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Abstract

High-speed long distance transmission networks are at the focus of research today.
Wavelength Division Multiplexing (WDM) is a prime candidate for increasing the
capacity of communication systems. Four-Wave Mixing (FWM) is an attractive all-
optical technique for the wavelength switching and multiplexing that is needed in such
systems. This thesis examines wavelength conversion by FWM in passive waveguides
as an alternative to current methods. We have demonstrated wavelength conversion
in the 1.5 ym regime using the near bandgap nonlinearity of semiconductor quantum
wells. Issues like nonlinearity characterization, enhancement and speed are studied.
In addition, relevant issues such as group delay, effects of nonlinear loss and index
changes on FWM, and short-pulse distortion are addressed. In a 7.5 mm long passive
InGaAsP/InP single quantum well waveguide, a wavelength shift of 20 nm has been
obtained with -11 dB conversion efficiency using picosecond pulses. We confirmed
the ultrafast nature of the nonlinearity by measuring the conversion efficiency as a
function of the frequency shift. An order of magnitude increase in the value of n2 close
to the bandgap is observed compared with the off-resonance value. Nonlinear loss
and index changes are shown to place fundamental limitations on four wave mixing
(FWM) conversion efficiency. We investigate the effect of nonlinear loss analytically
with a system of coupled first-order differential equations. The result indicates the
presence of a maximum conversion efficiency that is geometry-independent. The
analysis allows us to find the optimum device length and operating conditions and
understand important issues in short pulse FWM. We verify the theoretical results
with a picosecond pulse FWM experiment. This thesis combines experimental and
analytical efforts.

Thesis Supervisor: E. P. Ippen
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Chapter 1

Introduction

Fiber-optic systems have revolutionized the field of communications and led to the

advent of the so-called information age. Optical fibers with their low loss and wide

bandwidth provide an attractive medium for long-distance information transmission.

The first fiber-optic trans-oceanic link used a hybrid electro-optic design which em-

ployed electronic repeaters for signal amplification and restoration. Such systems

were limited by low-speed electronic bottle-necks. To overcome these limitations and

extend the capacity and flexibility of communication networks, a variety of all-optical

communication systems have been proposed. In an all-optical system, one may trans-

mit a large number of communication channels simultaneously through multiplexing

techniques. There are mainly two ways to accomplish this: time-division multiplexing

(TDM) [1] and wavelength division multiplexing (WDM). In the case of TDM, bits

associated with different channels are interleaved (all of the pulses have the same car-

rier frequency) to form a composite bit stream. TDM is well suited for digital signals.

In WDM systems, several channels, each with different carrier frequency, are spaced



in the frequency domain. The carrier frequency spacing should be large enough to

avoid inter-channel spectra overlap and cross-talk. WDM systems offer many ad-

vantages including the ease of accessing fiber bandwidth and the ability to accept

varying modulation speeds and formats. An essential component in WDM systems

is an all-optical wavelength shifter. Nondegenerate Four Wave Mixing (FWM) is an

important parametric process for wavelength conversion in WDM systems.

The subject of this thesis will be wavelength shifting using FWM in passive

low-loss InGaAsP/InP single quantum well (QW) waveguides. Chapter 2 is a re-

view of FWM theory and applications. Chapter 3 introduces research directions

in wavelength conversion at A = 1.5 pm and presents the motives for using pas-

sive InGaAsP/InP QW waveguides. In chapter 4, an evaluation of InGaAsP/InP

waveguides' fundamental parameters such as the third order nonlinearity (real and

imaginary parts), linear loss, and GVD are presented. In addition, experimental

demonstration of efficient CW and pulsed FWM wavelength conversion is reported.

In Chapter 5, the effect of nonlinear absorption and index changes on FWM is ex-

amined theoretically and experimentally. In chapter 6, the issue of intense ultrashort

pulse wavelength conversion by FWM is discussed. Finally, future research directions

and thesis summary are given in Chapter 7.



Chapter

FWM Theory and Applications

2.1 FWM Basic Equations

Four wave mixing is an important third-order parametric 1 process in nonlinear optics.

It involves, in general, the interaction of four optical fields, hence the name. The four

optical fields at frequencies wi, w2 , w3 and w4 interact such that

W1 + W2 = W3 + W4

FWM is a parametric process in which the total photon energy is conserved (hwj +

hw2 + hw3 + hw 4 = 0)-see Figure 2-1. An intense optical field propagating through

a material will generate linear and nonlinear polarizations whose magnitudes are

1A parametric process is one in which the nonlinear medium, such as optical fiber, plays a
passive role except for mediating the interaction among several optical fields through its nonlinear
response. The name comes from the fact the light modulates the parameters of the nonlinear
medium. Four wave mixing, parametric amplification, harmonic generation, and refractive index
changes are examples of parametric processes.
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Figure 2-1: In FWM four optical fields interact such that wI +W2 = w3 +w4 . Typically,
the intense beams, wl, and w2 are refered to as the pump fields.

governed by optical susceptibilities such as X(1), x (2) x(3 ), etc. [2]-[6]. Since FWM

is a third order process only X (3) shall be of concern. Specifically, only nonlinear

polarizations of the form

pNL" 3 X(3) .2 E* (2.1)
4

shall be of interest (the * denotes conjugation). Consider the electric field of four

interacting waves with different frequencies, each field given by

Ei(z,t) = Ei (z,t) ei(ki z -t) (2.2)

where Ei(z, t) is the slowly varying envelope, wi is the optical carrier frequency, ki is

the propagation wave vector, and i = 1, 2,3 or 4. The total field is given by

E = •1 + k 2 + -E3 + 4 (2.3)



FWM

Pump

Signal

0)4 0 3
-A-- -CO

Figure 2-2: In FWM, the pump w, and signal w• 3 interact to produce the FWM signal
w4 such that w4 = 2wl - w3 . The difference in frequency between the pump and singal
fields is denoted by Aw and the ratio of the FWM to signal fields is defined as the
conversion efficiency q.

Each of the interacting fields obeys the wave equation in the form [3], in MKS units,

2  oC•e ~ = 0po (PNL (2.4)jz2 - 40T2 Ot2

If the envelope Ei(z, t) varies much slower than the spatial frequency of the mode, then

the wave equation (2.4) may be simplified further. In the slowly varying amplitude

approximation, equation (2.4) may be writen as

i /oWC NgL e-ikzEi(z) = -i P e (2.5)(9z 2n

where c is the speed of light, and n is the index of refraction.

We are interested in the case where there is a single pump field so that El and

E2 are actually one field. In FWM experiments, a pump and a signal mix to produce



a FWM signal at w4 = 2wl - w3 where wi, w3 and w4 are the frequencies of the

pump, signal and FWM beams respectively (see Figure 2-2). Also, in our case, we

can assume that the signal field E3 and the FWM generated field E 4 are much weaker

than the pump field El. Substituting equation (2.3) in equation (2.5), assuming a

linear loss coefficient equal to a, and making use of Eq. (2.2) and (2.1) we obtain the

following set of coupled nonlinear equations,

OE,- -a El + in El 2 El (2.6)
Oz 2&E3  a3

- - - 2 E3 + 2iK E112 E3  (2.7)09z 2
S- 2 E 4 + 2in E 12 E4 + i-Yx(3)E 23 e Akz (2.8)

where we define

37r 1
4 nA

Ak k 3 +k 4 -2k,

where A is the field's wavelength, E3 denotes the complex conjugate of E3, and we use

r to denote the self and cross modulation terms of X(3) that are not involved in the

FWM process. Strictly speaking, we should use different t's in the above equations.

In the first equation we should use n11, proportional to x()(wi; w1, -wl, wl). In the

second, rt31 is proportional to X (3) 3; w1, -w1 , 3) and in the third K41 is proportional

to x(3) (w4; W1, -Wl, W4 ). For simplicity, we assumed n• = K31 = '41= n. In addition,



X(3) in the last term of the third equation denotes X (3)(w 4 ; w1, w1, -w 3). Henceforth,

when we refer to X(3) , we are referring to the one in the last term of equation (2.8).

If, in addition to the loss, we have gain, then -a should be replaced with g - a where

g is the gain coefficient. Equation (2.6) indicates that the pump field gets modified

with propagation in two aspects. First, the linear loss term -(aQ/2)El attenuates

the pump field while the nonlinear term IEE 1E2 E1 (= i IE 1 2 El. (Re{K} +i Im{i}))

affects both the amplitude and the phase of the pump field. The purely imaginary

part of the nonlinear term, i JEj 2 E - Re{i}, modulates the phase of the pump

field and is commonly referred to as the self-phase modulation (SPM) term. SPM

leads to an intensity dependent refractive index as will be shown. This leads to

spectral broadening of optical pulses. On the other hand the purely real part of

the nonlinear term, - El 12 El -Im{i}, leads to self-attenuation through two-photon

absorption (TPA). Equation (2.7) governs the propagation of the signal field and has

two ingredients. The first is the linear loss term -(a 3/2)E 3, and the second is the

nonlinear term i2, IEj12 E3 (= i2 El 2I' E3 - (Re{j} + i Im{t})). Again, the purely

imaginary part of the nonlinear term, i2 IE, 12 E3 - Re{i}, modulates the phase of the

signal field and is commonly referred to as the cross-phase modulation (XPM) term.

Note the factor of 2 in the XPM term. The XPM term accounts for the pump-induced

refractive index changes experienced by the signal field. And the purely real part of

the nonlinear term -2 E 12 E 3 - Im{n} accounts for the pump-induced attenuation

experienced by the signal field. Equation (2.8) is the most significant since it describes

the generation of the FWM field E4 . The first two terms -(a 4/2)E 4 and i2, JE 12 E4

play the same role they played in Eq. (2.7). The last term itX(3)E2 EeiAkz is the

20



FWM term. It is the source term that describes the generation of the FWM field E4 .

The nonlinear loss coefficient, Im{K}, may be related to the commonly used TPA

coefficient 3 by multiplying equation (2.6) by E*, equation (2.6)* by El, adding, and

using the fact that / is defined through the relation oI1/az = -al1 - 0112 , and that

11 is related to JEl12 by

in2
I1 n El |,2(2.9)

2 1207r

to obtain

4807r
S=480Im{r}. (2.10)

n

Similarly, assuming the nonlinearity is ultrafast, Re{f} may be related to n2 by

multiplying equation (2.6) by E*, equation (2.6)* by El, subtracting, and using the

fact that n2 is defined through the relation n = no + n2I, to obtain

120A
n2 120A Re{f}. (2.11)

n

It is helpful to examine the simplest form of the FWM equations (2.6)-(2.8). In the

small signal regime (small jE, 2) the nonlinear terms containing . may be neglected

in the equations (2.6)-(2.8) and equation (2.8) simplifies to

M4+4 +i(32) EE*e'iAkz (2.12)az 2

Note that the driving term, second term, in equation (2.12) above is proportional

21
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Figure 2-3: In FWM the generated field is not a frquency translated replica of the
signal field but, rather, it is a spectrally inverted replica of the signal.

to E* rather than E3. As a result, in FWM the generated field E4 is the complex

conjugate of the signal field. That leads to spectral inversion of the signal field (see

Figures 2-3 and 2-4). Equation (2.12) may be readily integrated yielding, the well

known small signal expression, assuming Ak = 0 and 1 ~ - a3 o a4 = ,

_ E4 2(L) 2 -aL L(3)3 ef) f E-0L12)2, (2.13)

where E10 and E30 are the input pump and signal amplitudes respectively, Leff is

the effective interaction length defined as Leff - (1 - e-aL)/a, and L is the physical

interaction length. Using relation (2.9), we may express rq,, as

I4 = -aL (3 i10) 2
s= 3o 4110)/Ix(3)1-Leff • (2.14)

I I
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Figure 2-4: An experimental demonstration (performed in our lab.) of the optical
phase conjugation nature of the FMIW process. Note the x - axis scale has been
expanded to show the detailed structure of the signal and FWM fields. The pump
field is not shown.
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Figure 2-5: Normalized conversion efficiency as a function of waveguide length L,
assuming a linear loss coefficient a = 0.5 cm - 1. The optimum length is LPt = ln(3)/a
which equals 2.2 cm in this case.

where 130 is the signal input intensity, Ilo is the pump's input intensity and

1807r2

n2A

In order to express r in terms of power P we have to do a proper overlap integral

over the propagation mode. If we assume Ei(x, y, z) = ?(x, y) Ej(z), where the spatial

amplitude profile O(x, y) is the same for all fields, then we should replace I10 in the

equation (2.14) and in all the following conversion efficiency equations by Plo/A'eff



so that

L= e (3) Le P A' 2

where

f f 2(x, y) dxdy
Aeff =

f f 4(x, y) dxdy-00
Note that o10 (= Plo/A'eff) is not the peak intensity usually given by

P10 = f IPak2(X, y) dxdy
00

= 1peak Ae

where
00

Aeff J 2(x, y) dxdy
-00

If we assume a gaussian mode profile 0(x, y) = exp(-(x2 + y2)/wo), then we find

A'eff - 2
Aeff

Equations (2.13) and (2.14) show clearly the fundamental dependencies of the

FWM conversion efficiency. First, it depends quadratically on the pump's input

intensity 110, the effective length Leff, and the third order nonlinearity IX(3) . Typical

plots of .ss as a function of L and I10 are shown in Figures 2-5 and 2-6, respectively.

The conversion efficiency's dependence on L is given by e-aL(1 - e-aL)2/a 2 . Hence,

r,, is proportional to L2 for small values (compared to 1/a) of L, exponential for
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Figure 2-6: Normalized conversion efficiency as a function of pump intensity.



large values of L, and has a peak in between. In the small signal case, the optimum

length is L t = ln(3)/a, as may be verified by direct differentiation.

In deriving equation (2.14) we assumed that the wavelengths of the pump, signal,

and FWM fields are close enough such that a 1 ý-^ a3 a 4 = a. If that is not valid,

then equations (2.6)-(2.8) must be solved again. Assuming a, 7 a 3 L a 4 we obtain

14 1,Q L/X3)
is-= e -aL 3) Leff 10)2 (2.15)

where

, (1 - e- CeffL)

Lef =ef f

aeff = (20 1 + G3 - a4)/2

The conversion efficiency's length dependence is now slightly more complicated. It

has two linear loss coefficients, a 3 and aeff, instead of one a.

2.2 FWM Phase Matching

The effect of group velocity dispersion (GVD) on FWM has been ignored, so far, in

the preceding analysis by setting /Ak = 0 in equations (2.6)-(2.8). The bit rate in

a communication system is limited inherently by the GVD, which is responsible for

the broadening of optical pulses during their propagation inside the waveguide. The

GVD in waveguides may arise due to various reasons. In practice there are mainly two

sources of GVD (1) material dispersion and (2) waveguide dispersion. The material
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dispersion is due to the variation of the refractive index of the waveguide material.

The waveguide dispersion is due to the dependence of the propagation constant of each

mode with wavelength. Typically, the material dispersion and waveguide dispersion

are measured together.

To study the effect of GVD on FWM, Ak should be retained in equations (2.6)-

(2.8). The simplest and most fundamental effect of GVD may be understood by

"turning-off" all other effects. Assume that a, = a 3 = a4 = 0, and that K = 0 so

that we are left with

aE4 _y (3)E E2eiAkz (2.16)8z

which may be easily integrated yielding

( 2 sin(Ak L /2) 2)

= /X IE)ol (2.17)(ZAk / 2)

Using relation (2.9), we may express 27s as

S 1( sin(A)k L /2) 2)

( ) = 7' (3) 10o (2.18)
(Ak / 2)

where

A k -W 3 n(W3 ) + W4 r(w 4) - 2wn(wl)
C

where 7y and -7' are the same as before, n(w,) is the effective index at frequency wi

and c is the speed of light. The phase matching parameter Ak can be simplified



by using a linear approximation for n(w) : n(w) = n(wi) + (dn/dw) (w - wi). In the

linear approximation, we may express, assuming all fields have the same polarization

so that birefringence can be ignored,

dn

Ak 2 (Aw) 2 c

Alternatively, if we express k(w) as

dk ld 2 k
k(w) = k(wl) + Aw + - 2k),

dw 2 dw2

then we have

d2k
Ak = 2 (AkW) 2

dw2
d2k

GVD =

The group velocity dispersion (GVD) coefficient is defined as the second derivative of

the wave vector with frequency. Typical plots of 7, as a function of L and Aw are

shown in Figures 2-7 and 2-8, respectively, assuming GVD= 3000 ps2/km. The con-

version efficiency's dependence on L is given by (sin(AkL/2)/(AkL/2)) 2 . Hence, r7, is

proportional to L 2 for small values (compared to 7r/Ak) of L, sinusoidal for large val-

ues of L, and has nulls at L = m 7r/Ak, m = 0, 2,4, .. etc. The conversion efficiency's

dependence on Aw has sin(x)/x form with nulls at Aw = (27r/(L. - GVD))1/2 .

The GVD may be measured in one of several ways including observation of short
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Figure 2-7: Normalized conversion efficiency as a function of waveguide length, as-
suming GVD = 3000ps2 /km. The conversion efficiency goes in- and out-of-phase as
a function of length. The nulls appear when the length is a multiple of r/Ak.
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pulse broadening, short pulse round-trip time delay, and other frequency domain

techniques. The FWM phase matching requirement may be used as a measure-

ment technique for the GVD. The GVD coefficient may be measured by studying

the tuning characteristic of the FWM signal. By tuning the input signal away

from the pump wavelength in small steps and recording q(AA), we should observe

a Isin(AkL/2)/(AkL/2) 12 behavior as predicted by the conversion efficiency formula

(2.18). Given Ak, we may directly extract the GVD coefficient.

So far, we have assumed that either a = 0 or that Ak = 0. Now consider the

general case where Ak :/ 0, a, a a3  a4 4 0. This case is similar to the one

where a, as3• a4 - 0, in the previous section, except that now Ak - 0. By

inspection we see that the solution in this case is the same as equation (2.15) except

that aeff = (2a 1 + a3 - a 4)/2 is replaced with a"f = (2a 1 + ~ - a 4 )/2 + i Ak.

Another way of writing equation (2.15) is

_e ll, L/2 
2

/) 2S= e-3L (3) 1IEj 2 e effsinh(a"fL/2) (2.19)
aef f/2

However, now aef is a complex number. Equation (2.19) may be simplified further

by using that fact that sinh(a + b) = sinh(a) - cosh(b) + cosh(a) - sinh(b) and the fact

that cosh(i x) = cos(x), sinh(i x) = i sin(x) to obtain the final result,

S8 = e-a3L ( 3) 1Eo)2 4e-c•ffL (cosh 2(aeffL/2) - cos2(AkL/2)) (2.20)
a eff + Ak2

where aeff is defined as before (aeff = (2a, + a3 - a4)/2). Equation (2.20), as



expected, reduces to equation (2.15) when Ak = 0, and to equation (2.17) when

C1 = 9 = a4 = 0. Also equation (2.20) may be expressed in terms of 110 by replacing

-y by y' and E101o2 by 110. Figure 2-9 shows a plot of the normalized conversion

efficiency as a function of Af for several values of a. The effect of loss is to (1) reduce

the conversion efficiency, (2) reduce the contrast between the peaks and valleys, and

(3) "wash-out" the sharp phase matching nulls characteristic of the phase matching

process. In Figure 2-9 Ak,r = 2 7 / L. The dependence of the conversion efficiency

on L is shown in Figure 2-10, assuming aeff = 1 cm-1 and a3 = 1 cm -1, and

different values of Ak,. When aqeff/Ak, is large, ?7's dependence on length resembles

that of Figure 2-5. On the other hand, when aeff/Ak,r is small, 7's dependence

resembles the other limit -pronounced phase matching oscillations (see Figure 2-7).

Phase mismatching minimas (when AkL/2 = 7r) are clearly evident in the last two

graphs where aeff/Ak, << 1.

2.3 Third-Order Nonlinearity

The third-order nonlinear optical susceptibility X(3) has been considered a constant,

so far (see equation (2.1)). However, in general, x(3) is a function of frequency such

that

P(3)(4) = 32J X(3)(w4; w1, w2, w3) El (w) E 2(w2) E3 (w3)

6 (w4 -- W1 - w2 + w3 ) dwL1 dw 2dw 3
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In the present case, wj = w2, Ej(wi) = E 2 (w2 ), a monochromatic frequency field, and

w3 = w, + Aw. Hence, w4 = W1 - Aw. Typically, w, > Aw and given wl, X (3) is a

function of Aw only. The FWM process will produce the nonlinear polarization in

the following manner. Through the nonlinear interaction of Ej(wj) and E3 (w3), the

medium is modulated (in phase and amplitude) at the beat frequency Aw. The am-

plitude and phase gratings formed by modulation of the medium, in turn, scatter the

pump field creating the FWM field E4 (w4 ). The FWM conversion efficiency is pro-

portional to the modulation grating strength squared which, in turn, is proportional

to IX (3)(Aw) 2. The time domain X(3)(t) is the related to X(3)(Aw) by the Fourier

transform relation

(3)(AL)) f X(3) () At dt. (2.21)
-00

Through the FWM process Ix (3) (A)2 can be measured directly. In the time domain,

pump-probe techniques can be applied to measure X )(t) directly [7). Although

measurements obtained by time or frequency domain techniques are directly related

in theory (see equation (2.21)), in practice it is difficult to relate the two if there are

many nonlinearities involved. As an example, consider a material with three nonlinear

mechanisms such that

X(3)(t) = A, e- t/T + A2 e- t / 2 + A 3 e- t/ r3 (2.22)



where Ai and Tri represent the complex magnitude and lifetime of each nonlinear

mechanism. The transform of (2.22) equals

AsnA2 '2 A3 73
(A 1 1 ___+ + A3 3  (2.23)

1+iAwTi 1+iAw-r2  1 +iAwr 3

The magnitude of (2.23) is a complicated function and determining the poles and

zeroes accurately is difficult. A slow nonlinear mechanism will limit the usefulness

of the FWM process as a wavelength shifting mechanism to signals with low mod-

ulation speeds. On the other hand, a material with an instantaneous nonlinearity,

X(3)(t) = 6(t), will have a simple X( 3 )(Aw) = constant - which is what was assumed

in the proceeding sections. In particular, if the conversion efficiency's dependence on

frequency detuning follows a (sin(Aw)/Aw) 2 , then that will confirm that the nonlin-

earity is, indeed, ultrafast.

2.4 FWM Applications

Understanding the fundamentals of the FWM process in passive waveguides will open

the door to many other operations beyond wavelength conversion. The reason is that

FWM is a very versatile process with numerous applications. These applications

include all-optical data demultiplexing [8], data multiplexing [9] and clock recovery,

all of which are essential operations in TDM systems. FWM usage for Optical Phase

Conjugation (OPC) [10] for image distortion correction is another important area

of research. A closely related application to OPC is dispersion compensation in



fiber optic communication networks by midway signal conjugation [11]. FWM and

Group Velocity Dispersion (GVD) are directly related through the phase matching

condition. Hence, FWM may be used to measure the GVD coefficient of the medium.

In addition, FWM may be employed for pulse shaping and compression [12]. It

may also be used for measuring the magnitude of the third order nonlinearity tensor

[13] of various nonlinear materials since the FWM conversion efficiency is directly

related to IX(3) 2. Moreover, it may be used as a spectroscopic tool for studying

ultrafast carrier dynamics [14]-[15] since X(3 ) is a sensitive function of the magnitude

and phase of various nonlinear processes (see equation (2.23)). Other applications

of FWM include ultrafast switching and spectrum manipulation. Beside its useful

applications, the presence of FWM in many communication systems may lead to

undesirable effects such as inter-channel cross-talk.

FWM is closely related to many other methods of all-optical switching since it

makes use of X(3) of the interaction medium. A large X(3 ) is generally desirable, but

there are important differences between methods. In FWM the quantity of inter-

est is IX(3) I, while in all-optical switching based on index changes alone, the ratio

Re{x(3)}/Im{f( 3)} determines the material's figure of merit [18]. For example, non-

linear index changes in passive semiconductor waveguides are limited by nonlinear

absorption [19]-[20]. Nonetheless, FWM in passive waveguides may remain attractive

since Im{x (3 )} contributes directly to Ix(3) I, the quantity of interest in FWM.



Chapter 3

Wavelength Conversion by FWM

This thesis focuses on FWM as a wavelength conversion mechanism at A = 1.5 pm.

There are many possible means to accomplish wavelength conversion. The least so-

phisticated of these is signal detection and subsequent modulation of a laser at the new

desired wavelength. However, this method has a built-in electronic speed bottle-neck

and is not readily scalable. More sophisticated demonstrations to date include using

one of several available nonlinearities in semiconductor amplifiers and laser structures

or in fiber optics. These techniques employ cross-gain [21]-[22] or cross-phase satu-

ration [23]-[24]. The cross-gain saturation technique involves the transmission of two

colors through a semiconductor amplifier; an input signal and a weak CW signal (of

the desired wavelength). When the input signal is in the high-state (or logic "1"), it

saturates the amplifier and the CW signal is in the low-state (or logic "0") and vice

versa. Hence, an inverted replica of the input signal is produced at a different wave-

length. In the phase saturation technique, a semiconductor amplifier is put into one

arm of an interferometer and the phase modulation associated with gain saturation
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is used to impose modulation on a new wave. An advantage of this technique is the

spatial separation of the input signal and the wavelength converted signal. All cross-

gain or cross-phase modulation techniques for wavelength conversion are restricted

to Amplitude Shift Keying (ASK) modulation formats and single channel operation.

In addition, modulation rates are limited by the stimulated recombination time con-

stant. In contrast, FWM-based wavelength conversion is transparent to both bit rate

and modulation format. Hence, it is well suited for multi-channel wavelength con-

version. The disadvantages of FWMI conversion include the need for powerful pump,

the need for post-mixing filtering of the pump and input signals, and the potential

degradation of signal-to-noise-ratio (SNR) and inter-channel cross-talk levels.

3.1 FWM Medium

Most optical materials have X(3)  0 and may potentially be used for FWM. How-

ever, in most cases the conversion efficiency will be very small since the third order

nonlinearity is usually minute. In spite of the small value of the third order nonlinear-

ity, a relatively large conversion efficiency can be achieved. This is possible because

in waveguide structures the spotsize is small and the interaction length is large (for

low loss waveguides). A figure of merit for the conversion efficiency in waveguide

structures is (x(3) Leff /Aeff) 2 - see equation (2.14). There are three main choices of

materials for wavelength conversion using FWM at A = 1.5 prm, optical fiber, semi-

conductor amplifiers, and passive semiconductor waveguides. Comparing the figure

of merit for optical fiber and semiconductor waveguides (for rough estimates assume



Aeff = 35 um2 for fiber and Aeff = 3 pm 2 for a semiconductor waveguide and the

same peak power) we find

(x(3 ) Leff /A/ff) 2 fiber ~ 4.6. 10- 12 Lff fiber

(X(3) Leff /Aff))2 semi. L-ff semi.

where we assumed X(b)er = 2.5.10 -1 cm 2 /V 2 (equivalent to n2 = 3.2- 10- 16 cm 2/W-fibere=erence 108"' (equivalent0to3n2

see reference [28]) and X (3 = 1 " 10-1 cm2 /V 2 (more on this later). Clearly, L2f

for fiber needs to be much bigger than L2ff for semiconductors in order to have com-

parable figures of merit. In the case above, for the figures of merit to be equal, we

need Leff fiber ' (4.7 -105) Leff semi- This illustrates the fact that for the conversion

efficiency to be significant in fiber, kilometers of fibers may be needed. A long inter-

action length will lead to increased latency; a kilometer of fiber will result in a time

delay of approximately 5 microseconds. The advantage of FWM in optical fiber is

that the nonlinearity is ultrafast and well understood. Few FWM experiments have

been performed in optical fiber [25]-[26].

3.2 FWM in Semiconductor Waveguides

The medium of choice for most FWM experiments has been semiconductor amplifiers

[27]. Semiconductors, in contrast with optical fiber, have large third order nonlin-

earities, low latency, are compact and can be monolithically integrated. Low-loss

passive waveguides, beside sharing most of the advantages of semiconductor ampli-

fiers, should offer high saturation powers, simplicity and longer interaction lengths.



In semiconductor amplifiers, several mechanisms participate in the FWM process [7].

Carrier population modulation participates with a characteristic time constant r -

300 ps, carrier cooling with - --' 600 fs, carrier heating delay and spectral hole burning

with r 100 fs. Finally, an instantaneous two-photon absorption and a Kerr effect

take part in the FWM process. Each nonlinearity contributes to the FWM process

through its real (index) part as well as its imaginary (loss/gain) part. The result-

ing x(3) 2 is an asymmetric bias-dependent function of Aw, the frequency detuning

between the pump and input signal. IX(3) (Aw - GHz)12 is larger than IX(3)(Aw _,

THz) 2 by several orders of magnitude, typically 40-50 dB, due to carrier population

modulation [14]. In contrast, in passive waveguides, the nonlinearity relies only on

the instantaneous effects and does not suffer from speed limitations imposed by the

carrier modulation time constant or the carrier heating time constant. This leads to a

symmetric, frequency-difference-independent (fiat) conversion efficiency, q, assuming

phase matching, and simpler conversion of multi-channel, broadband, signals that

avoids the need for gain equalization. The absence of amplified spontaneous emission

in passive waveguides should provide a reduced wavelength-independent signal-to-

noise-ratio (SNR) degradation and noise floor. Finally, for multi-channel signals, pas-

sive waveguides should provide considerably lower cross-talk, between closely spaced

channels, than active waveguides due to the absence of carrier population modulation.

In general, the pump power required to achieve a certain conversion efficiency is

expected to be higher in passive waveguides than in semiconductor amplifiers due

to the lack of gain. This is the main disadvantage of FWM in passive waveguides.

However, an important consideration is that passive waveguides have higher satu-
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ration powers than semiconductor amplifiers; two-photon absorption is the principle

fundamental saturation mechanism in passive waveguides. With low-loss and high

saturation power, longer interaction lengths and higher pump powers are accepted

in passive waveguides. Consequently in multi-channel situations, the allowed power

per channel is higher. This fact along with the flatness of n(Aw) and the low cross-

talk among channels makes passive waveguides an attractive medium for frequency

translating multi-channel signals.

3.3 Third Order Nonlinearity Resonant Enhance-

ment

In semiconductor amplifiers the nonlinear gain modulation contributes significantly to

the magnitude of third order nonlinearity [30]. In passive semiconductor waveguides

the absence of gain will result in a reduced third order nonlinearity. However, close

to the bandgap a resonant enhancement in the third order nonlinearity should be

present. A general expression for the nth order nonlinearity, close to resonance, is [31]

, ) g,b...bn, b19 1 - Wi1- -- -. w•) ... (Qb•g- wn)

where Ei is the polarization unit vector, Aij is the dipole matrix element vector,

=jj = (E2 - Ej)/h, and the summation Eg,b,...b, is over all atomic states. If a quantum

well (QW) is incorporated in the waveguide then the sharp excitonic resonance will

enhance the third order nonlinearity [16]-[17]. In that case, the QW X(3 ) is the sum



of the heavy-hole and light-hole exciton resonances and X(3 ) may be written as [16]

X(3)w(L0 4 = 2w - w3) oc Dh[(-3t
[(wh -wl)

2 + AW2j (Wh - W1)

w1 - w) 2 Aw]) (W -W1) (3.1)

where D is the relative density of states and h and I denote the heavy- and light-

hole bands, respectively. The relative magnitudes of the dipole matrix elements are

ETE - h 1, 8TE" AI ' 1/ T, TM -h = 0, and ETM*A Iz = - 4/3. For TE excitation,

(3) wt eaiemgiueo
the heavy-hole exciton resonance contributes to X1111 with a relative magnitude of

(3)1, and the second term contributes to 1111 with a relative magnitude of 1/9. For

TM excitation, the second term is nonzero and contributes to X12(2, )21, .and X 3 22

with relative magnitudes of 4/9, 4/9, and 16/9, respectively. In our experiments a

low loss passive InGaAsP/InP Quantum Well waveguide was used. In our case, the

heavy-hole bandgap was smaller than the light-hole one due to the nondegeneracy of

the heavy-hole/light-hole bands. Although some TM measurements we performed,

the majority of the experimental work was performed with TE modes for all the

fields. The waveguide anisotropy is a direct consequence of having a QW and should

not exist in cubic symmetry bulk materials. It may be possible to remove waveguide

anisotropy by clever band structure engineering (e.g. the use of stress or strain)

[40]. Having an isotropic waveguide will lead to polarization insensitive wavelength

conversion, a desirable property in optical communication systems.



Chapter 4

FWM in InGaAsP/InP

Waveguides

4.1 InGaAsP/InP Waveguides

The waveguide samples used in our experiments are passive InGaAsP/InP single and

multiple Quantum Well (QW) waveguides with bandgaps at A = 1.5 m. The waveg-

uides were fabricated at Lincoln Labs using an organometallic vapor-phase epitaxy

(OMVPE) process. By operating close to the bandgap, we take advantage of the

resonance enhancement of X(3) . Having a sharp exciton edge and high spatial uni-

formity in these waveguides is essential for the resonance enhancement of X(3) . The

ridge width was chosen so that the waveguide supports a single mode at A = 1.5

/m, the erbium-doped fiber amplifier (EDFA) wavelength. The QW width (100 A)

and InP barriers were engineered to provide a sharp exciton edge. Low-temperature

(T = 4.5 K) photoluminescence spectra of quaternary InGaAsP quantum wells with



InP barriers was used to assess the sharpness of the exciton edge [35].

4.2 Waveguide Linear Loss

Since we are using a passive waveguide and operating close to the bandgap, the linear

loss coefficient, a, is important. A lossy waveguide will result in a small conversion

efficiency by producing a small Leff and e-QL factors. A considerable theoretical

and experimental effort was devoted by our collaborators at Lincoln Labs in order to

produce low loss waveguides. It is important to characterize the loss coefficient as a

function of wavelength because as IX(3)I increases, close to the bandgap, so does a.

What is important is the rate of increase of IX(3)1 and a. The linear loss coefficient

is expected to increase as 1/(wl - wex) 2 [40] while x(3)1 is expected to increase as

1/(wl - we)3 according to equation (3.1), where W, is the pump frequency and we

is the exciton resonance frequency. Hence, qs(L) should increase as 1/(w - wex) 2

roughly, assuming LPt = ln(3)/a. To begin with, we measured the linear absorption

coefficient at A = 1555 nm using Fabry-Perot fringes [41] in an uncoated sample.

The measured waveguide loss was 2 dB/cm leading to a(1555) = 0.46 cm - 1'. Then,

the waveguide's transmission at different wavelengths was measured using a weak

CW beam. Given a(1555), we normalized the waveguide transmission data to obtain

a(A) in the proximity of the bandgap (see Figure 4-1).
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4.3 Two Photon Absorption Coefficient Measure-

ment

We measured the TPA coefficient using standard nonlinear transmission techniques

[48]. Nonlinear transmission techniques rely on the intensity propagation equation,

01(z) -al(z) - 3i2(z)
Oz

where a is the linear loss coefficient and 0 is the TPA coefficient. The solution of this

equation is

"io - e-azI(z) = 1 (4.1)
1 + 3IloLeff

It is seen that as the input intensity I10 is increased to a regime where ,8IloLeff > 1,

the output intensity I(z) becomes independent of the input intensity. This is known

as optical limiting [45], [46]. To measure 3 experimentally, equation (4.1) is rewritten

as
1

S= e z + ,3IloLefffe' z

T

where T =_ I(L)/Io is the waveguide transmission. By measuring and plotting 1/T

for different input intensities, we should obtain a straight line with a slope directly

proportional to 3. Figures 4-2 and 4-3 show the experimentally measured output I

and 1/T as a function of I1o, respectively, at A = 1560 nm. From the data, we infer

a 3(A)) -- 46 cm/GW (equivalent to Im{X(3)}-= 5.4 -10 - 14 cm 2 /V 2 ) after correcting

for a sech2 (t) pulse shape. This process was repeated at various wavelengths and we
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measured 3(A) (see Figure 4-4). The experimentally measured TPA coefficient is flat

close to the bandgap as predicted by theoretical calculations [47].

In the above theoretical analysis and measurements, we assumed that TPA was

the only nonlinear loss mechanism. This assumption is justified below bandgap if

second harmonic generation (SHG) (proportional to Ix(2) ) is negligible. The reason

is that SHG can deplete an input signal as predicted by [4],

Si- E E-2EE2 -iAkz (4.2)

ME2u a3 i2w 2e-iiAkz

8z 2 209 Z - -2E3 2 E1(4.3)

where

2w1d
nc

where d is the nonlinear optical coefficient directly proportional to X(2), E2 is the

field of the SHG generated signal, and El is the pump field. To find the maximum

SHG depletion loss, assume for now that Ak = 0. To estimate the SHG depletion

term -(i/2) (E*E3" we have to know E32 . Since we are interested in the maximum

value of E2w we can replace E, (z) in equation (4.3) by E10. Equation (4.3) is of the

form, 8f f/z = c1f + c2 which has the solution, f = (c2/C1 ) (eciz - 1). Thus,

Efw (z) = igE (C-a3z/2 - i)_.3a3

In our case, the SHG field is well above band and will be quickly absorbed. The

maximum value of E2w(z) is -iýE o/a3. Substituting back into equation (4.2) we
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find,

OF1  alE 1-a, = El 1 2El2 ElOz -- 2 E E 1iz 2 2a3

The nonlinear loss term in should be compared with the TPA loss term -," IEl 2 El

(equation (5.1)). The ratio of the SHG to TPA nonlinear loss terms is

(21
Ratio =- V

2a 3 r,'

= 96072(2)2 d2

(A, n a3

Although the value of d for InGaAsP is not readily available in the literature, we can

get an order of magnitude estimate of the d by using that of GaAs. Comparing the d

values of several zinc blende semiconductors [4] we see that their d values are of the

same order of magnitude. For GaAs, d 9. 10- 11 m/V [32]. As a rough estimate,

assume n = 3.5, /3 = 46 cm/GW and a3 = 103 cm -1 (recall that SHG wavelength 750

nm is well above bandgap and hence quickly absorbed), hence we have Ratio - 0.2.

So far we ignored phase matching although the SHG process is not phase matched.

The value of An is at least 0.2 (see reference [33]). Thus, Ak = (27/A) An, and the

coherence length (defined by AkLeoh it) Loh - 3.7 jm. Hence, we should multiply

Ratio by the factor (exp(-a3Lcoh/2) - 1) _ 0.17 and we have

Ratio s 0.03

The ratio of SHG to TPA poweris actually Ratio2 which equals 9.10 - . In calculating

the Ratio, we made many assumptions, however, as long as Ratio2 < 1, we can



neglect pump depletion due to SHG generation and assume that it did not interfere

with measurements of the TPA coefficient above. Experimental uncertainties in the

waveguide coupling efficiency and pulse width and shape are probably the largest

sources of error in the measurement.

4.4 FWM experiment

The waveguide sample used in the following experiments is an AR-coated, 7.5 mm

long, passive InGaAsP/InP single Quantum Well (QW) waveguide, with a QW

bandgap of _1490 nm (TE mode). Details of the device design and fabrication are

given in reference [34]-[35]. By operating close to the bandgap, we take advantage

of the resonant enhancement of X(3) , and the conversion efficiency is significantly in-

creased. Two color-center lasers, KCl:Tl and NaCh:OH, are used to provide pump

and signal beams. Both lasers are synchronously pumped by an actively mode-locked

Nd:YAG laser that produces 100 ps pulses at 100 MHz repetition rate. The KCl:TI

laser, tunable from 1460 nm to 1560 nm, produces 10 ps pulses; the NaCl:OH laser,

tunable from 1530 nm to 1660 nm, produces 3-10 ps pulses. Both color-center lasers

can be operated CW.

4.4.1 Light Coupling

Light is coupled in (and out of) the ridge waveguide using AR-coated aspheric lenses

(purchased from Thor Labs.). After many trials, with different lenses and microscope

objectives, these lenses were found to work best because of their low loss and low



numerical aperture (NA). The coupling loss was estimated by comparing the input

power with the output power (assuming the output coupler collects most of output

light) in an essentially lossless short waveguide sample (Ag = 1.3 pm) with identical

dimensions to the 1.5 pm sample. The coupling loss was estimated to be - 6 dB.

In the FWM experiment we need to couple two beams, pump and signal, into the

waveguide using one focusing lens. To achieve that both beams should have roughly

equal spotsize, assuming a flat phase front. This is partially satisfied by inserting a

long focal length lens in the path of one of the beams in order to match the spotsizes

at the focusing lens. Aside from the spotsize matching problem, the problem of beam

overlap must be solved. To overlap the two beams we must have independent lateral

and vertical control of each beam. The XYZ coupling stage of the input lens provides

control for one beam only. The experimental setup should provide an independent

control for the other beam.

Perhaps the biggest difficulty pertaining to coupling in (and out of) the waveguide

is the fact that the waveguide is passive. The procedure for aligning the input and

output coupling lenses is simple in the case of an active waveguide (i.e. an amplifier).

One simply turns on the amplifier so that it emits an amplified spontaneous emission

(ASE) signal then tweaks the input and output lenses to obtain maximum ASE

signal. By overlapping the input beams with the ASE spot, one can couple into

the waveguide. In passive waveguides the situation is not as simple. The following

procedure was used successfully to couple in (and out of) the passive waveguide (see

Figure 4-5):

(1) Remove the waveguide out of the optical path. Advance lenses L, and L 2
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Figure 4-5: Waveguide and lens alignment. Both lenses, L1 and L2 are on XYZ stages
as well as the waveguide.

towards each other such that the distance between them equals f, + f2. Align the

optical beams through the two pinholes located before and after the coupling lenses.

(2) Retract lenses L1 and L2 away from each other by a distance greater than L

(the waveguide physical length). Insert the waveguide in the optical path such that

the distance between lens L1 and the waveguide input facet equals - 1.5 f, and the

distance between lens L2 and the waveguide output facet equals, roughly, f2. Now

the output coupling lens is close to its correct positions and the input coupling lens

illuminates the entire input facet.

(3) Move the output lens vertically and laterally to collect light exiting from the

output facet. Adjust the distance between the output lens and the waveguide (along

z-direction) in order to image the waveguide output facet on the IR card or on a IR

f2 
L 

fl

.......................................



camera. The output facet's guiding layer' is illuminated by the light from the input

facet. This imaging step is perhaps the most difficult part because the output facet

is typically very faint and it is easy to mistake it for a diffraction fringe.

(4) Once the distance between the output lens and the waveguide is properly set

and the output facet is imaged, attention is turned to the input lens. Adjust the

input lens's vertical position to maximize the light collected from the guiding layer.

The Z-position of the input lens may now be adjusted to maximize again the guiding

layer light.

(5) Move the output lens laterally. Waveguides will appear brighter than the rest of

the guiding layer. Once a waveguide is identified, the output pinhole should be closed

so that it passes light from the waveguide only. Place a photodetector to measure

the waveguide light. Now the input lens may be adjusted laterally and vertically to

increase light through the waveguide. Tweak the Z-position and readjust the lateral

and vertical positions iteratively until the maximum amount of light is guided through

the waveguide. If the input lens is perfectly aligned with the waveguide, there should

be essentially little or no leaked light into the rest of the guiding layer. To check that,

open the output diaphragm (pinhole). Only the waveguide should be bright and the

rest of the output facet should be completely dark.

1The guiding layer is the horizontal InGaAsP slab in the waveguide structure. It is responsible
for guiding the light in the vertical direction. The ridge is responsible for the lateral guiding.



4.4.2 FWM Spectrum

With the input and output lenses properly aligned and the two beams coupled into the

waveguide, the rest of the FWM becomes straightforward. The output light is then

directed to an optical spectrum analyzer. The FWM signal should be visible. Figure

4-6 shows a typical power spectrum. Another example of a FWM power spectrum is

shown in Figure (4-7). In this case, the pump and signal fields are of equal magnitude

and each plays a double role. The FWM signal at 1540 nm is produced by the field at

1550 nm acting as a pump and the field at 1560 nm acting as signal field. Similarly,

the FWM signal at 1570 nm is produced by the field at 1560 nm acting as a pump

and the field at 1550 nm acting as signal field.

4.4.3 Third Order Nonlinearity Measurement

Now we turn our attention to measuring IX(3) as a function of wavelength in order

to evaluate the enhancement in IX(3 ) 1 in the vicinity of the bandgap. First, we tuned

the KCl:Tl and NaCl:OH lasers from 1560 nm to 1510 nm in steps of 5 nm while

maintaining a small fixed wavelength separation between them. At each step the

conversion efficiency and peak powers were recorded and we obtained IX(3 )(A)I, see

Figure 4-8, using the small signal conversion efficiency formula, equation (2.14),

=e[-a3L. 180-7r2  Ppeak" Leff . X(3)1 2

n2 .A A'f J

where Ppeak is the pump peak power. In our case, L = 7.5 mm, A'ff = 2 -Aef = 6 -

10- 8 cm2 , n = 3.25 and a(A) is given by Figure 4-1. We observe that IX(3)1 increases
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Figure 4-6: Typical FWM experiment output spectrum.
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Figure 4-7: Typical power spectrum of FWM experiment. The pump and signal
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Figure 4-8: The third order nonlinearity as a function of wavelength. The resonant
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by an order of magnitude close to the bandgap compared with the off-resonance IX(3).

However, as IX(3) (A)l is enhanced, a(A) increases quickly. The quantity of interest is

rq(A) which we plot on a relative scale in Figure 4-9. The conversion efficiency peaks

close to the bandgap; then it starts decreasing due to excessive linear absorption.

In our case, the conversion efficiency quadruples (assuming fixed device length of

7.5 mm) at the peak wavelength of 1515 nm (-1.5 % below the bandgap energy)

compared with its off-resonance value. Note that the conversion efficiency can be

enhanced further by optimization of device length; especially close to the bandgap

where the linear loss increases and the optimum length formula calls for a L shorter

than 7.5 mm.

To verify the nature (reactive vs. resistive) of the enhancement of IX(3)1 in the

proximity of the bandgap, we measured the two photon absorption coefficient, O(A),

which is directly proportional to Im{X(3)}. With high peak-power, short pulses, the

values of O(A) were measured using a power saturation technique [42]. The measured

data is shown in Figure 4-10. As expected, the values of O(A) remain constant as the

bandgap is approached. Hence, the enhancement in IX(3)1 is purely in the reactive part,

Re{x(3)}; and close to the bandgap ReX(3 )} I( 3) since Re{X(3 )} >> Im{X»).

The measured average value of 3(A) = 46 cm/GW is of similar magnitude although

somewhat smaller than the previously reported value of 60 cm/GW for a multi-

quantum-well passive InGaAsP/InP waveguide at 200 nm away from the bandgap

[36]. Since the nonlinearity is ultrafast, Re(X(3) } may be represented as n2 (where

n = no+n 21). The values of n2 , as a function of wavelength are plotted in Figure 4-10.

These n2 values compare favorably with previous measurements in active waveguides
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Figure 4-9: Normalized conversion efficiency as a function of wavelength. A four-fold
increase is observed in the value of q, compared with the off-resonance value. Further
enhancement is possible through the optimization of waveguide length.
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InGaAsP [30]. Note that in Figure 4-10 only the magnitude of n2 is plotted. From

our measurements we can not determine the sign of n2 . However, n 2 is expected to

be negative [36], [37], [38],.

4.5 Waveguide GVD

To study the tuning characteristic of the FWM signal, we tuned the input signal

away from the pump wavelength in small steps. With a CW pump centered at

1546 nm, the input was tuned from 1515 nm to 1543 nm in steps of 0.5 nm. The

resulting conversion efficiency along with a simple jsin(AkL/2)/(AkL/2)1j2 theoretical

fit is shown in Figure 4-11. The close agreement between the theory and experiment

confirms that the nonlinearity is, indeed, ultrafast. The fact that the nonlinearity is

ultrafast, hence does not lag the driving fields, leads to a symmetric (with respect to

frequency detuning) conversion efficiency since we have x(3)(Aw)= x (3)(-Aw). This

Phase matching nulls, due to group velocity dispersion (GVD), are clearly evident

and provide a general measurement technique for GVD. For the case here, a GVD

of 3200 ps2/km is deduced, in agreement with values reported in the literature [29]

based on time domain techniques. For the 7.5 mm waveguides used here, the 3-dB

wavelength conversion bandwidth is - 26 nm. If we double the pump power and

reduce the length by half, we can wavelength shift a signal by 52 nm (7 THz) without

phase mismatch.



9

8

7

6
5

0

S3

2

1I

0 I I I I I

I.' f
zU

18

16

14

12 E

10
N0

8 ×

6

4

2

0
V V

1510 1520 1530 1540 1550 1560

Wavelength (nm)

Figure 4-10: Measurement of the real and imaginary parts of the third order nonlin-
earity. The left y-axis gives the measured X (3) value while the right y-axis gives the
corresponding n2 value.



-40

m
V

0-

U)

CO

L..

C
0

-45

-50

-55

-60

5 10 15 20 25 30

Wavelength Detuning (nm)

Figure 4-11: Conversion efficiency as a function of wavelength detuning along with
a simple sin(x)/x curve fit. The close agreement between theory and experiment
suggests that the nonlinearity is ultrafast as assumed in theory.



4.6 Short Pulse Wavelength Shifting

To demonstrate high conversion efficiency, we operated the color-center lasers in a

pulsed mode to obtain high peak powers. With the KCl:Tl laser producing 10 ps

pulses at 1535 nm, as pump, and the NaCl:OH laser producing 3 ps pulses at 1545

nm, as signal, we demonstrate a conversion efficiency of -11 dB, as shown in Figure

4-12. The peak power of the pump pulses is - 0.50 W inside the waveguide.
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Figure 4-12: A conversion efficiency of -11 dB was achieved with a 10 ps pump
(KCL:Tl laser) and a 3 ps signal (NaCl:OH laser). The wavelength translation is 20
nm (- 3 THz).
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Chapter 5

FWM and Nonlinear Effects

5.1 Nonlinear Effects

Achieving high conversion efficiency through utilizing high pump powers will in-

evitably introduce significant nonlinear effects. Among the simplest and most im-

portant are the nonlinear refractive-index changes (proportional to Re{X(3)}) and

the nonlinear absorption (proportional to Im{X(3)}). Both are expected to affect the

FWM process as the pump power increases. The role of nonlinear loss will be to

attenuate the input pump and signal fields, and the nonlinear index changes will

spectrally distort the pump and signal fields by self-phase-modulation (SPM) effects

and cross-phase-modulation (XPM) effects, respectively and change the phase match-

ing condition. The relative importance of nonlinear loss and index changes depends

on the material's switching figure of merit [20] (proportional to Re{X( 3)}/Im{X (3 )}).

While nonlinear loss effects on all-optical switching by index nonlinearities have been

extensively studied [18], [43], less attention has been given to their effects on FWM



[44], [51]. Understanding the effects of nonlinear loss on the FWM process will help

us define appropriate figures of merit, optimize device design, and attain the highest

conversion efficiency allowed. We shall derive simple expressions for the optimum

input pump intensity and the associated maximum conversion efficiency, calculate

the optimum waveguide length, define a material's figure-of-merit similar to that for

all-optical switching based on nonlinear index changes, and apply that to short pulse

frequency conversion. Experimentally, we test the validity of the theoretical results

by performing a FWM experiment with high peak power picosecond pulses in a pas-

sive InGaAsP/InP single quantum well waveguide. In the following we examine the

effect of nonlinear loss alone on FWM as a limiting case, the effect of nonlinear index

changes alone on FWM as another limiting case, and the general case where both

nonlinear loss and index changes affect the FWM.

5.2 Effect of Nonlinear Loss on FWM

To examine the influence of nonlinear effects on FWM, we must retain the nonlinear

terms in FWM equations (2.6)-(2.8). In this section, we shall focus our attention on

the case where the nonlinear loss dominates. Short pulse FWM experiments utiliz-

ing high intensities in passive waveguides reveal that two-photon-absorption (TPA)

reduces the conversion efficiency appreciably [17]. At high pump intensities, the non-

linear loss attenuates both the input pump and signal fields. Generally, semiconductor

materials, for energies above Eg/2, exhibit unfavorable figures of merit [20], which fur-

ther implies that nonlinear loss mechanisms, such as TPA and free-carrier-absorption



(FCA), significantly attenuate an input signal even before it acquires enough phase

shift to cause spectral distortions or phase mismatch [30], [17]. In addition, nonlinear

loss and index changes typically limit the conversion efficiency before signal depletion

is significant.

The goal of this section is to investigate theoretically and experimentally the non-

linear loss effects, concentrating on mechanisms that behave like TPA. Theoretically,

we show that nonlinear loss places a fundamental upper limit on the conversion effi-

ciency. We derive simple expressions for the optimum input pump intensity and the

associated maximum conversion efficiency, calculate the optimum waveguide length,

define a material's figure-of-merit similar to that for all-optical switching based on

nonlinear index changes. Experimentally, we test the validity of the theoretical results

by performing a FWM experiment with high peak power picosecond pulses. Good

agreement is observed between theory and experiment.

We begin our analysis by rewriting equations (2.6)-(2.8), assuming phase match-

ing,

, - el El -2 " E12 El (5.1)
oz 2

9E3 - C3 E3 - 2 W/ IEl12 E3 (5.2)8z 2E- EI

E4 -a4 E4 - 2 " E 1 E4 +iYX(3)EE (5.3)
z = 2

where we define



K W' + i r" (5.4)

m" I{K} (5.5)

where we have replaced iK by -K". Note that ," equals Im{r} which in turn is

proportional to the TPA coefficient (see equation (2.10)). To solve for E4 (z), we start

by solving equations (5.1) and (5.2) for Ej(z) and E3 (z), respectively, using standard

methods of differential equations [39]. The solution of equation (5.1) is,

Ej(z) = E0 -e-(a/2)z-" p(z) (5.6)

where

I1 e- (eaz
l(z) = 2K In 1 + 2K" E1012  a (5.7)

In equation (5.7) we assumed for simplicity that a, -' a3 ' a 4 = a. We may rewrite

equation (5.6) as

E0 -e- (a/2)zEi(z) = 1+Iio/18 (z) (5.8)
01 + 1,o/ IS (Z)

where 110 is the pump's input intensity (Io = Plo/A'ff = (n/2407r) E 10 12) and

1,(z) = 1/8[(1 - e-az)/a] = 1/1,3Leff(z) is defined as the waveguide saturation in-

tensity such that I. is the asymptotic-limited output intensity of a lossless waveguide



(a = 0), as may be verified from equation (5.8). Similarly, we solve equation (5.2),

E3(z) = E30o e- - 2K" zo(z) (5.9)

where p(z) is the same as above. Again, we may rewrite equation (5.9) as,

SE 3 0 e*- z

3z)- 1 + Ilo/ 8I(z) (5.10)

Now we use equations (5.6) and (5.9), to substitute for E (z) and E3 (z), respectively,

in equation (5.3). The FWM equation (5.3) becomes,

a = aE4 E4-2
Oz 2

which is of the form

ni" IE10 12 eaz 2 n" ýp(z) E4 + iX(3)E oE2 o az- 4 "

0E4O4 + f (z). -E4 (z) = g(z)
8z

- 4 +2K" IEIo12 e-az-2n"(z)
2

- i )E2 oEo e-2az- 4r" P(z)

The form of equation (5.12) is a standard differential equation and may be solved

(5.11)

where

(5.12)

f(z)

g(z)



using well known methods of differential equations [39]. Its solution is,

1
E4 (z) = (z)

((z)
((z) g(z) dz +

6(z) = exp( f(z)dz)

C = constant

Substituting f(z) and g(z) into the above formulas we obtain,

ý(z) = e(c/ 2)z 1 +

and

I (z) g(z) dz = cl Inz I + 2" jE10j12 (1 e-az

c, = iYX(3)E3o/2' "

Substituting in equation (5.13) and assuming the boundary condition E 4(0) = 0 we

obtain,

E4(z) = 1
e,-(ao/ 2)z in [1 + 2" E10 2  1-e-•a•)]In I ( a

l1 + 2r," IE1,1 2 (1-ea Qz

Using the definition of the conversion efficiency (7 = 1E4 (z)/E 3(0) 2) we may express

,7 as,

where

(5.13)

where

2n" JEjo12 (1 - e -az



(3) In [1 + 2K" IEjo12  1(.4-o= e-- (5.14)= e L= ' 2/" [I + 2," Ejo2 (- )]

or, in terms of input pump intensity,

7 = -aL X() ln(1 + Io/Is) 2(5.15)

S 2K" (1 + Io/Is) I

Using the relationship between 0" and K (equation (5.5)) and between r and the TPA

coefficient, 3 (equation (2.10)) and the fact that 3 is related to Im{ x(3) } by,

180 i 2

-= 1A 2 IMrX(3)

assuming that TPA is the only

as,

nonlinear loss mechanism, we can rewrite 7X(3)/20"

(3 )  _ X ( 3 )

2K" Im{X(3)

Hence, we arrive at the final result,

=-a X(3)} ln(1 + 10o/S) 2
[ Im{(( 3 )} (1 +.Io/Is) 1

(5.16)

As expected, in the limit of I10 << I', the large signal conversion efficiency expression

equation (5.16) reduces to the small-signal one, equation (2.14). However, for large

input intensities, we obtain very different behavior. A plot of rq(I 10) (solid line) is

shown in Figure 5-1 (assuming Ix(3)/Im{X(3)} I- 1) along with q,88(I10) (dashed line)

for comparison. Contrasting 7,, with 77, we find that 7s.'s accuracy is rapidly lost
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Figure 5-1: Small signal (dashed line) and large signal (solid line) conversion efficien-

cies as a function of normalized input pump intensity assuming Ix(3)/Im{x(3 ) _ 1.



as 110 increases. For instance, 74, overestimates the conversion efficiency by 25% for

pump intensities as low as I10 = 0.1Is, and for o10 = 0.251, it is off by a factor of

x2. As Figure 5-1 indicates, the large signal conversion efficiency, rq(Iio), reaches a

maximum value of,

I X(3) 2
-max = e-aL-2 __ e-L

Imm i{ X(3) } - T

at an optimum input intensity of,

I t= (e - 1) ~, = 1.72 I~

as may be verified directly from equation (5.16). First, note that the highest value

?7max can assume is 71m =- IX (3)/Im{x(3) 2 e- 2 , a geometry independent quantity.

Hence, we may define a material's figure-of-merit (FOM) as,

=OM ) 2 (2 n2 )2
FOM= im• ) 1+

Im{X( 3)} 1 +

where n2 is the nonlinear index of refraction (defined by n = no + n2I) and we used

Re{ ) = (n2 /90r) n 2 and Im{X(3)} = (n2A/1807 2) 3. This FOM is similar to that

for all-optical switching condition [18]. First, the FOM determines the maximum

conversion efficiency allowed by the nonlinear material. Second, ri(Iho) is almost

flat around its maximum value. For example, it changes by less than 0.5 dB for

Is < Ilo 5 3I, and we can achieve 80% of qmax using a Ilo equal to half Io only. The



conversion efficiency's flatness around IloP reduces q's susceptibility to the pump's

amplitude noise and, hence, reduces pump-induced SNR degradation.

To achieve qma with low input pump intensity, 1, should be reduced through

increasing the product 3Leff. A material with a large TPA coefficient 3 and a poor

switching figure-of-merit may still be favorable for small signal FWM. For example, if

Im{x(3)} > Re{X( 3)} then 7max is limited to approximately e - 2 - a L (= -(8.6+4.3aL)

dB). This leads to 7 ,max -- -11 dB for a 1-cm long low loss, a = 0.5 cm - 1, passive

waveguide. Alternatively, a material with a good switching figure-of-merit and a small

I (3)1, such as many semiconductors at energies below Eg/2, will exhibit unfavorable

small signal FWM efficiency while allowing a large Umax at very high intensities.

Clearly, a material with a large, mostly real, X(3) is ideal for FWM (as well as all-

optical switching). Another approach to increasing Is (= 3Leff) is to increase L,

however, that reduces 7max since it is proportional to e- a L. To find the optimum

length Lopt, we differentiate equation (5.14) with respect to L and equate to zero.

Unfortunately, &r//LlLnopt = 0 is difficult to solve analytically. Nonetheless, we can

numerically compute the optimum length L pt given a, 3 and 110. Figure 5-2 shows

a plot of Lopt normalized to L Pt, the small signal optimum length. As the Figure

indicates, if 3I10o is comparable to a, then Lopt becomes significantly different from

LPt (e.g. for 3Ipo/a = 1, LoPt = 0.62 -LP). Two limiting cases are58 ,°P). Two limiting cases are

Lopt - 1 [ 2) 3/ 1 LL t  for 032o/a < 1 (5.17)
- 3 a ln(3) "
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Lopt - [(e- 1)1//30 L Pt for 03~i/a > 1 (5.18)

Given Lopt (from Figure 5-2) we compute and plot (Figure 5-3) qrmax/rjm as a fmunction

of 3Iio/a. As Figure 5-3 indicates, for i311o/a < 1, q is significantly smaller than Tm

and is limited by the fact that the linear loss imposes a small Leff value resulting in

I- > Iio. Only when 311o/a > 1 is it possible to have 7 i_ im. Depending on the

specific waveguide design, other restrictions (e.g. technological and phase matching

constraints) may limit L, preventing r from attaining its peak value.

5.2.1 Experimental Verification

To verify the theoretical results, we performed a FWM experiment, at A = 1560 nm,

with picosecond pulses in an AR-coated, 7.5 mm long, passive InGaAsP/InP single

Quantum Well (QW) ridge waveguide, with a QW bandgap of _1490 nm waveguide.

By operating far from the bandgap we minimize linear loss that increases close to the

bandgap as well as changes due to accumulated photon-generated free carriers. This

allows us to reach the large signal regime, i311o/a > 1, with modest peak powers and

to have TPA as the dominant nonlinear loss mechanism.

Based on the value of 0 = 46 cm/GW, we calculate I = 35 MW/cm 2. Next, IX(3)

was measured, at 1560 nm, by small signal FWM and was found to be 7.6 - 10-14

cm 2 /V 2 [50], [49]. Hence, rm = (3)/m{ X(3 )} 2 e - 2 = 0.27 (= -5.7 dB) and

rimax = nm-e - oL = 0.19 (= -7.2 dB). Given a, 3 and IX(3)1, we have all the parameters

needed for equation (5.16) to predict the conversion efficiency for different input

pump intensities. The measured conversion efficiency is shown in Figure 5-4 along
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with the theoretical curve predicted by equation (5.16), for sech2 (t) pump pulses.

The experimental data in Figure 5-4 were also corrected for the mismatch between

pump and signal pulsewidths. As an additional check, we measured the conversion

efficiency with CW light under identical conditions. The conversion efficiencies at low

intensities in Figure 5-4 match well those observed in the CW measurement.

Close agreement is observed between theory and experiment as indicated by Figure

5-4. In particular, the experimental timax is within 1 dB of the theoretically calculated

value. However, the optimum intensity is lower than that predicted in theory and

the last data point deviates from the flat response anticipated theoretically. There

are several explanations for this small discrepancy. The theoretical derivation of qmx

and If' ignores a few second order effects which will affect the result. These effects

include absorption due to accumulated photon-generated free carriers and nonlinear

index changes that will alter the phase matching and distort the pulses spectrally.

5.3 Effects of Nonlinear Loss and Index Changes

In this section, we shall focus our attention on the general case where both the

nonlinear loss and index changes play a role. We begin our analysis by rewriting

equations (2.6)-(2.8), assuming phase matching,

M - 1 El + i IEt 2 El (5.19)
Oz 2

zE3  2 E 3  2i<El2E5
M 3a 3 + 2 i rE 12 E 3 (5.20)

-z 2



a4  1E 3 23
- -E 4±+ 2 i' JE E)EE2

(5.21)

To solve for E4 (z), we start by solving equations (5.19) and (5.20) for E (z) and E3 (z),

respectively, using standard methods of differential equations [39]. The solution of

equation (5.19) is,

El(z) = E10 . e- z+2 (z)

where

1
O(z) = I In

2K"
+ 2" Eio 12 (1

ae (5.23)

Similarly, we may solve equation (5.20) as,

E3(z) = E30 -e- (a/ 2)z+ 2zp (z )  (5.24)

where p(z) is the same as above. Now we use equations (5.22) and (5.24) to substitute

for Ei(z) and E 3(z), respectively, in equation (5.21). The FWM equation (5.21)

becomes,

OzE4(9z
a E4
2 - 2K" Eo 2 -•az-2~ p(z) E4 + iex(3)EoE oe - 3az- 4P~s"(z) (5.25)

and we may repeat the procedure followed in the preceding analysis with

f (z) = a + 2 Eo" • Eo 12 -cz- 2 •" ý(z)
2

g(z) = iy( 3 )E Eo eaz-4 l (z)
9(z ) = -i ~ ( )E 1o E 3*0 e - 2 a - • • z

(5.22)



= iX(3)E 2oEo e- ~2 z 1 +20 Ej 12 -(1 az -2

1 + 2n E102

The solution is,

E4(z) =-
ý (Z) [ L(z) g(z) dz + C]

((z) exp (jf (z) dz)

C = constant

Substituting f(z) and g(z) into the above formulas we obtain,

((z) = e z

and

f F(z~ a(z~
I P\Z O(

+ 2/"/ E10f2 12 :Qz

dz = c.2 f1 4- J(z 1(

where

-iyx(3)E oEmoC2 - 0 1S (1 + ii/l") 2," E1Io2

u(z) = 2" E1o12(1 -e-6az)

where

(5.26)



Substituting in equation (5.26) we obtain,

E4(z) = e-z [1 + u(z)]i/ " (C2 [1 + u(z)]-(l+iK/r ) + C)

The constant C is determined by requiring that E 4(z) satisfy the boundary condition

E 4 (0) = 0. Setting z = 0 in equation (5.27), we find

C = -c 2

Hence, equation (5.27) may be rewritten as

E4(z) = C2e-z ([1 + u(z)]- 1

Equation (5.28) may be simplified more using the definition of sinh(z) = (ez - e-z)/2,

to obtain

E4 (z) 2c 2 e -  [1E4 (Z)= -2 c2 2 [1+ (- 1/2+in/2 ) - sinh ((1/2 + iri/2r,") -In [1 + u(z)])

(5.29)

Note that

= 1 + i Re{}/"- Im{-}/"

= i Re{I}/i"
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- [1± ()i-r" (5.28)

1 + iw/t"



- ~ II

and

2 2i,, = -1 + i /2

Returning to equation (5.29) and using the fact that sinh(a + i b) = sinh(a) cos(b) +

i cosh(a) sin(b) we have

E4(z) = -2 i c2e- [1 + u(z)]- 1+i/ 2K sin * In [1 + u(zI)

The quantity of interest is the conversion efficiency (,q = 1E4 (z)/E 3o 12). The final form

of the conversion efficiency expression is

77 = eQ [
sin (p. -In [1 + u(z)]) 2

p [1 + u(z)I
(5.30)

where

Using the definition of I1 (equation (2.9)), the relationship of r" and /3 (equation

(2.10)), and the relationship of ,' and n2 (equation (2.11)), we can express p as

27r n2
P=A 0

Moreover, u(z) can be expressed as

U(z) = Io/IS(z)



where we define I10 and 1,(z) - 1/ 3Leff(z) as the input pump intensity and the

waveguide saturation intensity. For an ultrafast nonlinearity,

n 2

ImI{x (3)  180nA2)3
180 2r

and we can express equation (5.30) as

] -aL X(3) sin(p- In [1+ 1o/Is(z)])] 2

Im{x(3)} p [1 + Io/I(z)] (5.31)

This is the final form of the conversion efficiency expression and the main result of

all the preceding analysis. As a check, observe that when nonlinear loss dominates

equation (5.31) reduces to our earlier result, equation (5.16). As expected, in the

limit of '10 < Is, the large signal conversion efficiency expression equation (5.31)

reduces to the small-signal one, equation (2.14). Before we examine equation (5.31)

let us consider the case where nonlinear index changes dominate (,' > ,").

5.3.1 Effects of Nonlinear Index Changes

In the section on nonlinear loss effects we examined the limiting case where nonlinear

loss dominates. In this section we examine the other limiting case where nonlinear

index changes dominate. In practice, we may classify FWM in fiber in this category.

Therefore, it is important to understand these effects. In the limit, ln(1 + Ax) -~ Ax



and expression (5.31) becomes

77 = e-aL sin (K'IE0o2 Leff(z))]

Using the relationship between r'

of refraction n2 (equation (2.11)) and

and K and between n and the nonlinear index

the fact that n2 is related to Re{x(3) } by,

90 7r2 R (3)
n2n2 n2 ( )

we can rewrite 7X( )/IK' as,

x ( 3 )  ] X(3)

K' Ref {X(3)}

Hence, we arrive at the final result,

7 = eCa [ (3)} sin (Iio/Ih(z)) 2

where we define

S((2r/A)n2 -Lef (z))

Note that

I1o 27r=--=o n2I lo Leff -,nl

where pa is the nonlinear phase shift induced by the pump field. To understand

nonlinear index changes we examine equation (5.33) closely. A plot of q(I10), based on

(5.32)

(5.33)

(5.34)
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Figure 5-5: Small signal and large signal conversion efficiencies as a function of nor-
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equation (5.33), is shown in Figure 5-5 (assuming IX(3)/Re{X(3)} " 1, a = 0.46 cm-1,

and L = 1 cm) along with q,,s(Io) for comparison. Again, contrasting 77', with 'q, we

find that q,•,'s accuracy is rapidly lost as I10 increases. For instance, rTs overestimates

the conversion efficiency by 10% for pump intensities as low as 110 = 0.51, and for

110 = 1.4I., it is off by a factor of x2. Also note that while the small signal formula

predicts a strictly increasing conversion efficiency, the large signal expression predicts

an oscillatory behavior. In fact, the oscillations with intensity are caused by the

fact that the strong pump produced phase shifts drive the FWM process in- and

out-of-phase. The same mechanism was encountered in phase matching. In deriving

equation (5.33) we assumed Ak = 0. If that is not the case, then we must account

for both AkL-type phase shifts as well as pump induced phase shifts in order to

phase match the FWM process. As Figure 5-5 indicates, the large signal conversion

efficiency, 7(Io), reaches a maximum value of,

ReX(3) 2

lmax = Re{X(3)} " e Um .e

at an optimum input intensity of,

lo = (nir + ?r/2) I7

n = 0,1,2 ... etc.

as may be verified directly from equation (5.33). First, note that the highest value



7max can assume is 7,_ = x(3)/Re{(3)}12, again a geometry independent quantity.

We may define, as before, a material's figure-of-merit (FOMI) as, in the case where

nonlinear index changes dominate,

F)(3) 2 (A )3 >2

FOM=Re{x(3)} =1+ n2

The FOM determines the maximum conversion efficiency allowed by the nonlinear

material.

To achieve rmax with low input pump intensity, I, should be reduced through

increasing the product n2Leff. A material with a large nonlinear index of refraction

coefficient n2 is favorable. A material with a large, mostly real, X(3) is ideal for

small and large signal FWM (as well as all-optical switching). Another approach

to increasing I,, (= n2Leff) is to increase L, however, that reduces 7 since it is

proportional to e-'L. To find the optimum length L pt, we differentiate equation

(5.14) with respect to L and equate to zero. Unfortunately, 07/aLILo Pt= 0 is difficult

to solve analytically. Nonetheless, we can numerically compute the optimum length

Lopt given a, n2 and I10. Equation &r9/OLILoPt = 0 results in an equation of the form

tan(c - x) = 2x, where c = (27r/oaA)n2 10 and x = ce - , Lopt, which is simple to

solve numerically. Figure 5-6 shows a plot of Lopt normalized to Lyt, the small signal

optimum length. As the Figure indicates, if (27r/A) n2110 is comparable to oa, then

Lopt becomes significantly different from LOt (e.g. for (2w/A) n2I10o/a = 1, Lopt -

0.62. L t). Given Lopt (from Figure 5-6) we compute and plot (Figure 5-7) rm/m

as a function of (2r/A) n2110/a. As Figure 5-7 indicates, for (27/A) n2110•/& < 1, q is
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significantly smaller than qm and is limited by the fact that the linear loss imposes a

small L4 ff value resulting in I, > 110. Only when (27r/A) n2I 1o/a > 1 is it possible

to have 7 _ Ti.m

5.3.2 Effects of Nonlinear Loss and Index Changes

In the general case, both nonlinear loss and index changes affect the FWM conver-

sion efficiency. Having examined the two limiting cases in the previous sections, we

may now study the general case by focusing on equation (5.31), rewritten below for

convenience,

-a = L [p X_(3) sin (p -In [1 + Iio/Is(z)])]2 (535)" =ie (5.35)
[Im { X(3) P I 10/ sz] I

A plot of q(Iio), based on equation (5.31), is shown in Figures 5-8 - 5-11 (assuming

a = 0.46cm - 1 , and L = 1 cm) along with q,,ss(Io) for comparison for values of p equal

to p = 0, p = 1, p = 2, and p = 5. Note that as p increases several things happen.

First, n's roll-off following its peak steepens as it approaches the case of nonlinear

index changes only (there, 77 Oc sin(x)). Second, note the emergence of the oscillatory

behavior as p increases. By differentiating 77 and equating to zero, we obtain the

maximum value of the conversion efficiency,

(3) 2 e-cL-2tan-l(p)/p -CL
max = Im{fX( 3)} 1+ p2 = Tm e
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at an optimum input intensity of,

TOpt = (e- tan-l(P)/P - 1)I8

as may be verified directly from equation (5.35). First, note that the highest value

7 max can assume is 7,m - e- 2 tan -1 (p)/p Ix( 3)/ImIX(3)} 2 /(1 + p2), again a geometry

independent quantity. The expressions for 7max and I t reduce to the corresponding

expressions in the special case of pure nonlinear loss or pure nonlinear index changes,

as expected.

To find the optimum length LOpt , we differentiate equation 5.35 with respect to L

and equate to zero. Again, &71/&LLopIt = 0 is difficult to solve analytically. Nonethe-

less, we can numerically compute the optimum length LoPt given a, /3, n2 and 110.

Actually, finding Lopt reduces to numerically solving the following equation for L,

tan(p ln(1 + 4 - 4e-L)) = ) 2pe -L
1 + 4) + ýDe-cL

where

Figure 5-12 shows a plot of Lopt normalized to LfPt, the small signal optimum length,

for p = 0, 1,2 and 5, respectively. In the case of p = 0, Lopt is identical to that of

dominant nonlinear loss and the case of large p corresponds to dominant nonlinear

index of refraction. Note that the x-axis here is the same as in Figure 5-2 but

different than that of Figure 5-6. Given Lopt (from Figure 5-12) we compute and
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plot (Figure 5-13) nma as a function of /3Io/a, assuming Re{x(3 )}, and Im{X( 3)}

are ultrafast, hence, directly proportional to n2 and 3, respectively. As Figure 5-13

indicates, 7mr, is proportional to IX(3)/Im{x(3)}12 -= 1 + p2 , hence increases with p

(given a fixed Im{X(3 )}).
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Chapter 6

Ultrashort Pulse FWM

Previous research in FWM temporal effects has concentrated on the OPC [10] or

time-reversal aspect of FWM for image distortion correction and chirp and disper-

sion compensation [11]. Short pulse compression using FWM is another area that

received some attention. Theoretical efforts predict the ability to perform a wide

range of signal processing functions including logic gating and temporal correlation

[52]-[53]. High peak power pulses are expected to be utilized more and more to achieve

high conversion efficiencies and improve the output SNR through the suppression of

Amplified Spontaneous Emission (ASE) [54] (for the case of semiconductor ampli-

fiers).

Short pulse FWM analysis using the preceding large signal results (see Chapter

5) brings into focus many considerations. As an example, consider the case where

nonlinear loss dominates. Short pulses with their high peak intensities will typically

approach the 3Ijo/a > 1 limit leading to high conversion efficiencies (7 -- m).

The optimum length in this case, normalized to L Pt, satisfies the relation Lopt 10
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1.72/0 (see equation (5.18)) and we have a fixed length-intensity product LoptI 10.

Suppose, for the purposes of a rough estimate, that 3 = 46 cm/GW, LOt = 1 cm,

and Aeff = 3 -10-8 cm 2 , then Lopt - 224 Am for a 100 W peak power pulse, and

for a 1 kW peak power pulse, LOpt - 22 Am only. If the length-intensity product

exceeds 1.72/0 appreciably, then a number of unfavorable effects take place; such as

conversion efficiency degradation and spectral distortion.

Short pulse FWM, in the small signal regime, produces an output signal that

is shorter in duration than both pump and signal pulses as a consequence of the

multiplication operation, E4 (t) ocx E1(t)12 E3 (t) (55]. Figure 6-1 shows an example

of a gaussian pump and signal pulses along with FWM generated pulse. The FWM

pulse is shorter than the pump and signal pulse. FWM can therefore be used as a

pulse compression scheme as was demonstrated experimentally with the compression

of femtosecond pulses by x 1.8 [12]. In this small signal regime, the FWM pulse scales

with IE1 (t) 12 but does not change its shape. In contrast, in the large signal regime,

,q does not scale linearly with IE(t)12 . When 110 is comparable to I,, q(Io)/I20

is smaller at the peak of the pump pulse than at the wings. This leads to pulse

broadening. Figure 6-2 shows the FWM pulse shape for different values of 3Ilo/a.

As 3I1 o/a increases, the pulse becomes broader and changes its shape (it becomes

more square).
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Figure 6-1: Input gaussian pump and signal pulses (solid line) and FWM generated
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Figure 6-2: FWM pulse shape for 0I1o/a equal to 0 (dashed line), 2 (dotted line),
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Chapter 7

Summary

This thesis is concerned with FWM as a wavelength conversion technique in low-loss

passive InGaAsP/InP single quantum well waveguides at A = 1.5pm. Fundamental

parameters such as the third order nonlinearity (real and imaginary parts), linear loss,

and GVD were characterized. The nonlinearity was shown to be ultrafast and mostly

real. A conversion efficiency of -11 dB was demonstrated with picosecond pulses. The

issue of wavelength conversion in the presence of nonlinear loss and index changes was

examined. It was shown that the nonlinear loss and index changes place fundamental

limits on the maximum conversion efficiency and lead to pulse distortions. Closed

form solutions for the conversion efficiency in the presence of nonlinear effects were

derived. The optimum pump power and device length were calculated.

There are several issues that remain unexplored. First, the resonant enhancement

of the nonlinearity was achieved using a single QW device. A multiple QW waveg-

uide should provide significantly greater nonlinearity enhancement and make passive

waveguides more attractive as wavelength shifters. Second, the anisotropic nature of
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the nonlinearity may potentially be removed by incorporating strain in the QW. If

that is achieved, passive waveguides will provide polarization insensitive wavelength

conversion. Third, methodical experimentation is needed to clarify the relationship

between the time-domain and frequency-domain techniques for nonlinearity charac-

terization. Fourth, many of the analytical results derived in Chapter 5 still need

experimental verification. FWM in fiber with high peak power pulses may provide

direct evidence for the effect of nonlinear index changes on FWM conversion effi-

ciency. The issue of ultrashort pulse FWM remains unexplored, for the most part,

analytically or experimentally.
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