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ABSTRACT
Challenges posed by imbalanced data are encountered inmany real-world applications.
One of the possible approaches to improve the classifier performance on imbalanced
data is oversampling. In this paper, we propose the new selective oversampling approach
(SOA) that first isolates the most representative samples from minority classes by
using an outlier detection technique and then utilizes these samples for synthetic
oversampling. We show that the proposed approach improves the performance of two
state-of-the-art oversampling methods, namely, the synthetic minority oversampling
technique and adaptive synthetic sampling. The prediction performance is evaluated
on four synthetic datasets and four real-world datasets, and the proposed SOA
methods always achieved the same or better performance than other considered existing
oversampling methods.

Subjects Data Mining and Machine Learning, Data Science
Keywords Imbalanced data, Oversampling, Outlier detection, SMOTE, ADASYN, Bankruptcy
prediction

INTRODUCTION
Imbalanced data are ubiquitous in many machine learning application domains such as
disease diagnostics (Wang et al., 2020), fraud and bankruptcy prediction (Somasundaram &
Reddy, 2019; Zoričák et al., 2020; Le et al., 2019), software development (Yang et al., 2016)
and many others (Haixiang et al., 2017). Imbalanced datasets represent data including
samples that are not evenly distributed into different classes. The most frequently occurring
scenario includes one class containing a majority of data samples while the samples in the
other minority class are very rare. Conventional machine learning methods encounter
difficulties in detecting these rare events because of their scarce occurrence (Thabtah et al.,
2020). However, very often these rare events are of crucial importance. Rare events may
be fraudulent financial transactions that would cause significant financial loss, or even the
worst case: patients with some specific disease that would be diagnosed incorrectly and not
receive proper treatment. It is very common in the medical domain that data from healthy
patients represents the majority of data samples and that the particular disease occurs only
occasionally.

As we already indicated, the traditional classification models face several challenges
when classifying imbalanced data. Traditional methods such as support vector machines,
random forest or neural nets yield sub-optimal performance. The prediction accuracy for
the majority class is usually very high: however, the minority samples are misclassified.
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This scenario creates another problem. The standard evaluation metrics tend to focus on
evaluation of the models with respect to the most frequent cases. Therefore, a model that
correctly classifies majority samples, but fails to predict the correct class for the minority
class, would demonstrate high classification accuracy. If the evaluation criterion such as
classification accuracy is used to lead the learning process of the classifier, it degrades the
objective performance of the model (Haixiang et al., 2017; Thabtah et al., 2020). Moreover,
when using conventional methods the minority class samples are treated as noise during
the learning process.

Many methodological approaches have been developed in recent years to cope with
the issue of imbalanced learning. In general, these can be divided into several categories:
sampling methods, cost-sensitive methods for imbalanced learning, ensemble methods
and various hybrid methods (He & Garcia, 2009).

The sampling approach aims to modify the dataset prior to learning. There are two main
approaches: oversampling and undersampling. Oversampling appends data to original
data and extends the size of the minority class. On the other hand, undersampling removes
data from the original dataset and reduces the number of samples of the majority class. The
undersampling poses an obvious disadvantage of throwing away a portion of the data that
can potentially contain some useful information. Oversampling can lead to overfitting, so
proper methodology for model evaluation and validation is of crucial importance (Santos
et al., 2018). The most frequently employed solution is synthetic oversampling, particularly
the synthetic minority oversampling technique (SMOTE) that was successfully applied on
different datasets (Chawla et al., 2002). SMOTE generates new samples of the positive class
by interpolating several existing data points from minority class. During the generation of
synthetic samples, SMOTE takes into account neighboring data points that in some cases
increase overlap between the classes(Wang & Japkowicz, 2004). Several methods based on
the SMOTE algorithm have been proposed to overcome this limitation, such as LR-SMOTE
(Liang et al., 2020) and ADASYN (He et al., 2008). ADASYN considers the complexity of
samples when generating synthetic data. The more synthetic samples are generated for
complex data samples that are harder to learn. On the other hand, LR-SMOTE focuses on
samples close to the sample center to make sure that no outlier samples are generated and
the dataset distribution is preserved.

The second popular approach is cost-sensitive learning. In cost-sensitive learning, the
cost for misclassified minority samples is significantly higher than the cost for incorrectly
classified majority samples. In contrast to sampling approaches, in cost-sensitive learning it
is necessary to enhance the learning algorithm to take into account the cost matrix (Tao et
al., 2019; Xiao et al., 2020). The cost-sensitive implementations of popular classifiers such
as AdaBoost, decision trees and neural networks are discussed in (He & Garcia, 2009). Even
though the cost-sensitive learners offer good performance in imbalanced scenarios, their
utilization is quite limited due to their complexity of implementation for non-expert users
and non-straightforward determination of cost matrix values.

The ensemble learning approach has been used for several years already(Kuncheva
& Whitaker, 2003). Ensemble classifiers have proved their robust character and have
been successfully applied to solve many challenging real-world machine learning tasks
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(Galar et al., 2011; Liu, Luo & Li, 2018). An ensemble classifier is built from multiple base
classifiers by combining their individual decisions. For the class imbalance problem, these
ensembles are built either as cost-sensitive boosting ensembles or boosting-based ensembles
with embedded data pre-processing (Galar et al., 2011).

In this paper, we focus on the data oversampling approach since it is independent of the
selected classifier and can be used as a form of pre-processing for any imbalanced dataset.
We build upon existing SMOTE and ADASYN oversampling techniques and propose the
novel data oversampling approach to further enhance the performance of these techniques.
In our approach, we employ an outlier detection technique, namely one-class support
vector machine, to selectively choose samples that are used for generation of synthetic
samples. Samples not selected by outlier detection, i.e., samples resembling the majority
class, are not oversampled. We show that the proposed approach results in improved
prediction based on artificial and real-world data.

The rest of the paper is organized as follows. In the next section we describe the proposed
selective oversampling approach. Then, we study the behavior of SOA by analyzing the
data after oversampling and evaluate the performance on synthetic and real-world datasets.
Finally, we draw conclusions and outline the future work.

PROPOSED APPROACH
In this section, we describe the proposed selective oversampling approach (SOA). SOA
combines an outlier detection technique with oversampling in order to obtain a more
descriptive training dataset before applying the learning algorithm.

Selective Oversampling Approach
To explain the essential idea of SOA, let us first define an imbalanced dataset Dimb that
consists of n observations defined as {xi,yi}, where i= 1,2,...,n and yi= {0,1} expresses
a corresponding class of binary classification task. We assume that the original dataset is
divided into training subset (Dtrain) and testing (Dtest ) subset.

First, SOA utilizes an outlier detection technique that is trained only on data samples
from the majority class. We selected one-class support vector machines (OCSVM) as an
outlier detection method since it provides satisfactory results in a wide area of applications.
The trained outlier detectionmodel is applied tominority class samples and all misclassified
observations are removed from the training dataset. Our assumption is that by selecting
only correctly identified minority samples, we are selecting the most representative samples
of the minority class. Minority samples that were misclassified by outlier detector probably
do not share the characteristics of the minority class. As such, when oversampled, they can
mislead the classifier. Further processing is performed only on minority class samples that
were identified as outliers. The outlier detection model treats minority samples as outliers.

The second step is to balance the distribution of the training dataset (Dbal) by generating
synthetic minority class samples. Different oversampling methods can be used for this
purpose. In this study, we compare the utilization of two oversampling methods: SMOTE
and ADASYN. The selective oversampling approach based on SMOTE is denoted as SOA-S

Gnip et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.604 3/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.604


Figure 1 Principle of the proposed selective oversampling approach.
Full-size DOI: 10.7717/peerjcs.604/fig-1

and the approach based on ADASYN is denoted as SOA-A. The general principle of the
proposed SOA is depicted in Fig. 1.

One-class support vector machine
We employ OCSVM to select the most representative data points from minority samples.
OCSVM is an unsupervised outlier detection classifier based on Vapnik’s well-known
idea about support vector machines (Vapnik, 2013). The initial assumption is that outliers
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(minority class samples) occupy the low density regions of the data feature space and that
the kernel model is able to recognize high density regions (majority class samples). The
goal objective is to find an optimal decision function f that is able to identify outliers by
mapping the data samples into feature space F and separating them from the origin with
maximum possible margin (Schölkopf et al., 2001). This can be achieved by solving the
quadratic programming task.

Assume a training dataset x1,x2,...,xn ∈ X where n ∈N represents the number of
samples. Additionally, let 8 be a feature map X→ F that maps observations from X into
inner product feature space F. The image of the map function8 is computed by evaluating
the kernel and is formulated as

k(x,y)= (8(x)∗8(y)). (1)

The goal objective is to separate data samples from the origin via hyperplanes. This can be
achieved by solving the quadratic programming task defined as

min
w∈F ,ξ∈Rn,ρ∈R

1
2
||w||2+

1
vn

∑
i

ξi−ρ (2)

subject to(w ∗8(xi))≥ ρ−ξi,ξi≥ 0,

where parameter v expresses the fraction of support vectors and anomalies, ξi is a slack
variable and ρ is an offset parameterizing a hyperplane in the feature space. Moreover, the
output of the following decision function

f (x)= sgn((w ∗8(xi))−ρ). (3)

is positive for the most observations xi if the result of the quadratic programming task
is 1 and the regularization term ||w|| is reaching a small value. By introducing Lagrange
multiplier method and using multipliers αi,βi≥ 0, the above optimization problem can be
solved by its dual form

min
α

1
2

∑
ij

αiαjk(xi,xj) (4)

where 0≤αi≤
1
v l
,
∑
i

αi= 1.

Then, the offset ρ parameterizing a hyperplane in the feature space associated with the
kernel is defined as follows

ρ= (w ∗8(xi))=
∑
j

αiαjk(xi,xj). (5)

Generation of synthetic samples
In general, any oversamplingmethod can be used at this stage.We employ two state-of-the-
art oversampling techniques: SMOTE and ADASYN. SMOTE is the most famous method
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for data oversampling. Even though it has some shortcomings it performs satisfactory
in many applications (Fernández et al., 2018). ADASYN build upon the SMOTE but put
more focus on minority class samples that are more difficult to learn. ADASYN showed
improvement in performance over SMOTE in some domains (He et al., 2008).

SMOTE
SMOTE is a data oversampling technique used for generating samples from the minority
class in order to acquire a class-balanced or nearly class-balanced training dataset. The
essential idea behind the SMOTE algorithm is to derive new synthetic samples using
existing minority class samples rather than by oversampling with replacement, which often
does not improve the classifier ability to recognize the minority class observations (Chawla
et al., 2002). In our approach, we use only a subset of minority class samples to generate
synthetic data.

The SMOTE algorithm determines the number of artificial samples that are to be
generated to obtain the desired class-balance level of the training dataset. Each artificial
sample xa is generated as a linear interpolation of two similar minority class samples. This
can be expressed as

xa= xi+ random(0,1)× (xi−xk), (6)

where xk is the randomly selected minority class sample from k-nearest neighbors to
sample xi calculated by Euclidean distance metric.

ADASYN
ADASYN is a data sampling technique used for balancing the skewed class distribution. The
main idea of the ADASYN is to generate synthetic minority class samples with emphasis
on samples that are harder to detect. The strategy proposed by He et al. (2008) is to use a
density distribution ri as a criterion to automatically decide the number of samples that is
required to be generated for each observation from the minority class.

Let nminority be the number of minority class samples and nmajority be the number of
majority class samples. The ADASYN algorithm starts with evaluation of class imbalance
degree, which is defined as

d =
nminority

nmajority
. (7)

If d is lower than the actual maximum tolerated threshold for class imbalance degree, the
number of synthetic data samples that needs to be generated is calculated. It is expressed
by

G= (nminority−nmajority)×β, (8)

where β ∈ [0,1] specifies the expected balance level after resampling. In a further step, the
density distribution ri is calculated for each observation xi belonging to the minority class
using the following equation

ri=
1i

k
subject to i= 1,2,...,nminority . (9)
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The k and 1i parameters define the number of the nearest neighbors to sample xi of
the minority and majority class, respectively. The most similar samples are identified by
Euclidean distance metric. The density distribution can also be expressed by its normalized
form, defined as follows

r̂i=
ri∑nminority

i=1 ri
. (10)

The final step is to calculate the number of required synthetic data samples gi that need
to be created for observation xi. This is defined by the following equation

gi= r̂i×G. (11)

After that, each synthetic sample si for observation xi is generated using the following
formula

si= (xzi−xi)× random(0,1), (12)

where (xzi− xi) specifies the difference vector for a randomly chosen sample from the
k-nearest neighbors and sample xi.

COMPUTER EXPERIMENTS
In this section, we provide brief characteristics of the acquired datasets, their visualizations
after oversampling and a description of the base classifiers utilized during the decision-
making process. The performance of proposed SOA-S and SOA-A methods is compared
to two state-of-the-art oversampling methods: SMOTE and ADASYN. We present
methodology and discuss the evaluation of prediction performance.

Data
During the computer experiments, eight different imbalanced datasets representing binary
classification problems were utilized. We used four slightly different artificial datasets
(Synt. dataset-1, Synt. dataset-2, Synt. dataset-3 and Synt. dataset-4) and four real-world
datasets for comparison (Bankruptcy - manufacture, Bankruptcy - construction, Wine and
Bank marketing ).

Synt. dataset-1, Synt. dataset-2, Synt. dataset-3 and Synt. dataset-4 were artificially
generated via Scikit-learn library generators (Pedregosa et al., 2011) with the following
number of observations 2,200, 1,500, 1,500 and 2,414, respectively. In those datasets, the
features are situated on the vertices of a five-dimensional hypercube or drawn randomly
from a Gaussian distribution. We have used a slightly modified Madelon dataset (Guyon,
2003) that represents imbalanced class distribution. The significant difference between
artificially generated datasets is the class imbalance level, being 20:1 for Synt. dataset-1, 39:1
for Synt. dataset-2, 50:1 for Synt. dataset-3 and 70:1 for Synt. dataset-4. We also utilized
a different number of features, 20 features for Synt. dataset-2 and Synt. dataset-3 and 40
features for Synt. dataset-1 and Synt. dataset-4.

The Bankruptcy - manufacture and Bankruptcy - construction datasets consist of
thousands of annual reports of SMEs companies operating in the manufacture and
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Table 1 Detailed characteristic of utilized datasets.

Dataset Samples Attributes Imbalance ratio Reference

Synt. dataset-1 2200 40 20:1 Guyon (2003)
Synt. dataset-2 1500 20 39:1 Guyon (2003)
Synt. dataset-3 1500 20 50:1 Guyon (2003)
Synt. dataset-4 2414 40 70:1 Guyon (2003)
Bankruptcy - manufacture 5854 20 417:1 Drotár et al. (2019)
Bankruptcy - construction 3128 20 222:1 Drotár et al. (2019)
Wine 4898 11 26:1 Cortez et al. (2009)
Bank marketing 4119 20 8:1 Moro, Cortez & Rita (2014)

construction business area in the Slovak Republic during the year 2015. The company
data are represented by 20 financial attributes. Minority class samples represent financially
distressed (bankrupt) companies while majority class samples stand for solvent (non-
bankrupt) companies. These are part of the larger dataset described in Drotár et al. (2019).
The Bank marketing dataset is related with direct marketing campaign of a Portuguese
banking institution based on a phone calls. The aim was to asses whether the bank term
deposit would be subscribed or not. This dataset is a subset of a larger dataset described
in Moro, Cortez & Rita (2014). The Wine dataset consists of taste preferences of white
wine samples from the north of Portugal (Cortez et al., 2009). The wine quality data are
represented by 11 attributes based on physicochemical tests. Here, the minority samples
represent the high-quality wine with a quality score from 8 to 10 and the majority class
samples represents low-quality wine with a quality score from 0 to 7. The overview of all
datasets is depicted in Table 1.

Visualization of data distribution after oversampling
To obtain some overview about data distribution after oversampling, we visualize the
distribution of original datasets and datasets after oversampling. We use the t-distributed
stochastic neighbor embedding (t-SNE) method (Van der Maaten & Hinton, 2008). t-SNE
is a state-of-the-art visualization method that converts high-dimensional data to two
dimensions. It is based on nonlinear local relationship between the data points and
performs transformation to two dimensional space in the way that more similar samples
are modeled as nearby points and dissimilar samples are modeled as distant points in two
dimensional space. t-SNE visualizations of selected four datasets are depicted in Fig. 2.
The first column represents visualization of the original imbalanced data. The middle
column shows the data after SMOTE oversampling. As seen, the SMOTE created clusters
of data points that emerged after generation of synthetic samples. The data distribution
after SOA-S oversampling is illustrated in the last column. The distribution of the data
is similar to that of SMOTE oversampling. This is expected since the SOA-S is built on
top of the SMOTE oversampler. However, there is one significant difference. The SOA-S
oversampling results in better differentiability between two classes. As we can see, the
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Figure 2 Visualization of data samples after applying SMOTE and SOA-S method in 2-dimensional
space.

Full-size DOI: 10.7717/peerjcs.604/fig-2

minority class data (red color) are more separated from the other class data in the case of
SOA-S oversampling.

Evaluation of prediction performance
To evaluate the effect of oversampling, we use four different classifiers: support vector
machines, k-nearest neighbors, AdaBoost and random forest. All classifiers are applied on
four synthetic datasets and four real-world datasets as described in the previous sections.
The brief description of utilized algorithms is as follows.

K-nearest neighbors
The k-nearest neighbors classifier or KNN is one of the most commonly used supervised
and instance-based machine learning algorithms. The essential idea of the KNN algorithm
is based on the assumption that the nearest observations to sample xi for which we seek
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the label are the most representative ones, and the class label is assigned by simple majority
voting of the nearest neighbors(Kramer, 2013). The final label of sample xi is obtained by
applying the following decision rule

f (xi)=


1 if

nk(xi)∑
c=1

yi≥ 0

−1 if
nk(xi)∑
c=1

yi< 0,

(13)

where nk(xi) expresses the indexes of the k-nearest observations. The most similar samples
are calculated by using various distance algorithms.

AdaBoost
AdaBoost (AB) is a supervised ensemble boosting algorithm that was proposed by Freund
& Schapire (1997). The essential idea behind AdaBoost is based on combining multiple
sequentially trained base classifiers in order to obtain amore powerfulmodel with increased
prediction performance versus each individually trained classifier. This is achieved by
boosting weights of incorrectly predicted samples during the training process.

To explain the principle of the AdaBoost algorithm, let us assume a training dataset { xi,yi
} consisting of n observations. Additionally, let nbase be the number of base classifiers. The
initial step starts with training of the base classifier using the equal weights distribution.
During all subsequent training iterations, the higher weights are reassigned to each
incorrectly predicted sample in order to increase the probability for correct classification.
This training process is repeated until all training samples are correctly classified or the
stopping criterion is reached. Afterwards, the final model C(x) is formed as a linear
combination of base classifiers cj . It is defined by the following equation

C(x)=
nbase∑
j=1

wjcj(x), (14)

where wj expresses the distribution of weights for a particular base classifier.

Random forest
The random forest (RF) is a supervised ensemble machine learning algorithm introduced
by Breiman (2001). The main idea is based on combining the outputs of multiple tree
predictors(Decision Tree classifier) using so-called bootstrap aggregating technique
Breiman (1996). This technique improves prediction performance of base learners and
controls overfitting. In this case, the RF classifier is the final class label for observation
xi derived from the output of each individually trained base classifier using the majority
voting function formulated as follows

f (xi)=
1
n

n∑
c=1

fc(xi), (15)

where fc(xi) indicates the output label of each individually trained base classifier. The
decision-making process depends on the ability to learn decision rules contained in the
dataset. The label with the most votes is assigned to a particular sample.
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Support vector machines
The support vector machine or SVC algorithm is a well-known and widely used supervised
machine learning method based on the famous idea of support vector machines Vapnik
(2013). The strategy behind the SVC algorithm is to construct an optimal decision boundary
with maximum possible margin using a nonlinear mapping of data samples into high-
dimensional feature space, which also enables classification of non-linearly separable
observations by using the so-called kernel trick (Hearst et al., 1998). The optimization
problem solved by SVM has been outlined in section II.B.

Numerical results
All datasets were standardized per feature to have zero mean and unit variance. We used
five-fold stratified cross validation to validate the model. The experiments were performed
50 times and the results were averaged. To tune the classifier performance, we searched
through the grid of hyperparameters. For SVC, we searched the grid of hyperparameters
defined by γ = [0.001,0.01,0.1,1,10,100] and C = [0.01,0.1,1,5,10,100]. In case of AB,
we changed the number of estimators from 50 to 500 with step 50. Similarly, in RF we
searched through number of estimators Nest , with max depth of three Ltree and maximal
number of features Nfeats, where Nest = [100,200,300,400], Ltree = [100,200] and Nfeats=
[’auto’, ’log2’]. Finally, in the case of KNN we searched the space defined by number of
neighbors NN = [5,7,10], leaf size L= [30,50,100,100] and considered both Minkowski
and Euclidean distance.

Choosing the right evaluation metric while working with imbalanced data is one of
the most crucial steps. The prediction performance of classification models was measured
by geometric mean (GM). The GM is considered as one of the most reliable techniques
while working with imbalanced data(Helal, Haydar & Mostafa, 2016). It is expressed as the
square root of the product of sensitivity and specificity and is defined as follows

GM =
√
SENSITIVITY ×SPECIFICITY . (16)

Sensitivity represents the proportion of actual positive cases that have been predicted as
positive by our model, and it is expressed as

SENSITIVITY =
TP

TP+FN
. (17)

TP (True Positive) is the number of correctly predicted positive cases and FN (False
Negative) is the number of incorrectly predicted positive cases. The proportion of correctly
predicted negative cases is expressed by specificity and is defined as follows

SPECIFICITY =
TN

TN +FP
, (18)

where TN (True Negative) expresses the number of correctly predicted negative cases and
FP (False Positive) expresses the number of incorrectly predicted negative cases.

The prediction accuracy of all four classification models trained on synthetic datasets
is depicted in Table 2. As expected, the application of classifiers without the use of any
sampling technique resulted in poor model performance. As the imbalance ratio of the
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Table 2 The bestGM scores (%) achieved on the synthetic datasets (± for standard deviation).

Dataset Sampling SVC AB KNN RF

none 66.73± 13.5 75.41± 10.1 33.14± 15.3 70.42± 16.6
SMOTE 87.01± 4.07 84.72± 5.62 78.61± 5.67 78.13± 11.3
ADASYN 86.82± 4.13 84.93± 5.48 77.59± 5.53 78.04± 11.4
SOA-S 86.94± 3.39 86.79± 4.33 82.79± 4.64 80.02± 9.63

Synt. dataset-1

SOA-A 86.77± 3.61 86.77± 4.61 82.74± 4.49 79.79± 9.75

none 63.40± 17.5 69.81± 13.7 37.80± 22.1 66.06± 18.3
SMOTE 85.73± 4.61 80.50± 6.83 79.69± 7.09 72.53± 12.9
ADASYN 85.65± 4.82 80.57± 6.65 79.48± 6.86 70.89± 14.1
SOA-S 86.71± 3.82 84.03± 5.22 81.99± 5.42 73.20± 12.2

Synt. dataset-2

SOA-A 86.46± 3.99 84.45± 5.33 82.08± 5.55 73.17± 11.7

none 54.63± 20.5 61.75± 17.9 27.67± 22.6 54.07± 21.6
SMOTE 82.57± 5.81 75.36± 9.85 76.13± 7.94 58.77± 18.4
ADASYN 82.55± 6.15 75.34± 9.22 76.09± 8.49 57.56± 18.4
SOA-S 84.61± 4.32 79.23± 6.19 79.42± 6.36 60.71± 16.8

Synt. dataset-3

SOA-A 84.10± 4.65 79.34± 6.89 79.39± 6.27 60.28± 15.9

none 21.24± 24.6 36.32± 21.6 5.31± 14.9 20.88± 24.9
SMOTE 72.94± 7.52 60.80± 9.85 67.72± 6.65 19.59± 20.9
ADASYN 72.14± 7.78 61.32± 10.7 67.69± 6.29 17.95± 19.8
SOA-S 76.67± 5.29 68.86± 8.09 74.84± 6.13 29.38± 18.6

Synt. dataset-4

SOA-A 75.22± 7.78 69.34± 7.33 74.99± 6.45 28.09± 17.7

Notes.
Highest results are in bold.

dataset increases, performance of the models trained on non-oversampled data sharply
decreases. For the Synt. dataset-4 the GM score of models without oversampling was less
than 40%. This was probably caused because the model’s assumption about the equal
data distribution resulted in bias towards the majority class while facing imbalanced data.
Significant improvement was achieved by applying SMOTE and ADASYN sampling
methods to acquire a class-balanced dataset that considerably increased prediction
performance of each individual classifier. Again, the performance gains for datasets with
smaller imbalance ratio are smaller than for those with high imbalance ratios. The best
results were yielded by the SVC classifier, with GM score between 72% to 87%. Applying
SOA-S and SOA-A as data balancing approaches further improved performance of all
employed classifiers. Again, the best results were obtained by SVC, followed by the AB
classifier. The SOA methods outperformed SMOTE and ADASYN in majority of cases.
The only exception was result of SVC classifier on Synt. dataset-1. The SVC based on
SMOTE oversampling data slightly outperformed SOA. This may indicate that the SOA
is better suited for datasets with higher imbalance ratio. This is confirmed by increasing
performance gains of SOA methods when the imbalance ratio of dataset is higher.

To assess the effectiveness of proposed oversampling approaches on real-world data, we
choose four imbalanced real-world datasets. The overview of achieved results is depicted in
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Table 3 The bestGM scores (%) achieved on the real-world datasets (± for standard deviation).

Dataset Sampling SVC AB KNN RF

none 7.44± 11.3 22.37± 12.7 5.65± 9.84 5.60± 9.93
SMOTE 90.61± 2.36 52.70± 12.4 39.70± 11.3 12.33± 7.95
ADASYN 90.65± 2.38 53.48± 12.3 62.79± 10.9 12.24± 7.92
SOA+S 95.13± 1.09 72.13± 11.8 61.41± 10.7 55.37± 14.3

Bankruptcy - manufacture

SOA+A 95.23± 1.14 71.09± 12.1 65.44± 9.52 53.53± 14.2

none 33.45± 13.2 44.46± 13.1 5.20± 9.74 14.54± 10.4
SMOTE 94.54± 1.42 57.99± 14.8 62.19± 13.8 27.35± 12.9
ADASYN 94.52± 1.33 61.35± 13.7 61.86± 13.3 28.91± 13.4
SOA+S 95.69± 0.96 78.43± 10.7 79.57± 8.51 59.83± 11.2

Bankruptcy - construction

SOA+A 95.65± 0.99 80.22± 10.1 78.52± 9.93 55.56± 13.4

none 64.06± 2.45 48.41± 1.89 63.21± 2.37 60.82± 2.32
SMOTE 77.49± 0.91 73.71± 1.21 79.28± 1.35 70.90± 2.33
ADASYN 77.48± 1.01 73.86± 1.38 79.46± 1.28 71.27± 2.31
SOA+S 78.94± 0.74 77.91± 0.65 81.21± 1.07 79.81± 0.87

Wine

SOA+A 78.79± 0.69 77.76± 0.78 81.24± 1.36 79.97± 0.79

none 64.69± 0.78 67.71± 0.82 54.06± 0.71 65.47± 1.04
SMOTE 86.88± 0.28 81.99± 1.21 79.13± 0.67 73.84± 0.81
ADASYN 87.02± 0.29 81.36± 0.93 79.23± 0.79 73.55± 0.83
SOA+S 87.04± 0.22 83.31± 0.52 79.74± 0.54 83.38± 0.51

Bank marketing

SOA+A 87.02± 0.35 83.02± 0.48 79.42± 0.99 84.19± 0.69

Notes.
Highest results are in bold.

Table 3. As can be determined from the result of the classifiers without any oversampling
technique, the selected datasets represent very challenging classification tasks. In case
of two highly imbalanced bankruptcy datasets, the prediction performances of AB, RF
and KNN, measured GM scores, are very low, even after oversampling the data with
SMOTE/ADASYN. Only SVC can provide reasonable results. Similarly, as with case of
synthetically generated datasets, the utilization of the proposed SOA methods also led to
increased GM scores in the case of bankruptcy datasets. The Wine and Bank marketing
datasets have class distribution 26:1 and 8:1, respectively. Application of SOA-S and SOA-A
methods allowed for increase in prediction performance also in case of these two real-world
datasets. Similarly as in the case of synthetic datasets, the best results were achieved by SVC
classifier.

The proposed SOA employed in the first stage two data generation methods: SMOTE
and ADASYN. It is interesting to note that the performance of the SOA is not significantly
affected by the choice of the data generation strategy. Both SOA-S and SOA-A perform
very similarly on all evaluated artificial and real-world datasets.
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CONCLUSION
The data imbalance represents an important issue in many machine learning applications.
In this paper, we propose a selective oversampling approach that first isolates the most
representative data points and than employs the oversampling strategy for minority
class data. Our results showed that SOA-S and SOA-A methods outperformed SMOTE
and ADASYN sampling techniques for all selected classifiers on four artificial and four
real-world datasets. We have noticed that the oversampling performed much better in
combination with some classifiers than with others. For the majority datasets the nonlinear
SVM yielded the highest GM scores. In case of some datasets the difference between the
classifiers was more than ten percent in performance. This is true for not-oversampled but
also for oversampled data and for all oversampling techniques. Therefore we recommend
to pay attention to the choice of the classifier for the oversampled data.

As a further work, we aim to investigate how oversampling can be adopted to provide
more robust performance of the subsequent classifier and whether the choice of classifier
can be determined a priori based on oversampled data distributions.
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