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Abstract

Current digital prototyping technology has been far out-paced by recent advances in micro-
processor technology. In order build a modern RISC processor a new technology is required.
The Electric Lego uses Field Programmable Gate Arrays along with a novel clock distribu-
tion scheme to provide a fast, scalable alternative to protoboard and wire circuits. In order
to effectively utilize this advance, however, a programming environment must be designed
and built which closely simulates the experience of physically building a circuit. At present,
commercially available software and FPGA programming methods are much too slow to
deliver this kind of performance. In this paper I discuss the design and implementation of
an FPGA programming environment which will closely simulate the physical construction
of a circuit. Included in the environment are schematic entry and logic placement tools
which interact with a fast router as well as a parallel port interface which far exceeds the
download performance of traditional serial port interfaces.
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Chapter 1

Current Digital Prototyping

Technology

In many current EECS lab classes the base technology for constructing any kind of circuit is

the "proto-board". A proto-board is a plastic plate with a grid of holes overlying connectors

that allows several wires to be connected at each node. A digital circuit can be created by

plugging MSI chips into the board and connecting their inputs and outputs appropriately

with wires. Proto-boards to are inexpensive and they provide a student with a physical

representation of the circuit that is easy to wire and debug. Unfortunately, there are

several inherent drawbacks in using proto-boards for circuit construction.

The first problem with wire proto-board-and-wire circuits is their electrical character-

istic. Proto-board sockets have relatively high parasitic inductances and capacitances and

the long wires between nodes have large, uncontrolled impedances. Either of these prob-

lems alone would impose severe speed limitations on a digital circuit, but together they

force a design to be clocked at a snail's pace. In 6.004, for example, the lab series includes

the implementation of a simple architecture called the "Maybe". The limitations of the

proto-boards limit the Maybe's clock frequency to approximately 1 MHz.

A second limitation is the physical bulk of the wires. In the past, many real-world

architectures had 8- or 16-bit wide data paths. It was not unreasonable to expect a stu-



dent to wire an 8-bit bus by hand and such an implementation would be an acceptable

approximation of a real microprocessor. Over the past few years, however, the standard

microprocessor has adopted 32-bit wide data paths. It is difficult to reliably build such

a data path by hand with wires on a proto-board substrate. First, there is the physical

limitation of the number of sockets on a proto-board. A few 32-bit paths would likely take

up a majority of the available sockets on a board. Unfortunately, not all of the connections

would be reliable. When you take the students' sanity into account the thought of imple-

menting a computer this way seems out of the question. Debugging and maintaining a data

path like the one described above would be a full-time job.

Another issue related to the problem of wider data paths is one of finding components

for students to use as the building blocks of their computer. For instance, students of course

do not build an ALU from scratch. For an 8-bit implementation it is possible to get an

8-bit ALU off-the-shelf that will plug straight into the proto-board. Finding such a part in

a, 32-bit version is more difficult.

When the current proto-board technology was introduced over a decade ago, its ca-

pabilities were adequate. The Maybe machine mentioned above, for example, is an 8-bit

bus-based architecture and can be directly implemented on a proto-board. This was a

decent approximation of the average commercially available microprocessor in the early-to-

mid 1980's. The Maybe ran much more slowly than a real processor, of course, but students

were directly implementing the architecture they were trying to learn about. Since then,

however, advances in microprocessor technology have greatly out-paced the capabilities of

proto-board and wire implementations. Today's state-of-the-art microprocessor is a 32 or

even 64-bit pipelined design that directly implements a RISC-like instruction set. 6.004 in

its current form attempts to expose students to this class of processor by running a virtual

32-bit RISC machine on top of the 8-bit Maybe. The problem with this is that in order to

simulate a 32-bit architecture on an 8-bit machine there must be interpretive layers between

the virtual and physical machines. In the case of the Maybe there are two such layers. In

the first layer, the RISC instructions are interpreted via a microcode ROM into Maybe

"nanocode". This nanocode is then interpreted into Maybe machine instructions which,



because of the electrical problems mentioned above, can be executed at a rate of only 1000

per second. The effect of this can be a loss of focus from the important topics of the course.

The idea behind building the RISC machine is to teach students the fundamentals of mod-

ern microprocessors. Students tend to concentrate on trying to understand the layers of

interpretation rather than on internalizing the basic concepts of the modern microprocessor.

Even though understanding the use of microcode is part of understanding how a processor

works, given the movement of modern architecture towards the direct hardware implemen-

tation of instruction sets more emphasis should be placed on those concepts. The 6.004

lab kit, in its current form, cannot meet this goal. The lab kits dictate that the physical

machine can be no better than an 8-bit architecture. The requirement of teaching the basics

of a modern microprocessor means than students will inevitably get lost in the layers of

interpretation. With the likelihood of needing to teach the basics of parallel machines in

the not-too-distant future, it is clear that a new technology is needed.



Chapter 2

A New Approach to Prototyping

The limitations of wire-and-protoboard circuits suggest the need for a new technology for

constructing digital circuits. The complexity of the modern microprocessor makes any

kind of physical wiring an unlikely candidate. To directly implement a RISC machine,

wide data paths are a must and it is impractical for a student to wire a 32-bit data path

by hand. A logical alternative is some kind virtual workspace where components can be

arranged into a circuit and down loaded onto programmable logic arrays. Programmable

logic arrays provide enough resources to implement a simple RISC machine and would solve

all of the physical problems associated with wire and protoboard circuits. The workspace

for programming the arrays would include schematic entry, logic placement, and routing

tools giving the look and feel of working with a physical circuit.

The new prototyping technology to be used in 6.004 has been dubbed the "Electric

Lego". An electric Lego module consists of a field programmable gate array (FPGA),

supporting circuitry, and connectors on a 3-by-3 inch printed circuit card designed to be

part of a three dimensional diamond lattice. The Electric Lego design in based on the

NuMesh architecture and provides a very scalable framework for "plugging together" the

FPGAs[3].



2.1 The FPGA

The FPGA is meant to provide the power and resources to directly implement today's state-

of-the-art microprocessors as well as the flexibility to adapt to whatever innovations future

computer science students might need to study. The FPGA used in the 6.004 Electric Lego

design is the Xilinx 4013 chip. This chip consists of a 24x24 array of Configurable Logic

Blocks (CLBs) and a routing network for communication between them. Each CLB consists

of two four-to-one function generators on the input side, one function generator to combine

the outputs of the others, two output flip-flops, and a network of multiplexers to generate

appropriate control signals for the function generators and flip-flops. CLBs are capable of

implementing any logic function of up to 9 inputs to 2 outputs with a propagation delay of

only 7 nanoseconds[4].

Connecting this array of CLBs is an interconnect network consisting of three kinds of

wires connected by switch matrices which consist of programmable n-channel pass transis-

tors to make connections between wires. The first type of wire is called a "single-length"

wire. These lines run horizontally and vertically and enter a switch matrix between each

CLB. Next are the "double-length" wires which run parallel to the single-length wires, but

only enter a switch matrix between every other block. Finally, there are "long-lines" which

run the entire length of the chip. These are intended for timing-critical signals which might

be skewed or unnecessarily delayed by running through the switch matrices. The three

different types of wires are designed to minimize the parasitic inductances and capacitances

for the average signal path while providing rich routing resources. With the ability of each

of the CLBs to implement a 9-input function and the powerful routing between the blocks

each Xilinx 4013 is capable of implementing over 13,000 logic gates.

2.2 Electric Lego Supporting Circuitry

The key to the Electric Legos' scalability is the supporting clock circuitry on each board.

This circuitry allows an arbitrary number of Legos to have synchronized clock signals. The



clock distribution scheme used by the Legos is based on an idea proposed by Gill Pratt

and John Nguyen[2]. In traditional clock distribution networks the signal is distributed by

a tree-like structure which must be designed for a particular system configuration. These

types of trees are not scalable. This is unsuitable for the Electric Legos because part of

their usefulness stems from the ability to assemble them into any desired lattice.

Pratt and Nguyen's idea centers around generating a local clock at each node which is

synchronized to its neighbors' clock signals. If all nodes in a network behave this way, the

phase of all clocks in a network will converge to a global average. This simple averaging

scheme, however, can result in stable, or mode-locked, configurations where the separate

clocks in a network do not have equal phase. Pratt and Nguyen solve this problem by using

the output of a triangle-wave phase detector to control the output of a voltage-controlled

crystal oscillator. This phase detector ensures that the only stable state is when the phases

of all clocks are are equal.

The clock synchronizing system used for the Lego lattice is slightly different than the

one mentioned above. Because the Legos form a diamond lattice instead of a two or three-

dimensional cartesian mesh, the triangle-wave phase detector cannot eliminate all mode-

locks. The Legos eliminate mode-lock by synchronizing incrementally. Instead of all of

the nodes trying to synchronize at once, one new node at a time is added to the set of

synchronized nodes. Because mode-lock is impossible both in a two-node network and when

adding a single node to an already synchronized set, this incremental approach guarantees

that the lattice will be synchronized.

2.3 The Lab Kit

The Electric Legos would not be very useful without a system for programming them and

communicating with them once they have been programmed. The system that will serve

this purpose is a lab kit that will provide physical support and communication circuitry for

the Legos and a host machine which will provide a software environment for designing and

compiling circuits which can be down loaded onto the Legos.



The lab kit itself will be similar to the old 6.004 lab kits with a few modifications. The

main section on the new kits will be an area for plugging in the Legos. The first Lego will

straddle a "gateway" chip which facilitate communication between the lab kit and the host.

The gateway will be described in detail in a later section. The rest of the Legos will build

out from the first. Adjacent to the Lego area will be a small breadboard. This board will

be used for simple labs early in the course as well as for monitoring signals in the lattice.

The host machine will run a software environment for creating circuits. The environment

will provide students with the ability to graphically design and modify circuits, place the

logic in the desired FPGA by hand, and automatically route signals between logic elements.

In addition, the environment will manage the interface between the host and the lab kit

and down load compiled designs to the Lego Lattice.

2.4 Advantages of Electric Legos

The Electric Lego approach has many advantages over proto-board and wire circuits and

the software environment, if carefully designed, will provide the look and feel of physically

wiring a circuit without the cumbersome chore of plugging hundreds of wires into a proto-

board. It might be argued that using a virtual workbench as opposed to chips and wires

might take away from the lab experience. The point of the lab, however, is to visualize a

circuit and build it from its component parts. What a student sees and connects will be

precisely controlled in the virtual environment. Proto-board lab kits invariably turn into

jumbled masses of wires which students pray will not completely come apart before the

term is over.

The electric Lego approach will also solve the performance problems associated with

proto-boards. Without the parasitics of the protoboards and the inductances of foot-long

wires, designs can be clocked at much more realistic speeds. Students will also be able to di-

rectly implement the 32-bit wide data paths of today's common RISC machines. Currently

students are distracted by the interactions between two layers of microcode and extremely

crude hardware that mysteriously result in the execution of a load-store instruction set.



With electric Legos, students will string 32-bit data paths between the components of a

pipelined RISC machine and watch instructions being directly executed by the virtual hard-

ware they have created. Additionally, without being forced to spend a considerable amount

of time on seldom-used microcoding concepts, perhaps students can spend time on more

interesting aspects of architecture. These might include the implementation of performance

enhancements like pipeline bypassing, multi-level caches, and branch prediction.



Chapter 3

Programming FPGAs

One of the main challenges in building the new 6.004 lab kits is to provide students with

an environment where all of the "hands-on" feel of the old protoboard technology is not

lost. There is something about building a system yourself, as opposed to reading about

it or simulating it in software, that makes for a deeper understanding. The main goal of

the software environment is to convert a design from a concept in a student's head to an

implementation on a Lego FPGA seamlessly and with the illusion that all that is happening

is that wires are being moved around from module to module. There are many excellent

software packages around today that go a long way toward accomplishing this goal. These

packages contain separate programs for schematic entry, placement of logic into CLBs, and

routing of signals between CLBs. Unfortunately, they also have drawbacks that make them

less than ideal.

3.1 Design Entry

As mentioned above, the illusion of physically wiring a circuit is critical to the 6.004 lab

experience. When a wire is inserted or moved in a physical circuit, it can be immediately

tested and debugged. This is not the case with commercially available software environ-

ments for programming FPGAs. When using Aldec's Foundation software, for example,

the process is as follows. First, a design is entered into a schematic capture program. This



program provides graphical representations for parts and the wires between them. When

the user feels that a design is correct, the netlist (a textual description of the circuit) must

be exported to a file. This process takes 15 to 20 seconds for the simplest designs containing

on the order of 10 logic gates. For complex designs like the ones students will manipulate

in 6.004 this process will take as much as 5 minutes or more. Next the netlist must be

translated into a program that does the placement and chip-level routing for the design.

This is a faster process than exporting the netlist from the schematic capture program,

but still takes a significant amount of time. Once the netlist has been translated into this

program the real problems begin.

The design passes through three stages: optimization, placement and routing, and bit

stream generation. The bit stream is the binary file that is sent to the FPGA telling it how

to program itself. Since the optimization step can usually be disabled we will only worry

about the placement, routing, and bit stream generation. These processes are extremely

time consuming even for the simplest designs. One design, an Enhanced Parallel Port

interface which will be discussed in detail later, has 15 flip-flops, a 3-bit address decoder,

and 6 3-input AND gates. It takes fifteen minutes to complete the placement, routing,

and bit stream generation process. For the kinds of designs that 6.004 students will be

implementing, this delay will be several hours. This is clearly unacceptable. Compounding

the problem is the fact that every time the slightest change is made to a design the entire

process from netlist exporting to bit stream generation must be completed again. This

means that in the most involved labs every time the slightest change is made to a design, a

student will have to wait several hours before the change can be downloaded to the FPGA

for testing.

3.2 Down Loading Designs

In addition to the circuit compilation issues presented above, there is the problem of getting

the bit file onto an FPGA. The standard commercially available interface is called the

"'XChecker" cable and connects to the serial port of a host machine. The host programs



the FPGA by sending the bit file one bit at a time through the XChecker cable. Using this

standard interface would add to the design loop delays and further impair the ability to

provide students with the illusion of manipulating a physical circuit.

3.2.1 Serial FPGA Programming

The details for the rest of this section refer to the programming methods for Xilinx FP-

GAs. These chips, specifically the Xilinx 4013, are the main feature of each Lego module.

Programming one of these parts serially involves the manipulation of three signals: PROG,

DIN, and CCLK. In order to prepare the chip for programming the PROG line must be

held low for at least 10 milliseconds and then raised and held high for the rest of the time

the chip is in use. Once the part has been initialized the configuration bits can be sent.

These bits are sent by setting DIN to the appropriate value and strobing CCLK. In order

to program an FPGA serially, the host has to shift bits out to DIN one at a time while

generating an appropriate pulse on CCLK for each bit. This involves at least 3 clock cycles

per bit. One cycle is needed to set DIN. A second cycle raises CCLK. The third cycle clears

CCLK completing the transmission of one bit. This method is obviously unsuited for the

purposes of the Lego lab kits. Luckily, Xilinx offers another way to program its chips.

3.2.2 Byte FPGA Programming

Xilinx's Asynchronous Peripheral Mode (APM) is perfectly suited for the Lego kits. What

is required by the Electric Legos kit is a fast, simple, bi-directional interface to get bit files

from the host machine to the lattice. APM enables the design of an interface that fits these

criteria.

In APM, one byte can be presented to the FPGA at a time. Upon receiving a pulse

on the -WS pin the chip latches the byte into an internal shift register. Then the bits

are shifted out on the rising edges of an internal oscillator signal instead of relying on an

external source to generate CCLK. While the chip is busy shifting bits it holds the RDY/-

BUSY signal low to prevent the host from sending another byte. As soon as the FPGA is



ready for the next data byte it raises RDY/-BUSY. During download, the Xilinx -INIT pin

is held high. If an error occurs at any time during download, the -INIT signal is pulled low

and no more configuration bits are shifted into the chip. Another signal, DONE, is held

low during programming. After a successful download this signal is released. If the signal

is pulled high through a resistor externally, a high on the DONE line signals a successful

programming of the FPGA.

AMP makes the download bit rate higher by allowing almost one bit per internal clock

cycle to be shifted into the chip. The rate is not exactly one because some cycles are missed if

the shift register is waiting for the next byte. In addition, the number of strobes generated by

the host is reduced by a factor of eight, further lowering the per-bit programming overhead.

The interface for the Lego kits is designed to take advantage of this programming method.

The facts presented above suggest that the use of FPGA technology in a setting such

as 6.004 necessitates a better development environment capable of more closely approxi-

mating the experience of physically building a circuit. Also helpful would be a host-to-kit

interface that would take advantage of the faster FPGA programming modes and allow for

bi-directional communication between the design environment and the Lego lattice. The

design and construction of such a system will be described in the following sections.



Chapter 4

The Virtual Workbench

The key to improving upon the already existing software environments is to create an envi-

ronment where the component parts are more tightly coupled. Included in this environment

will be a router designed at MIT by Randy Sargent and Carl Witty for the 6.004 lab kits as

well as schematic capture and logic placement programs designed as part of this thesis. The

router has the ability to make incremental changes to a design. For example, if a student

needs to replace a regular flip-flop with one with an output enable input the router can

un-instantiate the old flip-flop and instantiate the new one without having to compile the

rest of the circuit. The 6.004 development environment is designed to capitalize on this

capability.

The flaw in the commercially available packages is that the schematic entry, logic place-

ment, and signal routing facilities are similar to stages of an assembly line. The output

of one stage is the input of the next. A better model would be one central representation

that can be acted upon simultaneously by any of the components. Each of the components

(schematic capture, logic placement, signal routing) could be thought of as a filter which

shows a different view of the circuit. The schematic capture shows the schematic shapes of

the parts and the wires between them and the logic placer shows the shapes of the parts in

terms of CLBs and where they are located on the FPGA. Using this approach, the user is

given the illusion that they are wiring a virtual circuit in the same manner that a physical



one would be wired. That is, it appears that a wire is being plugged in and the circuit

is ready for testing immediately (or at least shortly) thereafter. This is made possible by

eliminating the cumbersome interfaces between the component programs. By using the cen-

tral data structure, changes made by the schematic capture or logic placement program can

immediately be seen by the router. Upon detecting the change, the router can then insert it

into the design incrementally and create a new bitfile. The new software environment will

provide a seamless flow from a concept for a circuit all the way through bitfile generation.

Figure 4-1 shows the entire environment from design entry to FPGA programming.

4.1 Primitive Part Table

Before the Schematic Capture, Placement, and Routing environment (SCPR) can do any-

thing, it needs to know the names of the primitive parts to be used in a particular lab

session. This is because non-primitive parts (those made up of other parts) have to be han-

dled differently. This will be discussed in a later section. In addition to the part names, the

SCPR needs to know the shapes of the parts for both schematic and logic placement views

and how to instantiate the part in the router. The shapes for the schematic capture and

logic placer programs are just lists of lines and dimensions in terms of CLBs, respectively.

The instantiation information is just a string describing the part to be sent to the router.

All of this information is read into the Primitive Part Table on startup of the SCPR.

When SCPR starts up, it looks for a file with a ".ppt" extension in the directory containing

the library parts for that particular lab. Each part in a .ppt file is specified using the format

shown in Figure 4.1.

The "lines" field specifies the straight lines used in drawing a part in the schematic

capture program. The format is "xl yl x2 y2". Next, the "arcs" field describes the curves

to be drawn in the schematic capture program. The first two numbers are the x and y

coordinates of the upper-left corner of a rectangle and the second two are the coordinates

of the lower-right corner. The arc to be drawn will be an ellipse centered on the center of

this rectangle and extending to its sides. The "router spec" field is the string that has to



Input Files

Central Data Structure

Logic PlacementSchematic Capture

Hardware Interface

Electric Lego FPGA

Figure 4-1: Overview of the Electric Lego programming environment



#name:
OR2
#schematic shape:
#lines:
IL 2 34
2531
#arcs:
1. 345
#router spec:
0R2(IO, I1 -> 0) size(1,1)

Figure 4-2: Input format for Primitive Part Table construction

be sent to the router to instantiate the part. This will be discussed in more detail in a later

section. The primitive part table is useful in all phases of design creation. The schematic

capture program uses it to access information for adding and drawing parts and the logic

placer uses it to find the CLB dimensions of parts. The original purpose of the primitive

part table, however, was to provide SCPRs input file parsing routine with the names of all

of the primitive parts.

4.2 Input File Formats

The SCPR package needs two separate files to specify a design. One file will be in the

Xilinx Netlist File (XNF) format and the other will be a format designed specifically for the

Schematic Capture program. The XNF format describes the design in terms of part and pin

names and connections of pins to "nets", or wires. This format was chosen for maximum

compatibility with commercial software. The second file, called a ".sch" file specifies more

superficial information necessary for the schematic capture program. It contains information

about part placement on the virtual desktop and how wires and busses are to be drawn

from one port to another.



4.2.1 The Xilinx Netlist File Parser

Compatibility with a standard netlist format is important because it ensures that the SCPR

package can manipulate designs created by other software suites and vice versa. Designs

created with SCPR will be completely portable to other environments which support the

XNF format. XNF compatibility also allows a user to "mix and match" design tools. For

instance, if a user prefers the SCPR schematic capture program but prefers the optimization

capabilities of another software package, he can generate an XNF file from the SCPR package

and import it into the logic placer of another design environment.

A Completely General XNF Parser

The first pass at the XNF parser was a GNU Lex/Yacc generate shift/reduce parser. This

parser read in tokens from the xnf file and pushed them onto a stack. Anytime a sequence

of tokens on the stack matched a pattern defined by the parser, the tokens were removed

and replaced by the name of the pattern. This type of parser proved to be less than optimal

for our purposes for a few reasons.

First was the problem of limited lookahead. The shift/reduce parser could only look

two tokens ahead. This property proved to be inconvenient for the xnf format. In several

common cases a certain definition could be specified by many different token patterns.

Some of these patterns differed by more than two tokens, making the artificially imposed

look-ahead limit of the shift/reduce parser a disadvantage.

Another reason that using an automatically generated shift/reduce parser was not the

best decision was the nature of the information to be extracted from the xnf files. The

router we are using only needs part of the information that is possible for an xnf to contain.

This information reduced the size of the set of tokens we needed to parse to a very small

number. Because of this, it was much easier to hard code this small set of tokens into a

simple scanner/parser than to specify an automatically generated shift/reduce parser that

might not be fully compatible with our platform. The Lex/Yacc parser did, in fact, cause

some compilation problem in the Microsoft Windows environment which is to be used for



the host machines.

Another problem with the shift/reduce parser is that it is difficult to keep state infor-

mation around. This limitation showed itself in the attempt to parse the names for part

instances and the nets which connect them. In an XNF both the part instances (e.g. AND

gate "Al") and the net names (e.g. wire "NI") are chosen from the same set of possible

names. Because of the way tokens are handled in the shift/reduce parser this presented a

problem. For example, in an XNF file the way tokens following a name are handled differs

according to whether the name specifies a part instance or a wire instance. With the pos-

sibility of recursion in a hierarchical XNF file, Lex and Yacc provided no mechanisms for

keeping enough state to properly parse all designs.

A Custom XNF Parser

The final version of the parser solved all of these problems. Instead of the separate tokenizing

routine passing only one token at a time, the parser included in SCPR gets all of the tokens

at once. This allows the parser to enter a state (e.g "parsing part" or "parsing net") with

all of the necessary information to specify a design element instead of having to pass control

back to a lexer. With GNU Lex and Yacc this passing of control would cause the parser

to lose any state information. The limited look ahead problem also went away. The SCPR

parser knows that all relevant information is in the group of tokens in its possession. A

stack with artificial size limitations is unnecessary.

Once the parser has the tokens, a simple case statement is all that is necessary to convert

them into a meaningful representation of the part they specify. There are only three types of

elements that the parser needs to look for: parts (ANDs, ORs, etc.), pins, and connections

to the I/O pins on the chip (externals). Therefore only three different types of tokens need

to be considered as the first token in a group. Any line that does not begin with one

of these can be disregarded. Once one of the legal tokens is encountered, the type and

sequence of tokens that can legally follow is very well specified. All the parser has to do is

confirm that the tokens form a legal sequence and create a representation for the element.

This representation is then added to the data structure that is the centerpiece of the SCPR



package.

Since the custom parser is a single procedure as opposed to a complex shift reduce

system, it is also much easier to handle the hierarchical nature of XNF files. As was

mentioned in the primitive part table section above, it is important for the parser to know

the which parts are primitive. This is because non-primitive parts are simply place holders

for collections of simpler logic. When the parser comes across a part that is not primitive it

knows to look for another XNF file that describes the part. With the Lex/Yacc parser stacks

to save data for use upon returning from parsing a hierarchical file have to be manipulated

manually. With the custom parser a simple recursive call automatically takes care of all of

this state information. This recursion also provides a very natural way to build the main

SCPR data structure.

4.3 The Main Data Structure

The SCPR package's main speed advantage derives from its use of one data structure from

which the schematic capture, placement, and routing components can glean information.

A change made by one is instantly available to the other. The data structure consists of a

list of part types and a tree of part instances.

4.3.1 Part Types and Instances

Each node in the part type list contains information that is common to all parts of that

type. There is only one node per part type in the design. For instance, no matter how many

AND gates there are in a design there will only be one AND node in the part type list.

Part types contain information such as the shape of a part and the names and locations of

its input and output ports.

The second part of the central data structure is a tree of part instances. This structure

must be a tree as opposed to a list in order to accommodate the hierarchical nature of XNF

files. Each node in this tree contains information that is unique to each instance of a part

type. This includes a unique identifier, locations for the instance on both the schematic



workbench and CLB array, and a list of pins and the signals to which they connect. Each

node also contains a pointer to the part type which it instantiates. Appendix A shows the

data members of the PartType and PartInstance classes.

4.3.2 Adding Parts to the Structure

Parts are added to the structure either by reading them from an XNF file or by adding

them in the schematic capture program. The same routine is used in either case. The only

difference is where the placement information comes from. There are two different locations

associated with each part: CLB location in the placer and position on the virtual workspace

in the schematic capture program. When parts are added via an XNF file these positions

are read from files in the same directory. The CLB locations are read from an ".xnfp" file

and the workspace locations are read from a ".sch" file. These are simple text files which

associate part instance names with locations. The workspace locations are a requirement

and will automatically be included for all designs created by the SCPR schematic program.

The CLB locations, however, are optional. If they are not present the parts are marked

as not placed and can be placed later. When parts are added in the schematic capture

program the schematic location information is taken from where on the workspace the part

is dropped. Parts added this way are marked as unplaced in terms of CLBs and must be

placed before routing.

There are two routines which are called when a part is added. The first is called

AddType. This routine takes two strings and two booleans as arguments and returns a

pointer to the part type it added. The two strings are the name of the part (not the unique

identifier) and the name of the file that contains it's XNF description. The second string

is only relevant if the part is non-primitive. The first boolean is a pointer. AddType uses

his memory location to inform the caller whether the type has been previously added. The

second boolean tells AddType whether or not the part is primitive. AddType does not

always add a type, however. As mentioned earlier, the central data structure only contains

one entry for each part type no matter how many times the type is instantiated. If the part



type currently being added is already in the list then AddType just returns a pointer to

that node. Otherwise the type is added and a pointer is returned.

The second routine, AddPart, creates a part instance. AddPart takes five arguments

and returns a pointer to the part just instantiated. The first argument is a pointer to a list

of part instances. This specifies where in the hierarchy to add the instance. Argument two

is a boolean which tells AddPart whether the part has been placed in the CLB matrix. If

the instance has been placed the third argument specifies its location. The fourth and fifth

arguments are the name of the part and its unique identifier. A hierarchical design can be

created by adding parts to the subpart lists of other parts. In the current version of SCPR

hierarchical designs can be read in from XNF files, but cannot be created by the schematic

capture program. This was a conscious choice for the early versions of SCPR. Hierarchical

capability was simple to incorporate into the XNF parser and was added for generality.

Creating hierarchical designs in the capture program is considerably more difficult. Because

the 6.004 labs can be set up to use a small number of primitive parts, the first-pass capture

program does not include hierarchical capabilities. These parts will not be primitive in terms

of the logic they implement, but in the sense that the capture and placement programs can

view them as a block and not be concerned with their substructure. Creation of these parts

will be described in a later section.

4.3.3 Adding Connections to the Structure

Connections between parts are always established through "nets". Nets are just wires that

carry certain signals. Each pin on a part is connected to a net. Pins on different parts are

connected by attaching them to the same net. In SCPR these connections are made by a

routine called AddPin. AddPin takes a list of pins, a pin name, a direction (either input,

output, bi-directional), and a net name as parameters and returns a pointer to the pin just

added. A pin is added to a certain part by calling AddPin with the part's pin list and the

appropriate group of strings.

All of the routines for adding to the central data structure, AddType, AddPart, and



AddPin rely heavily on strings for input and create structures containing a lot of strings.

This may not be an efficient way to encode the parts, but it is a by-product of the input

and output interfaces available to SCPR. Both the XNF format and the router interface are

completely text-based. Strings are needed to save modified circuits back into XNFs and to

instantiate parts in the router.

4.4 The Schematic Capture Program

The schematic capture program is a point-and-click graphical user interface that allows the

user to select parts from a list of primitives and connect them by dragging wires between

ports. The set of parts from which the user can choose is specified by a .ppt file as described

above. On startup, SCPR reads the appropriate .ppt file to create a database of primitive

parts.

For the purposes of the 6.004 design environment, the schematic capture program does

not; need all of the features of commercial CAD programs. Really all that is needed is for

a student to be able to see the parts and wires in a circuit. In addition, the set of parts for

any lab session will be a very well-defined set of primitives. For this reason, the first version

of the SCPR schematic capture program only provides for adding and deleting parts and

wires from a design. All of the capture program's functions are controlled by four buttons

on the left side of the screen.

4.4.1 The Schematic Program's View

'The schematic capture program's view on a part instance in the central data structure

consists of four elements. First, each instance has a bounding box. This region around the

part is used in selecting it for moving or deleting. Also included in the capture program's

view is a list of arcs and lines for drawing the part. The lines are contained in a linked list

of point pairs. The arcs are maintained as a pair of rectangles. Windows provides graphics

routines which draw ellipses to fit inside rectangular regions. Drawing an arc as opposed

to a closed ellipse, however, requires erasing part of the ellipse. This is the purpose of the



second rectangle. The first one specifies the shape of an ellipse and the second specifies

which part of the ellipse is to be erased. The schematic program also needs to know the

location on any text describing the part. This information is stored as a point. The final

piece of information is the offset of the part from the origin (upper-left hand corner) of the

workspace. This gives the schematic capture program the location at which to draw the

part. All of the fields described above are translated according to this offset.

4.4.2 Select Mode

The first button on the left side of the screen puts the program in "select" mode. In this

mode, any mouse clicks select the part or wire under the mouse pointer. Once a part has

been selected it can either be moved to a new location on the workbench or deleted from

the design. In the current version, selected wires can only be deleted.

Selection is done by a simple search of the central data structure. On a mouse event in

select mode, the capture program looks at each part instance to see if the mouse pointer is

inside its bounding box. If it is the part is marked as selected. The part can then be moved

or deleted from the design. If the pointer is found to not be inside any bounding box, the

list of wires is searched. If the mouse pointer is collinear with any two points in a given

wire, that wire is marked as selected and can then be deleted.

This linear search procedure is not the most efficient, but the expected size of the designs

makes it a reasonable choice. Most designs will have only tens of parts and at most a few

hundred wires. A liner search on a list of this size will not cause any noticeable delays.

4.4.3 Part Mode

The second button puts the program in "part" mode. This is the mode which allows parts

to be added to a design. When part mode is entered, a dialog box containing all of the

primitive parts available appears. The user selects a part from this list with the mouse

and clicks a location on the workbench for the part. The part is added to the central data

structure with the same procedures used to add an XNF-specified part. Because of the



primitive part table, all that is needed to add a part is its name. This string can be used

to index into the table and retrieve the rest of the needed information.

4.4.4 Wire and Bus Modes

The third and fourth buttons start the "wire" and "bus" modes. These modes allows a user

to connect a pin on one part to either a pin on another or to a wire carrying a certain signal.

On the first mouse event after wire mode is entered, a wire is started. From then on the user

can define the shape of the wire by anchoring certain points with the left mouse button.

The wire can be terminated at the appropriate point, either at a port or on a wire, with a

click of the right mouse button. Again the same routine used to add a pin when parsing an

XNF file can be used here. All that is needed is the name and type of the starting point

(i.e. either a port or a wire) and the name and type of the terminating point. If the wire

connects one port to another a unique name is generated. If one of the endpoints is another

wire the wire being added is give the name of the wire it connects to. Since busses are just

groups of wires, the same methods apply for adding them to a design. The only difference

is that there must be an iteration of the wire adding routine for each wire in the bus.

4.5 The Logic Placer

Once a design has been specified in terms of parts and connections another important

piece of information must be added before a bitfile can be created. This information is the

placement of each of the parts in the array of Configurable Logic Blocks that make up the

FPGA. In most commercially available environments this is a very time consuming process.

It is so time consuming because they attempt to do the placement automatically. This is

helpful if there are hundreds or thousands of parts in a design, but for the purposes of 6.004

the designs will not be nearly this complex. Students will be dealing with a dozen or fewer

":macro" parts in most cases. The macros will be made up of hundreds of thousands of

primitive parts but these will already have their relative placements inside the macro fixed.

All that will remain is for the user of the placement tool to place the macro parts. The



subparts will be placed according to their offset in the macro.

Because there will only be a few parts to be placed, it is reasonable to expect a user to

be able to do the placement. It is generally much easier for a person to pick locations for

shapes on a two-dimensional area than to have an algorithm automatically do the placement.

Hand-placement is also a good idea because if signal routing fails due to the location of a

part it is easier and more realizable for the user to "eyeball" a new location.

The placer in SCPR is a graphical user interface, created by James Clark at MIT, where

a user can drag parts to appropriate locations on the FPGA. It is divided into two panes,

one containing a listing of the parts in the design and one containing a 24-by-24 grid showing

the location of parts which have already been placed. The placer's view on the central data

structure includes information such as a part's shape in terms of CLBs, whether or not a

part has been placed on the FPGA, and where on the grid it is located. All non-placed parts

are drawn in the list pane and all placed parts are drawn at the appropriate coordinates in

the grid pane. When a part is dragged from the list pane to the grid pane it is marked as

placed and its location on the grid is recorded in the central data structure. Once in the

grid pane, parts can be moved to new locations as necessary.

4.6 The Router

The incremental router was a separate project, so all the SCPR package needs to do is

interface to it properly. The interface provided by the router is text-based and in the

current version of SCPR communication with it takes place through files. Future versions

will use some sort of interprocess communication. The routing process produces the bitfile

which can then be downloaded onto the FPGA.

Before a design can be routed, all of the part types must be initialized by the router.

This will be done when SCPR starts. When the primitive part table is created, each of the

primitives will be sent to the router for creation. These primitives could be anything from

an AND gate to an ALU. Each part in the .ppt file for a particular lab session will have a

corresponding file which completely describes it in the router's input format. As each part



is entered into the primitive part table this file will be sent to the router. A two-input AND

gate would be specified as follows:

defmod and2(A,B -> Y) size (1,1)

clbl= create clb "x = fl*f2; y= gl*g2..." at (0,0);

connect(al, clbl.fl);
connect(bl, clbi.f2);

connect(a2, clbl.gl);
connect(b2, clbl.g2);
connect (ql, clbl.x);
connect(q2, clbl.y);

The size field tells the router how many CLBs the part occupies. The "create clb..." line

contains the information needed to actually configure the function generators in the CLB

and the "connect" commands specify the routing of internal signals through the multiplexers

in the CLB. This format can also be used to specify parts that take up more than one CLB.

By using the "at" field in the "create clb" line the relative locations of the components of

multi-CLB parts can be fixed. For 6.004, parts as complex as an ALU will be specified in

this format. As mentioned earlier, this will allow the schematic capture and logic placement

programs to view even the most complicated parts as primitive blocks.

The next interaction with the router will be when the design is actually routed. The

central data structure contains all of the information needed to route the design. Routing

is just a matter of instantiating each part instance in the router's format. This is done by

;sending a string describing the part instance router to the router. For instance, to create

instance "II" of a 2-input AND gate in the upper-left CLB on the first lego, the following

string would be sent to the router:

Ii = create AND2(A,B->Y) at (1,1,1);

Once all of the parts in a design have been instantiated the communication with the

router will, in some cases, not be over. If a signal fails to route, changes have to be made



to the placement of modules around it. This is where the ability to place parts by hand is

important. It is much quicker and easier for a person to judge what changes need to be made

than to do it automatically. When a signal fails to route, the router will send a message

to SCPR telling it which signal needs to be adjusted. This information will be relayed to

the user both as text and in graphical form. Upon routing failure the user will receive a

message box with the unique identifier of the unroutable wire. In addition the wire will be

highlighted in the schematic view and all parts affected by the failure will be highlighted

in the placer view. After the moves any logic to correct the problem, the changes will be

sent to the router. The incremental nature of the router will be the source of the SCPR

package's speed advantage over other design environments. Instead of having to send the

whole design again after changes have taken place, SCPR can just uninstantiate the old

versions of the changed parts and reinstantiate the new ones. This incremental ability will

also make designing faster in other ways. For example, if a user compiles a design in another

environment only to discover a wire is missing the entire design must be recompiled after

the wire is added. In SCPR, the wire can be added and only the affected parts will have

to be reinstantiated. Unfortunately, a working version of the router was not completed in

time to incorporate into SCPR. The foundation is set, however, to just plug the router in

when it is finished.



Chapter 5

The Host/Lab Kit Interface

After a bit file is created by the router, there is one step remaining to complete the illusion

that the design on the Lego is being directly manipulated. The bit file must be quickly

down loaded to the lattice. If this step is too slow then all of the effort to generate a bit

file as quickly as possible is wasted. Most currently available interfaces, such as the Xilinx

XChecker cable send configuration bits serially from the host machine to the FPGA. This

is not only slow, but it makes the interface between the host and the FPGA much more

complicated. In addition, receiving feedback from a peripheral is not possible through a

serial port.

5.1 The Parallel Port Interface

The interface selected for communication between the host machine and the Lego lattice

is the parallel port. One important reason for this choice is that virtually every PC has

a parallel port. This makes it possible to use the lab kit with machines from different

manufacturers. With some software porting, it would even be possible to use the kits

with either PCs, Macs, or workstations. A second reason is the parallel port's simplicity.

A prototype for communication through the ISA bus was designed and built, but was

deemed inappropriate for the kits. In order to use this interface, the kits needed to contain

a motherboard with ISA slots. The mother board then needed an operating system to



SPP Name EPP Name DB-25 Pin I/O Direction
-Strobe -Write 1 Output
Data[7:0] Data[7:0] 2-9 Bi-Di
-Acknowledge -Interrupt 10 Input
Busy -Wait 11 Input

Paper End User Defined 12 Input
Select Input -Adrstrobe 13 Input
-Auto Feed -Datastrobe 14 Output
-Error User Defined 15 Input
-Initialize -Reset 16 Output
-Select User Defined 17 Output
Ground Ground 18-25

Table 5.1: Parallel Port Pinouts

control the bus. This greatly increased both the hardware and software complexity of the

kits. As will be shown in a later section, the parallel port requires only a few chips which

can be mounted on the main board of each kit. Before describing the design of the parallel

port interface, it will be helpful to describe the protocol that makes the interface possible.

5.1.1 The Enhanced Parallel Port Protocol

The standard parallel port protocol only allows for the transfer of data from the host to

the peripheral. This is not useful for the Lego kits because the host needs feedback from

the lattice on the status of down loads. Luckily, the IEEE recently approved the Enhanced

Parallel Port protocol (EPP), standardizing a bi-directional mode for parallel ports. EPP

proved very suitable for use in the new 6.004 kits in more ways than one.

First, EPP provides the host with a transparent, memory-mapped interface for reading

from and writing to the parallel port. The standard parallel port (SPP) is mapped to three

registers starting at a base address. For most machines this is hex 378 (0x378). The base

register is the write-only Data port. Base+1 is the Status register which contains signals

such as Paper End which are commonly used by printers. Base+2 is the Control register.

This register is used to send strobe and initialization signals. EPP extends this set by



Port Name Offset Mode Read/Write Function

SPP Data +0 Both Write Standard data port. Manual
strobing.

SPP Status +1 Both Read Status bits from peripheral
SPP Control +2 Both Write Control bits to peripheral
EPP Address +3 EPP Read/Write Generates read or write ad-

dress cycle.
EPP Data +4 EPP Read/Write Generates read or write data

cycle.
User Defined +5 to +7 N/A - -

Table 5.2: Parallel Port Register Definitions

adding five extra registers. The two that are useful for communicating with the lattice are

base+3 and base+4. These are the EPP Address Port and EPP Data Port, respectively.

Unlike standard mode, where the control signals have to be controlled by driver software, in

EPP mode all signals are automatically generated by the port hardware. In addition, both

ports are bi-directional and are therefore capable of providing feedback from the lattice.

The second aspect of EPP mode that makes it fit well with the needs of the lab kits is

the fact that there are two read/write ports. As will be discussed later, it is very convenient

to be able to address different registers in the interface between the host machine and the

lab kits. In EPP mode the data port can be used to send data to a register selected by

values sent to the address port. In order to use these ports, however, the peripheral must

understand the important signals in the EPP protocol.

The discussion here will describe the signals used in manipulating the data port. The

same principles apply when using the address port. There are three main signals that are

important when interacting with a parallel port in EPP mode: -WRITE, -DATASTROBE

(or -ADRSTROBE), and -WAIT. These signals are carried on parallel port pins 1, 14 (17),

and 10, respectively. -WRITE is an active-low signal that signals that a write is taking

place. -DATASTROBE and -ADRSTROBE are active (low) when there is valid data on

the parallel port data pins. The -WAIT signal is a handshake signal that tells the host when



-Write

-Datastrobe

-Wait

Data[7:J0] Valid Data

Figure 5-1: Signal Timing for an EPP Data Write Cycle

it can remove the data from the data pins. The host cannot begin a read or write cycle

until -WAIT is asserted (low) and cannot end a cycle until -WAIT is high. So when the host

writes to the memory location corresponding to the EPP data port the EPP hardware first

asserts -WRITE and puts the data on the parallel port data pins. Next, when the data is

valid, the -DATASTROBE signal is asserted telling the peripheral that it can now take the

data. As soon as the peripheral has the data it deasserts -WAIT allowing the EPP hardware

to end the write cycle. After the cycle has ended (i.e. -WRITE and -DATASTROBE are

deasserted) the peripheral asserts -WAIT allowing the host to begin another read or write

cycle. Figure 5-1 shows the signals generated during a data write cycle.

5.1.2 The Labkit Parallel Port Hardware Interface

The parallel port interface is designed for flexibility. There are a few protocols in existence

now and may be more in the future. A circuit that would only allow the use of one

protocol would prevent the kit from being useful with machines that might not support

that particular protocol. Also, if for some reason it becomes necessary to use a different

protocol the lab kit should be capable of adapting. The FPGA technology that promises

to drastically improve the 6.004 lab experience is also perfect for providing this flexibility.



The parallel port circuit cannot, however, just consist of an FPGA connected directly to

the parallel port signals. First, there needs to be some buffering to prevent damage to

the FPGA. In addition, there are two modes of communication between the parallel port

and the kit. Programming the "gateway" FPGA is slightly different than programming

the FPGAs in the Lego lattice. A small amount of logic is needed to switch between these

modes.

The parallel port circuit on the main board of the lab kit consists of one Xilinx 4013

FPGA along with three 74LS245 8-bit bi-directional buffers and a 22V10 PAL. The PAL

provides the logic for switching between communication modes. The first LS245 buffers

the data bits from the parallel port and routes them to Xilinx pins DO-DO. These are the

pins that accept data bytes for shifting into the FPGA when programming in Asynchronous

Peripheral Mode. This buffer's direction input is connected to both the PAL and the Xilinx.

This allows the PAL to control the direction of data transfer during programming of the

gateway chip. After programming is complete, most of the PAL pins, including the one

controlling the direction, tri-state, allowing the Xilinx to take control of the parallel port.

The second two LS245s buffer the control and status bits from the parallel port. Since

the control and status registers are write- and read-only, respectively, their direction control

pins are hardwired. The control bits are routed through the buffer to pins 2 through 5 of

the PAL. This allows the PAL to generate the proper signals when the gateway FPGA is

being programmed. These signals are also routed to the gateway so that it has access to

them after programming is complete. The parallel port status signals are also connected to

both the PAL and the FPGA. During gateway programming, the PAL informs the parallel

port of the status of the down load. After the PAL tri-states, the Xilinx takes control of

these bits and uses them to relay the status of the lattice to the host.

The function of the PAL is to translate parallel port signals into programming signals

for the gateway Xilinx. There are five signals that the host and the gateway need to

communicate to each other during gateway programming: PROG, -WS, -INIT, DONE,

and RDY/-BUSY. The PAL routes the parallel port -INITIALIZE signal the the PROG

pin on the gateway chip. Holding the -INITIALIZE signal low for 10 ms will prepare the



gateway for programming. Next, the PAL routes the parallel port -STROBE signal to -WS

on the FPGA. Configuration bytes are sent to the gateway chip in standard parallel port

mode. This choice was made to insure compatibility with all PCs. If a host machine doesn't

support EPP it can still communicate with the kit by down loading an appropriate design

to the gateway chip. To send a byte, the host simply puts it on the data lines of the parallel

port byte writing to the base memory address. A -STROBE pulse generated by writing to

the status register (base+2) causes a pulse on the -WS pin of the Xilinx latches the data

into the shift register.

The PAL also routes the Xilinx DONE, -INIT, and RDY/-BUSY signals to the PAPER

END, -ERROR, and BUSY parallel port pins. The PAL inverts RDY/-BUSY to make

it compatible with the parallel port. These allow the host to send bytes only when the

FPGA is ready and to detect errors or programming completion. Connecting to the parallel

port signals mentioned here was chosen in hopes of being as compatible as possible with

existing parallel port software drivers. Luckily, because they all pass through the PAL, these

connections are completely changeable. Any of the relevant Xilinx signals can be routed to

any parallel port status bit and any parallel port control bit can be routed to the Xilinx

-PROG and -WS pins. In addition, the PAL even allows for the logical combination of any

of these signals should the need arise. The logic functions implemented by the PAL are

shown in Appendix A. The final element in the parallel port circuit is a voltage controlled

crystal oscillator. This oscillator generates the master clock for the whole lattice.

5.1.3 The Gateway Chip

The key to communicating with the Lego lattice is the design that gets down loaded to the

gateway Xilinx. This design allows the parallel port to interact directly with the PROG,

DIN, and CCLK pins on the Lego adjacent to the gateway chip. It also allows the parallel

port to access the ports on a Lego command module. The Lego command module is a

design that is loaded onto a Lego to allow it to program its neighbors.



Trhe Lego Command Module

A Lego far from the gateway chip is programmed by putting the command module design on

each Lego leading up to it and then putting the desired bit file on the target. The command

module, designed at MIT by Anne Wright and Andrew Huang, makes this possible by

providing a set of registers for programming neighbors and a set of opcodes for reading and

writing those registers and turning the Lego into a "pipe" from one of its sides to another.

The five important registers in the command module are used for programming adjacent

Legos. Registers 0 through 3 control the PROG, DIN, and CCLK signals for the north, east,

south, and west neighbors. Serial programming mode is used due to a limited number of

pins on each side of the Lego. To program the north neighbor, for instance, a configuration

stream can be sent to register 0 in the manner described in the FPGA programming section.

Register 4 controls tri-state enables for each of the programming registers. To enable register

0 bit zero in register 4 is set to 1, and so on. In order to write to these registers one of the

instructions in the command module's four member instruction set must be used.

The command module's instruction set includes the READ, WRITE, PATH, and NUKE

instructions. READ and WRITE access the internal registers. The PATH and NUKE

opcodes are the key to programming an arbitrary lattice. When the PATH command is

received on one side of a Lego it goes into pipe mode. In this mode all data and opcodes

are passed through the Lego unchanged to the side specified by the PATH command. This

continues until a NUKE command is issued to the Lego in pipe mode. The Lego passes this

opcode through as usual and then exits pipe mode. Programming a Lego at an arbitrary

position in the lattice is just a matter of setting up a path. Once a path is established, the

gateway chip can program the Lego just like it would any of it's direct neighbors. Once

the programming is complete the NUKE command is sent and the process can be started

again. The structure of these opcodes is shown in Table 5.1.3.

Data and opcodes are read and written to a Lego via a pair of ports on each of the four

sides. Each of these ports consists of eight data lines and two control signals. The VALID

signal is pulsed when valid data is present on the data lines. The OP signal differentiates



Command Opcode ]Description
Write 0100aaaa After this command is received, all data accom-

panying a VALID pulse will go to the register
specified by aaaa.

Read 1000aaaa Read register aaaa. After putting data on its
output port, the Lego that received this com-
mand pulses its VALIDOUT line.

Path 0001pppp After receiving this command a Lego routes all
data and opcodes to pppp.

0001 North
0010 East
0100 South
1000 West

Nuke 0010xxxx A Lego receiving this command passes it
through in pipe mode then returns to normal
mode.

Table 5.3: Lego Command Module Opcodes

between opcodes and regular data bits. A high OP line means that the bits on the data

lines are an opcode. The output port on each side connects to the input port of the neighbor

on that side and vice versa.

The EPP Command Module

The EPP command module is the circuit that is down loaded to the gateway FPGA to allow

the parallel port to communicate with the rest of the Legos. It contains six addressable

registers for programming direct neighbors and communicating with their Lego command

module data ports. Because it sits directly on the top board of the kit, the gateway chip

only communicates through its north and south sides. Each of these sides uses one register

for direct programming of its neighbor and two registers for reading and writing the Lego

command module ports. Addressing these registers is where the EPP address port is useful.

It can be used to set up reads and writes to a certain registers.



The address register in the EPP command module is used to latch addresses as they

come in from the parallel port. This is done by monitoring the -WRITE and -ADRSTROBE

signals. When both signals are asserted the address register is enabled and the bits from the

data bus are latched. The address is then sent to a three bit address decoder. The outputs

of this decoder are used to select the internal registers. To access the north programming

register the host just sends a zero to the EPP address port. All subsequent reads and writes

to the EPP data port will access the north programming register.

The EPP Programming Registers The programming registers have two functions.

When written, the three low-order bits correspond to the PROG, DIN, and CCLK signals

on the neighboring Lego. When read, the two low-order bits are the neighbor's -INIT and

DONE signals. To program a neighbor the host can send the configuration stream serially

to the appropriate register. After the stream has been sent the host confirms that the -INIT

and DONE bits are both high. If either is low, an error has occurred during programming.

The write port on the programming registers is made up of three enable flip-flops. One of

the three low-order data bits is attached to each of the flip-flops. The enable input of each

is driven by the "prog write" signal. This signal is driven high when the -DATASTROBE,

-WRITE, and programming register enable signals are all asserted. The read port is just a

tri-state buffer. When the programming register is read the -INIT and DONE signals are

driven onto the parallel port data pins.

The EPP Status Registers The status registers are used to control the VALID and

OP signals for the Lego command modules on the north and south neighbors. Writing a

one to the low bit of the status register produces a VALID pulse for the input data port of

the neighboring Lego. This is done by passing the low bit through a three-stage pipeline.

After a logic 1 enters the second stage of the pipeline the next falling clock edge clears the

first flip-flop. The effect is that setting the low bit of the status register high causes a two

clock cycle pulse on the VALID output. The second bit in the status register write port

generates the OP signal for the neighboring Lego. This signal is not pipelined and reaches



the Lego two clock cycles ahead of the VALID pulse guaranteeing that is will be at a valid

logic level. The third bit clears the third bit of the status read port. The reason for this

will become clear shortly.

The read port of the status register allows the host to read the VALID and OP values

currently in the register and to detect when data has come in from a neighboring Lego

command module. The VALID signal from each neighbor comes into the third bit of the

status register read port. If the host is expecting a response from the lattice and this bit is

high, then a valid response is ready to be read from the data register. After the byte has

been received by the host it writes a one to the third bit of the status register clearing the

VALID input signal. The host can then request more data from the lattice.

The EPP Data Registers The EPP command module data registers provide access

to the input and output data ports on the neighboring Lego command module. These

registers, in cooperation with the status registers allow the host to communicate with the

lattice. Data from the write port is simply passed to the Lego command module read port

on the neighboring Lego command module. The read port gives the host machine the data

that was present on the neighbor's output data port at the last rising edge of its VALID

signal. To write a Lego command module register the host puts the "Lego write" opcode in

the data register and writes 0x3 to the status register. This sets the OP bit high and sends

the data bits to the Lego as an opcode. Until another opcode is sent, all data accompanied

by a VALID pulse will go to the register specified in the Lego write command. To read a

Lego register the "Lego read" opcode is sent. The host then waits for bit 3 (VALID_IN) of

the status register to go high. It then reads the EPP module data register and clears the

VALIDIN bit by writing a zero to the third bit of the status register.

5.2 The Parallel Port Software Interface

The user controls the Lego lattice through a command line interface. The following com-

mands are available:



* LoadO: Down load a design to the gateway FPGA. This is done in Asynchronous

Peripheral Mode. All other down loads are done serially.

* Loadl: Down load a design to a Lego adjacent to the gateway chip.

* Path: Establish a path in a certain direction. By default the first Lego is the "mas-

ter" Lego. The path command changes the master. For example, the "path north"

command transfers master status to the north neighbor of the current master.

* Nuke: Transfer master status back to the first Lego.

* Lload: "Lego load". This command down loads a design to one of the current master's

neighbors. "Lload lego.bit north" down loads the design specified by lego.bit to the

current master's north neighbor.

* Lwrite: Write a value to a Lego command module register. "Lwrite 0 Oxff" writes

Oxff to Lego register 0.

* Lread: Read an internal Lego command module register. "Lread 0" returns the value

in register 0.

The LoadO Command The load0 command interacts directly with the parallel port

hardware on the kit. To begin programming, the -INITIALIZE signal on the parallel port

is asserted. This, through the PAL, resets the gateway FPGA by driving the -PROG line

low. After 10 ms the host deasserts -INITIALIZE allowing programming to begin. The

configuration bits are then sent a byte at a time through the standard parallel port. This

is clone by writing the byte to the data port (memory location 0x378) and pulsing the -

STROBE signal. The PAL routes the -STROBE signal to the -WS pin on the gateway chip.

After each byte is sent, the load0 command waits for all of the bits to be shifted into the

FPGA. Since the PAL converts the Xilinx RDY/-BUSY signal into the parallel port BUSY

signal, the host just needs to wait for the BUSY signal to be deasserted. After all of the

configuration bits have been sent the host checks to see if the programming was successful.



First it reads the parallel port -ERROR bit which is driven through the PAL by the Xilinx

-INIT. Next, the host checks the parallel port PAPER END signal. This is driven by the

Xilinx DONE pin, again through the PAL. If DONE is asserted and -ERROR is not, load0

informs the user that programming was successful. Otherwise, an error is signaled.

Loadl This command programs the first Lego in the lattice. Having one command for

programming all Legos, whether the first or not, would be more elegant. This ability will

be added in the future by making the EPP command module a slightly modified Lego

command module. The flexibility built into the parallel port makes this possible. For the

first version of the parallel port, however, the gateway chip design necessitates a separate

command for the first Lego.

This command programs the first Lego by using the programming registers in the EPP

command module. First, the appropriate programming register is selected. This is done by

writing to the EPP address port (memory location 0x37b). Once this register is selected the

configuration stream can be sent serially by writing to the EPP data port (0x37c). After

the stream is sent, the programming register is read. If bit 0 (-INIT) and bit 1 (DONE)

are both high the programming was successful.

The Lload Command The lload command works almost exactly as the loadl command

except that it uses the programming registers of the master Lego command module instead

of the programming registers of the EPP command module. First, the appropriate register

is selected with the "lego write" opcode. From this point the bits are sent exactly as the

bits in the loadl command except that they are sent to the EPP command module data

register instead of the programming register. The lego write command ensures that all of

configuration data is sent to the proper Lego command module register. After all of the

programming information is sent the status of the down load is checked by reading the Lego

programming register. The read port on a Lego programming register is exactly the same

as its EPP module counterpart. If the DONE and -INIT bits are high, programming was

successful.



Other Commands The rest of the commands just send the proper opcode to the adjacent

Lego. This is done by writing the opcode to the EPP data register and writing a three to

the EPP status register. The opcode is sent to the current master Lego for execution.



Chapter 6

Conclusion and Possible

Extensions

The purpose of the project described in this paper was to lay a foundation on which a

complete environment for the new 6.004 lab kits could be built. The current software only

provides basic functionality without the advanced features present in commercially available

software. The basic framework for a vastly superior FPGA programming environment is

present, however. The SCPR package's use of a central data structure for communication

between the schematic capture program, the placer, and the router gives it the potential to

very closely simulate the experience of physically wiring a circuit. It can drastically reduce

the time required to take a circuit from concept to implementation as well as the time to

make changes when debugging and tuning a circuit. This ability will be critical in the 6.004

setting where students will be designing a new circuit every week. Design loop delays would

be frustrating, discouraging, and would take away from the effectiveness of the labs. As the

SCPR environment develops it should provide a fast, powerful environment that is easy to

use.

Some improvements might include optimization and router interface routines that run

as background processes. These could run constantly while the user is inputting and editing

a design. Instead of the user having to explicitly optimize a design or send it to the router,



the background processes could continuously optimize the logic and update the bit file

incrementally as the design changes. When the design is ready to down load the bit file will

immediately available.

The down load interface can also be greatly improved. The Legos provide a mechanism

for determining the shape of the lattice. If the PROG signal for a certain side is driven low

and the DONE signal remains high then there is no neighbor on that side. By doing a tree

search on the lattice using this technique, the host can determine the topology of the lattice.

The host can then present the user with a graphical two- or three-dimensional representation

of the lattice. Instead of typing a series of instructions in a command line interface, the user

could simply drag a file onto the picture of the desired Lego. The graphical user interface

could generate all of the "path" and "load" commands without exposing the circuit designer

to this complexity.

The SCPR software ideas along with the parallel port interface provide a solid foundation

for the 6.004 Electric Legos environment. The benefits of the Lego approach are not limited

to 6.004, however. All digital design classes can be enhanced through the use of this

technology. For teaching purposes the virtual environment designed for 6.004 is just as

good as building circuits from wires and MSI logic. When circuits become faster and

more complex the advantages of FPGA technology far outweigh any benefits obtained from

physically wiring a circuit, especially when coupled with a fast programming environment.

With the need for rapid prototyping of digital designs outside of the classroom and the

gaining popularity of research in reconfigurable computing, the Electric Lego technology

and the SCPR environment will prove to be valuable tools in many areas.



Appendix A

Central Data Structure Classes

/ * PlacerPart.h : interface of the CPart* classes */

class CPartType : public CObject

{
public:
CString m_name;
BOOL misprimitive;
CSchematicPart mschematicinfo;
CPlacerPart m_placer info;
};10

class CPartInstance : public CObject

{
public:
CString m_UID;
CPoint m_schematic loc, m_placer_loc;
CPartType *m_part;
CList<CPartInstance*, CPartInstance*> m_subparts;
CList<CPin*, CPin*> mpins; 20

class CSchematicPart : public CObject

{
public:
CRect m_bounding_box;
CList<CRect*, CRect*> *m_arcs;
CList<CRect*, CRect*> *m_erasers;
CList<CLine*, CLine*> *m_lines;
CList<CPort*, CPort*> *mports; 30



class CPlacerPart : public CObject

public:
CRect m_ CLBdimensions;
CPoint m_CLB_location;
1.;

40



Appendix B

Routines for Building the Central

Data Structure

POSITION AddType(char *name, char *UID, BOOL isprimitive)

{
POSITION pos = root partlist->GetHeadPosition();
/ * Look trough part type list to see if already exists*/
while (pos) {

CPartType *part = root_partlist->GetAt(pos);
/ * If type already present return pointer */
if (part->m_name == name) {

return (pos);
} 10
root_partlist->GetNext(pos);

}
/ * Otherwise add the type and return a pointer to it. */
rootpartlist->AddTail(new CPartType(name, name, is_primitive));
pos = root_partlist->GetTailPosition();
return (pos);

POSITION AddPart(CList<CPartInstance*, CPartInstance*> *instances, char *name, char *UID)
{ 20

POSITION pos = instances->GetHeadPosition();
/ * Search for position for new part (alphbetical order). */
while (pos && strcmp(instances- >GetAt(pos)- >mpart->m_name,name)<0) {

instances->GetNext(pos);

I
/ * Create the new part and insert it. */
CPartInstance *part = new CPartInstance(name,UID);



if (!pos) {
instances- >AddTail (part);
return (instances->GetTailPosition()); 30

} else {
instances->InsertBefore (pos, part);
instances- > Get Prev(pos);
return pos;

}

POSITION AddPin(CTypedPtrList<CObList, CPlacerPin*>* pinlist, CString name, char *dir, char *net, char *inv)
{

enum direction d; 40

if (!strcmp(dir,"I")) d=DIRINPUT;
else if (!strcmp(dir,"O")) d=DIR OUTPUT;
else d=DIR BOTH;
pinlist->AddTail( new CPlacerPin( name, d, net, *inv?TRUE:FALSE));
return pinlist->GetTailPosition();

}



Appendix C

Parallel Port Programmable

Array Logic Specification

module pport
TITLE 'pport PAL for Electric Legos

pport device 'P22V10';

"Input pins
CLK pin 1;
STROBE_ pin 2;
AUTOFEED_ pin 3;
INITIALIZE_ pin 4;
SELECT_INPUT_ pin 5;
PIN_6 pin 6;
PIN_7 pin 7;
PIN_8 pin 8;
PIN_9 pin 9;
INIT_ pin 10;
DONE pin 11;
RDY_BUSY_ pin 13;

"Output pins
PIN_14 pin 14;
PIN_15 pin 15;
ERR_ pin 16;
SELECT pin 17;
PAPER_END pin 18;
BUSY pin 19;
ACKNOWLEDGE_ pin 20;



WS_ pin 21;
PROGRAM_ pin 22;
DIR pin 23;

EQUATIONS

PIN_14.0E = 0;
PIN_15.0E = 0;
ERR_.OE = !DONE;
SELECT.OE = !DONE;
PAPER_END.OE = !DONE;
BUSY.OE = !DONE;
ACKNOWLEDGE.OE = !DONE;
WS._.OE = !DONE;
PROGRAM_.OE = 1;
!ERR_ = !INIT_;
SELECT = 1;

PAPER_END = 0;
BUSY = !RDY_BUSY_;
ACKNOWLEDGE := !WS_;
!WS_ := !STROBE_;
!PROGRAM_ = !INITIALIZE_;

end pport;
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