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Intelligent Patient Monitoring: Detecting and Defining Significant
Clinical Events

by
Adam K Hoyhtya

Submitted to the Department of Electrical Engineering and Computer Science on May 22,
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Electrical Engineering

ABSTRACT

Computerized algorithms were developed which automatically analyze the arterial blood pressure
measurements of intensive care patients. The primary task was to develop automated procedures
to distinguish a blood pressure alarm signaling a true hypotensive or hypertensive episode from an
alarm resulting from corrupted measurements. The real episodes were then visually categorized
according to the direction of change for several physiologic measurements.

A clinical event was defined by the occurrence of a blood pressurk alarm created by Hewlett
Packard's "Merlin" bedside monitor, and each was initially classified by the author as either
resulting from a real change in the blood pressure, or resulting from artifact. The methods for
automatically classifying each alarm "event" used the systolic or mean blood pressure
measurement, annotations from the monitor regarding the operation of the transducer (whether it
was properly operating), and the continuous blood pressure waveform.

Using the results of the visual classification as the reference, results for the first 14 records (i.e.,
excluding 420 and 421) show that the linear trend algorithm using only the systolic or mean blood
pressure measurements improved the average positive predictive accuracy from 61.9% (monitor
unassisted) to 79.7% (sensitivity of 97.4%). Excluding artifactual data as indicated by the
"INOP" annotations, the same linear trending algorithms using the first 14 records yielded an
identical PPA of 79.7% and sensitivity of 97.4%. Detailed beat-by-beat analysis of the blood
pressure waveform integrity allowed more sensitivity to real changes, resulting in a 97.9%
sensitivity (99.4% gross sensitivity, with only 1 FN), but only a 65.8% positive predictive
accuracy. The high number of false positives using the waveform analysis algorithm was a result
of the algorithm declaring "real" an episode for which no stable template was located.

Finally, each non-artifact "clinical event" was categorized by considering the correlated changes in
the systolic blood pressure, heart rate, and diastolic pulmonary arterial pressure measurements.
Results were patient-specific, but the common finding was that a range of physiologic hypotheses
could be suggested using the change in the physiologic measurements alone. Most alarms were of
the same general type for a patient, and a change in the alarm type suggested interesting episodes.

Thesis Supervisor: Roger G. Mark

Title: Professor of Health Sciences and Technology and Professor of Electrical Engineering and
Computer Science
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1 Introduction

1.1 Motivation -
The intensive care units of hospitals produce massive amounts of clinical data relating to

each acutely ill patient. Although the purpose of gathering such a large quantity of data is to

maximize the clinician's sensitivity to meaningful changes in the patient's state, physicians may

experience "information overload", potentially hindering efficiency and accuracy. This research

describes methods for automated verification and interpretation of data to reduce the amount of

rote processing that the clinician must perform when an alarm is sounded. Specifically, the

research describes automatic classification of the monitor's blood pressure alarms as valid or a

result of artifact. Secondly, in addition to the blood pressure, other physiologic measurements

within the vicinity of the alarm are analyzed in order to suggest a physiologic basis for the cause of

the hypo- or hypertensive state. The purpose is to discount alarms that result from invalid

measurements, and to aid the physicians and nurses in constructing a physiologic hypothesis of the

state of the patient. An apropos quote from the late President John F. Kennedy gives perspective to

the focus on the patient-computer interaction:

"Man is still the most extraordinary computer of all."

In short, the goal of this research is to perform analysis which aids the user, but does not usurp the

authority of the physician and staff in assessing the physiologic state of a patient.

An extension to this project - which is not formally addressed in this thesis - is ultimately

to construct an "intelligent monitoring" system, which considers all the information which the

physician would typically utilize, for automatic hypothesis generation regarding the physiologic

state of the patient. This information would include clinical data such as laboratory results, in

addition to the output from the patient monitoring system. Devising an "intelligent monitoring"



system is the continuing project of Roger Mark and George Moody, in collaboration with the

intensive care staff at Boston's Beth Israel Hospital.

The motivation behind developing an improved, "intelligent" monitoring system, is that the

current problem of frequ*ent false alarms in the ICU is not trivial. Indeed, the noise level in the ICU

due to the monitors' alarms has been described as "disturbing" to both the patient and staff,

according to Cropp et al'. Although the alarms producing these high noise levels are a means of

safeguarding the patient's health in case of abrupt changes in patient physiology, because of the

high false alarm rate, the alarms are frequently discounted by the staff, either through temporary

silencing (e.g., Hewlett Packard's Merlin monitor has a 3-minute silencing option), permanent

silencing (disabling the alarm), or by the staff person simply not reacting to subsequent alarm

soundings. In addition to not being completely predictive of significant physiologic changes, the

alarms are not easily discerned by the clinicians, the very persons they are intended to alert. Cropp

et al studied the effectiveness of the alarms in communicating the type and severity of the problem

associated with several alarms. They concluded that a more organized system of alarms would aid

the ICU staff in identifying the problem. In short, the efficacy of an alarm system would be greatly

enhanced through both organization and minimization of the number of false alarms.

1.2 Previous Work

1.2.1 ICU Monitors: The State-of-the-Art

Currently the treatment of intensive care patients requires a diligent focus by the ICU staff,

who rely greatly on the automated bedside monitoring systems. Most ICU's have one staff person

per patient in order to continuously monitor the patient's state and react to changes in the

physiologic measurements. However, today's computerized monitoring consists mainly of

obtaining measurements and detecting artifact, leaving it to the staff to assess the validity of alarms

and to construct a physiologic hypothesis of the patient's state.



In 1991, Coiera (Hewlett Packard Laboratories) wrote a review of the current technology

in ICU monitoring, and discussed the most popular methods for improving the monitoring

methodology. He proposes that there are three basic layers in which the data is currently presented

to the user. In layer 1 are the continuous waveforms, such as the ECG and ABP waveforms, and

the numeric data, which are measurements from these waveforms, in addition to other non-

waveform measurements, such as temperature and oxygen saturation. Layer 2 consists of

measurement trends, which provides the history of the signals over a longer time than the

waveforms can be displayed, along with superimposed range limits, which allows the user to

identify graphically any changes in the measurement series with respect to preset limits. The third

layer is the detection and display of range violations, as well as dynamic trend estimation, which

differs from the trend display in layer 2 in that only a recent history is analyzed (for example

calculating slope over past few minutes), so that abrupt changes can be found. The data is

abstracted in an hierarchical fashion, with each layer dependent on the validity of previous layers.

Due to the dependence of the monitor's alarms on the validity of the signal, the first

priority in designing a monitoring system for intensive care patients is collecting a valid set of

physiologic measurements. Contaminated data is not only confusing to the staff monitoring the

patient, but also detrimental to automated hypothesis generation algorithms. Therefore, built into

the "Merlin" monitor are data conditioning units, which contain hardware for filtering noise and

indicating when artifact occurs in the signals. This type of signal-specific processing is necessary

when one considers the differences in how each signal is acquired, and therefore in how each is

processed. When artifact is indicated as being present, the monitor will not signal an alarm even

though the measurements may move outside the alarm limits. The HP reference2 describes each of

the modules involved in acquiring and conditioning the various signals (ECG, ABP, PAP).



1.2.2 Progressive Analysis
Considering the complexity of human cardiovascular physiology, replete with feedback

interaction between the physiologic variables, the important question to answer is how a patient

monitoring system can validate the data provided by the monitor, and subsequently track the

patient's changing physiology. Since the task of completely specifying the patient's cardiovascular

functioning from a few variables is intractable, one must accept some representation of, or

hypothesis concerning, the CV system. The current hypothesis for standard patient monitoring

algorithms is that any variation of a parameter within a specified range, regardless of its dynamics,

is acceptable, and any excursion outside these static limits is pathological. Outlier detection

algorithms flag this out-of-range condition, one in which a variable either exceeds a maximum or

drops below a minimum threshold. An example of this method is an alarm sounding when the

systolic radial arterial blood pressure (sABP) of a patient exceeds 110 mmHg. Obviously the

sounding of such an alarm does not fully elucidate the physiology, but indicates a high probability

of a significant change in the patient's blood pressure. Given this information, the ICU staff can

either consider this state acceptable, or intervene pharmacologically to decrease the systolic blood

pressure. However, there are two prominent shortcomings of single parameter alarms. First, many

ICU patients, however infrequently, undergo important physiologic changes, yet homeostatic

controls are able to-maintain the parameters within broadly normal ranges, and thus no alarm is

signaled. An example is the case of a slow gastrointestinal (GI) bleed where the cardiovascular

control system maintains blood pressure (ABP) within the static boundaries until the patient enters

a state of hypovolemic shock. The second shortcoming of single parameter alarms is that they

frequently produce false alarms; that is, they indicate that a critical change has occurred when in

fact the patient is performing acceptably. Clearly, a tracking system which only signals a

pathology after it has been developing steadily for some time, or one which is marginally predictive

of significant changes, is deficient in its utility.



Several other methods have been proposed for analyzing patient data. Zhao3 has

researched the utility of a detailed cardiovascular model, which estimates approximately 20

different parameters within the CV system given simulated data. The goal of the research is to

devise methods for appropriately locating the parameter which caused the change in the simulated

waveforms (which represent the patient). Other researchers4 have analyzed the spectral

characteristics of the beat-to-beat variation in heart rate, in order to estimate autonomic activity, as

well as the transfer function characteristics between respiration, arterial blood pressure, and heart

rate, also thought to be indicative of heart rate control. Since the autonomic nervous system elicits

control over cardiovascular function, the ability to detect such neural changes gives important

information regarding the patient's state.

1.3 Thesis Summary
This project explores methods which focus on the alarm sequence and the several minutes

of measurements prior to each alarm. In particular, the ABP alarms are classified as valid or

(resulting from) artifact, through analysis of the physiologic waveforms and the measurements.

The gold standard for the effectiveness of these automated methods is the author's visual inspection

and classification of each event. The number of alarm episodes, as well as how they were

categorized, is summarized in section 3.1.1 Visual Artifact Detection. The proposed system

further categorizes those episodes which are automatically classified as valid by analyzing the

correlated changes between arterial blood pressure (ABP) - either systolic or mean, depending on

which was used to trigger ABP alarms - diastolic pulmonary arterial pressure (dPAP), and heart

rate (HR). The direction of change of these three measurements suggests a physiologic basis for

the alarm condition.



2 The MIMIC Database
The data used in the algorithm development for this research is the MIMIC (or Multi-

Parameter Intelligent Monitoring for Intensive Care) Database, which will eventually consist of

approximately 100 24-48 hour recordings from the patient monitors of the three intensive care

units (medical, surgical and cardiac) of Boston's Beth Israel Hospital. The database also includes

relevant clinical data such as lab tests, medications, and clinical notes by physicians and nurses.

The following diagram depicts how the data is collected and stored.

2.1 Continuous Signal Recordings
The signals were collected and digitized by the Hewlett-Packard Component Monitoring

System (Merlin) bedside monitors. Two dual-ported serial communications cards in the monitors

allowed the transmission of the data to a Gateway 2000 PC (model 4DX2-66V), for eventual

MIMIC Research Database Production
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recording onto CD media. Signal (*.dat) files in the MIMIC database contain the samples of the

waveforms acquired by the monitor (500 samples per second for each ECG signal, and 125

samples per second for all other signals). These waveforms are analyzed within the monitor for

various features, most typically the maximum, mean, and minimum values of the blood pressure

signals, and the locations and classifications (normal or VPB) of the QRS complexes of the ECG

signals. The range of signals which may be recorded include several ECG leads, arterial blood

pressure, pulmonary arterial pressure, central venous pressure, plethysmograph, pulse oxymeter

(oxygen saturation), and respiration. Despite the fact that patients with different pathologies, and

from three separate ICU's, do not necessarily have the same physiologic variables monitored, an

attempt was made to record three ECG signals, all blood pressure signals, and the respiration

signal of each patient. Other signals were recorded according to a hierarchical selection system,

and as the bandwidth of the monitor's communications card permitted.

2.2 Physiologic Measurement Series
One feature of the Merlin monitors is the continuous calculation and display of several

clinically significant measurements from the calibrated waveforms. Examples of these numeric

measurements (made at intervals of 1.024 seconds) are systolic, mean, and diastolic blood

pressure, heart rate, systolic, mean, and diastolic pulmonary arterial pressure, etc. These data are

available to the care provider and are typically displayed on the monitor's screen throughout the

patient's stay in the ICU. Although most of these measurements (with the notable exceptions of

cardiac output and SpO 2, the 02 saturation of the blood) can be reproduced by processing the

digitized waveforms, it is useful, and perhaps essential for algorithm development, to have the pre-

processed time'series of numeric measurements from the Hewlett-Packard monitors, since these are

the exact data that the clinicians consider in monitoring the status of the patient.



There are two pieces of key information which the Merlin monitors create along with the

physiologic measurements. First, the monitors indicate the condition of inoperative or noisy

transducers ("INOP" notations). The annotation "NOISY-CHK ECG LEAD" warns of noise in

the ECG leads, while "Sp02 NON-PULSATILE" indicates that the oxygen saturation signal is

non-pulsatile, and therefore the transducer is most likely disconnected. Secondly, the Merlin

monitors indicate alarm or "out-of-range" values, such as the following: "ART 107 > 105",

indicating that the arterial blood pressure exceeded the pre-set alarm limit of 105 mmHg, and

"PAIR VPBs", indicating two sequential ventricular premature beats were detected in the ECG

signals. Since noisy ECG leads suggest that the HR signal is less reliable, it is clear that this

information is essential when analyzing the measurements series. The alarm and "INOP"

annotations are used to analyze patient records for significant events; the methods are discussed in

section 3.1 Artifact Detection.

2.3 Clinical Data
Each patient record in the MIMIC Database includes clinical data. This information is

extracted from the subjects' medical records and from the hospital's clinical computing systems; it

has been formatted to be read by Microsoft's Access@ Database program, and includes the

following subsections.

1. Patient History 5. SOAP Notes
2. System Review 6. Progress Notes
3. Physical Exam 7 Flow Sheet Menu
4. Problem List 8. Lab Data Menu

The structured database format enables rapid access to information essential to the

development of intelligent patient monitoring. Most importantly, the format highlights key "event"

information, which can be considered when attempting to characterize the nature of the changes



occurring in the data streams. Two subsections of the database which are most useful are Progress

Notes, and the Medications from the Flow Sheet Menu, including the amounts and the times

delivered.

2.4 Characterization of Cases in MIMIC Database (as of 3/5/96)
The following information is a summary of the type of records contained in the MIMIC

Database. With this information, it is possible to study specific pathologies. However, in this

study, no distinction is made between patients on the basis of their major pathology.

A. Place Recorded (N = 132)
* MICU 61(46%)
* CCU 60 (45%)
* SICU 11(8%)

B. Patient Characteristics (N =132)
* Male 65
* Female 67

* Age < 50 17
* Age > 70 66
* Age 51-69 49

C. Major Clinical Problem (N=132)
* Respiratory Failure 34
* CHF/Pulmonary Edema 30
* Sepsis 14
* MI/Cardiogenic Shock 13
* Post-OP Valve 9
* Bleed 8
* Angina, R/O MI 5
* Brain Injury / CVA 5
* Post-op CABG 5
* MI / Arrest 3
* Post Op, various 2
* Metabolic Coma 2
* Cord Compression 1
* Renal Failure 1

2.5 Selected MIMIC Records
Several records were chosen from the MIMIC database for this research, based on the type

of data that the record contained. Each patient record (as of 3/5/96) which contained arterial blood

pressure, ECG, and pulmonary arterial pressure waveforms were selected for this study, provided

the signal quality was adequate. The records indicated in the table below had these three

measurements. The two records in parentheses (405, 427) had unreadable blood pressure data and

were excluded from the study. In order to efficiently access the measurement data, several of the

MIMIC records were re-stored on a single CD-ROM, Volume MDBS0296 (February 1996); each



record was renamed to have a trailing n (i.e., record 055 becomes 055n). The subset of these

measurements containing systolic (mean) ABP, HR, and diastolic PAP were written to a file using

the "rdsamp" program, available on each MIMIC CD-ROM. The blood pressure signal was

chosen as that which the Merlin's blood pressure alarm used in its algorithm for triggering alarms.

(Since this signal was variable, the output of "rdsamp" had to be compared to the ABP/ART alarm

values to ensure the correct ABP/ART signal was being used.) The HR signal is that obtained

through the monitor's ECG analysis. The diastolic pulmonary arterial pressure (PAP) was chosen

(versus mean or systolic) since it best approximates the filling pressure of the left ventricle. (The

filling pressure is an important measurement to use in conjunction with the systolic arterial blood

pressure, since these two measurements are the minimum and maximum pressures within the left

ventricle.) The following table gives the signal number given as an argument in the program

"rdsamp", which is used to obtain the data used in these studies (e.g., c:\> rdsamp -r 055n -f 0 -t

100:0:0 -s bpnum hrnum papnum).

MIMIC Record Blood Pressure Blood Press. Type Heart Rate diast. PAP
055 1 syst ABP 4 7
212 1 syst ABP 3 6
215 0 mean ART 3 9
216 1 syst ABP 3 9
230 1 syst ABP 3 9
231 , 1 syst ABP 3 6
240 1 syst ABP 3 9
241 1 syst ABP 3 9
242 1 syst ABP 3 9
245 1 syst ABP 3 6
248 1 syst ABP 3 6
415 1 syst ABP 3 9
417 1 syst ABP 3 9
418 0 mean ABP 6 12
420 1 syst ABP 5 8
421 1 syst ABP 5 9

(405) -unread. n/a n/a n/a n/a
(427) -unread. , n/a n/a n/a n/a

Each of these records had at least one blood pressure alarm event, and most patients had "INOP"

indications in regidns of the blood pressure measurement series which were corrupted by noise. In



addition to these measurement data, all patients had either the arterial blood pressure (ART) or

radial arterial blood pressure (ABP) waveform, found on the CD-ROM containing the entire

patient record (e.g., MIMIC record 055 is found on Volume MDB110).

The blood pressure alarms were obtained from the MIMIC CD-ROM Volume MDBS0296 using

the "rdann" program. The alarm files used in these studies were created using the script "getals", a

C-shell UNIX script (see Appendix A). These alarm files include both the time of occurrence, the

blood pressure alarm value, and the threshold exceeded to trigger the alarm. The blood pressure

"INOP" files were created using the script "getins" (see Appendix A). These "INOP" files include

the time of occurrence, and the arterial blood pressure "INOP" type, coded as follows: "1" -

"ABP NO TRANSDUCER", signifying the transducer is disconnected; "2" - "ABP REDUCE

SIZE", signifying the measurement is in error due to its exceeding an upper threshold; "3" - "ABP

ZERO+CHECK CAL", signifying that the monitor is being calibrated during the time that this

notation occurs; "4" - "ABP OVERRANGE", signifying that an impossible measurement (ABP <

0) has been obtained. No other "INOP" annotations were found in the 16 records used in this

work.



3 Methods
Given the MIMIC database, patient records were located which had the following three

measurements available: ABP (arterial), ECG, and PAP (pulmonary). In addition, a method was

developed by which this patient data could be carefully inspected visually. UNIXO shell scripts

were written which access the patient data on CD-ROM and plot out several hours of each

measurement (systolic/diastolic blood pressure, heart rate, systolic/diastolic pulmonary pressure)

(see Appendix A, "hptognu" UNIX C-shell code). These were viewed in order to give an

understanding of the type of data available. In this research an "event" was defined by the

occurrence of one or more continuous ABP alarms (the criterion was that an "event" could not

have alarms separated by more than 1.024 seconds, the sampling rate of the measurements, and the

update rate for the alarms). Since the ABP alarm is triggered off one of three measurements (either

systolic ABP, mean ABP, or mean ART) for each patient, the blood pressure measurement which

corresponded with the alarm was plotted over the entire 24-48 hour period, along with the alarms

and the alarm limits. Since no indication exists in the alarm annotation file as to which

measurement the blood pressure alarm algorithm is considering, the program "rdsamp" (available

on each MIMIC CD-ROM) was run for each record containing only the numerics. In addition, a

plot was made of each alarm region, so that any changes could be magnified, and methods could be

devised for automatic classification of each alarm as "real" or "artifact". Using both the alarm

plots and the information of whether artifact or noise was present in the blood pressure waveforms

in the region of the alarm, each alarm was classified by the author as "real", meaning that the

measurement is a faithful representation of the pressure in the artery, or "artifact", meaning that

the measurement does not reasonably represent the arterial pressure. These alarm "episodes" were

subsequently classified as true physiologic changes or as artifact, according to the automated

methods described below.



Intelligent Patient Monitoring Flow Diagram

Figure 2: Monitonng Flow Diagram

3.1 Artifact Detection
As indicated in figure 2, there are three pieces of information to use when attempting to

discern whether data is distorted by noise and artifact. The most readily available data are the

measurement series themselves, since these are directly used to trigger the alarms. Secondly, the

notations signifying inoperative transducers provide information regarding whether to discount an

alarm. If a transducer is disconnected, the measurement is corrupted. Finally, an inspection of the

waveform allows for verification of the waveshape integrity with respect to other regions.

Processing these three classes of information helps to improve the alarm scheme, so that

subsequent levels of analysis are assuredly processing non-corrupted data.

3.1.1 Visual Artifact Detection
The blood pressure measurements which were used in the Merlin monitor to trigger the

blood pressure alarm (either systolic ABP, mean ABP, or mean ART - see section 2.5 Selected

Artifact Detection
Measurements Use Measurements

include "Inops" Valid
Raw Data Alarm?

HR/Rhythm Yes
diastolic PAP ---- Physiologic Classification
systolic ABP

Possible Causes of Change

mABP alarms



MIMIC Records) were plotted, along with the alarms themselves, in order to study the alarm

regions more closely. In addition, the raw waveforms were analyzed visually to locate any artifact

which may have resulted in the alarm condition. This visual analysis was done in order to establish

the standard to which the automated algorithms could be compared. Finally, the positive predictive

accuracy of the Merlin monitor's blood pressure alarm algorithm was calculated for each patient

and used for comparison against the positive predictive accuracy of newly developed methods

which detect artifact.

The algorithm used by the Merlin monitor, which signals hypo- or hypertension, is a

counting scheme. The count begins once the preset threshold is exceeded, and it continues to

increment each time the ABP is updated (every 1.024 seconds), until a count of 10 is reached,

whereby an alarm is sounded, or until the threshold is no longer exceeded and the count is reset.

An example follows.

MIMIC 415: Syst ABP, Alarm Limits, and Alarms Notice in figure 3 that the
170

00000000

Alarms Max alarm begins 10 samples
165

following the first sample that

, exceeded the 160 mmHg
SIlosam le 1

155- <10 sampl threshold. Prior to the
sABP (nmHg)

excursion which sounded an
150

alarm was a transient increase

145
5.426 5.428 5.43 5.432 5.434 5.436 which was of a duration of 3

Elapsed Time (hours)

samples, so that an alarm did

Figure 3: Alarm Example not sound. Of note is the fact

that the alarm continues until the blood pressure ceases to exceed the threshold of 160 mmHg. In

addition, the value of the alarm is the maximum blood pressure from the time the threshold was



exceeded. Since the pressure reached 169 mmHg at 5.433 hours, even though the alarm didn't

sound until 5.434 hours, where the pressure was measured at 166 mmHg, the alarm assumes a

value of 169 mmHg, the maximum pressure achieved since the blood pressure exceeded 160

mmHg at 5.431 hours. This is an example of a true alarm, since there is no artifact that is

suggested either from these measurements, or from the raw waveform. Using plots such as these,

as well as the ABP waveforms, the alarms were classified as resulting from artifact, or real

physiologic change.

3.1.2 Automated Artifact Detection

3.1.2.1 Linear Trend Algorithm

The following algorithm (see program "class.m" in Appendix A), outlines the method for

automatically detecting whether artifact is the cause of the blood pressure alarm.

One manner in which the measurement series themselves can be used to detect artifact is to

define physiologically unrealistic measurements. Step two in Figure 4 defines physiologically

realizable extrema, and compares the alarm values to those extrema. Those outside the range are

artifact. The absolute maximum threshold is equal to 150% of the monitor's "hypertensive"

1. Initially assume alarm is real; yields "aggressive" algorithm
2. If alarm value < 0 OR alarm value > 1.5*(Max threshold) then alarm is "artifact"
3. Get 5 minute window and 1 minute window of data previous to alarm, both windows ending

10 seconds before alarm
4. Remove artifact data, based on "INOPs" and noise detection in ABP waveform
5. Find least squares best fit line to 5 minute window (trend), including error (y = mx + b +

50percent_error)
6. Forecast to time of alarm using both trends
7. Trend test: If alarm value is less than forecast - a*error(for lower threshold), or alarm

value is gre4ter than forecast + a*error(for higher threshold), then condition suggests
artifact

8. if 5 minute trend test suggests artifact then find mean, stdev of 1 minute window
9. if alarm value outside Bpval ± 2*a*stdev (Bpval is last pressure in 1 minute window), then

alarmn is artifact, on basis that it changes too quickly

Figure 4: Alarm Classifying Algorithm



threshold setting, and the absolute minimum threshold is equal to 0 mmHg (negative pressures are

considered artifact). These boundaries need to be very loose, since they provide a method for

quickly detecting only the extreme outliers. Step three defines two trending windows, of 5 minute

and 1 minute durations, both of which have the 10 seconds immediately prior to the alarm deleted

in order not to bias the statistics by artifact which may have caused the alarm condition.

3.1.2.2 Utilizing "INOP" Information

The fourth step is a crucial one, since the notations signifying inoperative transducers

provide much information regarding whether to discount an alarm. The algorithm which removes

artifact deletes all data from 10 seconds prior to the occurrence of an "INOP" indicator, up to the

time of the indicator itself. Since most indicators occur consecutively, there is considerable overlap

of these regions, so that only longer (than 10 seconds), contiguous segments of data are deleted.

These segments typically comprise only a small fraction (-3% for record 212) of the data from an

entire record. Using the "INOP" indicators from the Merlin monitor provides a robust method of

deleting obvious artifact, so that corrupted data is not used in the linear trending algorithm.

However, the Merlin monitor, before sounding an alarm, already considers the information

regarding the operation of the transducer, so that including the "INOP" information ought to

change little in the efficacy of the linear trending algorithm. Thus, a method more sensitive to beat-

by-beat changes in the blood pressure waveshape integrity may be necessary, and such a method is

described in the following section.

3.1.2.3 Blood Pressure Waveshape Analysis

Finally, an analysis of the waveform allows for verification of the waveshape integrity with

respect to an ideal template. This is done by first annotating all ECG QRS-complexes (using a

program titled "sqrs") several minutes prior to an alarm. Since the shape of the blood pressure

during the time betiveen consecutive QRS-complexes is relatively conserved, aligning of blood



pressure waveforms can be most easily accomplished by extracting the blood pressure waveform

beginning at the time of one QRS-complex and ending at the time of the subsequent QRS-complex.

It is desirable to compare the shape of an arbitrary blood pressure waveform segment to a

template which in this problem defines the ideal waveform segment. Over a several hour epoch, a

patient record will exhibit many fluctuations in both the pulse pressure (peak-to-peak magnitude)

and the values of the systolic and diastolic arterial blood pressures (baseline values). However,

despite the baseline and waveform magnitude changes, the overall waveshape ought to be

conserved. A statistic which compares a waveform segment to a template, independent of the

baseline and waveform magnitude, is the correlation coefficient. The correlation value has a range

from -1 to 1, with 1 being perfect correlation, 0 being no correlation, and -1 being negative

correlation. Only high degrees of correlation (close to 1) are acceptable, while correlation values

near zero and less than zero are considered artifact.

Formally, the arterial blood pressure can be considered a random process X(t), and each

blood pressure waveform is found by partitioning X(t) according to the ECG heartbeat annotations.

X(t)= [xI(t)lx2, ()l... IXN () (3.1)

The general Correlation Coefficient equation and Cross-covariance function for two

random process X(t) and Y(t) follow5.

CX (t, t2)
rXY(tl,t 2) = C2(t1 ,t1 ).C,(t2 ,t2) (3.2)

N

CXY (t ,t2) = Z X (tI)- Yj(t 2)- X(tI)- Y(t 2) (3.3)
J=1

However, there is no need in this case to calculate the correlation for each pair of times

(tl,t 2), since the desire is simply to find the maximal correlation between two random variables,



regardless of the shift required to obtain the correlation. For two blood pressure waveforms, this is

typically t1 = t2=0 (see artdet.c in Appendix A for actual algorithm used, including motivation for

performing a certain number of shifts). Therefore, a template y(t), representing an ideal

waveshape, is found and compared to each of the x,(t) using the correlation coefficient statistic p,.

P (3.4) Cxy = x(j). y(j) - xY Y (3.5)
=Cxx, •C.yy I=

Where equation (3.5) is the cross-covariance function Cxy(0,0) (i.e., evaluated at tj = t2 =

0.), and equation (3.4) gives the "unshifted" correlation between x(t) and y(t). Provided the

correlation coefficient p, is greater than some threshold (0.9), the waveform is acceptable.

3.1.2.4 Correcting for Heart Rate Variation
In figure 5, a segment of an arterial blood pressure waveform is shown, with ECG beat

annotations superimposed. Since a QRS-complex occurs at a variable time with respect to the

previous QRS-complex, the x,(t) are not the same size, making it difficult to perform a direct

correlation. This variation is seen with normal sinus arrhythmia, whereby a waveform from a

heartbeat arrives before the blood pressure has sufficient time to decrease to the previous beat's

diastolic pressure. Since there is a mechanical delay between the QRS-complex and the beginning

portion of the blood pressure waveform, the waveforms that are correlated (which are those

portions between consecutive QRS-complexes) are most similar over the middle portion of the

waveform. That is, the shape of the end-diastolic phase of the blood pressure waveform is less

conserved from beat-to-beat than the middle portion of the extracted waveform beginning at the

upstroke of the blood pressure waveform. To correct for this, only the middle portion of each

waveform segment is compared, thus deleting the few (3) blood pressure samples on either end

which are less similar in value from beat-to-beat. This seems to be sufficient for regions where the

heart rate does not change appreciably.



MIMIC 216: ABP Waveform; ECG beats annotated
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Figure 5: Annotated ABP Waveform
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However, in regions where the heart rate does change more rapidly, a re-sampling scheme

which yields two random processes of the same length should improve the correlation algorithm

results. The assumption when two random processes (the template and the test waveform) are re-

sampled is that if the R-R interval increases, the blood pressure waveform correspondingly

increases. However, this may not always hold, so the template may need to be updated periodically

to account for the change in shape.

The specific algorithm used to obtain the results in section 4.3 is shown in the outline

below.



Each episode for most patient records had a single "ideal" template established by

searching for 10 consecutive "stable" waveforms. Most patients had rather typical ABP

waveforms, so that a stable waveform was easily found. A special group of patients for which a

different approach had to be developed, due to the effect of changing the balloon pump settings,

were those which had an intra-aortic balloon pump (IABP). For each IABP patient, the algorithm

had the option of two templates, one for the beat which was assisted by the balloon pump, and one

which was not assisted. The "double-template" algorithm, the motivation for which can be seen by

referencing the results, is discussed in the outline to follow. Note that in the "double-template"

algorithm, each BP waveform was split into a first half and a second half, and correlated with the

corresponding portion of the template. This allowed for the verification that a drop in correlation

of the entire waveform was due to the absence or presence of the peak in pressure caused by the

balloon pump. The verification was accomplished through correlating an arbitrary waveform with

1. Locate the five-minute window of ABP waveform data prior to an ABP alarm
2. Run a QRS-detection algorithm on the data ("sqrs")
3. Partition the five-minute window of ABP waveform data according to the locations of the

QRS complexes
4. Initially, consider the first single beat waveform (between QRS-complexes 1 and 2) as the

"temporary" template
5. If template has high correlation (r > R_THRESH = 0.85) with 10 consecutive partitioned

waveforms (the subsequent waveform after waveform 1 is between QRS-complexes 2 and 3).,
then "temporary" template is "accepted"

6. If low correlation is found before a count of 10 is reached (r <= 0.85) then the count starts
over, and the following waveform is accepted as the "temporary" template

7. Given an "accepted" template, the correlation between the template and each waveform is
calculated, and compared to an acceptable threshold (r > 70% of R_THRESH = 0.85)***

8. The final 10.24 seconds (the span of 10 measurements, sampled every 1.024 seconds) are
analyzed, and the percentage of beats which are unacceptable (number "invalid" over number
of beats in 10.24 seconds) is calculated and compared to a

9. If percent "invalid" > alpha then the alarm is classified as artifact
10. a is ranged from 0.025 to 0.5 (2.5% unacceptable to 50% unacceptable) to generate ROC

curves
* ***In addition'to the indication as to whether the data was well-correlated (0 meaning no

correlation, and 1 indicating acceptable correlation), whether the ECG was likely to be noisy
was considered. If the difference in the time between the current ECG beat annotations and
the duration of the template exceeded 40%, then the ECG was considered noisy. ("ecgbad =
1").



each template, and ensuring that the correlation of the first half of the waveform, which is that due

to the heart pumping, remained high for both templates, while the correlation of the last half of the

waveform (where the peak, when it was present, was due to the balloon pumping) was high for

only one template.

It is clear from the above annotations that more information is available than simply

whether artifact is present. Indeed, from the series of waveform "type" annotations, the exact

setting of the intra-aortic balloon pump can be determined, which is useful in subsequent

"automatic" diagnosis of the patient. However, for the purpose of classifying the type of alarm,

only the information regarding the existence or non-existence of artifact was necessary.

1. Assume one "temporary" template has been found (see outline of basic algorithm above)
2. If r < R_THRESH, then before restarting count of acceptable waveforms, first check whether

a second template is needed
3. If number of templates = 1 and Corr.first_half > Corr.second_half and Corr.first_half >

0.7*R_THRESPI, then create second template (this is case of 1:2 balloon pump to heart beat
ratio)

4. Given two templates, the correlation of an arbitrary waveform is the maximum of the
correlation between the two available templates.

5. The count of consecutive highly correlated waveforms increases from 10 to 20 (because twice
as many templates need to be verified).

6. Given two "accepted" templates, the correlation of an arbitrary waveform is the maximum of
the correlation between the two available templates

7. Assume that Corr2 (correlation with template 2) is maximum of Corr2 and Corrl. Condition
1: ICorr2.first_half- Corrl.first_half] < 0.2 and Corr2.second_half> Corrl.second_half

8. If Corr2 is accepted by the criteria described in step 7, then the arbitrary beat corresponds with
template 2, the correlation is Corr2 and the "type" is 2.

9. Otherwise, the dual criterion for template 1 must hold for Corrl to be the correlation and
"type" = 1.

10. If criteria are not met for either template 1 or 2, then "type" is -1 (negative one).
11. For each waveform, the following information is output: time, Corr_all, Corr lt half,

Corr_2nd half, "invalid", "type", "ecgbad", beat length
* "Invalid" assumes values of 0 or 1, 0 indicating acceptable; "Type" can assume "1" or "2", if

2 templates, or "0" or "1", if 1 template ("1" indicates change in rhythm from baseline);
"ecgbad" assumes values "0" or "1", where "O" indicates the acceptable case, and "1"
indicates that the correlations are most likely corrupted by the fact that the window is too large,
and probably includes more than one blood pressure waveform.



3.1.3 Assessment of Detection Algorithm
In figure 6 is the general method used for assessing the efficacy of a detection algorithm.

The goal of the cascaded systems is to use the strengths of each algorithm to remove as much

artifact as possible without dismissing real changes as artifact.

Flow Diagram For Assessing Algorithms

Figure 6: Algorithm Assessment

One of the most important steps in determining the efficacy of a classification algorithm is

creating an ROC (Receiver operating characteristic) curve, which is a plot of the probability of a

detect (PD) versus the probability of failure (PF) (which is the percentage of false positives over the

total number of artifacts) for each value of the parameter a (one attempts to vary a such that the
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range of PD and PF - that is, from 0 to 1 - is covered). The closer the algorithm comes to reaching,

for some a, the point (0,1), which is a 100% probability of detection, and a 0% probability of

failure, the more effective the algorithm is in accepting "real" changes and excluding "artifact"

changes. Equations (3.6) and (3.7) were used to calculate the two probabilities, PD and PF, for

creating the ROC curves. The value TP is equal to the total number of "True Positive" detections

by the algorithm being assessed, and the value FN is equal to the total number of "False Negative"

detections (here, this is classifying a "real" change as an "artifact"). The value FP is the total

number of "False Positive" detections (classifying an "artifact" as a "real"), and TN is

appropriately classifying an artifact. The conditional probabilities refer to two hypotheses: Ho and

H1. H1 is the hypothesis that the alarm is "real", while hypothesis Ho is the case where the alarm is

"artifact". P(D1 I HI) is the probabilistic description of the instance where a "real" alarm is

classified as "real". P(D1 I HO) describes the instance where an "artifact" alarm is classified as

"real" (probability of a false alarm).

TP
PD = P(D H ) = TPFN (3.6)TP + FN

FP
PF = P(DIHo) = FP (3.7)FP + TN

For the particular a which optimizes PD and PF, the classification results are summarized

by calculating positive predictive accuracy and sensitivity statistics. The method of optimization

can be according to any reasonable "cost" function. The criterion used for accepting a value for a

was to require a greater than 95% sensitivity, while not allowing the positive predictive accuracy to

decrease below 60%. The positive predictive accuracy can be compared to the true alarm

classifications, the method for which is described above in section 3.1.1 Visual Artifact Detection.

The "confusion matrix" below is used to define both positive predictive accuracy and sensitivity.



In the "confusion matrix", "T" is true, meaning the visual and automated classifications

coincide. Conversely, "F" (false) indicates that the results of the visual analysis and the

algorithmic analysis differ. "P" is the abbreviation for positive, meaning the automated algorithm

classified as a real detect, while "N" is negative, meaning the automated algorithm classified the

alarm episode as "artifact", or "no-detect". The ideal algorithm has a maximal (hopefully 100%)

"real detect" positive predictive accuracy under the constraint of 100% "real change" sensitivity.

In short, it is undesirable to lose the perfect sensitivity of the monitor - by definition perfect, since

we have restricted ourselves to the alarms as the triggering events - at the expense of perfectly

detecting artifact. In short, in order to obtain an optimal setting for each algorithm, a "cost

function" must be defined and minimized, whereby certain errors are penalized more than other

errors using a weighting scheme, and the sum of all weighted errors is then minimized.

3.2 Physiologic Classification
After deciding which alarms are valid, the parameters in each alarm region were analyzed,

and each alarm "episode" was classified as one of several typical changes in the physiology. This

type of automated analysis aids the physician in making the decision as to whether the change is

due to a problem in the vasculature (i.e., a problem with blood volume), or a change in the pump

(i.e., a problem with contractility or heart rate). All three measurements (systolic ABP, HR, and

TP FN Real
Truth: Visual Classification

FP TN Arfifact

Real Artifact

Algorithm Classification

Figure 7: Definitions ofStatistics

Real Change Sensitivity: TP/(TP+FN)
Real Change Pos. Pred. Acc.: TP/(TP+FP)
Artifact Sensitivity: TN/(FP+TN)
Artifact Pos. Pred. Acc.: TN/(FN+TN)



diastolic PAP) in the alarm region were compared to the data from the beginning of the record to

the time of the alarm in order to classify the change. In order to make the measurement and two-

dimensional plots, a 20% trimmed mean of each variable was calculated over a window of 7

minutes. Successive trimmed mean windows overlapped by 90% each time, so that the moving

window included 10% new data each time the calculation was performed. The effect of this

procedure was a smooth waveform, thus rejecting the artifact which tends to confuse the visual

analysis of large quantities of data. These data were plotted in two dimensions (e.g., ABP versus

HR), and the direction of the change was noted, provided it was "significant" according to a visual

analysis of the data.

Categorization of each alarm region was accomplished by using plots of the three

measurements (systolic ABP, heart rate, and diastolic PAP) versus time and two-dimensional plots,

which consist of two measurements plotted versus one another, and the same measurements plotted

versus time in such a way as to line up the axis of each parameter.

Three types of changes were possible for the HR and PAP parameters: a positive change,

a negative change, and no change. Because the hypotensive alarms, which indicate a drop in blood

pressure, and the hypertensive ABP alarms, which indicate a rise in blood pressure, are those

which are used to specify each episode, only two types of changes (positive or negative) were noted

in the results. The following set of plots show one example of an alarm episode. The 12h episode

of record 230 is the occurrence of a hypotensive alarm at 2.22 hours into the patient record. An

open circle (0) at that time indicates the initiation of the alarm. The large increase in heart rate at

the same time is obvious from the HR measurement series. The set of 2 dimensional plots in figure

9 aids in correlating the alarm indicators in the two-dimensional plot of ABP versus HR with the

time series plots of ABP and HR.



MIMIC 230: ABP vs HR
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Figure 9: 2-D Plot with Projections

The above alarm episode shows a very distinct change in two of the three parameters

(systolic arterial blood pressure, from which the alarm was triggered) and heart rate. The circle at

point (80,110) - that is, 80 mmHg ABP and 110 bpm HR - in the plot of ABP vs HR is the alarm

episode associated with the data in figure 8. By simply visually analyzing the measurement series,

and using the method described above, this episode is of the class (-,+,0, which is ABP decreasing,
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HR increasing and PAP remaining the same). When the arterial blood pressure drops and the heart

rate increases, indicating that the two parameters are negatively correlated, the hypothesis can be

one of two possibilities. The first possibility is that the heart rate began to increase rapidly

(tachycardia), thus decreasing the amount of time the heart can fill (with no change in

contractility), resulting in a decrease in ABP. Alternatively, the blood pressure could have begun

to drop due to a lowered systemic vascular resistance or decreased blood volume, so that the heart

rate attempted to compensate via the baroreceptor reflex. Using only the direction of change in the

measurements, both hypotheses are consistent with the data, and only a more detailed analysis of

the ECG would be able to determine that this episode was in fact due to a run of ventricular

tachycardia. In addition, the temporal course of the changes in ABP and HR favors the hypothesis

that the change was induced by an arrhythmia. However, the precise diagnosis is outside the scope

of this research. In short, the method employed to physiologically classify each episode uses the

correlated changes in direction for the three measurements.

The myriad time series and two-dimensional plots have value of themselves for further

research in automated classification algorithm development, and these plots are included in a

separate appendix.



4 Results
Two key results have come from this study of classifying arterial blood pressure alarms,

and categorizing the physiologic change in each alarm region. The first important result was

establishing the pivotal role of a waveform analysis algorithm in correctly classifying "real" and

"artifact" alarm events. The second key finding, which was obtained using the ABP vs. PAP plots

and the ABP vs. HR plots which indicated alarm episodes, was that an effective diagnosis can be

obtained using only the correlated changes in three physiologic measurements.

4.1 Artifact Detection
In general, the artifact detection algorithms which utilized only the linear trend in the

measurement series provided only minimal improvements in the positive predictive accuracies over

those of the HP monitor. In addition, although the trending algorithms reduced the number of false

positive detections, false negative detections were concurrently introduced, thus leading to the

potentially life-threatening situation of neglecting a significant physiologic change requiring

treatment. Therefore, an analysis of the waveshape integrity was performed, and very promising

results were obtained. Combining the two methods - linear trending and waveshape analysis -

allowed for further improvements in the classification results.

4.1.1 Visual Artifact Detection

Although both the ABP measurements and the ABP waveform were carefully inspected,

the visual method used for detecting artifact was dependent mostly on the arterial blood pressure

waveform. The results of this visual analysis were used as "truth", to which the results of

automated algorithms could be compared. An example of a signal with artifact follows.



MIMIC 231: Artifact Example

This artifact would cause a significant change in the systolic blood pressure, but the

change is most obvious when viewing the raw waveform itself. At times, however, artifact was not

so obvious, and more resolution was needed to discover the corrupted waveforms. Approximately

300 episodes were classified by similar visual inspection of both the measurement data and the

waveforms..

The following table summarizes the number of alarms for each record used in this study,

as well as the percentage of false alarms, using only the alarms resulting.

sABP (mmHg)

22.27 22.272 22.274 22.276 22.278 22.28 22.282 22.284
Time (hrs)

Figure 10: Visual Artfact Detection Plot



Patient Artifact Detects Real Detects Pos. Pred. Accur. In the chart of figure 11, each
055 5 4 44.4%
212 4 28 87.5% continuous series of alarms is
215 2 27 93.1%
216 0 33 100.0% counted as one "detect". In230 1 19 95.0%
231 2 2 50.0%
240 0 31 100.0% particular, for a hypotensive
241 2 5 71.4%
242 2 0 0.0% alarm (low blood pressure), if
245 6 0 0.0%
248 1 4 80.0% the blood pressure continues to
415 2 8 80.0%
417 8 2 20.0%417 8 2 20.0% decrease after the alarm
418 2 1 33.3%
420 21 42 66 7%
421 17 38 69 1% initially sounds, then a single

All 16 75 244 76.5%
Average 61.9% alarm "detect" consists of

First 14 37 164 81.6%
Average 61.1% many alarms; the alarm value

is the minimum value attained
Figure 11: "Merlin" ABP Alarm Summary

since the blood pressure

dropped below the minimum threshold. This "event" definition was chosen so that the positive

predictive accuracy statistics were not biased by events of long duration. The summary statistics

at the bottom of figure 11 show that the gross positive predictive accuracy (summing over all

events) was 81.6%, while the average positive predictive accuracy (average over all patients) was

61.1%. Therefore, an ABP alarm from the Merlin monitor for a typical patient in this subset of the

database is, on the average, 61.1% predictive of a real hypo- or hypertensive episode.

4.1.2 Automated Artifact Detection
The automated algorithm of section 3.1.2 was run on all 16 patients using the three basic

protocols for detecting artifact. The first protocol implemented a linear foreacasting method,

which used the trend of the data both 5 minutes and 1 minute previous to the alarm to determine

whether the alarm should be classified as real or artifact. The algorithm is described in detail in

section 3.1.2 Automated Artifact Detection.



The following ROC curve summarizes the operation of the linear trend algorithm for

detecting artifact. The algorithm achieves a nearly 96% probability of detecting a real change (i.e.,

classifying a true "real" change as "real"), with a probability of failure (classifying a true

"artifact" as "real") of only 54%. This seems acceptable, but the remaining 4% of the real cases

classified as artifact is undesirable. In addition, the probability of detecting an artifact as real, that

is, the probability of failure (abscissa in the ROC plot) is relatively high at 54%, as will be obvious

when it is compar6d to subsequent algorithms.

The overall shape of the ROC curve in figure 12 indicates that a linear trend algorithm,

although relatively simple in design, is a reasonable first approximation for detecting artifact. The

non-smooth nature of the plot suggests that certain real alarms are "clustered", in that once the

threshold is increased such that one more blood pressure alarm is classified as "real", several blood

pressure alarms "nearby" (in the sense of the blood pressure alarm value's distance from the linear

trend forecast at that time) are also classified as "real".

From the data used to create the ROC curve, two separate tables were created to elucidate

on which patient records the linear trend algorithm performed well, and on which patient records

the algorithm did not perform well. The following data is for alpha = 0.17, which is an unusually

ROC: Linear Trend

P(Detect

0 0.1 0.2 0.3 0.4 0.5 0.6
P(Failure)

Figure 12: ROC: Linear Trend Algorithm



low threshold level for the linear trend algorithm, and therefore the algorithm should reject nearly

everything. In this case, a low PD is expected. Consequently, although the positive predictive

accuracy is perfect (100%) the extremely low "real sensitivity" of 1.5% is expected, and it is clear

that the threshold must be increased greatly in order to detect real changes. One point which may

be made from this chart is that there were 6 TP detections even for such a low threshold value.

These should remain to be detected as "real" as alpha increases.

Alpha0.1 TP FN FP TN Real Sens Real PPA Art Sens Art PPA
m055 0 4 0 5 0.0% n/a 100.0% 55.6%
m212 4 24 0 4 14.3% 100.0% 100.0% 14.3%
m215 1 26 0 2 3.7% 100.0% 100.0% 7.1%
m216 0 ý3 0 0 0.0% n/a n/a 0.0%
m230 0 19 0 1 0.0% n/a 100.0% 5.0%
m231 0 2 0 2 0.0% n/a 100.0% 50.0%
m240 0 31 0 0 0.0% n/a n/a 0.0%
m241 0 5 0 2 0.0% n/a 100.0% 28.6%
m242 0 0 0 2 n/a n/a 100.0% 100.0%
m245 0 0 0 6 n/a n/a 100.0% 100.0%
m248 0 4 0 1 0.0% n/a 100.0% 20.0%
m415 0 8 0 2 0.0% n/a 100.0% 20.0%
m417 0 2 0 8 0.0% n/a 100.0% 80.0%
m418 0 1 0 2 0.0% n/a 100.0% 66.7%
m420 0 42 0 21 0.0% n/a 100.0% 33.3%
m421 1 "37 0 17 2.6% 100.0% 100.0% 31.5%

Average 1.5% 100.0% 100.0% 38.3%
Gross 6 238 0 75 2.5% 100.0% 100.0% 24.0%

Figure 13: Results: Linear Trend Algorithm; Alpha=O. 17



Alpha=6.7
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Figure 14: Results: Linear Trend Algorithm; Alpha=6 7

Average
234 10 1 41 34

Average
154 10 16 21

From figure 14, several comparisons can be made to the statistics from the "Merlin"

monitor. At an alpha of 6.7 (i.e., the criterion for accepting an alarm is that it be within 6.7 error

units, where an error unit is described in the methods above), the average value for the "real detect"

positive predictive accuracy is 79.3% using all 16 records (for comparison to the waveform

analysis algorithm discussed below, the average PPA is 79.7% and the gross PPA is 90.6% using

the first 14 records, m055 through m417); the positive predictive accuracy calculated above for the

"Merlin" monitor, without the aid of additional data analysis, was 61.1%, showing that the

trending algorithm improved the predictive value of the ABP alarm by 17%. However, this was

done at the expense of the real alarm sensitivity rate, which decreased from 100% (by definition) to

97.8%. Therefore, approximately 2.2% of the alarms which are actual hypo- or hypertensive

episodes are ignored on the basis that they are thought to be caused by artifact.

Real Sens
100.0%
96.4%
96.3%
75.8%
100.0%
100.0%
100.0%
100.0%

n/a
n/a

100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
97.8%
95.9%
97.4%
93.9%

Real PPA
50.0%
93.1%
96.3%
100.0%
100.0%
100.0%
100.0%
83.3%
n/a

0.0%
100.0%
80.0%
33.3%
100.0%
72.4%
80.9%
79.3%
85.1%
79.7%
90.6%

Art Sens
20.0%
50.0%
50.0%

n/a
100.0%
100.0%

n/a
50.0%
100.0%
66.7%
100.0%
0.0%
50.0%
100.0%
23.8%
47.1%
61.3%
45.3%
65.6%
56.8%

Art PPA
100.0%
66.7%
50.0%
0.0%

100.0%
100.0%

n/a
100.0%
100.0%
100.0%
100.0%

n/a
100.0%
100.0%
100.0%
100.0%
86.9%
77.2%
84.7%
67.7%



The second protocol we implemented helped to assess the utility of considering the "INOP"

annotations in appropriately removing artifact.. All data within a window 10 seconds preceding an

"INOP" annotation, until the time of the annotation itself, was removed from consideration, and the

identical linear forecasting method of the first protocol was used to determine whether the alarm

was real or artifact. A 10-second window was used because this is the time over which the blood

pressure must remain in an alarm state (above or below threshold) before an alarm is triggered.

The ROC curve for the linear trend method with the INOP data removed is in figure 15 below.

P(Detect)

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6
P(Failure)

Figure 15: ROC: Linear Trend: INOPs Removed

The INOP conditions are used in the monitor such that, when a transducer is not operating

correctly, no alarm for the measurement made by that transducer will be triggered. This type of

conditional alarming in a monitor is expected. Therefore, the purpose of removing the data which

was corrupted by INOP data was simply to improve the linear trending method, since the variance

which would be acceptable in a region with much artifact would allow an "artifact" alarm to be

classified as "real". Removing the data in an INOP region ought to remove the data with high

variance, which theoretically should allow a more restricted acceptable region, thus decreasing the

number of false positive detections.

ROC Linear Trend Analysis; INOP Data

t

P(Detect)

ROC Linear Trend Analysis; INOP Data



Alpha=6.7 TP FN FP TN Real Sens Real PPA Art Sens Art PPA
m055 4 0 4 1 100.0% 50.0% 20.0% 100.0%
m212 27 1 2 2 96.4% 93.1% 50.0% 66.7%
m215 26 1 1 1 96.3% 96.3% 50.0% 50.0%
m216 25 8 0 0 75.8% 100.0% n/a 0.0%
m230 19 0 0 1 100.0% 100.0% 100.0% 100.0%
m231 2 0 0 2 100.0% 100.0% 100.0% 100.0%
m240 31 0 0 0 100.0% 100.0% n/a n/a
m241 5 0 1 1 100.0% 83.3% 50.0% 100.0%
m242 0 0 0 2 n/a n/a 100.0% 100.0%
m245 0 0 3 3 n/a 0.0% 50.0% 100.0%
m248 4 0 0 1 100.0% 100.0% 100.0% 100.0%
m415 8 0 2 0 100.0% 80.0% 0.0% n/a
m417 2 0 4 4 100.0% 33.3% 50.0% 100.0%
m418 1 0 0 2 100.0% 100.0% 100.0% 100.0%
m420 42 0 14 7 100.0% 75.0% 33.3% 100.0%
m421 38 0 9 8 100.0% 80.9% 47.1% 100.0%
All 16 Average 97.8% 79.5% 60.7% 86.9%
Gross 234 10 40 35 95.9% 85.4% 46.7% 77.8%

First 14 Average 97.4% 79.7% 64.2% 84.7%
Gross 154 10 17 20 93.9% 90.1% 54.1% 66.7%

Figure 16: Results Excluding "INOP" Data

The important values for comparing the results of linear trend algorithm which excludes

"INOP" data, using only the first 14 records, to other algorithms using the same records are the

average PPA of 79.7%, the gross PPA of 90.1%, in addition to the average sensitivity of 97.4%

and the gross sensitivity of 90.1%.

In order to compare the improvement which excluding the INOP data provided, the ROC

curve below includes the ROC curves from both protocols: the linear trending, and the linear

trending with INOP data removed. The improvement of the algorithm by simply removing

knowingly corrupted data is not drastic. The ideal ROC curve is close to the point (1,0), which is

the case of detecting all real changes while rejecting all artifact changes. However, the linear

trending algorithm which first removes the corrupted INOP data does perform slightly better.



ROC Linear Trend Analysis

In the legend of figure 17, "Linear Trend" denotes the standard linear trend method using

all the data in the arterial blood pressure measurement series of all 16 records, while "'Trend w/out

INOP" denotes the protocol which implemented the same linear trend method on the same records,

but with the data cdrrupted by an inoperative transducer removed. The removal of the corrupted

data yields identical or improved results over the entire ROC curve.

Each of the false negative episodes were visually analyzed to motivate an improvement of

the linear .trending algorithm. Although from visual analysis of the arterial blood pressure

waveforms it is obvious that artifact caused these changes, the measurements themselves exhibit no

drastic change in value which suggests a limitation of the linear trending algorithm. This is due to

the fact that the measurements are low-pass filtered, and do not reflect individual beat-to-beat

changes in the waveform shape.

The fact that the first two protocols had less than optimal sensitivity results suggests the

difficulty of detecting whether artifact is the cause of an ABP alarm using only the arterial blood

pressure measurements and "INOP" notations. Unlike heart rate, which is frequently verified using

the plethysmography "PULSE" rate, the blood pressure can not be verified using an alternative

P(Detect)

6
P(Failure)

Without INOP DataFigure 17: ROC: Trending With and



signal, except in the extreme cases where the blood pressure is zero, but the heart rate is non-zero.

However, this extreme case scenario was not present in these patients, where an incorrect

classification would have been rectified if heart rate were also considered. These results motivate

the need for an artifact detection scheme which includes analysis of the ABP waveform itself.

4.1.3 Beat-by-beat Waveshape Analysis
While assessing the utility of the linear trend method, it became obvious that there were

several "real" changes which were consistently classified as artifact due to their rapid time course.

An example is record 216 which had 11 intra-aortic balloon pump setting changes which resulted

in the arterial blood pressure alarm being triggered. An automated system needs to robustly detect

these real changes in blood pressure.

Through correlating an ideal arterial blood pressure waveform template with the blood

pressure waveform in the five minute period prior to each alarm, correlation coefficients were

obtained on a beat-by-beat basis, and the correlation values were stored. These data were used in

an algorithm similar to that used for the "INOP" information, where measurements which

corresponded to "artifact" beats were noted and excluded from the linear trending algorithm.

In figure 18 is a plot of the correlations for a portion of record 216 as determined by the

waveform analysis program. The ABP measurements are in the upper plot, while the beat-by-beat

correlations of each waveform with a template are in the lower plot. The extremely high degree of

correlation (r > 0.99) for the entire waveform ("All") continues until time 0.745 hours, when a

sudden drop in the blood pressure due to a brief interruption in the functioning of the balloon

catheter (cardiac assist) causes the shape of the entire waveform to change drastically. However,

the first half of the waveform, that due to the contraction of the heart, continues to have a relatively

high degree of correlation (r changes from 0.999 while the balloon catheter was functioning to 0.87

when the balloon did not inflate). The second half of the waveform, corresponding to the portion



where the balloon creates an increased pressure, correlates very poorly with the template when the

balloon ceased to inflate (r changed from 0.90 to -0.32).

MIMIC 216 ABP Waveform, Balloon Change
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Figure 19: ABP Waveform - Transient Change

In figure 19 is a portion of the ABP waveform analyzed to create figure 18. In addition to

the correlation coefficients of figure 18, the waveform analysis program automatically classifies

the type of rhythm detected, if the patient has an intra-aortic balloon pump (as does patient 216),

and whether each beat is artifact or real. The following plot shows the "type" (i.e., the change is

assist ratio; type "0" is the original ratio, while type "1" is a novel ratio.) and whether the data is

corrupted ("invalid") for the second episode (hypotensive ABP alarm) of MIMIC Record 216 (note

that it includes part of the same data as the figures above). The first plot in figure 20 shows that

MIMIC 216: Systolic ABP vs Time (hrs)
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Figure 18: Beat-by-beat Artifact Detection
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the waveform is never classified as "invalid" (i.e., "invalid" remains 0), while the "type" (i.e., the

assist ratio class) changes from type "0" to type "1" transiently. These transient changes in

waveform "type" are reflected also in the fact that the correlation of the first half of the waveform

remains high (near 0.9) while the correlation of the entire waveform drops to near 0, synchronously

with the changes in type.

MIMIC 216: Episode 2 Correlations
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Figure 20: Waveform Analysis: MIMIC 216

These results show that an automated procedure which uses the correlation value over

three ranges (entire waveform, first half, second half), functions exceptionally well in detecting

changes in the balloon pump settings, and therefore allowing the arterial blood pressure alarm,

which frequently occurs in patients with balloon catheters, to be correctly classified as a "real"

alarm. Most of the problems which the linear trend algorithm experienced were with data of this

type, where the trend is very fast - which is suggestive of artifact - but the waveform maintains its

integrity throughout the alarm episode.

In addition to'being able to detect drastic changes in the arterial blood pressure waveform

integrity, the series of correlation coefficients are analyzed for periodic changes, which result when

a patient with a catheter balloon pump undergoes changes in the assist ratio, whereby the balloon

inflates after every other or every third heart beat (a 2:1 or 3:1 ratio, respectively). These ratio

changes must be robustly detected in order to decrease the number of false alarms, since changes in

the ratios impact greatly on the systolic and diastolic blood pressure measurements.



ROC Comparison; Three Algorithms

P(Detect)

U U.1 U.~ U.3 U.4 U.~ U.b U.(

Figure 21 shows the ROC for all three algorithms, including the results of the beat-to-beat

waveform analysis. The parameter alpha ranged from 1.1% to 55.6%, and was the threshold for

the percentage of "corrupted" waveforms above which an episode was classified as artifact. The

data which was analyzed to obtain this was a window of duration 10.24 seconds, immediately prior

to an ABP alarm. It'is obvious from these curves that the waveform analysis curve is slightly

better than both the linear trend algorithms, and most notably when the probability of failure is

35%.

The chart in figure 22 summarizes the result of the algorithm for alpha = 0.56, which is

the upper-right most data point on the ROC curve. The purpose of this algorithm at the outset was

to develop a method which maintained a 100% "real change" sensitivity, while maximizing the

"real change" positive predictive accuracy (i.e., not introducing "false negative" detections, while

minimizing the number of "false positive" instances). In the following chart, the results of the

artifact detection algorithm are summarized. Only one FN occurred, and this happened in record

U U.1 U.Z U. U.4 U.0 U. U. I
P(Failure)

Figure 21: ROC: Waveform Analysis



055. The average positive predictive accuracy, over patients, becomes 65.8%, which is only a mild

increase over the positive predictive accuracy of the unassisted "Merlin" monitor. However, of the

37 false positive "Merlin"alarm episodes (in the 14 patients analyzed), 13 (30%) of these episodes

were correctly rejected.

The reason for the relatively high number of false positive results for record 245 was

obvious. In order to err on the side of caution, the waveform analysis algorithm classifies as "real"

any episode for which no correlation data prior to the alarm exists. This was predominantly seen

in record 245, where all 6 FP results were due to the fact that no correlation data existed for the 5-

minute window prior to the alarm. The only time that no data exists for an episode is when no

"stable" waveform is found with which to obtain the correlation data. Typically this does not

occur because there is 5 minutes of sustained artifact, but rather because the transducer is not

functioning correctly during the time the template is being located. Therefore, although the non-

existence of data is highly predictive of artifact, the waveform analysis algorithm classified alarms

cautiously, and classified the "artifact" alarms as "real". This behavior of the algorithm is

conservative, and should be revised in the future.



alpha=0.56 TP FN FP TN Real Sens Real PPA Art Sens Art PPA
m055 3 1 2 3 75.0% 60.0% 60.0% 75.0%
m212 28 0 1 3 100.0% 96.6% 75.0% 100.0%
m215 27 0 2 0 100.0% 93.1% 0.0% n/a
m216 33 0 0 0 100.0% 100.0% n/a n/a
m230 • 19 0 0 1 100.0% 100.0% 100.0% 100.0%
m231 2 0 2 0 100.0% 50.0% 0.0% n/a
m240 31 0 0 0 100.0% 100.0% n/a n/a
m241 5 0 0 2 100.0% 100.0% 100.0% 100.0%
m242 0 0 1 1 n/a 0.0% 50.0% 100.0%
m245 0 0 6 0 n/a 0.0% 0.0% n/a
m248 4 0 1 0 100.0% 80.0% 0.0% n/a
m415 8 0 2 0 100.0% 80.0% 0.0% n/a
m417 2 0 5 3 100.0% 28.6% 37.5% 100.0%
m418 1 .0 2 0 100.0% 33.3% 0.0% n/a

Average 97.9% 65.8% 35.2% 95.8%
Gross 163 1 24 13 99.4% 87.2% 35.1% 92.8%

Figure 22: Waveform Analysis: Alpha = 0.56

Using a threshold of 56% corrupted data with the waveform analysis algorithm, only 1 FN

detection was obtained, which is a 99.4% (163/164) gross average sensitivity. In terms of

maximizing the sensitivity of the algorithm, there is much benefit in implementing a method for

analyzing the waveform of each beat. However, the gross positive predictive accuracy (87.2%)

was lowei than the gross PPA of the linear trend algorithm which removes INOP data (90.1%).

This result suggests that the linear trend algorithm is more accurate in distinguishing artifact from

real changes. However, looking in detail at the waveform analysis results, it was clear that the

reason the number of false positives (24) was greater than the number of false positives (17) for the

linear trend algorithm with INOP data removed, was that often the waveform program could not

find a stable template waveform, and therefore the classification defaulted to "real". This is a

problem with the waveform analysis program, which results because only data which is 5 minutes

before the alarm is analyzed. If artifact corrupts the waveform for the entire 5 minutes, then 10

consecutive stable waveforms are not found, and no classification can be made. There were 12

episodes for which no stable template was obtained (episode! 1 in record 212, episode 15 in 215,



episode 3 in 231, episode 1 of 242, all 6 episodes of 245, episodes 2 and 3 of 418). Changing the

algorithm to classify each episode for which the waveform algorithm does not converge as

"artifact", the sensitivity does not change (since all such episodes were indeed artifact), but the

PPA would become 93.1%, which represents a 2% improvement over the linear trend algorithm

which remnoves the INOP data. A potential method for accomplishing this positive predictive

accuracy would be to use the waveform analysis result when the algorithm obtains a template, but

refer to the linear trend algorithm when no result from the waveform analysis exists. Combining

the results of two methods which are effective independent of one another should increase the PPA

over any one method alone, and may increase the sensitivity to 100%.



4.2 Physiologic Classification Results
Each episode which was visually classified as "real", using the methods of section 3.1.1,

was also visually categorized according to the direction of change from a "baseline" that each of

the physiologic parameters underwent.

The following plots summarize record 230, and in particular focus on episode 12, which

occurred at hour 2.22. The general trend of the alarms in record 230 consists mostly of positively

correlated changes in ABP and HR (see figure 25) (i.e., for hypotensive alarms, this means that

both ABP and HR decreased concurrently). Only alarm episode 12 suggests a significantly

different behavior from the other alarms, since it is the only alarm instance where ABP decreases

and HR increases. This episode does not stand out in the ABP vs PAP two-dimensional plot

(figure 24), since the PAP measurement did not change significantly (ABP of 80 mmHg, which is

the lowest ABP alarm value in figure 24, and PAP of 27 mmHg). According to the categorization

scheme described in section 3.2, episode 12 is (-, +, 0) - see Appendix B for a categorization of

each alarm episode.
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Figure 23: Measurements used in Physiologic Classification



MIMIC 230: ABP vs PAP ABP vs Time; True ABP Alarms

The isolated circle at point (80,110) - that is, 80 mmHg ABP and 110 bpm HR - in the

plot of ABP vs. HR in figure 25 is the alarm episode associated with the data in figure 23. When

the arterial blood pressure drops and the heart rate increases, indicating that the two parameters are

negatively correlated, the hypothesis can be one of two possibilities. The first possibility is that the
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Figure 24: MIMIC 230: ABP vs PAP w/Alarms

MIMIC 230: ABP vs HR ABP vs Time; True ABP Alarms
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Figure 25: MIMIC 230: ABP vs HR w/Alarms



heart rate began to increase rapidly (tachycardia), thus decreasing the amount of time the heart can

fill (with no change in contractility), resulting in a decrease in ABP. Alternatively, the blood

pressure could have begun to drop due to a lowered systemic vascular resistance or decreased

blood volume, so that the heart rate attempted to compensate via the baroreceptor reflex. Using

only the direction of.change in the measurements, both hypotheses are consistent with the data.

The time course of the HR and ABP data suggest that in this subject tachyarrhythmia might be the

cause. Only a more detailed analysis of the ECG would be able to determine that this episode was

in fact an episode of ventricular tachycardia.

Approximately 200 additional alarm episodes were categorized; however describing the

potential pathology which led to the alarm condition is outside the scope of this research. The two-

dimensional plots of the measurements (see Professor Roger Mark for Appendix C), together with

the clinical information in the MIMIC database may be combined to formulate a more complete

physiologic rationale for the alarms. In addition, these data can be analyzed to motivate automated

algorithms.for physiologic classification. Although results were patient-specific, the basic finding

was that most alarms for a particular patient are of the same general type (see Appendix B), and

that a range of physiologic hypotheses can be suggested by analyzing the trend of the alarms (e.g.,

all alarms may result from correlated changes in the measurements, with the exception of a few

particularly interesting episodes).
a.



5 Discussion
Augmenting the methods which analyze only the measurements to include an analysis of

the raw waveforms proved to be essential in improving the positive predictive accuracy while

maintaining a high sensitivity of the Merlin Monitor /Additional algorithm system. However, there

were a few challenges which arose when implementing the program for artifact detection using the

waveforms (artdet.c). The most notable challenge was using ECG analysis as the method for

locating the fiducial marks for the arterial blood pressure waveform. The noise and artifact in the

ECG waveforms gave spurious QRS-complex annotations, yielding an incorrect "window" of the

blood pressure, and therefore giving a much different waveform to compare to the template.

Although a notation of a poor ECG correlation was indicated by the waveform analysis program -

therefore allowing the waveform to be excluded from consideration in calculating the percentage

of "corrupted" waveforms - the analysis was dependent on the ECG signals having a high signal-

to-noise ratio. A change in the algorithm to be able to handle the cases where the ECG SNR is low

would be helpful. A second challenge in the waveform artifact detection algorithm was described

in section 4.1.3. In short, the waveform program needs to be improved by selecting a default

template when one cannot be found using the 5 minutes of data immediately preceding the alarm.

However, despite tle potential for error when correlating raw, unprocessed data, the algorithm

robustly handled and appropriately classified most of the arterial blood pressure waveforms.

Combining the results of the two best classification algorithms - the waveform analysis

and the linear trend algorithm which excludes the corrupted INOP data - it should be possible to

obtain a perfect sensitivity (100%), and a very high PPA (>95%). The reason that a perfect PPA

is difficult is that many visually classified "artifact" episodes were borderline cases. Record 055

had the only FN using the waveform analysis algorithm, in addition to two FP detections which

seemed to be borderline cases, so that improving the functioning of the algorithm on patient 055, as



well as changing the waveform algorithm to declare "artifact" when no stable template was found,

would increase the results to a sensitivity of 100% and a gross PPA of 94.2% (163/173), since 14

false positives would become true negatives. Since the correlation values themselves were not

obtained before visually classifying each episode, it is possible that the visual classification was too

sensitive to the artifact - that is, the artifact may have been minimal, and therefore not detectable

using the threshold (-0.56) that was used to determine whether a single waveform was corrupted.



6 Conclusion
In conclusion, effective methods have been developed for automatically analyzing ABP

alarm regions, detecting which result from artifact (a disruption of the waveform integrity) and

which are real changes. Moreover, we have found that it is of critical importance to detect artifact

appropriately at the level of the waveforms, and to consider methods for analyzing the blood

pressure waveform that include splitting the waveform into two separate regions in order to detect

special cases such as fluctuations in the cardiac assist pump. Future work should resolve the

question of establishing a default template when the waveform analysis program cannot locate a

template in the usual manner. Finally, an algorithm which effectively combines the output from the

linear trend algorithm and the waveform analysis program should improve further the sensitivity

and positive predictive accuracy compared to the results of each independent algorithm. In

particular, the number of false negatives (real changes which are classified as artifact) should

become zero, while the number of false positives (artifact changes classified as real) should be

reduced by approximately 50% of the number of false positives in any one of the algorithms run

independently.

Addressing the issue of physiologic classification, each non-artifact alarm region was

categorized. according to the type of change which occurred using three measurements, systolic

arterial blood pressure (sometimes mean ABP), heart rate, and diastolic pulmonary arterial

pressure. Plots were made which summarize each event which provide a means for viewing the

alarm regions to motivate methods for automatic categorization. A particularly interesting episode

was plotted in detail, and suggestions on how to automatically classify the physiologic change were

given.
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'"They read you Cinderella
You hoped it would come true
That one day your Prince Charming
Would come rescue you

You like romantic movies
You never will forget
The way you felt when Romeo kissed Juliet

All this time that you've been waiting
You don't have to wait no more

CIIORUS:
I can love you like that
I would make you my world
Move Heaven and Earth if you were my girl



I will give you my heart
Be all that you need
Show you you're everything that's precious to me
If you give me a chance
I can love you like that

I never make a promise I don't intend to keep
So when I say forever, forever's what I mean
I'm no Casanova but I swear this much is true
I'll be holdin' nothing back when it comes to you
You dream of love that's everlasting
Well baby open up your eyes
REPEAT CHORUS

BRIDGE:
You want tenderness - I got tenderness
And I see through to the heart of you
If you want a man who understands
You don't have to look very far
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Appendix A
The following program "artdet.c" , written in C, is that which was used used to create the

results in section 4.1.3. The UNIX (csh) script following it puts the data into the appropriate

format, and runs artdet.c.

/* Adam Hoyhtya 5/15/95 Blood Pressure Artifact Detector
This program locates BP maxima and minima, utilizing physiologic
boundary conditions in order to protect the calculations from noise
and artifact.

*/

#include <math.h>
#include <stdio.h>
#include <ecg/db.h>
#include <ecg/ecgmap.h>
#include "constants.h"
#include "declars.h"
#include <string.h>

#define BALLOON 1 /* or 0 if no balloon */
#define R THRESH 0.85 /* THIS IS CORRELATION THRESH FOR 10 CONSEC B4 ACCEPT */
#define BEATS 15 /* THIS IS NUMBER OF ABP WAVEFORMS AVERAGED */
#define SEGLEN 600
#define MAXLEN 20
#define MIN 0
#define MAX 1
#define BP 0
#define PL 1
#define RSP 2
#define SO02 3
#define L 3
#define NUM PARAMS 3
#define RR WINDOW 4
#define PARWIN 4
#define BPPLWINDOW 10
#define CORR LIMITS 1000
#define min(A,B) ((A) < (B) ? (A) : (B))
#define max(A,B) ((A) > (B) ? (A) : (B))
#define sqr(A) (A)*(A)
#define SWAP(a,b) tempr-(a);(a)=(b);(b)=tempr

char *pname;
int len;

struct trio {
double maxcorr;
int mc_shift;
double fh_corr;



int fh_shift;
double lh_corr;
int lh_shift;
}; *

double smear-corr (double * temp, double * signal, int size,
double *temp64, double *templ28, double * temp256,
double * stretch256, struct trio *data);

double find_trio (struct trio *data, double * temp, double *sig, int size,
int Itrim, int shift);

void generate_templates (double * template, int size, double temp64 [],
double templ28[], double temp256[]);

main(argc. argv)
int argc;
char **argv;
{
/* variable declarations */
char *getparam(), *prog_name();
double calcHR();
double calcpar();
double meano);
void addtime();
void addpar();
void initvect();
double crosscoro;
double normdot();
double find_good template();
void get_temps ();
double find trio ();-
char *p, *parameter = NULL, *record = NULL;
char ifname[20], ann_name[15], *ifpath;
char datarec[15], calfile[15];
FILE *ifile;
int i, n, segment, last_segment, type, evil,ecgbad;
long rrtimes(RR_WINDOW],BP_PLtdelt[BP_PL_WINDOW],totsecs;
double avBPv[PARWIN],mxBPv[PARWIN],mxBPtv[PARWIN];
double mnBPv[PARWIN],mnBPtv[PARWIN],mxPLtv[PARWIN];
double lastsec, cursec, average;
double h, m, s, t, tstart = 0.0, tstop = 0.0, tdiv = 60.0;
struct trio data;
struct trio data_2;

double temp64 [65];
double temp128 [129];
double temp256 [257];
double stretch256 [257];
double temp64_2 [6];
double templ28_2 [129];
double temp256_2 [257];



double stretch256_2 [257];
void help();

double corr[CORR LIMITS], cl, c2;
double Rlinear;
double tcorr[CORR LIMITS];
double template[SEGLEN];
double template2[SEGLEN];
double tempave[SEGLEN];
double sig[L] [MAXTIME];
static struct siginfo si[MAXSIG];
static struct anninfo a[2];
static struct ann annot;
int nsig, numtemplates;
static int vin[MAXSIG];
long k, j, cal;
int BPn = -1,'PLn = -1, RSPn = -1, SO2n = -1;
long prev_time, currtime, delta_time, cont, bBP, bPL, bRSP;
long templen, templen2;
long time[L][2];
double gBP, gPL, gRSP, F, HR, aveBP;
double peakBP, peakBPt, pitBP, pitBPt, peakPLt;
FILE *fcal, *fp;
char outfil[MNAXLEN], poutfil[MAXLEN];
int oldexists = 0;
int flag;
int no_template;
int happy;
double line[SEGLEN];
/* *********************************************************************** */

pname = prog_name(argv[0]);
for (i = 1; i < argc; i++) {

if (*argv[i] == '-') switch (*(argv[i]+l)) {
case 'f: /* start time follows */

if (++i >= argc) {
fprintf(stderr, "%s: stop time must follow -t\n", pname);
exit(l);

}
n = sscanf(argv[i], "%lf:%lf:%lf', &h, &m, &s);

switch (n){
case 1:-tstart.= h; break;
case 2: tstart = 60.0*h + m; break;
case 3: tstart = 3600.0*h + 60.0*m + s; break;

}
break; o

case 'h': /* help requested */
help();
exit(0);
break;

case 'r': /* record name follows */
if (++i >= argc) {
fprinff(stderr, "%s: record name must follow -r\n", pname);

exit(l);
}



record = argv[i];
break;

case 'a': /* annotator name follows */
if (++i >= argc) {

fprintf(stderr, "%s: annotator name must follow -a\n", pname);
exit(l);
}

strcpy(annname, argv[i]);
break;

case 't': /* stop time follows */
if (++i >= argc) {
fprintf(stderr, "%s: stop time must follow -t\n", pname);

exit(l);
}
n = sscanf(argv[i], "%lf:%lf:%lf', &h, &m, &s);

switch (n){
case 1: tstop = h; break;
case 2: tstop = 60.0*h + m; break;
case 3: tstop = 3600.0*h + 60.0*m + s; break;

}
break;

case 'V': /* alternate verbose mode, print output sample times */
tdiv = 1.0;
if (argv[i][2] == 'm') tdiv = 60.0;
else if (argv[i] [2] == 'h') tdiv = 3600.0;
break;

default:
(void)fprintf(stderr, "%s: unrecognized option %s\n",

pname, argv[i]);
exit(l);

}
else {

(void)fprintf(stderr, "%s: unrecognized argument %s\n",
pname, argv[i]);

exit(l);
}

}
if (record == NULL II ann_name == NULL) {

help();
exit(l);

/* ******************************************************************** */
sprintf(outfil, "%s.%s", record, pname);
sprintf(poutfil, "%s.%s.ev",record,pname);
/********************************************************************** */

if((fp=fopen(outfil,"w")) == NULL) {
printf("%s: can't open output file %s\n",pname,outfil);
exit(l);

} a.

/* open signal and annotation files */
a[0].name = ann_name; a[0].stat = READ;
if ((nsig = dbinit(record, a, 1, si, MAXSIG)) < 1) {
printf("error in dbinit. Code: O/%d\n", nsig);



exit(2);
}
/*
/* ******************************************************************* */

F = sampfreq(record);
/* printf("F = /f\n",F); */
F = 124.95;
/* find appropriate ABP signal */
for(i=0;i<nsig;i++) {

if(strcmp("ABP ",si[i].desc)==O I[ strcmp("ABP",si[i].desc)==O II strcmp("ART ",si[i].desc)==0 O
strcmp("ART",si[i].desc)==0) BPn=i;
}
if(BPn<O) {
fprintf(stderr,"Error in locating ABP.\n"); exit(l);

}
/* set baseline and gain values */

bBP = si[BPn].baseline;
gBP = si[BPn].gain;

/******************************************************************** */

/* Go to the first segment that contains data of interest. */
/********************************************************************* */

k=0, /* k equals number of annotations obtained so far */
/* while(getann(0,&annot)==0 && (double)annot.time/(F*3600.)<tstart) {
} */
if(getann(0,&annot) ==0) prevytime = annot.time;
lastsec = -1;
flag = 0;
no_template = 1;
happy = 0;
numtemplates = 0;
while (no_template && getann(0, &annot) == 0 && (double)prev_time/(F*3600.0) < tstop) {
if(isqrs(annot.anntyp)= = 1) {

if ( (curr_time=annot.time)-prev_time<MAXTIME) {
k++;

isigsettime(prev-_time);
/* min/max assumed to be within (prev_time,currtime) window */
delta_time = curr_time - prev_time;
for(i=0;i < delta-time && getvec(vin) > O;i++) {

sig[BP][i] = (double)(vin[BPn]-bBP)/gBP;
}

if(flag-=0) {
for (i = 0 ; i < deltatime ; i++) {

template[i] = sig[BP][i];
}
templen = delta_time;
generate_templates (template, delta_time, temp64, temp128, temp256);
printf("Template set.\n");
flag = 1;
numtemplates = 1;

if (numtemplates == 1) {
corr [k] = smearcorr (template, &sig[BP] [0], delta_time, temp64,



templ28, temp256, stretch256, &data);
printf (" checking 1 template -- corr %0/6.4f dt O/%d \n",corr[k],

delta_time);
}

else {
cl = smear corr (template, &sig[BP] [0],delta time, temp64,

temp128, temp256, stretch256, &data);
c2 = smearcorr (template2, &sig[BP] [0],delta_time, temp64_2,

templ28_2, temp256_2, stretch256_2, &data_2);
printf (" checking 2 templates -- corr %/66.4f & %0/6.4f dt O/%d \n",

cl, c2, delta_time);
corr[k] = max(cl,c2);

}

if(corr[k] > R_THRESH) {
happy++;

if (happy >= BEATS*numtemplates) {
notemplate = 0;

}

else {
/* copy current template into template2, and copy current

beat into template */
if (numtemplates == 1 && BALLOON && data.fh_corr > data.lh_corr &&

data.fh_corr > 0.7*R_THRESH) {
numtemplates = 2;
for (i = 0 ; i < delta_time ; i++)

template2 [i] = sig[BP] [i];
templen2 = deltatime;
generate_templates (template2, templen2, temp64_2, templ28_2,

temp256_2);
printf("Template set.\n");
happy = 0;

}
else {

happy = 0;
flag = 0;

}
}
prev_time = curr_time;

}

if (no_template == 0) {
for(i=0; i < SEGLEN ; i++)

line[i] = (double) i+1.0;

while(getann(0,&annot) == 0 && (double)prev_time/(F*3600.0) < tstop) {
if(isqrs(annot.anntyp)== 1) {



if ( (curr_time=annot.time)-prev_time<MAXTIME) {
k++;

isigsettime(prev_time);

/* waveform assumed to be within (prev_time,curr time) window */

delta_time = currtime - prev_time;
for(i=0;i < delta_time && getvec(vin) > 0;i++) {

sig[BP] [i] = (double)(vin[BPn]-bBP)/gBP;

if (numtemplates == 1) {
/* check template length versus current --> gives est. on ECG noiz */
if ((float)abs(delta_time - templen)/(float)templen > 0.4)

ecgbad = 1;
else ecgbad = 0;

corr[k] = smear corr (template, &sig[BP][0], delta_time, temp64,
templ28, temp256, stretch256, &data);

tcorr[k] = curr_time/(3600.*F);
/* default type is 0 = NORMAL */
type = 0;
if ((1-corr[k]) > 0.3) {
/* if low correlation, then is evil = 1 */
evil = 1;
if(data.fh_corr > 2*data.lh_corr && data.fh_corr > 0.7*R_THRESH) {

evil = 0; /* case where first half is good!! */
type = 1; /* must be a new type = 1 */
}
}
else

evil = 0;

/* all bets are off if ecg is bad */
if (ecgbad) { evil = 0; type = -1; }

fprintf (fp, '4%11.5f %6.3f %/6.3f %/6.3f %/od %2d O/%d %ld\n", tcorr[k],
corr[k], data.fh_corr, data.lh_corr, evil, type,
ecgbad, delta_time);

}
else {
cl = smearcorr (template, &sig[BP] [0], delta_time, temp64,

temp128, temp256, stretch256, &data);
c2 = smearcorr (template2, &sig[BP][0], delta_time, temp64_2,

templ28_2, temp256_2, stretch256_2, &data_2);
tcorr[k] = currtime/(3600.*F);

if (cl > c2) {
corr [k] = cl;
/* check templ length versus current --> gives est. on ECG noiz */
if ((float)abs(delta time - templen)/(float)templen > 0.4)

ecgbad = 1;
else ecgbad = 0;

if (data.lh corr > data_2.lh_corr &&



fabs(data_2.fh_corr - data.fh_corr) < 0.2) type = 1;
else type = -1;

if ((1-corr[k]) > 0.3) evil = 1;
else evil = 0;

/* all bets are off if ecg is bad */
if (ecgbad) { evil = 0; type = -1; }

fprintf (fp, "%1 1.5f %6.3f /o6.3f /o6.3f %d %2d %/od %ld\n", tcorr[k],
corr[k], data.fh_corr, data.lh_corr, evil, type,
ecgbad, delta_time);

}
else {

corr[k] = c2;
/* check templ length versus current --> gives est. on ECG noiz */
if ((float)abs(delta_time - templen2)/(float)templen2 > 0.4)

ecgbad = 1;
else ecgbatd = 0;

if (data_2.lh_corr > data.lh_corr &&
fabs(data.fh_corr - data_2.fh_corr) < 0.2) type = 2;

else type = -1;

if ((1-corr[k]) > 0.3) evil = 1;
else evil = 0;

/* all bets are off if ecg is bad */
if (ecgbad) ( evil = 0; type = -1; }

fprintf (fp, "%11.5f %6.3f %0 /6.3f 0 /o6.3f /od %2d O/%d %ld\n", tcorr[k],
corr[k], data_2.fh_corr, data_2.lh_corr, evil, type,
ecgbad, delta_time);

}
}

prev_time=curr time;
} /* end if(isqrs) */

} /* end while */

} /* if no_template */
fclose(fp);
dbquit();

}
/* **************************************************************************** */

/********************************* */

double calcHR(RRtimes, N, f)
long RRtimes[];
int N;
double f;
{
int i;



double diff;

diff = (double)(RRtimes[0]-RRtimes[N-1])/(f*60.0); /*minutes per N beats*/
return (double)(N-1)/diff: /* convert from sample units to seconds */

}
/* ******************************************************************** */

/********************************************************************* */

double mean(vec,N)
double vec[];
int N;
{

int i;
double sum=0.0;

for (i=0;i<N;i++) sum += vec[i];
return (double) sum/N;

/* ******************************************************************** */

double calcpar(parvec, RRtimes, N, f, deltat)
double parvec[];
long RRtimes[];
int N;
double f;
double deltat;
{

int i;
double diff;
i= 1;
/* while(i<=N-1) { */

diff = (double)(RRtimes[0]-RRtimes[N-1])/(f*60.0); /*minutes per N beats*/
return (double)(N-1)/diff; /* convert from sample units to seconds */

}
/ ****************************************************** ************* */

void initvect(RRtimes, newtime, N)
long RRtimes[];
long newtime;
int N;
{

int i;

for (i=0;i<N;i++)
RRtimes[i]=newtime;

}
/* ******************************************************************** */

double crosscor(w,v,N)
double w[];
double v[];
int N,
{

int i;
double prod_wv=0.0;
double mag_w=0.0, mag_v=0.0, mean_w=0.0, mean_v=0.0;



/* meanw = mean(w,N);
mean_v = mean(v,N); */
for(i=0;i<N;i++) {

mean_w += w[i];
mean_v += v[i];

}

if (N == 0) {
printf ("ARRGHH! \n");
getchar ();

}

meanw/= N;
meanv/= N;

for (i=0;i<N;i++) {

prodwv += (w[i] - meanw)*(v[i]-meanv);

magw += pow(w[i]-mean w,2);

magv += pow(v[i]-meanv,2);

if ((mag_w < 0) I (mag_v < 0)) {
printf ("LowDown, Howdown! \n");
getchar ();

}

mag_w = sqrt(mag_w);
mag_v = sqrt(mag_v);

if (mag_w*mag_v == 0) {
return 0.0;
printf ("Ender! \n");
getchar ();

}
return prod_wv/(mag_w*mag_v);

}
/* ******************************************************************** */

double normdot(w,v,N)
double w[];
double v[];
int N;
{
int i;
double prod_wv=0.0;
double magw=0.0, magv=0.0;



for (i=O;i<N;i++) {
prod_wv += w[i]*v[i];
mag_w += w[i]*w[i];
mag_v += v[i]*v[i];

}
mag_w = sqrt(mag_w);
mag_w = sqrt(mag_v);
return prod_wv/(mag_w*mag_v);

}

void addtime(RRtimes, newtime, N)
long RRtimes[];
long newtime;
int N;
{
int i;

if (N-2 >= 0 && RRtimes[N-2]==O) {
for (i=0;i<N;i++)

RRtimes[i]=newtime;
}
else {

for (i=N-1;i>0;i--)
RRtimes[i]=RRtimes[i-1];

RRtimes[0] = newtime;
}

}

void addpar(parvec, newpar, N)
double parvec[];
double newpar;
int N;
{
int i;

if (N-2 >= 0 && parvec[N-2]==0) {
for (i=0;i<N;i++)
parvec[i]=newpar;

}
else {
for (i=N-1;i>0;i--)

parvec[i]=parvec[i-1];
parvec[0] = newpar;

} *
}

char *getparam(ifile, parameter)
FILE *ifile;
char *parameter;
{

static char buf[80];

while (fgets(buf, sizeof(buf), ifile))



if (strncmp(buf, parameter, len) == 0)
return (buf);

return (NULL);

char *prog_name(s)
char *s;
{

char *p = s + strlen(s);

#ifdef MSDOS
while (p >= s && *p != '\\' && *p != ':') {

if (*p == 9.1)
*p = '\0'; /* strip off extension */

if ('A' <= *p && *p <= 'Z')
*p += 'a' - 'A'; /* convert to lower case */

p --;

}
#else

while (p >= s && *p != '/')
p- -;

#endif
return (p+1);

}

static char *help_strings[] = {
"usage: /os -r RECORD -a QRS_ANNOTATOR [OPTIONS ...]\n",
"where RECORD specifies the input, QRS_ANNOTATOR is output of aristotle\n",
"and OPTIONS may include:",
"-f TIME start at specified TIME",
"-h print this usage summary",
" -t TIME stop at specified TIME",
"-Vs (or -V) print elapsed time in seconds before each output sample value",

" -Vm print elapsed time in minutes before each output sample value",
"-Vh print elapsed time in hours before each output sample value",
NULL

void help()
{

int i;

(void)fprintf(stderr, help strings[0], pname);
for (i = 1; help_strings[i] != NULL; i++)

(void)fprintf(stderr, "O/os\n", help_strings[i]);
}

double find_good_template (double * temp, double *sig, int size, int Itrim,
int shift)

/* requires: templ at least as longs as sig, size is # of elements in sig,
2 * Itrim + 1 < size, all ints positive

modifies: none
effects : trims temp and sig by rtrim and Itrim, and shifts them to



attain highest correlation, and returns that correlation */
{
int i;
double max_corr, tmp_corr;
double * sigplace, * tempplace;
int rtrim, debug, best_shift;

debug = 1;
if (size % 2 == 1) /* even number of points left */
rtrim = Itrim;

else rtrim = Itrim + 1;

for (i = 0; i < Itrim; i++) {
/* *(templ + i) = 0.0; */ /* trim signal as well? */
*(sig + i) = 0.0;

for (i = size-1; i > size - 1 - Itrim; i--) {
/* *(templ + i) = 0.0; */ /* trim signal as well? */
*(sig + i)= 0.0;

}
tempplace = temp;
sigplace = sig + shift;

maxcorr = 0.0;
best_shift = -shift;
for (i = -shift; i < shift; i++) {

tmp_corr = crosscor (tempplace, sigplace, size - rtrim - Itrim);

if (debug)
printf (" %/o4.4f temp shift /od \n", tmp_corr, i);

if (tmp_corr > max_corr) {
max_corr = tmp_corr;
best_shift = shift;

}
tempplace++;
/*
if (i < 0)

sigplace--;
else

tempplace++;
*/

}
printf ("best shift /od \n", best_shift);
return ( max_corr);

double find_trio (struct trio *data, double * temp, double *sig, int size,
int Itrim, int shift)

/* requires: templ at least as longs as sig, size is # of elements in sig,
2 * Itrim + 1 < size, all ints positive

modifies: none
effects : trims temp and sig by rtrim and Itrim, and shifts them to

attain highest correlation, and returns that correlation */



int i;
double max_corr, tmp_corr;
double * sigplace, * tempplace;
int rtrim, debug, bestshift, mid;
double holder;

debug = 0;
if (size % 2 == 1) /* even number of points left */

rtrim = Itrim;
else rtrim = Itrim + 1;

mid = (int) size / 2;

for (i = 0; i < Itrim; i++) {

*(sig + i) = 0.0;
}
for (i = size-i; i > size - 1 - Itrim; i--) {

*(sig + i) = 0.0;
}
tempplace = temp;
sigplace = sig + shift;

max_corr = 0.0;
best_shift = -shift;
for (i = -shift; i <= shift; i++) {
tmp_corr = crosscor (tempplace, sigplace, size - rtrim - Itrim);

if (tmp_corr*tmp_corr > max_corr*max_corr) {
max_corr = tmp_corr;
bestshift = shift;

}
tempplace++;

}
data->max_corr = max corr;
holder = max corr;
data->mc_shift = best_shift;

tempplace = temp;
sigplace = sig + shift;

max_corr = 0.0;
best_shift = -shift;
for (i = -shift; i <= shift; i++) {
tmp_corr = crosscor (tempplace, sigplace, mid - Itrim);
if (tmp_corr > max_corr) {

max_corr = tmp_corr;
best_shift = shift;

}
tempplace++;



}
data->fh_corr = maxcorr;
data->fhshift = best_shift;

tempplace = temp + mid;
sigplace = sig + mid + shift;

max_corr = 0.0;
best_shift = -shift;
for (i = -shift; i <= shift; i++) {
tmp_corr = crosscor (tempplace, sigplace, mid - rtrim);

if (tmpcorr*tmp_corr > max_corr*max_corr) {
max_corr = tmpcorr;
best_shift = shift;

}
tempplace++;

}
data->lh_corr = max_corr;
data->lh_shift = best_shift;

return (holder);
}

void fourl(float data [], unsigned long nn, int isign)
{
unsigned long n,mmax,mj,istep,i;
double wtemp,wr,wpr,wpi,wi,theta;
float tempr, tempi;

n=nn << 1;
j=1;
for (i=1; i<n; i+=2) {
if ( > i) {

SWAP (data[j], data[i]);
SWAP (data[j+1], data[i+1]);

}
m=n >> 1;
while (m >= 2 && j > m) {
j -= m;
m >>= 1;

}
j += m;

}
mmax = 2;
while (n > mmax) {

istep = mmax << 1;
theta = isign * (6.28318530717959/mmax);
wtemp = sin (0.5 * theta);
wpr = -2.0*wtemp*wtemp;
wpi = sin (theta);
wr = 1.0;



wi = 0.0;
for (m=l;m<mmax;m+=2) {

for (i=m;i<=n;i+=istep) {
j=i+mmax;
tempr=wr*data[j]-wi*data[j+l];
tempi=wr*da:ta[j+l]+wi*data[j];
data[j]=data[i]-tempr;
data[j+1]=data[i+ 1]-tempi;
data[i] += tempr;
data[i+1] += tempi;

}
wr = (wtemp=wr)*wpr-wi*wpi+wr;
wi = wi*wpr+wtemp*wpi+wi:

}
mmax = istep;

}

void realf. (float data[], unsigned long n, int isign)
{
void fourl (float data[], unsigned long un, int isign);
unsigned long i, ii, i2, i3, i4, np3;
float cl = 0.5, c2, h1r, hli, h2r, h2i;
double wr, wi, wpr, wpi, wtemp, theta;

theta = 3.141592653589793/ (double) (n>>l);
if (isign == 1) {

c2 = -0.5;
fourl(data,n>>1,1);

} else {
c2 = 0.5;
theta = -theta;

}
wtemp = sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0+wpr;
wi=wpi;
np3=n+3;
for (i=2;i<=(n>>2);i++) {

i4 = 1+(i3=np3-(i2=1+(il=i+i-1)));
hlr=cl*(data[il]+data[i3]);
hli=cl*(data[i2]-data[i4]);
h2r= -c2*(data[i2]+data[i4]);
h2i= c2*(data[il]-data[i3]);
data[il]=hlr+wr*h2r-wi*h2i;
data[i2]=hli+wr*h2i+wi*h2r;
data[i3]=hlr-wr*h2r+wi*h2i;
data[i4]=-hli+wr*h2i+wi*h2r;
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}



if (isign == 1) {

data[l] = (hlr = data[l]) + data[2];
data[2] = hlr - data[2];

} else {
data [1] = cl * ((hlr=data[1]) + data[2]);
data [2] = cl * (hlr-data[2]);
fourl(data,n>>l,-l);

}

void generate_templates (double * template, int size, double temp64 [],
double temp128[], double temp256[])

{
linear_interpolate (template, size, temp64, 64);
linearinterpolate (template, size, templ28, 128);
linearinterpolate (template, size, temp256, 256);

}

void gettemps (double * temp, int size, double temp64 [],
double temp128 [], double temp256 [], float temp64f [],
float *templ28f, float temp256f [])

{
float *peek64;
float *peekl28;
float *peek256;

double *poke;
float scale64, scale128, scale256;
int i;

peek64 = temp64f;
peek128 = templ28f;
peek256 = temp256f;
poke = temp;

for (i = 0; i < 64; i++) {
if (i < size) {

*peek64 = (float) *poke;
*peekl28 = (float) *poke;
*peek256 = (float) *poke;
poke++;

} else {
*peek64 = 0.0;
*peek128 = 0.0;
*peek256 = 0.0;

}
peek64++;
peekl28++;
peek256++;

}



for (i = 64; i < 128; i++) {
if (i < size) {

*peekl28 = (float) *poke;
*peek256 = (float) *poke;
poke++;

} else {
*peekl28 = 0.0;
*peek256 = 0.0;

peekl28++;
peek256++;

for (i = 128; i < 256; i++) {
if (i < size) {

*peek256 = (float) *poke;
poke++;

} else {
*peek256 = 0.0;

peek256++;

for (i = 1; i < 129; i++) printf ("%11.4f \n",temp 128f[i]);
realft (temp64f, 64, 1);
realft (temp64f, 64, -1);
realft (temp128f, 128, 1);
for (i =1; i <= 128; i++) printf ("fft %11.3f\n",templ28fli]);

realft (templ28f, 128, -1);
realft (temp256f, 256, 1);
realft (temp256f, 256, -1);

scale64 = (double) 2/64;
scale128 = (double) 2/128;
scale256 = (double) 2/256;

for (i = 1; i <= 256; i++) {
if (i <= 64)

temp64[i] = (double) temp64fli] * scale64;
if (i <= 128)
templ28[i] = (double) templ28f[i] * scale128;

temp256[i] = (double) temp256f[i] * scale256;

}

int linearinterpolate (double * signal, int size, double *result, int target)
{
double step, dist, fract;

int mark, i, low;

step = (double) size / target;



dist = step;
/* we know the first and last points */
result [0] = signal [0];
result [target-I] = signal [size-l]:
for (i = 1; i < target: i++) {

low = (int) dist;

fract = (double) (dist - low);

result [i] = (1.0 - fract) * signal [low] + fract * signal [low + 1];

dist += step;

int smear_signal (double * signal, int size, float * resultf,
double * result) {

int newsize;
double scale;
double scale_time;
int i,k;

if (size <= 64)
newsize = 64;

else
if (size <= 128)

newsize = 128;
else
if (size <= 256)

newsize = 256;
else return (0);

scale = (double) 2/newsize;

/* for (i = 1; i <= newsize; i++) {
if (i <= size)

resultfli] = (float) signal[i];
else

resultf[i] = (float) 0.0;
} */

for (i = 1; i <= newsize; i++) {
resultf[i] = (float) 0.0;

}

scale_time=(double)newsize/(double)size;
for (i = 1; i <= size; i++) {

k = (int) ceil(scale_time * (double) i);
/* resultf[k] = (float) signal[i]; */

resultf[k]=(float)k;
}



realft (resultf, newsize, 1);

for (i = 1; i <= newsize; i++) {
if (i > size)
resultf[i] = (float) 0.0:

}

realft (resultf, newsize, -1);
for (i = 1; i <=newsize; i++) {

result[i] = (double) (resultf[i] * scale);

return newsize;
}

double smear_corr (double * temp, double * signal, int size,
double *temp64, double *temp128, double * temp256,
double * stretch256, struct trio *data)

{
static float floater [256];
int debug = 1;
int newsize;

if (size <= 64) {
linearinterpolate (signal, size, stretch256, 64);
return find_trio (data, temp64, stretch256, 64, 3, 3);

}

if (size <= 128) {
linear_interpolate (signal, size, stretch256, 128);
return find_trio (data, temp128, stretch256, 128, 3, 3);

}

if (size <= 256) {
linear_interpolate (signal, size, stretch256, 256);
return find_trio (data, temp256, stretch256, 256, 3, 3);

}else {
printf (" Signal too big, must less than 256 not /od \n", size);
return 0.0;

}
}
/* END OF artdet.c */

The following UNIX C-shell is used to run the program "artdet".

#!/bin/csh
# runart uses artdet to read in a file which has the times of alarms

foreach b (055 212 215 216 230 231 240 241 242 245 248 415 417 420 421)



cat nh${b} nl${b} > ${b).tmp
sort -n ${b}.tmp >! $b
echo $b
/bin/rm ${b}.tmp
@ i=0
@ length = 'cat $b I wc -1'
echo $i $length
while ($i < $length)
@ i++
sqrs -r $b -f'cat $b I head -${i} I tail -1 I awk '{print $1}' ':0:0 -t 'cat $b I head -$({i} I tail -1 awk

'({print $2}' ':0:0
# output is in $qrs.${b}
artdet -r ${b} -a qrs -f'cat $b I head -${i) I tail -1 I awk '{print $1}' ":0:0 -t 'cat $b I head -${i} I tail -1

awk '{print $2}' ':0:0
cat ${b}.artdet >>! data/art${b}.${i}
/bin/rm ${b}.artdet qrs.${b}
# output is ${b}.artdet, containing times at which low correlations with
# ideal template occur, along with the correlation value

end
echo 'sleeping ... change CD'
sleep 100

end

The following Matlab programs were used to implement the linear trend algorithm and the artifact

removal algorithms, from both the "INOP" data and the waveform analysis data. The M-files for

the algorithms follow.

function [alclass] = classin(dat,alarm,inop)

%This function classifies the ABP data, removing the "INOP" data
%The form of the function is ==> [alclass] = classin(dat,alarm,inop)

dim = size(alarm);
n=dim (1);
p=dim(2);
T = 1.024; % in seconds
HOUR = 3600.0;
% Use delta as the time over which the slopes will be obtained
% sampling period is 1.024 seconds

alclass = ones(n,l); % set all alarms to real = 1 initially

for i=l:n
SGN = sign(alarm(i,2)-alarm(i,3));
te = alarm(i,l) - 10.0/3600.0; % remove 10 seconds
ts5 = te - 5.0/60.0;
tsl = te - 1.0/60.0;
fivewin = getmat(dat,ts5,te,3600);
dim=size (fivewin);
nt5 = dim(l);
onewin = getmat(dat,tsl,te,3600);
dim = size(onewin);
ntl = dim(l);



plot(fivewin(nt5,1),fivewin(nt5,2),'gx');
%%%%%%%%%%%%%%%%%%%
% NOW PUT IN ALGORITHM WHICH TAKES OUT DATA CORRUPTED BY NOISE
%%%%%%%%%%%%%%%%%%
tmpwin = fivewin;
tmpinop = getmatx(inop,ts5,te,1);
[fivewin,tstart,tstop]=rminopx(tmpwin,tmpinop, );
%%%%%%%%%%%%%%%%%
tmpwin = onewin;
tmpinop = getmatx(inop,tsl,te,1);
[onewin,tstart,tstop]=rminopx(tmpwin,tmpinop, );
%%%%%%%%%%%%%%%%%%%

% NOW PUT IN trimean PROGRAM TO REMOVE ADDITIONAL ARTIFACT
% CHECK TO SEE THAT NUMBER OF POINTS IS SUFFICIENT TO PROJECT
[p5,S5] = polyfit(fivewin(:,l),fivewin(:,2),1);
[y5,delta5]=polyval(p5,alarm(i,) ,S5);
[pl,S1] = polyfit(onewin(:,l),onewin(:,2),1);
[yl,deltal]=polyval(pl,alarm(i,1),Sl);
if alarm(i,2) < 0 I alarm(i,2)/alarm(i,3) > 1.5

alclass(i) = 0.0;
elseif SGN*(alarm(i,2) - y5) > delta5*2.0 % 5 min. suggest art?

if SGN*(alarm(i,2) - yl) > deltal*2.0 % 1 min. suggest art?
alclass(i) = 0.0; % that is, alarm is artifact, not real

end
end

end

The following Matlab M-file is used to categorize all changes which were visually classified as
"real" changes.

function [physcat] = classcat(dat,alarm,inop)

%This function outputs physcat; each row shows how much data has changed
vs. previous
% 'WINTIME' hours (here WINTIME = 0.1 hours = 6 minutes
%The form of the function is ==> [physcat] = classcat(dat,alarm,inop)

WINTIME = 0.1; % set comparison window to six minutes
dim = size(alarm);
n=dim(1);
p=dim(2);
T = 1.024; % in seconds
HOUR = 3600.0;
% Use delta as the time over which the slopes will be obtained
% sampling period is 1.024 seconds

alclass = ones(n,l); % set all alarms to real = 1 initially
physcat = zeros(n,4); % time, abpdirect, hrdirect, papdirect

for i=l:n
SGN = sign(alarm(i,2)-alarm(i,3));
te = alarm(i,l) - 10.0/3600.0; % remove 10 seconds
tsWINT = max(0,te - WINTIME);
ts5 = te - 5.0/60.0;
tsl = te - 1.0/60.0;
WINTwin = getmat(dat,tsWINT,te,3600);



dim=size (WINTwin);
ntWINT = dim(1);
fivewin = getmat(dat,ts5,te,3600);
dim=size(fivewin);
nt5 = dim(l);
onewin = getmat(dat,tsl,te,3600);
dim = size(onewin);
ntl = dim(1);
plot(fivewin(nt5,1),fivewin(nt5,2),'gx');
%%%%%%%%%%%%%%%%%%%
% NOW PUT IN ALGORITHM WHICH TAKES OUT DATA CORRUPTED BY NOISE
%%%%%%%%%%%%%%%%%%%
tmpwin = WINTwin;
tmpinop = getmatx(inop,tsWINT,te,l);
[WINTwin,tstart,tstop]=rminopx(tmpwin,tmpinop, );
%%%%%%%%%%%%%%%%%%%
tmpwin = fivqwin;
tmpinop = getmatx(inop,ts5,te,1);
[fivewin,tstart,tstop]=rminopx(tmpwin,tmpinop,1);
%%%%%%%%%%%%%%%%%%%
tmpwin = onewin;
tmpinop = getmatx(inop,tsl,te,1);
[onewin,tstart,tstop]=rminopx(tmpwin,tmpinop, );
%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%
% NOW PUT IN trimean PROGRAM TO REMOVE ADDITIONAL ARTIFACT
% CHECK TO SEE THAT NUMBER OF POINTS IS SUFFICIENT TO PROJECT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[p5,S5] = polyfit(fivewin(:,l),fivewin(:,2),1);
[y5,delta5]=polyval(p5,alarm(i,1),55);
(pl,S1] = polyfit(onewin(:,l),onewin(:,2),1);
[yl,deltal]=polyval(pl,alarm(i,1),Sl);
if alarm(i,2) < 0 I alarm(i,2)/alarm(i,3) > 1.5

alclass(i) = 0.0;
elseif SGN*(alarm(i,2) - y5) > delta5*2.0 % 5 min. predict suggest

art?
if SGN*(alarm(i,2) - yl) > deltal*2.0 % 1 min. predict also suggest

art?
alclass(i) = 0.0; % that is, alarm is artifact, not real

end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if alarm(i,4) == 1.0

[WINTave,WINTstd]=trimean(WINTwin,0.1);
ALwin = getmat(dat,alarm(i,l)-5/3600,alarm(i,l)+5/3600,3600);
ALave=mean(ALwin);
for j = 2:4

physcat(i,l) = alarm(i,l);
if WINTstd(j) > 0

physcat(i,j) = (ALave(j) - WINTave(j))/WINTstd(j);
else

physcat(i,j) = ALave(j) - WINTave(j);
end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end
end



Appendix B
The following chart summarizes the change in the physiologic parameters during the time

of the alarm compared to the data in the record up to that time. The first column indicates the

record, the second column the time of the alarm, and the third through fifth columns are the change

in the measurements ABP, HR, and PAP. These data are used to categorize the type of change

that has occurred for each alarm that was classified as a "real" alarm.

Record Time (hrs) dABP dHR dPAP
10055 0.84 - - -

0.892 - - -
8.924 - - +
8.978 - - +

hi212 9.347 - 0 0
10o212 9.45 - 0 +

9.502 - 0 0
9.592 - 0 +
9.601 - 0 +
19.46 - 0 +
21.18 - - 0
21.21 - - 0

23.6 - 0 0
31.59 - - -
32.65 - 0 0
33.22 - - -
33.35 - + +

33.4 - 0 0
33.46 - - +
33.59 - - 0
35.27 - - 0
36.04 - - 0
36.05 - - 0
36.22 - - -
36.23 - - -
36.28 - - -
36.33
36.39
37.25
37:53
38.11
38.56

hi215 6.425 + + +
6.458 + + +



6.487 + + +
6.525 + + +
6.532 + + +
6.536 + + +
6.546 + + +
6.556 + + +
10.73 + + +

10.74 + + +

10.76 + + +
10.79 + + +

10.8 + + +
11.69 + + +
11.74 + + +
11.76 + + +
11.79 + + +

11.8 + + +

11.82 + + +
11.83 + + +

11.87 + + +

11.87 + + +

11.93 + + +
11.94 + + +
12.41 + + +
12.68 + + +
12.69 + + +

lo216 0.7509 0
0.7654 - 0

2.755 - 0

4.758 - 0
5.783
5.835
5.846
9.347 - 0
11.17
11.17
12.77 - 0
13.61
14.78 0
15.39

15.4
16.38 - 0

16.78 - 0

18.02 - 0

18.24 0
18.78
18.78 -
18.84 - -
18.89 -
20.31



20.36
21.68
21.74
21.79
22.69
22.74
22.77
22.83
22.89

hi230 1.258 - - 0

1o230 1.313 - - 0
1.336 - - 0

1.347 - - 0

1.373 - - 0

1.51 - - 0

1.526 - 0

1.541 - 0

1.774 - - 0

1.797 - - 0

2.224 - + 0

7.601 + 0 0
7.655 + 0 0

7.721 + 0 0

11.41
11.42
17.61
17.62
17.63

1o231 6.5
11.35 - - +

1o240 2.611 - 0 0
3.071 - - 0

3.123 - - 0

3.178 - - 0
3.201 - - 0

3.272 - 0

3.333 - 0

3.411 - 0

3.46 - 0

3.47 - - 0

3.478 - - 0

3.505 - - 0

3.517 - - 0

3.538 - 0

3.551 - 0

3.6 - 0

3.858 - - 0

3.911 - 0 0
3.976 - 0 0



4.037 - 0 0
4.221 - - 0
4.261 - 0
4.305 - 0
4.479 - - +
4.664 - 0 0
4.679 - 0 0
4.699 - 0 0
4.733 - 0 0
4.806 - 0 0

4.'85 - 0 0
4.932 - 0 0

hi241 13.13
10o241 13.2

13.23
13.25
13.42

hi242 no real episodes
10o242
10o245 no real episodes
hi248 21.82 + + +
1o248 22.07 + + +

22.08 + + +
23.05

hi415 1.55 + - +
lo415 1.596 + - +

5.932 + +
11.27 - 0 0
13.72 + 0 0
17.97
17.97
19.97 + - 0

hi417 10.67 - 0
1o417 10.67 - 0
10418 1.927 - + 0



Appendix C
Appendix C contains the two-dimensional measurement plots for each record as a whole

(e.g., ABP vs PAP, and ABP vs HR), in addition to each ABP alarm episode on a single plot at

much higher resolution. These were used for the physiologic classification of section 4.2. Dr.

Roger Mark (MIT, Building E-25 Room 525) has this appendix.


