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Abstract

Many areas of science and engineering have explored and utilized the chaotic behavior
of certain nonlinear dynamical systems. Potentially useful communications schemes
have been proposed that exploit the broadband, noise-like properties of chaotic sig-
nals. Most strategies proposed for utilizing chaotic signals for communications exploit
the self-synchronization property of a class of chaotic systems. Typical transmission
channels introduce distortion including time-varying attenuation due to fading, scat-
tering, etc., and modification of the spectral characteristics due to channel filtering
and multipath effects that significantly degrade synchronization of the chaotic trans-
mitter and receiver. The focus of this thesis is on equalization of these channel effects
to restore synchronization. Estimation and compensation for the channel distortions
are achieved through the use of the properties of the transmitted chaotic signals and
the synchronization property of the receiver.

Thesis Supervisor: Alan V. Oppenheim
Title: Distinguished Professor of Electrical Engineering



Acknowledgments

I would like to thank my advisor, Alan V. Oppenheim, for always seeing the best

in me, and pushing me to be better. I value his insight and wisdom which have

straightened me out on many occasions.

I thank Kevin Cuomo for sharing with me his vast knowledge of chaos in our many

technical discussions.

I thank the members of the M.I.T. Digital Signal Processing Group. Many of our

informal technical discussions have inspired valuable ideas. DSPG members have also

provided me with an escape from the rigors of research when I have needed it most.



Contents

1 Introduction

1.1 Definitions and Motivations . . . . . . . . . . . . . . . . . . . . . . .

1.2 Self-Synchronization in Chaotic Systems . . . . . . . . . . . . . . . .

1.3 Self-synchronization and the Lorenz System . . . . . . . . . . . . . .

1.4 Outline of Thesis . . . . . . .. .. .. .. .. ... . . .. .. . . ..

2 Digital Implementation of Self-Synchronizing Transmitter-Receiver

Pair

2.1 Numerical Integration of Dynamic Eauations . . . . . . . . . . . . . .

2.1.1 Uniform Integration Step Size . . . . . . . . . . . .

2.1.2 Composite Implementation . . . . . . . . . . . . . .

2.1.3 Independent Transmitter-Receiver Implementation

2.2 Numerical Experiments ....................

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 20

. . . . 20

. . . . 21

. . . . 23

.. .. 25

3 Equalization for Channel Gain

3.1 Average Power Normalization ......................

3.2 Adaptive Error Minimization ......................

3.3 Effect of Linearly Varying Gain on Average Power Equalization . . .

3.4 Effect of Linearly Varying Gain on Adaptive Error Minimization Equal-

ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.5 Numerical Experiments: Comparison of Average Power Normalization

and Adaptive Error Minimization ....................

19

19



3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Equalization of Minimum Phase Channels 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Power Spectral Division ......................... 40

4.3 Minimum Phase Filter Response from Band-limited Magnitude. . . . 41

4.4 Numerical Experiments .......................... 43

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Equalization of Linear Time Invariant Channels 49

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 The Error Power Surface ......................... 50

5.3 Steepest Descent Implementation . . . . . . . . . . . . . . . . . . . . 50

5.4 Starting Point for the Steepest Descent Iteration: Initial Equalizer

Estim ate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Exhaustive Search of Initial Equalizer Zero Placements . . . . . . . . 53

5.6 Steepest Descent with Respect to Allpass Poles . . . . . . . . . . . . 54

5.7 Numerical Experiments .......................... 56

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 System Identification Using Self-Synchronizing Chaotic Signals 61

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Numerical Experiment .......................... 62

7 Summary and Contributions 65

7.1 Channel Gain Equalization ........................ 65

7.2 Equalization of Minimum Phase Channels . . . . . . . . . . . . . . . 66

7.3 Equalization of Linear Time-Invariant Channels . . . . . . . . . . . . 67

7.4 System Identification Using Self-Synchronizing Chaotic Signals . . .. 69

A Approximate Analysis of the Effect of Linearly Varying Channel

Gain on an Average Power Estimate 71



A.1 Case 1: Power Estimate for Constant Gain . . . . . . . . . . . . . . . 72

A.2 Case 2: Power Estimate for Linearly Varying Gain . . . . . . . . . . . 72





List of Figures

1-1 The Lorenz Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1-2 Communications with Self-Synchronizing Chaotic signals . . . . . . . 13

1-3 a) Lorenz drive signal and synchronizing receiver signal. b) Error signal 16

2-1 Impulse response and frequency response of zero-order hold . . . . . . 23

2-2 Synchronization error vs. time using zero-order hold (A = .0025, .005)

and band-limited interpolation (A = .005) on the receiver input . . . 24

3-1 Synchronization error vs. time for G(t) = 2 and no compensation . . 29

3-2 Block diagram of gain compensation strategy . . . . . . . . . . . . . . 29

3-3 G(t)Q(t) using a 5 second window for xr(t) = 2x(t), where x(t) is a

Lorenz drive signal ............................ 30

3-4 Synchronization error power vs constant gain, G . . . . . . . . . . . . 31

3-5 (a) Time varying gain G(t) 1 - (t - 10)/20, (b) Corresponding syn-

chronization error versus time, (c) Minimumerror Gain Qme(10)Q(10)G(t),

(d) Error corresponding to gain in (c) . . . . . . . . . . . . . . . . . . 35

3-6 Synchronization error reduction after equalization of constant gain

channel. G(t) = 2 . .. ............. ..... .... .. .. 37

3-7 Synchronization error after equalization of time varying gain channel.

G (t) 1 + t/10.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4-1 Power spectrum of Lorenz signal . . . . . . . . . . . . . . . . . . . . . 40

4-2 Power spectra of Butterworth channel and scaled Lorenz signal. . . . 44

4-3 Actual and Estimated magnitude of Butterworth channel . . . . . . . 45



4-4 Error versus time for Butterworth channel. a) without compensation,

b) with compensation ........................... 46

5-1 Steepest Descent Implementation for an FIR equalizer . . . . . . . . 50

5-2 Steepest Descent Implementation for Minimum Phase/Allpass equalizer 54

5-3 Channel Response ............................. 56

5-4 Response of channel in cascade with all-pole modeling equalizer (-) and

error minimization equalizer (- -) . . . . . . . . . . . . . . . . . . . . 57

5-5 - - Error for all-pole modeling equalizer, - Error for steepest descent

equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6-1 a) Channel magnitude response (-), stochastic estimate (-.), and Lorenz

estimate (- -). b) Phase response . . . . . . . . . . . . . . . . . . . . 63



Chapter 1

Introduction

1.1 Definitions and Motivations

Many areas of science and engineering have explored and utilized the chaotic be-

havior of certain nonlinear dynamical systems. Although no definition is universally

accepted, an appropriate definition of chaos involves three main characteristics. Chaos

is aperiodic, long-term behavior occurring in a deterministic system that exhibits sen-

sitive dependence on initial conditions [1]. Sensitive dependence on initial conditions

means that if there exists any error in an initial state estimate, the error between

the actual state and the state estimate grows exponentially with time. This prop-

erty translates to the noise-like characteristic of poor longterm predictability. The

aperiodicity of chaotic signals results in a broadband power spectrum that lacks the

discrete frequency peaks of periodic or quasiperiodic signals. The fact that chaotic

waveforms are generated from a deterministic system, in conjunction with the noise-

like properties of these signals, suggests potential for the use of synthesized chaotic

signals in engineering.

Figure 1-1 shows the evolution in 3 dimensional phase space of the Lorenz system

of equations operating in a chaotic regime. The specific equations for the Lorenz

system are given in Section 1.3. As is apparent from the figure, the trajectory is

confined to a limiting space, or attractor. The Lorenz system is an example of a dissi-

pative chaotic system. A dissipative chaotic system is one whose limiting trajectories
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Figure 1-1: The Lorenz Attractor

occupy a region in state space of zero volume and fractional dimension. Although

locally unstable, trajectories on this limiting set are bounded in a region of state

space.

There exists a certain class of dissipative chaotic systems that are self-synchronizing,

which is of significant practical interest. Two chaotic systems synchronize, i.e. they

follow the same trajectories, by sharing a chaotic reference signal, or drive signal. For

such pairs, synchronization occurs regardless of the initial conditions of either system.

By making the two systems part of a transmitter-receiver pair, potentially useful

communications schemes have been proposed that exploit the broadband, noise-like

properties of the chaotic signals. The transmitted drive signal can be used as a

mask for information bearing waveforms or as a modulating signal in spread-spectrum

systems [2, 3].

In any proposed communication scheme utilizing self-synchronizing chaotic sys-

tems, it is imperative to maintain synchronization between transmitter and receiver.

Typical transmission channels introduce distortion including time-varying attenua-

tion due to fading, scattering, etc., and modification of the spectral characteristics

due to channel filtering and multipath effects that significantly degrade synchroniza-

tion. The effects of additive noise on synchronization have been discussed in [4].

In this thesis the focus is on exploring strategies of estimation and compensation

of channel distortion in order to provide levels of synchronization error acceptable

for communication. A block diagram describing the channel equalization problem is

. ..........
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Figure 1-2: Communications with Self-Synchronizing Chaotic signals

given in Figure 1-2, where the unknown channel is given as C(s), and there exists

receiver noise -y(t). Much of the experimental work described in this thesis assumes

no receiver noise, however. This thesis approaches the problem from the perspective

of designing the equalizing filter H(s) to undo the channel filtering.

The difficulty in equalization lies in the fact that the exact input to the channel

is unknown at the receiver. A solution is feasible, however, because the properties of

the self-synchronizing chaotic signal are known.

The following section describes self-synchronization in more detail.

1.2 Self-Synchronization in Chaotic Systems

Self-synchronization involves a coupling of systems in which the evolution of one

system is completely determined by that of another. The state trajectory of System

2 synchronizes to that of System 1, i.e. the difference between them approaches

zero. The link between the pair that causes synchronization is a signal, specifically

a state variable, from System 1 that serves as an input to System 2. Except for the

transmission of one noise-like waveform, the two chaotic self-synchronized systems are

remote from one another, which implies a potential usefulness in communications. In

a communications scenario System 1 can be viewed as a transmitter, and System 2

can be viewed as a receiver.

Much of the following notation in this section is borrowed from [5]. Consider a

dynamic system governed by the dynamic equations:

ic = f(t,x), x E RN. (1.1)



The transmitter of a self-synchronizing pair evolves independently according to these

equations. Its trajectory is completely described by its initial conditions.

Equation 1.1 can be partitioned into two subsets of equations, expressed as:

cl = Di(d 1 ,d 2), d1 e RN - m (1.2)

d2 = D 2(dI,d2 ), d2 E R m  (1.3)

Consider duplicating D 2 and replacing the state variables d2 by new state variables

r. This new system represents a receiver, whose evolution equations are:

i = D 2(d1 ,r), r Rm  (1.4)

If the subsystem represented by D 2 is stable in the sense that all its the conditional

Lyapunov exponents are negative, the receiver will be capable of synchronization [6].

A full treatment of what is meant by this definition of stability is given in [6]. The

receiver subsystem is driven by the state variables d, from the transmitter, and if

stable, will synchronize to the state variables d 2 of the transmitter.

There are a number of observations that can be made about self-synchronization.

The formulation of the receiver from the transmitter equations shows that the trans-

mitter and receiver have very similar dynamic descriptions. Another point is that

there may be more than one stable decomposition of a chaotic system. Implied by

that fact is the existence of a variety of receiver designs, and correspondingly a variety

of synchronizing drive signals.

The work in [5, 7] details a systematic procedure for analyzing and synthesizing

families of self-synchronizing chaotic systems for arbitrarily high orders. Captur-

ing much of the typical behavior of self-synchronizing chaotic systems, the Lorenz

transmitter-receiver pair is the prototype example used throughout this thesis.



1.3 Self-synchronization and the Lorenz System

Studied for decades as a simple, yet rich, example of a chaotic system, the Lorenz

system has the self-synchronizing property. As we will show later, this property is

the result of the global asymptotic stability of error dynamics. The Lorenz equations

are given by:

x = (y- x)

y = rx-y-xz (1.5)

z = xy - bz.

x, y, and z are the transmitter state variables, and a, r and b are constant parameters.

All experiments in this thesis are performed with o- = 16, r = 45.6, and b = 4 for

both transmitter and receiver. These parameters ensure that the system is operating

in a chaotic regime.

A cascade of two stable receiver subsystems may be used to reproduce the full-

dimensional behavior of the transmitter through synchronization [8]. The composite

receiver dynamics are succinctly described by the Lorenz receiver equations:

Xr = (Yr - Xr)

yr = rs(t)- yr - s(t)Zr (1.6)
zr = s(t)Yr - bzr.

Xr, Yr, and zr are the receiver state variables and s(t) is the input drive signal. Note

s(t) replaces the occurrence of x(t) in the transmitter equations. Synchronization

occurs when s(t) = x(t), which is confirmed by simple analysis.

Specifically, the error variables are defined as

ex(t) = x(t) - Xr(t) (1.7)

ey(t) = y(t) - yr(t) (1.8)
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Figure 1-3: a) Lorenz drive signal and synchronizing receiver signal. b) Error signal
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ez(t) = z(t) - Zr(t), (1.9)

and their evolution equations are readily derived:

X = (e - ex) (1.10)

6Y = -e - s(t)ez (1.11)

6z = s(t)ey - s(t)ez. (1.12)

If s(t) = x(t) the point [0,0,0]T is a globally asymptotically stable fixed point. Re-

gardless of initial conditions of transmitter or receiver, e(t) -+ 0 as t -4 oc; the

receiver synchronizes to the transmitter. Figure 1-3 shows synchronization for the

Lorenz system occurring within about 2 seconds.

1.4 Outline of Thesis

This thesis is directed at channel estimation and equalization given the transmission

of self-synchronizing chaotic signals. Figure 1-2 shows an unknown channel filter C(s),

and the equalizer H(s) which we will attempt to design. The thesis is organized as

follows.

Chapter 2 addresses implementation issues that arise when numerically integrating

the transmitter and receiver equations using fourth-order Runge-Kutte integration.

In Chapter 3, we suggest equalizing strategies for both constant and time-varying

gain. The first strategy is to normalize the average power of the received signal to

the expected power of the self-synchronizing drive signal. Using the estimate from

the average power normalization, the second strategy is adaptive error minimization.

The received signal is discretized and the synchronization error is minimized at each

point in time relative to an equalizing gain.

A linear time-invariant (LTI) channel model is next considered in Chapter 4 under

the simplifying assumption that it is minimum phase, i.e. the stable, causal channel

has a stable, causal inverse. We propose that a spectral division approach yields an



excellent estimate of the channel magnitude, which is used to estimate the entire

minimum phase response.

Finally in Chapter 5, we endeavor to equalize all LTI channels. We propose a

solution that uses a gradient search of the synchronization error power surface relative

to discrete-time FIR equalizer coefficients. By doing so, we expect to determine an

equalizing filter that will minimize synchronization error.

We conclude with a chapter suggesting a potentially valuable use of self-synchronizing

chaotic waveforms as test signals for system identification.



Chapter 2

Digital Implementation of

Self-Synchronizing

Transmitter-Receiver Pair

Throughout this thesis, we simulate the Lorenz transmitter and receiver by numeri-

cal integration of their dynamic equations to establish empirical results. We ensure

repeatability and ease of simulation and analysis by performing simulations digitally.

2.1 Numerical Integration of Dynamic Equations

Given that state equations describing self-synchronizing chaotic systems are continuous-

time relationships, digital integration techniques only approximate phase space trajec-

tories. For most analysis, fourth order Runge-Kutte integration is sufficiently accurate

to generate the Lorenz system trajectory. For the particular task of integrating the

Lorenz transmitter-receiver pair, several implementation issues arise. They include

uniform versus nonuniform step size, and composite versus decoupled implementation

of the transmitter and receiver.



2.1.1 Uniform Integration Step Size

Some Runge-Kutte integration routines dynamically alter integration step size to

minimize a prescribed error. The output of the routine is therefore a signal sam-

pled at a non-uniform sampling rate. Many tools for the analysis of these signals,

however, require a uniform sampling rate. For instance, a power spectral estimate of

the Lorenz signal is often calculated by periodogram averaging, which uses the Fast

Fourier Transform (FFT). The FFT requires uniform sampling of the signal. Also, as

explained in Section 2.1.3, for the appropriate implementation of the Lorenz receiver

system, the input drive signal must be oversampled by a factor of two, which is most

easily done if the original signal is uniformly sampled. A uniform sampling rate is

simply achieved by executing the integration with a uniform step size.

2.1.2 Composite Implementation

It is straightforward to represent a transmitter-receiver synchronized system digitally

as a composite 6-dimensional system. The transmitter equations (Equations 1.5) are

augmented by the receiver equations (Equations 1.6) to form the following system:

S= c(y- x)

y = rx - y - xz

= xy - bz (2.1)

Xr = (Yr -y-Xr)

Yr rx- yr - XZr

S= xyr - bzr.

The "transmitted" signal, x, is actually a state variable of the 6-D system evolving

independently according to the transmitter dynamics. Using this implementation,

synchronization is observed. Note, however, that this implementation does not allow

for degradation of the drive signal. The primary interest of this thesis is in distorting



and equalizing the drive signal, for which the composite implementation is inadequate.

2.1.3 Independent Transmitter-Receiver Implementation

In this section we consider an implementation which allows for the distortion of the

drive signal before being used as input to the receiver. The most flexible strategy

for the simulation of the self-synchronizing system involves implementing individual

routines for transmitter and receiver. The transmitter routine numerically integrates

Equations 1.5, and produces the sampled Lorenz drive signal, say x". We are free to

add noise, linearly filter, or otherwise modify the signal before using it as input to

the receiver routine. Let s. denote the modified signal. The receiver routine digitally

integrates Equations 1.6 with s, serving as an input. Synchronization will occur if

sn = xn. The following discussion will describe the appropriate manner in which the

receiver input s,, enters the Runge-Kutte equations.

First we must examine how Runge-Kutte integration is performed for a general

system of ordinary differential equations, which are written in vector equation form

as given in Equation 1.1. Given a set of initial conditions, this equation describes a

path in phase space through time. The digital model only generates samples of an

approximate phase path. For a particular time iteration, integration is carried out

numerically by calculating a slope, multiplying it by the time step A and adding the

resulting increment A, to the existing value of x. Euler's method assigns the slope

to be dx/dt directly from the state space equations. In order to guarantee numerical

stability of the integration using Euler's method, the step size must be several times

smaller than is required by Runge-Kutte integration. For this reason Runge-Kutte is

the preferred method of integration.

Using Simpson's Rule, Runge-Kutte calculates a slope which is a weighted average

of the slope at the present time t, 1/2 a time step ahead, t + A/2, and 1 time step

ahead, t + A.

With i denoting the successive integration steps, the Runge-Kutte equations are



given by:

a = f(ti, xi) (2.2)

b = f(ti + A/2, xi + aA/2) (2.3)

c = f(t, + A/2, xi + bA/2) (2.4)

d = f(ti + A,x, + cA) (2.5)

Xi+ = xi + A(a + 2b + 2c + d)/6 (2.6)

Difficulties arise in the execution of the equations by the receiver routine. Re-

calling the receiver equations, the right hand side is the specific function f for the

receiver. The transmitted drive signal s(t) can be viewed as an arbitrarily time vary-

ing component of the function f. Equations 2.2-2.5 imply that the functions f(t, x)

must be evaluated at 1/2 a time step, which means s(t) must be evaluated at 1/2 a

time step. As output from the transmitter routine, s(t) is sampled only at integer

time steps.

Several ways to implement the receiver routine were considered. The most el-

ementary approach assumes s(t) is constant throughout the time interval for each

successive integration step; a zero order hold is performed. For each of Equations 2.2-

2.5, s(ti) = s(ti + A/2) = s(ti + A). Using this algorithm the data output from

the receiver routine does not show synchronization with the transmitter, because the

zero-order hold contributes a 1/2 sample delay to the output of the receiver routine.

Figure 2-1 shows that implementing a zero order hold of width A is a filtering

operation with a filter that has a constant group delay of A/2. The magnitude

modification is minimal. For instance, the requirement of stability of the receiver

numerical integration dictates a sampling rate of 1/200Hz. Most of the Lorenz signal's

energy occurs from 0 to O10Hz (Figure 4-1). In the high frequency portion of the

Lorenz spectrum (10Hz), magnitude attenuation from the zero-order hold filtering

operation is only about .04dB. The Fourier transform relationship shown in Figure 2-

1 indicates that a slower sampling rate will contribute to more magnitude attenuation

of the drive signal.
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Figure 2-1: Impulse response and frequency response of zero-order hold

It appears from the perspective of the receiver that the drive signal has been

delayed by 1/2 a time step. Therefore, the synchronized output will be delayed by

the same amount. For calculation of synchronization error, it is most appropriate to

compare the drive signal with the receiver output shifted back in time by 1/2 a time

step.

Another approach to the integration is to input the drive signal at twice the

sampling rate of that of the receiver state variables. This integration strategy does

not introduce any delay into the receiver routine. The values of s(t) at ti + A/2 and

ti +A are directly entered into the Runge-Kutte equations at iteration i, which implies

a non-causal calculation. Oversampling the drive signal may be accomplished in one

of two ways: 1) by implementing the transmitter integration with half the time step

of the receiver, or 2) by keeping the transmitter and receiver time steps the same and

performing band-limited interpolation before using the drive as input to the receiver

routine. Either using method 1) or 2) there is no delay introduced at the receiver.

2.2 Numerical Experiments

Empirical evidence suggests that the integration procedure using the oversampled

drive results in the lesser synchronization error for a clean drive compared to the
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zero-order hold method. The spectral magnitude modification of the zero order hold

appears to degrade synchronization, and the distortion is larger for larger sampling

periods. Figure 2-2 compares the calculated error trajectories for an uncorrupted

drive signal using the two receiver integration approaches. The zero-order hold is

performed with A = .0025 and A = .005. As expected the error variance increases

for larger step size due to more significant magnitude attenuation at high frequencies.

The band-limited interpolation method with A = .005 achieves about an order of

magnitude reduction in error over the zero order hold method.

Note that using the drive signal at twice the sampling rate, involves no more

computation than simply performing a zero-order hold over a time step. If we use the

zero-order hold, we must calculate the half-sample values of the the receiver input

in order to compare the receiver input to the receiver output (e.g. for calculation

synchronization error). This involves oversampling the receiver input by a factor of

2.

2.3 Conclusion

On the surface, Runge-Kutte integration appears to be a straightforward iterative

technique. In this chapter, we have addressed some of the complexities that arise

when we are integrating the equations of a self-synchronizing transmitter-receiver

pair. There are two main conclusions of this chapter. First, the flexibility of the

transmitter-receiver simulation is assured by implementing individual routines for

transmitter and receiver. The second conclusion is that the most accurate integration

of the receiver equations requires the two-times oversampling of the input drive signal.





Chapter 3

Equalization for Channel Gain

The simplest form of channel filtering is gain. In this chapter, we suggest two equal-

ization strategies for both constant and time-varying gain. The first strategy is to

normalize the average power of the received signal to the expected power of the self-

synchronizing drive signal. Using the estimate from the average power normalization

as a starting point, the second strategy is adaptive error minimization. The received

signal is discretized and the synchronization error is minimized at each point in time

relative to an equalizing gain.

3.1 Average Power Normalization

This section outlines the procedure for equalizing by normalization of the average

power of the received signal to the expected power of the input signal, which is a self-

synchronizing chaotic drive signal. Let x(t) be the self-synchronizing chaotic drive

signal. The distorted signal at the receiver is:

s(t) = G(t)x(t), (3.1)

where G(t) is in general a time varying gain. Figure 3-1 illustrates the loss of syn-

chronization if G(t) = 2 and there is no compensation.

In order to achieve minimum synchronization error, G(t) must be estimated and



s(t) must be equalized on the basis of that estimate. The equalization method based

on average power normalization is only valid given some assumptions.

Throughout this thesis we will be imposing an ergodicity and stationarity as-

sumption. For a given chaotic system, a particular sample path (described entirely

by initial conditions) is assumed to have the same statistics as any other sample path,

and the statistics of a sample path are stationary up to second order. Therefore the

expected power of the transmitter drive signal x(t) has some known value, P'. The

value of P, can be calculated at the receiver, because the receiver has the same dy-

namic system parameters as the transmitter. Empirical measurement of Px over a

range of initial conditions in the Lorenz system with 500 independent trials and a

time window of 800 seconds resulted in an average value of 159.78, a variance of .018,

a maximum of 160.16 and a minimum of 159.45.

If the power of s(t) were known exactly then equalization could recover x(t) ex-

actly. A practical equalization algorithm is the following. The average power P,(t)

of the gain-distorted drive signal s(t) is calculated as a function of time in a sliding

fixed-length window [t - a, t + b] (a > 0, b > 0).

1 [t+b
Ps(t) = b-a t-a s2 (T)d-. (3.2)b - af -'a

Because P,(t) is only an estimate of the expected power there is estimation error

in P,(t), the variance of which grows with smaller window size. Compensation is

achieved by multiplying s(t) by the compensating signal Q(t).

Q(t) = P~/P/P(t) (3.3)

^(t) = s(t)Q(t) = (G(t)Q(t))x(t) (3.4)

&(t) is then an estimate of the clean Lorenz drive. Figure 3-2(a) is a block diagram of

the average power normalization strategy. For perfect synchronization, G(t)Q(t) = 1,

but the nonzero error variance in P,(t) contributes to error in G(t)Q(t). Figure 3-

3 shows a sample path of G(t)Q(t). In this example x(t) is a Lorenz drive signal,

G(t) = 2 and the estimator window size is 5 seconds.
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Figure 3-1: Synchronization error vs. time for G(t) = 2 and no compensation
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composite gain G(t)Q(t) for constant channel gain = 2; window = 5 sec
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Figure 3-3: G(t)Q(t) using a 5 second window for x,(t) = 2x(t), where x(t) is a
Lorenz drive signal

For longer windows the product G(t)Q(t) has reduced variance, as long as G(t)

is relatively constant within the window. Significant time variation of G(t) within a

window may increase the error in the power estimate. In an effort to achieve near

minimum synchronization error, therefore, the window for average power normaliza-

tion must be long enough to provide sufficient data for an accurate estimate, yet short

enough to be avoid significantly affecting the power estimate with the time varying

nature of the channel.

Self-synchronizing chaotic signals have a great deal of structure. We have exploited

only a basic element of the structure which is constant expected power. The following

section describes how receiver synchronization error is used to equalize more effectively

given an initial estimate from average power normalization.



a)
0

2z

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4
Gain

Figure 3-4: Synchronization error power vs constant gain, G

3.2 Adaptive Error Minimization

Figure 3-4 shows Lorenz system synchronization error power as a function of constant

channel gain. There are two obvious minima about G = 0 and G = 1. Most signif-

icant about the curve is the unimodality for a wide range of gains about G = 1. In

the constant gain case, given an appropriate initial channel gain estimate, a steepest

descent search (gradient search) of the error power function with respect to a compen-

sating gain should identify the compensator that achieves the minimum error. Figure

3-3 shows a G(t)Q(t) for a typical constant gain channel. It varies about 1 by about

+.05, which is well within the desired basin for minimum error power.

The adaptive error minimization construction is illustrated in Figure 3-2(b). The

adaptive error minimization algorithm proceeds as follows. Consider a time t = to

and the signal

x 2(t) = Qme(to) Q(to) G(t) x(t + to) - A <t < A (A > 0). (3.5)

Note that the time window for x 2(t) about to is not necessarily the same as the

window about to for average power normalization. Starting with a value of 1, Qme(to)

is a gain that is adjusted to achieve lowest overall synchronization error. X2 (t) serves

as a drive signal for the Lorenz receiver system. The algorithm minimizes the error

with respect to Qme(to). If the algorithm is performed for all to, a new equalizing

gain signal, Qme(t)Q(t), is created.



Again, how well Qme(t)Q(t) equalizes G(t) depends on the window size, 2A. The

window must be large enough so that x 2(t) is a representative waveform of the self-

synchronizing drive signals, and also large enough so that the transient error is not

a significant portion of the error signal. In fact, the transient error should not be

included in any average error power calculation during the steepest descent search.

The window must also contain enough data such that the estimate of the error power

at a particular point on the error power function has sufficiently small variance.

The primary reason for keeping the window small is to ensure that G(t), is rela-

tively constant within a window. The behavior shown in Figure 3-4 only describes a

relationship between error power and a constant gain G. If G(t) is significantly time

varying within a window, the estimate of the channel gain at to may not be the same

as the estimate for G(t) constant. The estimate may in fact be worse than the esti-

mate using average power normalization. So when G(t) is time varying, the composite

gain of the channel equalizer cascade, Qme(t)Q(t)G(t) may vary more from unity than

than Q(t)G(t). Use of adaptive error minimization after average power normalization

is therefore advisable only under certain, more placid channel conditions.

The effects of a time-varying gain on equalization is very difficult to quantify for

an arbitrary G(t). If, however, we consider a linear approximation of G(t) within a

window, the analysis becomes more tractable. The following two sections discuss the

effect of the linearly time-varying gain on the two equalizers. Section 3.3 shows that

compared to the constant channel gain case, the average power normalization power

estimate is relatively unaffected by a small slope linear channel gain. Section 3.4 ar-

gues that the linearly varying gain biases the adaptive error minimization equalizer.

The degree to which it is biased is unknown, however. Numerical experiments in Sec-

tion 3.5 show that adaptive error minimization can actually worsen the equalization

of the average power normalization in the time-varying gain case.



3.3 Effect of Linearly Varying Gain on Average

Power Equalization

Consider a situation in which the distortion of a chaotic drive signal is caused by a

linearly varying gain. For a time window about time to, [to - A, to + A], the time-

varying gain is GL(t) = K + ((t - to). K is the channel gain for t = to and C is the

maximum deviation of G(t) from K in the window. Appendix A shows that to the

first order (in e), the mean and variance of the power estimate for the linearly varying

channel gain is approximately equal to that for the constant gain case, G(t) = K. So

for strictly increasing or strictly decreasing channel gains of small slope, the average

power normalization should reduce synchronization error nearly as effectively as for

constant gain.

In the next section we will show that the gain estimate made by the adaptive error

minimization actually worsens with time varying channel gain.

3.4 Effect of Linearly Varying Gain on Adaptive

Error Minimization Equalization

For the linearly time-varying gain channel, the performance of the adaptive error min-

imization is less analytically tractable than that of the average power normalization.

We will use approximate arguments with empirical support to attempt to explain the

behavior.

We will assume that the receiver synchronization is rapid relative to the rate of

change of the channel gain. Therefore, if the gain Qme(to) Q(to) G(t) is unity at any

time in the window to - A < t < to + A then the synchronization error power is

approximately zero at that time. With this assumption and the fact that error power

is a continuous function of the gain, it is reasonable to assume that the gradient

search of the error power curve will yield a gain Qme(to) Q(to) G(to) that is close to

unity.



For the purposes of illustration, we next consider the experiment in which the

Lorenz drive signal passes through a channel gain G(t) = 1 - (t - 10)/20, shown in

Figure 3-5(a). Consider the window 0 < t < 20 which is centered about t = 10. The

channel has a gain of one at t = 10 seconds. The channel needs no gain compensation

at t = 10, i.e. the equalizing gain Qme(10)Q(10) should equal 1.

As we expect, Figure 3-5(b) shows the error power is zero at t = 10 seconds.

The figure also shows the envelope that contains the error in the region for which

G(t) > 1. The envelope does not bound the error signal in the region for which

G(t) < 1, revealing an asymmetry of the error signal amplitude about the zero error

point t = 10 seconds. In the experiment, the error minimization routine is affected

by this asymmetry and yields Qme(10)Q(10) = 1.16. Figures 3-5(c) and (d) indicate

an explanation for this overestimation. Figure 3-5(c) shows that Qme(10)Q(10)G(t)

is essentially the channel gain curve shifted forward in time by 3 seconds; the slope is

also slightly changed. The gain Qme(10)Q(10)G(t) is greater than unity for a majority

of the time window (about 13 seconds), while the gain is less than unity for about 7

seconds. Figure 3-5(d) shows the effect that this compensated gain has on the error

signal. The error envelope is essentially shifted relative to that for no compensation

(Figure 3-5(b)). The error has a more even amplitude across the window, so that a

minimum error power is achieved.

The above arguments suggest that the reduction of overall synchronization error by

adaptive error minimization is compromised by time varying channel gain. Given that

the average power normalization gain estimate is somewhat robust to time varying

gain, it may be better than adaptive error minimization at reducing synchronization

error in some cases. The following section empirically compares the two strategies of

gain compensation for constant and time-varying channel gains.
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Figure 3-5: (a) Time varying gain G(t) = 1 - (t - 10)/20, (b) Corresponding syn-
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3.5 Numerical Experiments: Comparison of Aver-

age Power Normalization and Adaptive Error

Minimization

This section will discuss two experiments, one involving a constant gain channel and

the other involving a linearly time-varying channel. We will compare how effectively

the two strategies, average power normalization and adaptive error minimization,

equalize these gains.

These experiments again involve the Lorenz transmitter-receiver pair, with the

parameter values described in Section 1.3. The Lorenz equations were numerically

integrated using a fourth order Runge-Kutte method with a fixed step size of .005.

The corresponding sampling period of the received signal is T = .005.

For a constant gain of G(t) = 2 and estimator window of 20 seconds, Figure 3-6

shows the synchronization error versus time after equalization using both compensat-

ing strategies: average power normalization and adaptive error minimization. Clearly

both compensators show reduced error compared to no compensation (Figure 3-1).

Also the adaptive error minimization has reduced the error by at least an order of

magnitude over the average power normalization. For relatively constant gain chan-

nels there is significant improvement in synchronization error by taking the extra

equalization step of adaptively minimizing error.

Again comparing both compensating strategies, Figure 3-7 shows the synchro-

nization error versus time after equalizing a channel with time-varying gain G(t) =

1 + t/10. Note that the gain variation within the 20 second window is significant,

ranging from 1 to 3. The results are quite the opposite of the previous experiment.

There is an increase in error power for both strategies compared to the constant gain

case. But most significant about the experiment is that equalization with adaptive

error minimization actually increases synchronization error over the average power

normalization. This example shows that adaptive minimization is not the optimum

method for synchronization error reduction for some time varying channel gains.
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3.6 Conclusion

This chapter outlined two strategies for equalization of channel gains for communi-

cations with self-synchronizing chaotic signals. Average power normalization exploits

the assumption of a stationary average power of the input chaotic drive signal. This

strategy simply normalizes the power received from the channel by the power expected

from the self-synchronizing chaotic drive. It was shown that for linearly varying gain,

the gain estimate by average power normalization has approximately the same mean

and variance as for the constant gain case.

For relatively constant gain channels, a second equalization procedure, adaptive

error minimization can improve upon the equalizing estimate of average power nor-

malization. This method utilizes the self-synchronizing property of the receiver and

the unimodality of the error power versus gain curve to attempt to achieve min-

imum overall error. We have provided experimental evidence which demonstrates

that adaptive error minimization used when the channel gain is relatively constant

reduces the error significantly more than adaptive power normalization. We have also

experimentally shown that adaptive error minimization actually worsens the average

power normalization if the channel gain is sufficiently time-varying.



Chapter 4

Equalization of Minimum Phase

Channels

4.1 Introduction

Linear time invariant (LTI) channel equalization is first addressed under the simpli-

fying assumption that the channel is minimum phase, i.e. the channel is stable and

causal and has a stable and causal inverse. If a filter is minimum phase, its magnitude

and phase are uniquely related. A discrete-time minimum phase filter has all of its

poles and zeros inside the unit circle. The phase of the filter, therefore, is completely

determined by the magnitude through a Hilbert transform relationship. For a discrete

time channel C(z) the relationship is:

arg[C(ejw)] = -I'P iloglC(ej')jcot( )dO (4.1)
27 _ r 2

This chapter will first describe how to estimate the channel magnitude by spectral

division. We next discuss some of the techniques for determining the minimum phase

equalizing filter impulse response from the magnitude estimate. Finally, there is a

section on numerical experiments in which a Lorenz drive signal serves as input to a

lowpass minimum phase channel and is equalized.
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Figure 4-1: Power spectrum of Lorenz signal

4.2 Power Spectral Division

It is convenient to view trajectories of a chaotic system as sample paths of a random

process. Because the signals are the output of a completely deterministic system, this

model is not strictly accurate, but it allows the application of techniques that mean-

ingfully characterize the signals. We also impose further assumptions of stationarity

and ergodicity.

The first assumption is that the self-synchronizing chaotic drive is wide sense sta-

tionary, which specifies that the mean is independent of time and the autocorrelation

function is shift-invariant. Second, the drive is assumed ergodic, i.e. all sample paths

are probabilistically the same. Each sample path is specified by an initial condition.

Stationarity and ergodicity are typically true of self-synchronizing chaotic systems

[9, 5]. Given these properties, the input chaotic power spectrum, P z(jw), exists and

is known at the receiver, because the receiver dynamics are the same as the trans-

mitter dynamics. Figure 4-1 shows the Lorenz spectrum determined by an averaged

periodogram estimator.



Knowledge of the power spectrum of the input and output of a channel gives a

straightforward solution for the channel magnitude response. Figure 1-2 shows the

non-ideal transmission channel composed of the linear filter C(s) and an additive

noise source 'y(t) at the receiver end. Ps,(jw) is the power spectrum of the received

signal and is given by

PsS(jw) = PxX(jw)jC(jw)j 2 + P'yY(jw), (4.2)

where P-y-y(jw) is the power spectrum of the noise signal y(t). The input to the

receiver system is the compensated drive signal 2(t). Because its power spectrum is

given by

Pý.(jw) = Ps(jw)jH(jw) 2. (4.3)

IH(jw)l 2 is chosen to be a quotient of known quantities:

H(j)2 PX (jw) (4.4)IH(Jw~ P, (- P~w)"

This choice ensures that the power spectrum of the equalized drive signal closely ap-

proximates that of the transmitted drive signal. In general the phase of the equalizer

is unrelated to the magnitude. If we assume, however, that the channel is minimum

phase, the equalizer is also minimum phase, and the phase response of the equalizer

is uniquely determined by its magnitude. To derive the phase response from the

magnitude response, a variety of techniques may be used such as the autocorrela-

tion method of linear prediction (all-pole modeling), spectral factorization, or Hilbert

transform methods.

4.3 Minimum Phase Filter Response from Band-

limited Magnitude

One point of note about the spectral division of Equation 4.4 is that the power

spectrum of the chaotic drive signal is band limited. Figure 4-1 shows the Lorenz



power spectrum highly attenuated at high frequency. Outside of a particular band

of frequencies, the input to the channel C(s) has virtually no energy; there is no

excitation from which to obtain magnitude information. The band-limited nature

of the input leads to an ill-conditioning of the spectral division. Only a particular

band of the channel's magnitude response is known with reasonable certainty. Figure

4-3 shows an example of the ill-conditioned estimate of the magnitude of a lowpass

channel. The channel in this case is a third order Butterworth filter.

In order to recover the input drive signal, channel inversion is only necessary in

the band where the drive has energy. But most minimum phase impulse response

derivations require full-band knowledge of the magnitude response. We will illustrate

the need for full-band knowledge and the possible solutions using only partial band

information by considering the example of all-pole modeling [10].

All-pole modeling is a discrete time algorithm that assumes an all-pole model for a

channel whose impulse response is c.. The z-transform of cn is C(z). There exists an

FIR inverting filter a. = 1, a1 , a2, ... , aN of length N + 1. Let A(z) be the z-transform

of an. The solution for a, minimizes the squared error term:

L

EN = ne2 (4.5)
n=O

where en = Cn * an - 6,n and L > N. cn * an represents the convolution of cn and an,

and S, is the unit impulse. It follows that an whitens cn to form an approximation of

This problem formulation requires the solution of the autocorrelation normal equa-

tions:

-r 2

-rN+l

r o  ... rN+

Nrl1 ... N

rN- 1 ro

a,

a2

aN

where rn = cn * c-n is the autocorrelation function of the filter being modeled. Clearly



rn is the inverse discrete-time Fourier transform of IC(eJ•w)1 2. In order to perform the

transform, we need to know the value of IC(eJw)12 for all frequencies -7r to 7r.

There are several ways to approach the problem of knowing only partial band

information. Let IC(eiJ)1 2 be known in the band -we < w < we, 0 < wc < 7r. One

solution is to create a function R(jw), which is IC(eJw)1 2 scaled in frequency:

Rt(jw) = e(/ 2  - 7r < w < 7r. (4.6)

We have effectively mapped wc out to 7r. In the time domain, this has the effect of

lowpass filtering r, with a filter of cutoff wL and downsampling the resultant signal

by 7r/w,. The new magnitude function R(jw) is known from -r to 7r, and its inverse

transform, say i,, can be determined. The equalizer solution to the normal equations

using ý,, denoted by &,, will also be downsampled by 7r/w,. To determine a, we

must perform band-limited interpolation on &, with an upsampling factor of 7r/w,.

Another solution to the partial band magnitude knowledge issue is given in [11].

The authors suggest retaining known and unknown frequency bands, and iteratively

extrapolating the channel magnitude into the unknown bands by a method described

in [11]. Once there exists a satisfactory estimate of the full band magnitude estimate,

all-pole modeling or other techniques can be used to obtain the minimum phase

equalizer.

4.4 Numerical Experiments

This section discusses an experiment in which there is a minimum phase channel

with a lowpass characteristic that corrupts the synchronization of the Lorenz receiver.

With the apriori knowledge that the channel is minimum phase, we equalize with a

minimum phase equalizer determined from a magnitude estimate.

These experiments again involve the Lorenz transmitter-receiver pair, with the

parameter values described in Section 1.3. The Lorenz equations were numerically

integrated using a fourth order Runge-Kutte method with a fixed step size of .005.



Scaled Lorenz power spectrum and magnitude squared of 3-pole Butterworth

E
,-

0.

a)

0
0-

0 1 2 3 4 5 6 7 8 9 10
frequency (Hz)

Figure 4-2: Power spectra of Butterworth channel and scaled Lorenz signal

The corresponding sampling period of the received signal is T = .005. The sampled

Lorenz drive is denoted x,.

In the experiment we chose the channel filter C(z) to be a discrete-time Butter-

worth. In order to minimize the complexity of the experiment the receiver noise -(t)

is assumed zero. C(z) is a 3-pole Butterworth with a cutoff frequency at 1 Hz. Fig-

ure 4-2 shows the frequency response of C(jw) and the superimposed Lorenz power

spectrum. There is obvious attenuation of the Lorenz signal in a high energy portion

of its spectrum. The corrupting effects of filtering on synchronization are shown in

Figure 4-4(a), where synchronization error is shown to be on the order of the input

Lorenz signal. The chaos to error ratio [5] is about 0dB, which is unacceptable for

any communication scheme.

Figure 4-3 shows that spectral division yields a very accurate estimate of the

channel magnitude out to about 17 Hz. The spectral estimates used in Equation

4.4 are obtained by periodogram averaging of the sampled signals xl, and so, the
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Figure 4-3: Actual and Estimated magnitude of Butterworth channel

sampled input and sampled output respectively. The Lorenz power spectrum P,,(jw)

is calculable offline, and is the same for every channel estimate calculation. The effects

of the ill-conditioning of the spectral division are obvious beyond 17 Hz.

For this experiment all-pole modeling is applied to the magnitude estimate out to

16 Hz to determine an equalizing filter. The frequency 16 Hz is mapped to the discrete-

time frequency 7 to give a full band representation of the spectrum. All-pole modeling

assumes a fixed order inverting filter. In any implementation of the algorithm, the

filter order must be chosen sufficiently large to undo any minimum phase channel

between transmitter and receiver that is typical for a particular application. In this

experiment the order is 20.

A comparison of synchronization error for unequalized and equalized receiver sys-

tems is shown in Figure 4-4. The chaos-to-error ratio after equalization is 33dB,

which is at a reasonably acceptable level for communication.
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4.5 Conclusion

Channel magnitude estimation with chaotic self-synchronizing signals is straightfor-

ward using spectral division. No method of estimation will estimate magnitude out-

side of the nonzero energy band of the Lorenz drive signal, but we need to equalize

the signal only at the frequencies where it has energy. Our empirical results show

that spectral division provides an accurate estimate of the channel magnitude. With

the prior assurance that the channel is minimum phase, equalization is carried out

easily using the magnitude information.

The assumption of minimum phase however is often not appropriate, and the

method described in this chapter is not well suited for non-minimum phase equal-

ization. For instance, an all-pass channel needs no magnitude compensation, but

contributes to significant loss of synchronization. Phase plays an important role in

chaotic transmitter-receiver synchronization. In the next chapter we develop new
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strategies that better address phase equalization. In this chapter we have utilized

some general statistical characteristics of the chaotic drive signals. We next take

advantage of a fundamental property of the receiver systems that we are studying:

self-synchronization.





Chapter 5

Equalization of Linear Time

Invariant Channels

5.1 Introduction

In this chapter we suggest an approach for equalizing linear time invariant chan-

nels of arbitrary magnitude and phase responses. Chaotic synchronization is affected

by both magnitude and phase. For instance, synchronization is corrupted by gain

channels (purely magnitude modification) and all-pass channels (purely phase mod-

ification). Clearly a minimum phase or other arbitrary phase assumption will not

sufficiently diminish synchronization error caused by an arbitrary LTI channel. We

intend to exploit the self-synchronization property of the receiver to compensate for

both magnitude and phase.

The objective of channel compensation is to minimize error between transmitter

and receiver, which is equivalent to minimizing synchronization error at the receiver.

Minimum synchronization error will only be achieved with optimal magnitude and

phase inversion by the equalizer. We propose a method in which the compensating

filter parameters are adjusted in a systematic fashion, modifying both magnitude and

phase, such that minimum synchronization error will be achieved. Figure 5-1 shows a

block diagram for this strategy which involves feedback of the synchronization error

to adjust the filter parameters.
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Figure 5-1: Steepest Descent Implementation for an FIR equalizer

5.2 The Error Power Surface

Referring to Figure 5-1 the received corrupted drive signal is s(t). Consider s(t)

sampled above the Nyquist rate; the discrete signal is denoted by s", n = 1,2,..., M.

Assume the equalizer is implemented as a length N discrete time FIR filter, hn,

n = 1,2,...,N. In general N is much less than M. For an arbitrary set of FIR

coefficients we generate an approximation xn, n = N,..., M that is input to the

receiver, and there is a corresponding error signal and average error power. The

average error power is a function of the N equalizer coefficients. There exists an N

dimensional error power surface of which we wish to find a minimum. An appropriate

strategy for finding the minimum is a steepest descent method [12].

5.3 Steepest Descent Implementation

in is the result of a convolution operation between sn and hn, described algebraically

as

ENXN

XN+I

XM

81 .." SN

82 ... 
8SN+ 1

SM-N+1 ... " M

hN

h2

hi



or, using vector notation, as

= Sh. (5.1)

Given adequate inversion of the channel, ^ closely approximates the input self-

synchronizing drive signal, which implies i - r where r = (rN, ... , rM)T is the

receiver output. In order to explicitly show the dependence on the equalizer impulse

response, h, the notation for the receiver output will be r(h). The expression for the

squared synchronization error is thus

J = (Sh - r(h))T (Sh - r(h)). (5.2)

A gradient descent iteration is implemented by the following equation

VJ
hi+ = hi - 7 i v (5.3)

where ti is an appropriate step size for the ith iteration. This approach involves

computing the gradient of J at the ith iteration of h, say hi, and then updating the

estimate of h by moving it in the direction of steepest descent of J.

The gradient of J is straightforward to calculate and is given by

VJ = 2 (ST - Vr(hi))(Sh, - r(hi)) , (5.4)

where Vr(hi) denotes the Jacobian of r(h) evaluated at hi. This matrix is easily es-

timated numerically by perturbing the components of hi and measuring the resulting

change in the receiver output.

It is important to choose a suitable 7i for efficient descent. We use the golden-

section search algorithm, which selects the step size that results in the largest re-

duction of J at each iteration. The algorithm then simply minimizes J along one-

dimensional cross-sections at each iteration. Each cross-section is in the direction of

the gradient at the particular iteration.



5.4 Starting Point for the Steepest Descent Itera-

tion: Initial Equalizer Estimate

The gradient descent iteration requires an initial estimate of the equalizer transfer

function, h0 . An appropriate choice is the minimum phase solution as determined in

the previous chapter. The channel magnitude is appropriately equalized, and at this

stage there exists no phase information that would allow a better initial estimate.

There exists, however, some troubling features of this initial estimate that are

immediately apparent. Assume for simplicity, exact magnitude equalization. Any

improvement in phase equalization must occur at the expense of a loss in magni-

tude equalization. It seems likely therefore that there may occur a local minimum

in the error power surface, where the decrease in synchronization error due to better

phase equalization is just exceeded by an increase in error due to worsening magni-

tude equalization. In the presence of local minima, the steepest descent algorithm

may converge on a local, not global minimum. We hope to converge on the global

minimum.

An initial estimate that is minimum phase also causes another, perhaps more

serious problem. A minimum phase starting point will tend to cause convergence to

a local minimum solution that is also minimum phase. The reasoning is quite simple.

In order for the FIR equalizer to converge on a non-minimum phase solution from a

minimum phase starting point, at least one of its zeros must cross from the inside of

the unit circle to the outside of the unit circle.

We will evaluate the plausibility of any iteration crossing the unit circle by con-

sidering the effect on group delay of two filter configurations: 1) a zero just inside

the unit circle, and 2) a zero just outside the unit circle. A zero just inside the unit

circle will contribute a large negative group delay at its local frequency, and a zero

just outside the unit circle will contribute a large positive group delay.

Now consider a zero as it approaches the unit circle from an interior location. It is

decreasing the quadratic function J by making the group delay at its local frequency

more negative. If the zero were to move across the unit circle, not only would the group



delay stop becoming more negative, but it would become highly positive. Since the

function J was initially decreasing with increasingly negative group delay, it is highly

unlikely that it will decrease any further with a largely positive group delay. It is

therefore unlikely that a zero will cross from the inside of the unit circle to the outside.

This means that a minimum phase starting point will likely yield a minimum phase

solution to the error power minimization. Experiments have empirically confirmed

this hypothesis.

The above discussion suggests that we will be constrained to equalize all LTI

channels with minimum phase compensators, a subset of all FIR compensators. Thus

we will probably not find the globally optimum equalizer solution. In the next section

we propose a solution that will attempt to find the global optimum.

5.5 Exhaustive Search of Initial Equalizer Zero Place-

ments

This section will suggest a logical approach to expand the convergence set of the

equalizer optimization to include minimum phase and non-minimum phase equalizers.

In the previous section, the initial equalizer for the steepest descent algorithm was

chosen to equalize the magnitude very well, but its phase was arbitrarily chosen to

be that of the minimum phase filter. In this section we take advantage of the fact

that, for FIR filters of order N there exist exactly 2 N filters with equal magnitude

responses. We show why this is true below.

Consider an arbitrary minimum phase Nth order filter. The magnitude response

will be unchanged by filtering by a first order all-pass, with a pole at a and a zero at

1/a*. If the pole of the all-pass cancels a zero of the original minimum phase equalizer,

the resulting cascade is again an Nth order FIR filter, but with a new non-minimum

phase zero at 1/a*. Consider the N zeros of the original FIR filter. Each zero ai,

i = 1,2, ... , N, can be replaced by a zero at 1/a*, and the magnitude is unchanged.

There are 2 allowable locations per zero, and therefore there are 2N distinct filters of
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Figure 5-2: Steepest Descent Implementation for Minimum Phase/Allpass equalizer

order N with identical magnitudes. Using this conclusion, we can more intelligently

initialize the equalizer with an appropriate phase.

An Nth order minimum phase solution is determined by the spectral division

outlined in the last chapter. We can determine the synchronization error power for

each of the 2 N filters with the same magnitude response. The most appropriate choice

for the initial seed for the steepest descent method is the filter with the minimum

error power. This approach will often ensure that the routine is initially in the deepest

basin of the error power surface, as supported by results from empirical experiments.

A steepest descent of the error power surface with respect to FIR equalizer co-

efficients will modify both the equalizer magnitude and phase at each descent itera-

tion. There are instances where magnitude equalization will be degraded in order to

improve phase equalization. Provided a sufficient model order and data length, the

minimum phase equalizer derived from the autocorrelation normal equations provides

very accurate magnitude equalization, and the following section suggests a technique

that will preserve the accuracy of the magnitude estimate throughout the descent of

the error power surface.

5.6 Steepest Descent with Respect to Allpass Poles

Any stable, rational filter can be expressed as the cascade of a minimum phase and

an allpass filter. Consider this representation of an equalizer for an arbitrary LTI



channel. The minimum phase portion of the equalizer is specified very accurately,

which leaves the only unknown being the appropriate allpass filter. Again the goal is

to achieve minimum synchronization error, which implies the use of a steepest descent

search of the error power surface. The implementation is given in Figure 5-2 which

is a slight modification of Figure 5-1. There is synchronization error feedback that

now modifies the parameters of an allpass filter instead of an FIR filter to achieve

minimum average error power.

An allpass filter with a real-valued impulse response has poles in complex con-

jugate pairs. The system function of the allpass portion of the equalizer is given

by:

Hap(Z) (z - ' - d k ) (z-1 - ek)(z - 1 - ek)Hap (Z -1 1j (5.5)
k=1 (1 - dkz-') k-=1 1 - ekZ - ')(1 - e iZ1)

where the dk are the real poles and the ek and e* are the complex poles. The number

of real poles is given by Mr and the number of complex poles is given by M,. Equation

5.5 indicates that an allpass filter of order N is specified by Mr + M, poles. There are

two degrees of freedom introduced by the real and imaginary parts of each complex

pole and only one degree of freedom for every real pole. Therefore the total number of

degrees of freedom is Mr + 2M, = N. One can imagine moving the allpass poles into

all possible arrangements on the complex plane, and determining an error power for

each system function. The error power is now a function of the N degrees of freedom

of the poles, as opposed to the coefficients of an FIR filter.

There are two obvious implementation issues that arise with this steepest descent

method. We must first recognize that in order for the equalizer to cancel channel

zeros outside the unit circle with poles, the equalizer must be anti-causal to maintain

stability.

The second issue is that there is no obvious initial arrangement of the poles to be

made. This is because there is virtually nothing known about the phase before the

steepest descent iteration is started. In this thesis we have not fully addressed the

capabilities of this algorithm. It is an area for future work.
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5.7 Numerical Experiments

In this experiment we evaluate how well the steepest descent algorithm using the

FIR equalizer representation works at reducing synchronization error. We consider a

non-minimum phase channel, and we equalize with both the minimum phase equal-

izer from the previous chapter and the equalizer determined by the steepest descent

approach.

These experiments again involve the Lorenz transmitter-receiver pair, with the

parameter values described in Section 1.3. The Lorenz equations were numerically

integrated using a fourth order Runge-Kutte method with a fixed step size of .005.

The corresponding sampling period of the received signal is T = .005.

Implemented in the discrete domain, the non-minimum phase channel in this

experiment is selected to be the cascade of a minimum phase one-pole filter and a

first order all-pass filter, where the poles of the minimum phase and allpass filters are
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at z = .995 and z = .94 respectively. The magnitude response and group delay are

given in Figure 5-3.

In this experiment we determine an initial 8 point equalizer estimate by spectral

division and all-pole channel modeling. The refining stage of the algorithm uses a

steepest descent of the error power surface. Figure 5-4 compares the compensated

channel frequency response for the all-pole modeling equalizer and the steepest de-

scent equalizer. The desired response is unity gain and constant group delay over the

band of significant input energy. Error power minimization improves significantly the

all-pole modeling equalization in both magnitude and group delay. Figure 5-5 shows

the synchronization error after equalization for both the all-pole modeling equalizer

and the steepest descent equalizer. The chaos-to-error ratios are -5dB and 31dB

respectively. The all-pole modeling equalizer provides virtually no improvement in



synchronization error compared to no compensation, while the steepest descent equal-

izer provides a chaos-to-error ratio that is sufficiently low for communication. Clearly

an assumption of minimum phase for all channels is unsatisfactory.

5.8 Conclusion

The challenge of general LTI equalization is very difficult, because a method of phase

estimation is not obvious. Supported by empirical evidence, a steepest descent search

of the error power surface with respect to FIR equalizer coefficients provides an equal-

izer that significantly reduces synchronization error. Warranting further study is the

algorithm of Section 5.6 which attempts to more directly estimate phase by steepest

descent of the error power surface with respect to allpass poles.





Chapter 6

System Identification Using

Self-Synchronizing Chaotic Signals

6.1 Introduction

In addition to resolving some channel distortion issues for communication with chaotic

signals, the methods uncovered in this thesis may also be valuable for system identi-

fication. Prior to this discussion, we assume we observe only the channel output and

know only the dynamics of the system from which the channel input is generated.

In a system identification scenario the exact channel input may also be known. Tra-

ditionally system identification is done by feeding a white noise source to a channel

and calculating the magnitude and phase response by spectral division. Because now

the input is known, the cross-spectrum between input and output signals may be

calculated. Consider a channel C(s), a stochastic input x(t) and an output y(t). The

channel frequency response obeys the relationship:

(P 'LOC(j) y (jw) (6.1)C~jw)-P•,(jw)

where Pxy(jw) is the cross-spectrum of the input and output and Pxx(jw) is the

spectral density of the input. In practice the spectra are only estimated and will not

be known exactly. Because the spectral estimates are calculated by time averaged



peridograms, the variance of the estimate of C(jw) is reduced by longer observations

of input and output.

For system identification an advantage of using self-synchronizing chaotic signals

over stochastic signals is that the chaotic signals have properties in addition to statis-

tics to aid in the estimation of the channel frequency response. In particular, a

steepest descent of the chaotic receiver error power surface relative to FIR equalizer

coefficients should improve the spectral division estimate. Clearly this method can

only address an autoregressive channel model applied to the frequency response.

It is difficult to identify an error criterion for optimal system identification. For

a fixed order model, the all-pole modeling method gives the autoregressive represen-

tation of a channel that has minimum mean squared magnitude error relative to the

actual channel magnitude. Such an error criterion for system ID is unsatisfactory

however, since it completely ignores the phase of the channel, and phase distortion is

as corruptive as magnitude distortion in many applications.

This discussion leaves an open question: What is an optimal error criterion for

system identification, and how might minimization of receiver synchronization error

be mapped to such an error criterion? We have not definitely answered this question,

but qualitative evaluation of empirical evidence suggests that there is promise for the

use of self-synchronizing chaotic signals for system identification.

6.2 Numerical Experiment

There are two input sequences considered in this experiment:

1. 128 points of a Lorenz drive signal sampled at T = .04 sec

2. A 128 point uniformly distributed i.i.d. noise sequence with the same variance

as the Lorenz drive.

The channel is implemented digitally and is chosen to have 3 poles at z =

.995, .995e3 j evr/2 , which correspond to dc and +6Hz for the Lorenz signal. It must
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be noted that channel ID with the Lorenz signal is possible only in the band in which

it has energy.

The above short data-length signals are input into the channel. The spectral

density and cross-spectra are calculated by periodogram averaging, and the frequency

response estimate is then determined by Equation 6.1.

The estimate from Equation 6.1 is all that can be made from the stochastic signal

(Sequence 2). Figure 6-1 shows the actual frequency response and the estimates using

the stochastic signal and the self-synchronizing chaotic signal. Due to the short input

signal length, there is significant variance in the estimate derived from Sequence 2,

especially around dc and 6Hz.

The approach used with Sequence 1 was to use the spectral division frequency

response estimate to derive a reasonable equalizer by inverse FFT and truncation.

The resulting equalizer is used as a starting point for the gradient descent of the



receiver error power surface. The intuition is that the spectral division yields a filter

that lies in a basin of the error power surface, and an error minimum is easily achieved.

The results in Figure 6-1 show that the experiment confirms the conjecture. Use of

the Lorenz signal for this particular system identification much improves the phase

and magnitude estimates over a purely stochastic signal.

We have carried out a fairly simplistic experiment, but with very positive results.

If there exists a constraint on input data length for system identification, using a self-

synchronizing chaotic signal may prove more fruitful than conventional stochastic

methods. Self-synchronizing chaotic signals possess a great density of both phase and

magnitude information that can be easily exploited.



Chapter 7

Summary and Contributions

This thesis was motivated by the interest in utilizing self-synchronizing chaotic signals

in communications. Synchronization of the receiver to the transmitter requires that

the received signal be undistorted. Any channel distortion in the form of amplitude,

spectral or phase modification must be appropriately equalized. In this thesis we

attempted to exploit the properties of self-synchronizing signals and systems, in par-

ticular the statistics of the signals and the self-synchronizing property of the receiver

to equalize channel distortions. We approached the channel equalization problem

progressively from the simplest channel model, channel gain, through to a linear

time-invariant system channel model.

7.1 Channel Gain Equalization

We first considered channel gain, both constant and time-varying. It is important

to consider this class of channel. For example, in a wireless communication environ-

ment, channel distortion is often in the form of gain. In particular, a fading channel

is a channel whose gain is time varying. This thesis has proposed two strategies for

channel gain compensation: average power normalization and adaptive error mini-

mization. The first strategy is to normalize the average power of the received signal to

the expected power of the self-synchronizing drive signal. A feature of average power

normalization that is of practical interest is that its performance is not significantly



degraded by time-varying gain of sufficiently small amplitude. This robustness prop-

erty may prove valuable in an actual communications system operating in a fading

channel environment.

The second strategy is adaptive error minimization. This method utilizes the self-

synchronizing property of the receiver and the unimodalty of the error power versus

gain function to attempt to achieve minimum overall error. Although much better at

reducing synchronization error than average power normalization for constant chan-

nel gains, adaptive error minimization is not as robust to time-varying gains. We

must conclude then, that under certain time-varying channel conditions, it is not

advantageous to use adaptive error minimization after average power normalization.

In some instances adaptive error minimization may actually degrade the equaliza-

tion. Some engineering judgment must be used to determine whether adaptive error

minimization will actually improve channel equalization.

7.2 Equalization of Minimum Phase Channels

Linear time-invariant (LTI) channel equalization was first addressed under the sim-

plifying assumption that the channel is minimum phase. If a filter is minimum phase,

its magnitude and phase are uniquely related. In light of this fact we proposed that

an equalizer may be derived by first estimating the channel magnitude by spectral

division; the entire equalizer frequency response is then derived by exploiting the

unique Hilbert transform relationship between magnitude and phase. Successful im-

plementation of this approach requires careful consideration of how to deal with the

ill-conditioned channel magnitude estimate due to the band-limited channel input.

Experiments have shown that given prior assurance that a channel is minimum

phase, equalizers can be designed to provide levels of synchronization error accept-

ably low for communication. The experiments in this thesis assumed no additive

noise in the system, however, and additive noise may significantly affect the level

of synchronization error. For instance, consider a noise source at the receiver and

a channel that has significant attenuation in a certain band of frequencies. An at-



tempt to invert the channel will magnify the noise to levels that will adversely affect

synchronization. Barring such extreme situations, however, very accurate minimum

phase channel inversion is possible that will yield significantly low synchronization

error.

The assumption that an unknown channel is minimum phase is often not appropri-

ate, and the described method is not well suited for non-minimum phase equalization.

We have presented this strategy for minimum phase inversion, not as a problem so-

lution, but rather as a first step toward an algorithm for the equalization of all linear

time-invariant channels.

7.3 Equalization of Linear Time-Invariant Chan-

nels

In this thesis we suggested an approach for equalizing linear time-invariant chan-

nels of arbitrary magnitude and phase responses by utilizing the self-synchronization

property of the receiver. We assumed that all signals are appropriately sampled and

approached the issue from a discrete-time perspective. Given that the equalizer is

a length N FIR filter, there exists an N dimensional synchronization error power

surface, and we wish to find its minimum. We proposed that an appropriate strategy

for finding the minimum error power is a steepest descent method.

It is important to initialize the steepest descent with a filter of appropriate phase.

We have suggested that the most appropriate filter from which to start the steep-

est descent is one whose magnitude is determined from spectral division. Given an

equalizer of length N, the appropriate phase of this initial filter is determined by an

exhaustive search of the 2 N filters whose magnitudes are equal. The filter that yields

the minimum error is the starting point for the steepest descent. Clearly a disadvan-

tage of this method is that the number of filters to be searched grows exponentially

with filter order.

Experiments have confirmed that a steepest descent of the error power surface



does in fact significantly reduce synchronization error. The same experiments confirm

that this reduction of synchronization error corresponds to channel inversion, i.e. the

frequency response of the cascade of the channel and equalizer approaches unity

magnitude and constant group delay.

The error power surface for some channels may have several local minima. The

steepest descent algorithm may converge on a local minimum that provides an un-

satisfactory level of synchronization error. To avoid convergence to undesirable lo-

cal minima, future work may address the use of optimization algorithms that are

more sophisticated than steepest descent. Such algorithms include steepest descent

with momentum, Gauss-Newton methods, quasi-Newton methods, and random search

methods.

Overall, the empirical evidence in this thesis regarding steepest descent of the error

power surface has very positive results. If a self-synchronizing chaotic communications

system were to be designed in the future, such an channel equalization scheme could

be effective. Certain systems, however, may be intolerant to errors in equalization

caused by convergence to a local minimum solution on the error power surface.

The above described steepest descent method adjusts both the magnitude and

phase of the equalizer in search of the error power minimum. Given that spectral

division yields a very accurate channel magnitude estimate, it is perhaps more logical

to exclusively modify the phase of the equalizer during a descent of the error power

surface. We have proposed another steepest descent approach in which the equalizer is

composed of a cascade of a minimum phase filter and an all-pass filter. The minimum

phase filter remains fixed throughout the gradient descent, while the poles of the all-

pass filter are modified to obtain a minimum error. Future work could include a full

assessment of the effectiveness and feasibility of such a scheme.



7.4 System Identification Using Self-Synchronizing

Chaotic Signals

In addition to resolving some channel distortion issues for communication with chaotic

signals, the methods discussed in this thesis may also be valuable for system identi-

fication. If there exists a constraint on input data length for system identification,

using a self-synchronizing chaotic signal may yield better results than conventional

stochastic methods. Although we were unable to quantify the performance of system

identification with self-synchronizing chaotic signals, we have provided an example

that qualitatively indicates its effectiveness. Based on our positive results, the use of

self-synchronizing chaotic signals in system identification warrants further investiga-

tion.





Appendix A

Approximate Analysis of the Effect

of Linearly Varying Channel Gain

on an Average Power Estimate

In this appendix we will show that to the first order, the mean and variance of the

average power estimate of a received self-synchronizing chaotic signal for a linearly

varying gain channel is approximately equal to that for the constant gain channel. We

will refer to the self-synchronizing drive signal as x(t). The stationarity assumptions

about x(t) allow for us to consider the power estimate about t = 0 without loss

of generality. We assume the estimator windows are symmetric about t = 0, i.e.

[-A±+A].
Throughout this discussion we will assume stationarity of the self-synchronizing

drive up to fourth order statistics, and that the autocorrelation functions of x(t) and

x(t)2 are approximately white. The whiteness assumption is valid because relative

to the size of the window, the signals quickly decorrelate, and the power spectrum of

self-synchronizing drive signals are flat for a considerable band of frequencies.



A.1 Case 1: Power Estimate for Constant Gain

Consider first the mean and variance of the power estimate, P,(t), for constant gain

G(t) = K. The received signal is s(t) = Kx(t). The stationarity assumptions allow

for us to consider the power estimate about t = 0 without loss of generality. Recalling

equation 3.2 the mean (p) and variance (nr) of P,(0) are expressed below:

1 fL
P = E[Ps(t)] = E[ s2 (r)d7]2A fA

= 1 K E[x2(r)]dT
2A fa

a2 = E[Ps(t)2] /12
= x

=E[ s2 (T)dr s2(-y)d-y]- P
(2A)2

= L K4 E[x2(7)x•(•)]dTdy - p(2A) 2 _ _ _A
1 K 4 (E[x4 ]S(•y - r) + CF)drd'y -y p

(2A) 2  A -A
E[x 4] K4 + 4 4 - 4 4 +E[x 4] K= K K -- K4 4 = K 4

2A X X 2A

where a' is the variance of the zero-mean drive signal.

A.2 Case 2: Power Estimate for Linearly Varying

Gain

We next consider a linearly increasing G(t) = GL(t) about t = 0.

GL(t) = K + ±(t). (A.1)

K is the channel gain for t = 0 and c is the maximum deviation of G(t) from K in

the window. We will show that for the given assumptions on G(t) and a small c, the



average power estimator in Eq. 3.2 has approximately the same mean and variance

as for a constant channel gain G(t) = K.

The received signal is now s(t) = GL(t)x(t). The mean of the power estimate is

PPL and the variance is OPL. They are described below.

PPL = E[Ps(t)]

=E[ s2(r)dr]2A fA
-- J [K  + 2K r + (c)22]E[2(r)]dT2 A J-A A A2 +K2
= (K2 + /3)

0PL = E[P,(t) 2] -1L

E[( 2A) 2  ()d 2(y)dy]
1 A L

(2A) 2  G G(r)G(7)E[x2(r)x 2(7y)]drdy - 1 PL

121
(= J G (r)G (-/)(E[x4 ]J(-/ - T) + a')drdy -7 P(2A)2 L LXP

2A)2  [K4 + 4K3 -r + (2K2 + 4K) T2
(2A) 2  ,

+4K()3r3 + ()4 4]E[x4]dr
__E[x

4]  d€
E- [4 2 4

= (K4 + - (2K ' + 4K) + -)2A 3 5

To the first order (in c), the mean and variance of the power estimate for the

linearly varying channel gain are approximately equal to those for the constant gain

case. So for strictly increasing or strictly decreasing channel gains of small slope, the

average power normalization should reduce synchronization error nearly as effectively

as for constant gain. Empirical studies have concurred with these conclusions.
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