the amount of text

actually entered by a user, however, it is probably not suitable for the entry of a

large amount of text. It needs to include good methods of error prevention and

correction that incorporate intelligence on the part of the system, making use of

knowledge of the expected input. Allowing users to tap on errors to correct them is

effective, and correcting errors by substituting a most likely second choice for an
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erroneous character works well, although it is somewhat limited.

In addition, text entry is significantly more useful if it includes methods for

editing the text as it is entered. For this reason, as well as to provide good

feedback to the user, we favor interpreting the text as it is entered, not whenl the

user has finished entering it. To facilitate this, a user interface technique can be

used to segment a user's marks with a stylus into separate characters. Instead of

asking users to write into rows of boxes, the "segmenting cursor" is the set of only

those boxes that are necessary at any moment, moving with the stylus as text is

entered. We also found that a handwriting recognition system can be tuned by the

user, during the regular process of entering text, and that this practice improves

recognition rates significantly and quickly.

We postulate that text entry with a stylus could be a feasible way to enter large

amounts of text if the text entry made use of methods to reduce the amount of text

written by a user. (Two such methods are prediction and completion.) A system

free from the constraints of a keyboard and mouse, however, might make better

use of a combination of a stylus and a voice entry system, since the stylus could be

used for correction and editing, and voice for entry of large amounts of text.

6.2 Editing

Text editing with a stylus is natural and easy. It can be designed to take advantage

of skills and gestures with which users are already familiar, and as a result the

gestures can be simple to learn and remember. Stylus-based text editing also fits

well with users' mental m;ndels of the editing process, such that single editing

gestures often correspond directly to desired changes.

Much of the power of stylus-based editing comes from the use of gestures that

include both the specification of an instruction and the parameters to that instruc-

tion. Simplified proofreaders' marks work well as the basis for these gestures. In



addition, various methods can be used to select regions of text: Circling is good

for small regions, and marking the beginning and end of a large region also works

well. All of these gestures can be recognized using statistical analysis of the path

traced by the tip of the stylus and interpreted using heuristics incorporating some

knowledge of the editing domain.

If designed appropriately, these heuristics can incorporate a tremendous amount

of intelligence to greatly simplify the editing task. Although we had the oppor-

tunity to implement only a sample of such intelligence, we are confident that

computer systems can be given more sophisticated understanding of the material

being edited and take on more of the editing process, requiring users to specify

less of the specifics of changes.

In general, we consider a stylus-based system to be better suited to the editing

task than a system with a keyboard and mouse. The principle drawback of a

stylus-based system is its text entry facility, whether integrated into the system or

presented as a separate mode. A stylus will become an even better input device if

the problem of fast text entry can be resolved, either using sophisticated methods

of text entry with a stylus, or incorporating other technologies, such as voice entry.

6.3 Markup editing

Although markup editing is a satisfying way to modify a document, it presents

some significant problems that stand in the way of its being used as a general

editing technique. Because it is difficult for users to understand the inherent

constraints of such a system, they often expect more than is feasible or can be

presented simply. They also find the transition from a marked up document to a

new document in which the specified changes have been made to be a sudden and

confusing one.

On the other hand, markup editing provides a clear record of all changes made



to a document and allows easy "undoing" of changes in any order. It might be well

suited for use as part of an annotation system for proposing changes to a document

or as a sophisticated display of the differences between two documents. In such

a system, replacing a user's annotations with stylized versions of those marks

provides the same benefits as interpreting hand drawn text: it is immediately clear

to the user how the system has interpreted each mark and the computer generated

marks are more compact and easier to manipulate than the user's originals.

Markup editing is an interesting technique, but requires significant study. As

it stands, it seems to be poorly suited for general ed;Ling.

6.4 Other interaction techniques

In the process of exploring text entry and text editing with a stylus, we found

that standard user interface techniques require adjustment to be effective in a

stylus-based system. Some of the interactions that work well with a mouse do

not work as well with a stylus, and a stylus allows some interactions that don't

make as much sense with a mouse. In general, we assume that most interaction

techniques require some adjustment to be adapted for a stylus-based system, but

we did not find that, in general, they were more or less effective in a stylus-based

system than in a mouse-based system.

The two examples we explored were scrolling and on-screen buttons. Scrolling

in a stylus-based system is more effective if the focus of the scroll bar is on moving

the document while the screen remains stationary, rather than moving a virtual

screen over a stationary document, as is done in most scrolling systems. This is

because the text on the screen should move the same direction as the stylus tip

when scrolling, to take into account the proximity to the screen of a user's hand

and focus.

On-screen buttons in a stylus-based system should highlight when the stylus is
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positioned above them and activate when the stylus is pressed down, unlike some

mouse-based buttons. In addition, the region in which the stylus tip can be put

down to cause the button's function to occur should be larger than the image of

the button, so that a user can "miss" a button by a little, but still get the function.

This is to compensate for the difficulties of pressing buttons with the tip of a stylus

held in a writing position.

6.5 Areas for future study

There are many areas related to this thesis in which future study would be useful

and interesting. In text entry, is it possible to eliminate the need for writing in

boxes altogether? To what extent should a method for segmenting user's marks

into characters be algorithmic as opposed to being a user interface technique. What

are good ways for the system to correct errors once a user has pointed them out?

How can a text recognition system be tuned automatically, during text entry, but

without a user's intervention? And how can the amount of text actually necessary

for a user to write be reduced? Is this even a reasonable technique, or does it make

more sense simply to use another input device for the entry of large amounts of

text?

How should text entry be integrated with text editing? It is acceptable to pop

up a text entry window every time text needs to be inserted, but a text editing

system might be easier to use if there were no special mode for entering text. Can

markup editing be used effectively as a general editing technique, or is it suited

only for annotation systems. How should markup editing be used in an annotation

system?

Scrolling and on-screen buttons should function differently in a stylus-based

system than they do in a mouse-based system. It is likely that other user interface

techniques should also. For example, how should stylus-based menus work? Are



pull-down menus appropriate, or should applications rely instead on palettes?

Finally, how can a stylus-based system be adapted and modified to make it more

effective? For example, a stylus could have a button on the side. Our experiences

were that such buttons were difficult to hold down while drawing or writing, and

consequently might be of little use, but this is certainly worthy of further study.

Also, a stylus could be integrated with some other user interface device, such

as a voice entry system, and used both for editing and for correcting errors in

that system (e.g. selecting from among homonyms). Clearly, this also requires

significant study.

6.6 Overall

We found stylus-based interaction techniques to be easy to learn, easy to use, and

quite effective. We believe that they are applicable to a wide range of systems,

varying in size, environment, portability, and other aspects. It is important, as

these systems are developed, that they remain simple to use, utilizing only a few

easy to make and easy to remember gestures that correspond, both in shape and

in traditional meaning, to users' intended actions. Complex and sophisticated

processes should be performed primarily by means of intelligence on the part of

the system, rather than requiring them to be specified in detail by a user. A

stylus-based user interface lends itself to simple instructions by a user resulting

in complex behavior by the system. In text editing and entry, at least, we found

this to hold up quite well.



Appendix A

Specifics of gesture recognition

Functions computed on user marks

bbW = bounding box width

bbhs bounding box height

f2 = I I

h1 = I 414

A = E =ll

Tests comparing function values

tl fi < bbh
tf2 h < bb,

t - f, < f h

4 1 f2 < 2I

t5 = sgn(y,t•.r - y) # gn(y,~d -
to f4 < bbh 3



Values of tests for each gesture

Delete character

Delete word(s)

Transpose

Insert

Circle (select)

Scribble (undo)

Delineate (select)

tl t2 t3 t4 t5

T - F

F T F - -

- FF T T

- FFT F

- - T T -

-F F T-

T - T F-

iI



Appendix B

Test document for editing

The family of saxophones patented in 1846 by Adolphe Sax

combines the single reed of teh clarinet with the bore and

fingering patterns of the oboe, producing the tonal

qualities of neither. The inrstuments fit into well bands,

for their sound blends well with brass and wood wind

instruments; their application to the orcestra has been

more limited, because saxophones tend to dominate the

varied tonal characteristics of that ensemble. Saxophones

are made in sizes and pitch levels, spanning the entire

specterum of wind-instrument pitches. The most common are

the alto and tenor saxophones. They have been effectively

used in jazz bands and popular dance orchestras. They also

make an excellent vase or small planter and are sometimes

used to serve beverages, especially ginger ale or sparkling

punch. Numerous jazz perfeormrs have risen to fame with

the instrument, and composers, beginning in 19th-century

France, have employed it in their solo or ensemble

compositions, or as a wall decoration. ELWYN A. WIENANDT
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Transpose "into" and "well"

Insert "eight" before sizes and pitch levels.

Remove the sentence about ginger ale.

Remove the phrase about wall decoration.

There are five spelling errors.

Make any other desired changes.
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