
A New Algorithm for Factorization of Logic

Expressions

by

Farzan Fallah

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1996

@ Massachusetts Institute of Technology 1996. All rights reserved.

A uthor
Department of Electrical Engineering and Computer Science

Jan 19, 1996

Certified by
Srinivas Devadas

Associate Professor
Thesis Supervisor

Accepted by

Chairman, Departmental Com ittee

,•,,S.S.AGHUSEiTS iNSI :• ,:

OF TECHNOLOGY

JUL 1 6 1996 ng

F . Morgenthaler
on Graduate Students

LIBRARIES

A New Algorithm for Factorization of Logic Expressions

by

Farzan Fallah

Submitted to the Department of Electrical Engineering and Computer Science
on Jan 19, 1996, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Rapid progress in technology has led to fabrication of millions of transistors on a
single chip. This increase in complexity, makes the use of computer tools mandatory
in the design process. Many tools have been developed to help designers optimize the
circuit for performance, power, and area; to increase the reliability of the circuit; or
to decrease its cost and design time.

In this project one of these problems, i.e., decreasing the number of transistors, or
in other words area of a combinational logic circuit, is considered, and a new algorithm
is proposed to solve the factorization problem. A computer program implementing
the algorithm has been developed.

Thesis Supervisor: Srinivas Devadas
Title: Associate Professor

Acknowledgments

I would like to thank Professor Srinivas Devadas, my research supervisor, for intro-

ducing me to the Computer Aided Design of VLSI and its problems and supervising

this thesis.

I would also like to thank Silvina Hanono for reading my thesis and for her valuable

suggestions.

I dedicate this thesis to my parents and my sister, for the encouragement and

support during my study.

Contents

1 Introduction

1.1 Recursive factorization using kernel intersection and covering (RIC)

1.2 O verview .

2 Basic Definitions

3 Rectangle Covering Method For Factorization

3.1 D efinitions .

3.2 The co-kernel cube matrix

3.3 M ultiple covering

3.4 Deficiencies of the algorithm

4 Kernel Intersection

4.1 A pair of sets .

4.2 Co-kernel and pair of sets

5 Cost Computation

6 Selection of the Best Cover

6.1 Greedy selection

6.2 The Branch and Bound method

6.3 Implementation

.....................

.....................

.....................

7 Multiple levels of Factorization 42

8 Boolean Factorization 47

9 Results 49

9.1 Conclusion . 52

9.2 Future work 52

List of Figures

6-1 Branch and Bound Algorithm 36

6-2 Improved Algorithm 39

List of Tables

4.1 CPU time for computing kernels, intersections, and levels of intersec-

tion for several examples. 28

4.2 Number of kernels, intersections, and intersection merges for several

exam ples . 28

5.1 Number of literals for several examples 31

5.2 Time for computing cost for several examples 31

6.1 Kernels, intersections, and cubes of function F 32

6.2 Number of literals for several examples 34

6.3 Example of empty column, dominated column, single-X row, and dom-

inating row . 37

6.4 Size of the matrix and CPU time of the Branch and Bound algorithm

for several exam ples 41

9.1 CPU time and the number of literals in comparison with gkx and fx. 50

9.2 Number of literals using fx after RIC algorithm in comparison with

using quick-factor after fx 50

9.3 Number of literals for different methods of counting the literals of ex-

pressions . 51

9.4 Number of literals for the greedy method and the Branch and Bound

m ethod. 52

Chapter 1

Introduction

Research over the past thirty years has led to efficient methods for optimizing and

implementing combinational logic in a two-level form. Although the minimization of

combinational logic in two levels is a nondeterministic polynomial-time (NP)-complete

problem [6], there are some exact minimizers which can minimize most encountered

functions in a reasonable amount of Central Processing Unit (CPU) time, like Mc-

BOOLE [3] and espresso-exact [9]. Furthermore, some heuristic minimizers, such as

MINI [8] , MIS [2], and espresso [1], can get faster results, for larger Boolean functions,

which are close to the minimum.

Using Programmable Logic Arrays (PLAs) every function can be easily imple-

mented in sum-of-products form (SOP) [5]. This is usually done with a NOR-NOR

architecture. This approach may lead to wasting more than 50% of silicon area. To

get better utilization, methods like PLA folding have been proposed [7].

With rapid progress in technology and the necessity of fabricating large systems

in a single chip, there are many cases in which using a two-level form or PLAs is not

efficient for implementing Boolean functions. One of the problems is that for certain

functions the number of product terms in SOP form, or sum terms in product-of-sums

(POS) form grows exponentially with respect to the number of inputs.

For instance, although the Achilles heel function with 2n inputs, i.e., (a, + bi) x

(a2 + b2) X ... x (a, + b,) has n sum terms in POS form, it has 2' product terms in

SOP form. The parity function with n inputs, i.e., a, e a2 E ... e a, has 2n product

terms in SOP form, and 2n sum terms in POS form. In this case there is no efficient

way to represent the function in two-level form.

Adders, subtractors, multipliers and comparators are other heavily used functions

which have exponential number of products or sums in SOP or POS form respectively,

so it is necessary to implement these functions in multi-level form.

Other problems with implementing Boolean functions in two-level form include

low performance and high energy consumption in comparison to multi-level form

implementation.

As a result, much research has been done attempting to find algorithms for min-

imizing a Boolean function in more than two levels, or in other words factorizing

Boolean functions. Because of the NP-complete nature of this problem, it is impossi-

ble to search all possible solutions to find the best one; such a search requires a lot of

computer memory and CPU time, so a method of searching a subset of solutions is

typically used to find a solution as close as possible to the best solution. Searching a

larger subset of possible solutions will likely result in finding a better solution at the

expense of increased CPU time and memory. Thus there is a trade-off between the

quality of the solution and the required CPU time and memory.

There are different approaches to the factorization problem. They can be divided

into three groups:

1. Rule-based methods

2. Algebraic methods and

3. Boolean methods.

In rule-based methods, there are a set of rules which are used to transform certain

patterns in the function into other patterns. The local nature of these methods, and

lack of global perspective, result in limited capability [4].

In algebraic methods, Boolean functions are treated as polynomial functions, so

a and a' are two different variables, and equalities like a x a' = 0 and a + a' = 1 are

not used. Furthermore, any equalities such as a + a = a or a x a = a are not used

either. Treating Boolean functions as polynomials simplifies the problem, resulting

in efficient algorithms, but compromises the quality of the solution.

For example, using algebraic methods for the following function,

G = ab' + ac' + a'b + bc' + a'c + b'c

we can find the solution,

G =a x (b' + c') + b x (a' + c') + c x (a'+ b')

But using ax a' = 0 , b x b' = 0 and c x c' = 0 equalities we can find,

G = (a + b + c) x (a'+ b' + c')

which is a better solution.

In Boolean methods, Boolean equalities like a x a' = 0 , a + a' = 1 , a + a = a

and a x a = a are used, so better solutions can be achieved at the expense of more

CPU time and memory.

1.1 Recursive factorization using kernel intersec-

tion and covering (RIC)

A popular means of algebraic factorization uses the notion of kernels [1]. In this

method all the kernels of a logic expression are generated and the expression is factored

by sequentially selecting kernels or kernel intersections.

We propose a more global approach to factorization consisting of the following

steps:

1. All the kernels of the multiple output function are computed.

2. All the intersections of the kernels are computed.

3. The cost of the kernels and intersections are computed.

4. A subset of the kernels, intersections, and cubes are selected to cover all the

cubes of the multiple output function.

5. Steps 1-4 are repeated to further factorize the functions.

The number of levels of factorization in this method can be controlled easily

through step 5, unlike previous methods. Because kernel intersections are computed,

this algorithm can get better results than algorithms which use only kernels.

1.2 Overview

Chapter 2 describes the basic definitions used in this thesis.

Chapter 3 describes the rectangle covering method for factorization [10] implemented

in the SIS package [11].

Chapter 4 describes the method used for computing the kernel intersections in RIC

(step 2 of the algorithm).

Chapter 5 describes the cost computation of Boolean expressions (step 3 of the algo-

rithm).

Chapter 6 describes different methods used to select a set of kernels, intersections, or

cubes (step 4 of the algorithm).

Chapter 7 describes the recursive factorization of Boolean functions (step 5 of the

algorithm).

Chapter 8 describes a few modifications to the algorithm to use Boolean equalities.

Chapter 9 shows results achieved by this algorithm in comparison with other methods.

Chapter 2

Basic Definitions

Binary Variable:

A binary variable is a symbol representing one dimension of a Boolean

space (e.g., a, b).

Literal:

A literal is a Boolean variable or its complement (e.g., a, b').

Cube:

A cube is a set of variables such that only one of v or v' is its member,

not both. For example, {a, b, c'} is a cube, but {a, a'} is not a cube.

Each cube can be shown as multiplication of its literals, like a x b x c'.

Cover:

A cover is a set of cubes, e.g. {{a, b, c'}, {a', b'} }. Each cover can be

interpreted as a sum-of-products expression of a function, so the previous

cover can be interpreted as, abc' + a'b'.

Cost:

Cost of a cube, cover, or Boolean function is its literal count.

Support of a function:

Support of f denoted as sup(f) is the set of all variables v for which at

least one of v or v' occurs in f.

For example, if f = a'b + ac , then sup(f) = {a, b, c}.

If sup(f) 0 sup(g) = 0, we say f is orthogonal to g.

For example, the two functions f = a'b+ac and g = d+e are orthogonal.

Algebraic divisor:

g is an algebraic divisor of f, if there exist r and h such that f = g - h + r

where g is orthogonal to h, h - 0, and r has as few cubes as possible.

For example, if f = ac + bc + d, then a + b is an algebraic divisor of f,

because f = (a + b) x c + d.

The function g divides f evenly if r = .

For example, function g = a + b' divides function f = ac + b'c evenly,

because f = (a + b') x c and r = €.

Primary divisors:

Primary divisors of f are defined as,

P(f) = {f/c I c is a cube }

Kernel and cokernel:

The kernels of f are defined as,

K(f) = {K I k E P(f), k is cube-free }

For example, a + b is a kernel of function f = ac + bc + d, but ac + bc is

not a kernel, because it is not cube-free.

Cokernel of a kernel k is f/k. In the previous example, c is a cokernel of

kernel a + b.

A co-kernel pair is the pair of kernel and its cokernel, for example, (c, a+b).

Boolean network:

A Boolean network is a directed acyclic graph such that for each node i in

it, there is an associated cover Fi and a Boolean variable yj representing

the output of Fi. There is a one-to-one correspondence between a node

and its cover, so they can be used interchangeably.

ON-set and OFF-set:

For each output fi of f, the ON-set can be defined to be the set of input

values x such that fi(x) = 1. Similarly, the OFF-set is the set of input

values x such that fi(x) = 0.

Chapter 3

Rectangle Covering Method For

Factorization

We review the rectangle covering method for factorization originally presented in[10].

3.1 Definitions

A rectangle (R, C) of a matrix B, Bi,j E {0, 1, *} is a subset of rows R and subset

of columns C such that Bij e {1, } for all i E R and j E C.

A rectangle (R 1, CO) is said to strictly contain rectangle (R2 , C2) if R2 R 1 and

C2 C C1, or 2 C2 Cand R2 C R1.

A rectangle (R, C) of matrix B is said to be a prime rectangle if it is not strictly

contained in any other rectangle of B. For example, in the following matrix,

1 2 3 4 5 6 71234567

11101*01

211000*0

3111*0* *

4001*101

51110010

({2, 3}, {1, 2}) and ({1, 2, 3, 5}, {1, 2}) are rectangles.

{2, 3} C {1, 2,3, 5} and {1, 2} C; {1, 2}, so rectangle ({1, 2, 3,5}, {1, 2}) strictly

contains rectangle ({2, 3}, {1, 2}). As as result, ({2, 3}, {1, 2}) is not a prime rectangle,

but ({1,2,3,5},{1,2}) is a prime rectangle of matrix B. Note that the rows and

columns of a rectangle are not necessarily adjacent.

3.2 The co-kernel cube matrix

The co-kernel pairs of a multiple output function can be shown with a co-kernel cube

matrix. In this matrix every row corresponds to one co-kernel pair and every column

corresponds to one cube which is present in at least one kernel.

The entry Bi in the matrix is 1 if the co-kernel pair associated with row,, contains

the cube associated with column j, otherwise it is 0.

For example, given the following multiple output function,

F = abc +abd + ae + be

G = acd + cg + ch + de + dg

H = bc +bd +g f +fh

the co-kernel pairs of F are:

(a, bc + bd + e)

(b, ac + ad + e)11 1 0 1 *0 1

2 1 1 0 0 0 *0

3 1 1 1 *0**

4 0 0 1 *1 0 1

5 1 1 1 0 0 1 0

({12, 31}, { 1, 2 }) and (1 1, 2, 3, 51}, f 1, 2 }) are rectangles.

1213} C f{1,2,3,5} and f{1,2} 9_ f1, 2} , so rectangle (f{1, 2, 3,5},{1,f12}) strictly

contains rectangle ({12, 31}, { 1, 21}). As as result, ({12, 3 }, f 1, 21}) is not a prime rectangle,

but ({11,2, 3, 5}, If 1, 2}) is a prime rectangle of matrix B. Note that the rows and

columns of a rectangle are not necessarily adjacent.

(e, a+ b)

(a3.2 The co-kernel cube matrix+d)The co-kernel pairs of a multiple output function can be shown with a co-kernel cube

matrix. In this matrix every row corresponds to one co-kernel pair and every column

corresponds to one cube which is present in at least one kernel.

The entry Bi~j in the matrix is I if the co-kernel pair associated with rowi contains

the cube associated with column j, otherwise it is 0.

For example, given the following multiple output function,

F = abc + abd + ae + be

G = acd +cg +ch +de +dg

H = bc+ bd+ gf + fh

the co-kernel pairs of F are:

(a, bc + bd + e)

(b, ac + ad + e)

(6, a+ b)

(ab, c + d)

and the co-kernel pairs of G are:

(c, ad + g + h)

(d, ac + e + g)

(g,c + d)

and the co-kernel pairs of H are:

(b,c + d)

(f,g+h)

These co-kernel pairs can be shown as the following matrix,

a b c d e g h ac ad bc bd

1 2 3 4 5 6 7 8 9 10 11

F a 1 0 0 0 0 1 0 0 0 0 1 1

F b 2 0 0 0 0 1 0 1 1 0 0

F e 3 1 1 0 0 0 0 0 0 0 0 0

F ab 4 0 0 1 1 0 0 0 0 0 0 0

G c 5 0 0 0 0 0 1 0 1 0 0

G d 6 0 0 0 0 1 1 0 1 0 0 0

G g 7 0 0 1 1 0 00 0 0 0 0

H b 8 0 0 1 1 0 00 0 0 0 0

H f 9 0 0 0 0 0 1 1 0 0 0 0

Note that there is no one-to-one relation between entries Bi ,j of the co-kernel cube

matrix and cubes of the multiple-output function. In other words, for some cubes in

the multiple-output function more than one associated Bij occurs in the co-kernel

cube matrix.

To show which entries in the matrix have the same cube, all the cubes of multiple-

output function can be numbered and instead of 1 for the entries in the matrix, the

number of associated cubes can be used. For example, the numbers associated with

abc and abd are 0 and 1, so B1 ,10o = 0 and B1 ,n11 = 1. Using this method and using ""

instead of 0, the co-kernel cube matrix can be updated as:

Each prime rectangle of the co-kernel cube matrix identifies an intersection of

some kernels which is a common factor between the kernels of one output or different

outputs of a function. The columns of the rectangle represent the cubes of an ex-

pression which can be used to divide the output(s), and the rows represent the cubes

resulting from division of the output(s) by that expression.

For example, in the previous matrix, ({4, 7, 8}, {3, 4}) is a prime rectangle, so

c + d is a common factor of F, G and H , and it can be extracted from them. This

corresponds to factorization of the functions in the form:

F =

G=

H=

X=

abX + ae + be

acd + ch + de + gX

bX +gf + fh

c+d

a b c d e g h ac ad bc bd

1 2 3 4 5 6 7 8 9 10 11

F a 1 2 . . . 0 1

F b 2 3 0.3 1

F e 323 .

F ab 4 . 0 1 . . .

G c 5 5 6 .4

Gd6. . .7 8 4

G g 7 5 8

H b 8 . . 9 10 . .

H f 9 11 12

The matrix should be updated to show the cubes which have been covered and the

new variable X.

This process can be repeated until no number remains in the table. The result will

be a multiple-level form of the function. Different heuristics can find the rectangles

which will give the best factorization.

3.3 Multiple covering

If rectangles are allowed to cover *'s as well, some cubes will be covered several

times, which means the a + a = a equality has been used. This can lead to a better

factorization.

In the previous matrix, ({5, 9}, {6, 7}) rectangle covers B5,6 which is a * . Using

this rectangle leads to factorization of the multiple output function as:

a b c d e g h ac ad bc bd

1 2 3 4 5 6 7 8 9 10 11

F a 1 . . 2 * *

F b 2 . . 3 . * *

F e 323 .

F ab 4 . . * *

G c 5 * 6 . 4

G d 6 .. 7 4

G g 7.. * *

H b 8.. * *

H f 9 11 12 .

X 1 10 . . 13 14

F = abX + ae + be

G = acd+ de + cY + gX

H= bX + fY

X=c+d

Y=g+h

which means cube cg in G has been covered two times.

3.4 Deficiencies of the algorithm

After introducing a new variable, this method does not add its kernels to the co-

kernel cube matrix. Because the algorithm omits this step, it finds no common

factors between the kernels of the new variable and other expressions.

Also, no easy way exists to bound the number of levels of factorization in this

method, so sometimes the algorithm finds a solution with a lot of levels, which may

be an inappropriate implementation due to performance reasons.

Chapter 4

Kernel Intersection

In this chapter, we describe the method used for computing kernel intersections in

resursive factorization.

4.1 A pair of sets

A pair of sets is defined as,

Pi = (Xi, Yi) where Xi is a set of sets, and Yi is a set.

Intersection of two pairs of sets, Pi = (Xi, Yj) and Pj = (Xj, Yj) is defined as,

I',k = Pi 1 P3 = (xi x , n Y.)

where Xi = {ai,o , ai,1, ai,2,... , ai,N-1,

ai,k is a set for 0 < k < N - 1,

Yi is a set,

fl is the intersection operator on the sets,

Sis a binary operator defined as,

X WXxj = {ai,k U aj,k}, 0<k<N-1.

Intersection of level 1 is defined as,

II,k = II-1,i -1] I-,j where I-1,i and Il-1,j are two intersections of level 1 - 1,

with I > 0 and IO,k = Pk

F1 operator is reflexive, commutative and associative, in other words,

Ij,i n II,i = Ii,j, II,i n Ii,,j = Ij F1 It,j, and Ii,i l (Itj Fn Il",k) = (I,i n I1,j) Ft ,l",k-

The order of an intersection O(I) can be defined as the number of pairs that have

I as their intersection.

For example, if II,i = Po n P1, then O(Ii,i) = 2. For I2,k = 1 ,i F1 I,j, where Ii,i is

defined as before and Ii,j = Po n P 2, O(I2,k) = 3, because I2,k = Po F1 P 1 n P2.

Computing all the level I intersections of a set of pairs, will result in all the

intersections of order k, where 21- 1 < k < 2'. For example, computing intersections

of level 3 will result in intersections of order 5, 6, 7 and 8.

Furthermore, intersecting all the intersections of level 1- 1 where their orders are

2('- 1) will result in all the intersections of order k, where 2(1-1) < k < 2'. This is so

because each intersection of order k can be achieved by intersecting two intersections

of order 2(' - 1) which have 21 - k pairs in common. For example, if I = 3 all the

intersections of order k, 4 < k < 8 can be achieved using intersections of order 4.

The intersection of 5 pairs, say P0, P1, P2 , P3, P4 can be achieved by intersecting

Is,i = Po n P 1 n P2 F P3 and I3,j = Po FI P1 n P 2 F P4 .

4.2 Co-kernel and pair of sets

A co-kernel can be represented by a pair of sets, where Y is the kernel and for

0 < i < N - 1, ai is the quotient of dividing outputi by the kernel.

For example, (a, bc + d) can be expressed by the following pair of sets,

({ {a} }, {bc, d})

or its kernel set can be written in SOP form,

({ {a} }, {bc+ d})

Using the nF operator, the intersection of kernels can be defined as,

II,k = (cokerneli, kernel~) nF (cokernelj, kernelj)

where kernelm, m E {i,j} is a set of cubes,

cokernelk = {ak,0, ak,1, ak,2, ... , ak,N-1}, k E {i,j}.

where ak,m is a set of cubes for 0 < m < N - 1,

N = Number of outputs.

For example, for the following multiple output function,

F = ad+ae+af +ag+i

G = bd+ be + bf + bh + j

H = cd+ce + cg + ch + k

the co-kernels are,

Io,0 = ({{a},q,€}, d + e + f +g)

Io, = ({,{b},}, d+ e + f + h)

10,2 = ({,, b{c}}, d+e+g+h)

the result of the first level of intersection is,

Ii,0 = Io0,0o lo,i = ({{a}, {b}, 0}, d + e + f)

I1,1 = Io,o n 10,2 = ({{a}, 0, {c}}, d + e + g)

1,2 = 0,1 r] 10,2 = ({f, {b}, {c}}, d + e + h)

and the result of the second level of intersection is,

I2,o = II,o F /1,1 = ({{a}, {b}, {c}}, d + e)

12,1 = 1,0 n 11,2 = ({{a}, {b}, {c}}, d + e)

12,2 = 1,1 F 11,2 = ({{a}, {b}, {c}}, d + e)

Using kernel intersection, common factors between kernels of one function or dif-

ferent outputs of a multiple output function can be found and extracted. These

common factors can be implemented only once to decrease the number of literals.

For example, using kernel intersection for two co-kernels, ({ {a}, q }, bcd+ efg+ h)

and ({q, {a'}}, bcd + efg + i) of the following multiple output function,

F = abcd + aefg + ah

G = a'bcd + a'efg + a'i

the following pair will result,

({{a}, {a'}}, bed + efg)

so they can be factored as,

F = aX + ah

G = a'X + a'i

X = bcd + efg

while without using kernel intersection, the following less desirable solution is

achieved,

F = ax (bcd+ efg + h)

G = a' x (bcd + efg + i).

Each intersection in the 1 th level is the intersection of at most 21 kernels, so for a

single output function, the cokernel has at most 2' cubes. This means that in each

level the maximum number of cubes of the cokernel of each intersection is at most

2 times greater than the maximum number of cubes of the cokernel of intersections

of the previous level. Therefore, in computing the intersection of the lth level of one

function using intersection of (1 - 1)th level, we can use only intersections with no

fewer than 21 cubes in their kernel part. The reason is in other cases, the intersections

obtained may have less than 21 cubes in their kernel parts. For each intersection with

less than 2' cubes (I1), there will be one intersection (I2) with these properties:

1. Cokernel of 12 is the kernel of Ii .

2. Kernel of 12 is a superset of the cokernel II .

In other words, if there is an intersection,

II,k = (Xk, Yk) where the number of members of Yk is less than 21

then there is another intersection such that,

Il,k = (Yk, Xk') where Xk C Xk'

This means ,l',k, covers at least the same cubes as II,k covers, so Jl,k, is at least as

good as Il,k.

This can be shown by the following example, assuming the following function,

F = ae + af + ag + be + bf + bg + ce + cf + cg + de + df + dg

whose kernels are,

Io,o = ({{a}}, e + f + g)

lo,1 = ({{b}}, e + f + g)

10,2 = ({{c}}, e + f + g)

10,3 = ({{d}}, e + f +g)

40,4= ({{e}}, a+b+c+d)

o10,5 = ({{f}}, a + b+ c + d)

10,6 = ({{g}}, a + b+ c + d)

the result of the first level of intersection is,

Ii,o = Io,o10] , = ({{a + b}}, e + f + g)

I,1 = 10o,2 F 0,3 = ({ { c + d} }, e + f +g)

11, 2 = I0,4 FI0,5 = ({ { e + f } }, a + b + c + d)

1,3 = 0Io,4 FIo,6 = ({{e + g}}, a + b+ c + d)

25

the result of the second level of intersection is,

I 2,0 = I1 ,0 1 1 ,1 = ({{a + b+ c + d}}, e+ f +g)

I2,1 = 11, 2 n1, 3 = ({{e+ f + g}}, a+ b + c + d)

Because the number of cubes in the Y part of I2,o is 3, which is smaller than 4

(21), there is another intersection (12,1) with its X part equal to the Y part of I2,0,

and its Y part is a superset of the X part of I2,0. Therefore, it is not necessary to

compute the intersection of Ii,o and Ii,i because their Y parts have 3 members, which

is smaller than 4, and clearly the Y part of the intersection will have less than 4

members.

Using this analogy and the fact that the number of cubes in the X part times the

number of cubes in the Y part cannot be greater than the number of cubes in the

function, we have,

2' x 2' > N,

where the minimum of 1 in this inequality is the maximum level of intersection

that is necessary and N, is the number of cubes in the single output function.

For multiple output functions we can assume (just for computing the maximum

level of intersections) that first, the intersections of kernels of each output are com-

puted separately. Computing this needs 11 levels of intersections, where ll is the

smallest number satisfying,

2" x 2" > Max(N,)

where MAX(NC) is the largest number of cubes of a single output.

After that, 12 levels of intersection should be computed to get the intersections of

the intersections of single outputs together, where 12 is the smallest number satisfying,

22 > N

where N is the number of outputs.

So, all the intersections can be computed after 11 + 12 levels where,

2(11+12) > N x MAX(Nc).

The minimum of (11 + 12) in this inequality is a maximum bound on the number

of levels of intersection that should be computed.

The number of kernels grows exponentially with the number of variables of the func-

tion, and for a function with K kernels the number of first level intersections can be

as large as K(K-1) so the number of intersections can be quite large. This is usually

the case for the early levels of intersection and usually the number of intersections

drops rapidly after this. The huge number of intersections makes the computation of

intersections very expensive in terms of CPU time and memory. To solve this prob-

lem, different intersections with the same Y part can be merged together to make

a single intersection, or Il,i = (Xi, Yj) and Ij,, = (Xj, Y2) can be merged to form

, i = (Xi L+ Xj , ') .
In the previous example, I1,o with I,, and I1,2 with I1,3 can be merged to make

one intersection each,

II,0= ({{a + b+c+d}}, e+ f+g)

11,2 ({{e+ f + g}}, a + b+ c + d)

Merging intersections helps to decrease the amount of memory and computation

time of the next level of intersection and of the cost. It can decrease the number of

required levels of intersection as well. It also simplifies the selection step. Table 4.1

shows the results of kernel intersection for several examples. Note that the actual

number of levels of intersection is less than predicted by theory. The reason is the

rapid drop of the number of intersections.

Merging several intersections means that in selection step, all of them should be

selected or deselected together. This can degrade the final result in some cases.

Table 4.2 shows the number of intersection merges done in the first and second

level of intersections for several examples.

Intersection Kernel
In/Out Cubes Kernels Levels Gen. Inter.

Actual Theory Time (s) Time (s)
ADD4 9/5 135 793 3 6 2.00 2.40
XOR5 5/1 16 146 1 2 0.02 0.06
INC 7/9 99 475 5 6 1.42 1.37
SQUARE5 5/8 85 412 5 5 1.05 5.17
BW 5/28 87 251 3 7 0.69 0.25
MISEX1 8/7 32 73 3 5 0.04 0.01
MISEX2 25/18 29 40 1 5 0.04 0.02
5XP1 7/10 75 215 3 6 0.23 0.72
RD53 5/3 32 214 3 4 0.10 0.19
RD73 7/3 141 2263 4 5 14.70 28.04
B12 15/9 82 176 4 7 0.16 0.10
SAO2 10/4 78 593 5 5 1.18 1.33
VG2 25/8 110 370 2 6 0.76 0.78

Table 4.1: CPU time for computing kernels, intersections, and levels of intersection
for several examples.

intersections # merges # intersections # merging
Kernels in level 1 in level 1 in level 2 in level 2

ADD4 793 237 4675 105 176
XOR5 146 40 100 0 0
INC 475 409 943 221 834
SQUARES 412 358 1703 322 1809
BW 251 134 474 35 108
MISEX1 73 34 33 14 26
MISEX2 40 405 4 0 0
5XP1 215 100 169 28 24
RD53 214 119 444 68 2
RD73 2263 1212 25049 810 5442
B12 176 61 208 29 44
SAO2 593 240 245 68 95
VG2 370 41 7216 2 4

Table 4.2: Number of kernels, intersections, and intersection merges for several ex-
amples.

Chapter 5

Cost Computation

The computation of the cost of the co-kernels and intersections must follow the com-

putation of the co-kernels and intersections. Cost can be computed by counting the

literals in the SOP form of each set of co-kernels and intersections. Note that when

computing the cost of an intersection between different outputs, the number of non-

empty sets of the X part of each pair should be added to the cost, because in this

case a new variable should be added to the network that is the input to each of those

outputs.

For example, for the following multiple output function,

F = ab+ ac + ad

G = a'b + a'c + a'd

the result of factorization will be,

F=axX

G =a' xX

X = b+c+d

which means the cost of ({{a}, {a'}}, {b+c+d}) is 7 (2 + 3 + 2(because of variable

X)).
Better results can be achieved by using the quick-factor or the good-factor algorithm,

to factorize the SOP form, and by counting the literals in the factored form instead of

the SOP form. Table 5.1 shows the effect on the number of literals after the first level

of factorization when counting literals in the SOP form versus the factored forms.

Table 5.2 shows the elapsed time for computing cost in the different methods.

literals # literals # literals
Without Factoring Quick Factor Good Factor

ADD4 133 93 93
XOR5 32 28 28
BW < 268 < 264 < 249
MISEX1 75 74 74
MISEX2 167 164 164
5XP1 177 159 159
RD53 75 68 68
RD73 197 < 192 < 188
B12 127 106 103
SAO2 243 184 183
VG2 208 182 182

Table 5.1: Number of literals for several examples.

Without Factoring (sec) Quick Factor (sec) Good Factor (sec)
ADD4 0.30 4.58 7.96
XOR5 0.04 0.06 0.57
BW 0.13 0.41 0.63
MISEX1 0.03 0.12 0.19
MISEX2 0.02 0.07 0.09
5XP1 0.09 0.48 0.72
RD53 0.10 0.73 1.25
RD73 1.32 34.41 91.77
B12 0.08 0.43 0.71
SAO2 0.24 2.62 6.52
VG2 0.14 0.90 1.73

Table 5.2: Time for computing cost for several examples.

Chapter 6

Selection of the Best Cover

With the generation of all the kernels and their intersections and the computation of

their costs, a table with kernels, intersections and cubes in its columns, and cubes of

the function in its rows can be constructed. Each entry of Bi,j in the table is X if

the column j covers the cubes associated with row i, otherwise it is a ""

Table 6.1 shows the related table for the function,

F = ab+ ac + bc

To factorize the function, a subset should be selected, from the set of columns of

the table. This subset should cover at least one X of each row and have the least

cost.

For finding the best solution, the Branch and Bound method can be used. It has

been shown that this covering problem is NP-complete [6], and hence the Branch and

axb 1
axc 2
bxc 3

ax(b+c) bx(a+c) cx(a+b) axb axc bxc
1 2 3 4 5 6
X X . X
x . x . X

x x . x

Table 6.1: Kernels, intersections, and cubes of function F.

Bound method may take exponential time.

To decrease the amount of CPU time, a greedy method for selecting the best cover

has also been tried. Since this greedy method is used in the first part of the Branch

and Bound method, it will be explained first.

6.1 Greedy selection

In each step of the greedy algorithm, we select a column with the smallest f where

f is a function of the cost of that column and the number of uncovered rows of the

table which would be covered by this selection (NUR).

The reason that we use NUR instead of the number of cubes which will be covered,

is that covering cubes which have already been covered (multiple covering) is usually

redundant and we wish to prevent it. Of course in some cases, multiple covering can

get better results, but not with greedy selection.

One simple and good function for f is cost/NUR. Using this function leads to the

selection of kernels, intersections, or cubes with a small number of literals that cover

a large number of cubes.

Another function is cost/N R. This function is biased in favor of entries that

cover many cubes.

This greedy method for selection is very fast because both functions can be com-

puted quickly, and for each selection, only one search through all the columns is

necessary and can be done in O(N) time. This method usually gives good results.

Table 6.2 shows the cost of the selected cover by the greedy method in comparison

to the best solution. The subscript included in the name of example shows that the

data is related to the the first or second or third level of factorization of function. For

example, ADD41 shows that the data is related to the first level of factorization of

ADD4 function.

As is obvious from the table, cost/NUR generally gives better results than

ADD41
ADD42
X0OR5 1

BW1
MISEX11

MISEX12
MISEX21

MISEX22
5XP11
RD531
RD532
INC 1

B121
B122
SA021

SA022
VG21

VG22
VG23
RD731

TOTAL

Greedy (Cost/NUR) Greedy (Cost/N R) Best solution
93 93 93
47 45 45
28 28 28
273 298 < 264
80 80 74
33 30 30
173 272 164
67 100 65
169 173 < 159
72 70 68
39 39 39

211 225 199
124 106 106
67 72 67
206 199 184
146 137 133
241 192 182
63 67 58
31 36 29

197 218 < 192
2360 2480 < 2179

Table 6.2: Number of literals for several examples.

cost/(NuJR). The sum of the literals for the results achieved by cost/NUR is 8% higher
than the best solution, while the number for cost/NuR is 14%. If the minimum of the

results of two greedy methods is used, the total of the literals will be 2270, which is

4% more than the best solution.

Other functions for f have been tried as well, but the results were not better than

the two mentioned functions.

6.2 The Branch and Bound method

The Branch and Bound method can find the best solution at the expense of a lot of

CPU time.

Finding the best cover begins with deleting one column of the table and adding it

to the set of selected columns and recurring for the subtable until all the rows of the

table have been covered. The cost of this cover is the sum of the cost of the selected

columns, and it can be compared to the cost of the best cover found thus far and

updated, if necessary. The algorithm continues with deleting the added column from

the set of the selected columns and recurring for the resulting subtable.

Figure 6-1 shows this algorithm in pseudo code.

This algorithm considers two cases for each column (selected or deselected) and

computes the cost of all the possible covers of the table to find the best one. For a

table with n columns this means considering 2" different cases, hence the required

CPU time may be large.

Sometimes it is not necessary to consider two different cases for some columns,

and they can be selected or deselected without losing the best result. These are:

1. If there is a column in which there is no X (empty column), it can be deselected

and deleted from the table.

best-cost = 0
find-cover (table) {

If there is no uncovered row in the table, return.

Choose one column of the table (C).

Delete C from the table.
Add C to the set of selected columns.
Find the best cover for resulting subtable.
Compute the cost of the selected columns.
If the computed cost is less than the best-cost, update it.

Delete C from the set of selected columns.
Find the best cover for resulting subtable.
Compute the cost of the selected columns.
If the computed cost is less than the best-cost, update it.

I
Figure 6-1: Branch and Bound Algorithm.

2. If there is a column whose X's are the subset of another column and the column's

cost is not smaller than that column (dominated column), it can be deselected

and deleted from the table.

3. If there is a row which has only one X, the column associated with that X should

be selected and deleted from the table.

Furthermore if there is a row (rl, dominating row) whose X's are a superset of

another row (r 2), this row can be deleted from the table because covering r 2 will

automatically cover r, as well.

Table 6.3 shows examples of these cases. In this table, column 7 is an empty column,

so it can be deleted from the table.

The X's in column 6 are a subset of the X's in column 5. If the cost of column

5 is not greater than the cost of column 6, column 6 can be deleted from the table

because selecting column 5 will cover more rows at the expense of less or equal cost.

There is only one X in row 1, so column 2 should be selected and deleted from

123456781 2 3 4 5 6 7 8
1 .X .

2X . X
3X . X X
4 . . .X
5. . .X X
6 . . .X X .X
7.X. . . . X

Table 6.3: Example of empty column, dominated column, single-X row, and domi-
nating row.

the table. After that row 1 and row 7, which have been covered by selecting column

2, should be deleted from the table.

The X's of row 2 are a subset of row 3, so selecting one column to cover row 2

will cover row 3 automatically. Therefore, row 3 can be deleted from the table.

Note that deleting a dominated column can create a single-X row or dominating

row in the table. For example deleting column 6, makes row 5 a single-X row.

Deleting a single-X row can create a dominated column or empty column in the

table. Deleting row 1 (selecting column 2) will delete row 7 from the table which

makes column 8 dominated by column 5.

Deleting a dominating row can create an empty column or a dominated column

in the table. Deleting row 3 from the table makes column 4 empty.

Therefore, it is necessary to iterate several times to delete all the new cases that

have been created after deleting one column or row from the table.

Because the columns associated with the cubes have only one X and usually will

be selected or deselected in the last steps of the covering procedure (columns 4, 5,

and 6 in Table 6.1), there is usually no dominating row in the table. For the examples

shown in Table 6.2 only one example had dominating rows and even that case it only

occurred 4 times. Therefore, in the final implementation of the algorithm, the search

for the dominating rows has been deleted to increase the speed of the program.

To accelerate the algorithm, in each step the minimum bound of the cost of the

subtable can be found, and that level of recursion can be terminated if the sum of the

bound and the already selected columns is more than the cost of the best solution

found so far.

The cost of the solution resulting from greedy selection can be used as the best-

cost at the start. Otherwise, a large number should be used to initialize best-cost,

which means in the early steps of selection, every subtable will be considered for

finding the best solution.

Using these facts, the algorithm can be updated. Figure 6-2 shows the updated

algorithm in pseudo code.

The speed of the search depends on:

1. The quality of the first number used for initializing the best-cost variable (i.e.,

the quality of the result of greedy selection).

2. Sharpness of the minimum bound.

3. Effectiveness of the selected column for recursion.

To get a more accurate number for best-cost, greedy selection with two different

functions was used and the lesser of the two costs is used to initialize the best-cost.

To find the minimum bound, two different methods were used:

a) If f is the cost/NUR for one column of the table, MIN(f) x N is a minimum

bound, where N is the number of uncovered rows of the table.

b) If fi is the smallest cost/NUR for the columns associated with row i,

E f over all the uncovered rows is a minimum bound.

Both of these minimum bounds can be computed quickly and some parts of their

computation can be merged with other parts of the algorithm to speed up other parts.

best-cost = cost resulted by greedy selection.
find-cover (table) {

Delete single-X rows from the table.
Delete dominated columns and empty columns from the table.
If table has been changed by deleting one column or row repeat
the two previous steps.

If there is no uncovered row in the table, return.
Find a minimum bound on the cost of the subtable.
If the cost of the subtable and the cost of the already selected
columns is not less than best-cost, return.

Choose one column of the table (C).

Delete C from the table.
Add C to the set of selected columns.
Find the best cover for resulting subtable.
Compute the cost of the selected columns.
If the computed cost is less than the best-cost, update it.

Delete C from the set of selected columns.
Find the best cover for resulting subtable.
Compute the cost of the selected columns.
If the computed cost is less than the best-cost, update it.

Figure 6-2: Improved Algorithm.
Figure 6-2: Improved Algorithm.

At first method a is used since it is faster than method b. However, if the sum

of the resulting minimum bound and the cost of the selected columns is smaller than

the best-cost, method b is used to find a sharper minimum bound.

The speed of the algorithm also depends on how we choose the branching column.

Selecting a column with many X's, means that a lot of rows will be deleted from the

table. This can lead to deleting many columns from the table as well, thus making

the table very small and simplifying the following steps of recursion.

Table 6.4 shows the results achieved by the Branch and Bound algorithm for several

examples.

6.3 Implementation

Because the density of the matrix is usually small, a sparse-matrix structure has

been used to store the matrix. A sparse-matrix only stores nonzero elements of the

matrix and each element is linked to previous and next elements in the same row

and the same column. This means that in a sparse-matrix each row or column can

be traversed much faster than a non-sparse-matrix. This helps to find the empty

columns, dominated columns, and single-X rows quickly. Also, instead of searching

all the rows to find the single-X rows after selecting or deselecting some columns,

only the rows which have elements in those columns are searched. Similarly, instead

of searching all the columns to find the empty columns or dominated-columns after

deleting some rows, only the columns which have elements in those deleted rows are

searched.

matrix # matrix Density of # literals of CPU time
rows columns matrix (%) the cover (sec)

ADD41 135 849 4 93 2.78
ADD42 26 66 9 45 < 0.01
XOR51 16 166 22 28 0.02
BW1 113 367 2 < 264 ...
MISEX11 32 98 7 74 0.48
MISEX12 8 14 18 30 < 0.01
MISEX21 22 37 8 164 0.01
MISEX22 10 16 16 65 < 0.01
5XP11 72 279 4 < 159 ...
RD531 32 319 12 68 3.26
RD532 16 34 10 39 0.02
INC 1 99 807 5 < 199 ...
B12 1 79 222 4 106 4.6
B12 2 46 118 8 67 0.11
SA021 78 722 5 184 33.33
SA022 48 139 5 133 0.23
VG21 110 393 4 182 0.2
VG22 28 47 7 58 0.01
VG23 16 19 12 29 < 0.01
RD731 141 3420 6 < 192 .

Table 6.4: Size of the matrix and CPU time of the Branch and Bound algorithm for
several examples.

Chapter 7

Multiple levels of Factorization

After the first level of factorization, multiple-output functions will be converted into

the following form:

Fi•E
O<i<NA

F2 = E
O<i<N 2

Gj, x Hi,1 + R1

Gi,2x Hi,2 R2

Fn = Gi,,nx Hi,, + Rn
O<i<Nn

where Gi,, H,j for Rj , 0 < i < Nj, 0 < j < n are new Boolean functions.

Factorization can be continued to find common factors between these new func-

tions, and to extract the common factors to get better results. In other words, a new

multiple-output function Fn,, can be defined as,

Fnew, = Gi,

Fnew2 = Hi,
FneW3 = Ri

Fnew4 = Gi,2

Fnewn =R

and is factorized. Note that although the number of outputs of this new function is

much larger than the initial multiple-output function, the Boolean function related

to each output is much smaller than the initial ones. This makes the factorization of

succeeding levels faster than the first level.

The factorization can be continued until there are only non-trivial kernels in the

multiple-output function. Another possibility is to terminate the factorization process

after several levels. This can be done to get better performance. Other factorization

algorithms lack this simple capability of limiting the number of levels.

During the recursion, sometimes one factor will be found in several different levels

of factorization. This means that some factors will be implemented more than once

in the final circuit, which is not desired. For the following multiple-output function,

F, = ax (b+ c) x (dx (e + f + g) + h)

F2 = b' x (e + f + g)

F3 = x (+fg)

after the first level of factorization the result will be,

F = a x [1]

F2 = b' x [2]
F3 =c' x [2]

[1] = (b + c) x (dx (e + f + g) + h)

[2] = e + f + g

Factorization will be continued on the following multiple-output function,

[1] =(b + c) x (dx (e + f + g) + h)

[2] = e + f + g

After the second level of factorization the result will be,

FI = a x [1]

F2 = b' x [2]

F3 = ' x [2]
[1] = [3] x [4]
[2] = e + f + g

[3] = b +c
[4] = dx (e + f +g) + h

In the third level of factorization the following multiple-output function will be

factorized,

[3] = b + c
[4] = dx (e + f + g) + h

and the result will be,

F, = a x [1]

F2 = b' x [2]
F3 = c' x [2]

[1] = [3] x [4]

[2] = e + f + g

[3] = b +c
[4] = d x [5] + h
[5]= e + f +g

As one can see e + f + g has been extracted two times ([2] and [5]) in different

levels of factorization, once in the first level and once in the third level. Note that it

is impossible to extract e + f + g from F1 in the first level of factorization, because

it will lead to a solution which will be worse than the one shown, after the first level

of factorization.

To prevent this, it is necessary to search the network for multiple realizations of

a factor and to delete redundant ones. Although this searching and deleting process

can be done just once after ending recursion, it is better to do this after each level of

factorization to prevent unnecessary processing on the same data several times (i.e.,

factorizing the expression which has been factorized in a previous level)

Another method to delete redundant nodes is factorizing all the nodes in each

level, not just new nodes. Although this approach can solve the problem, it is slow

and a lot of CPU time will be wasted in an unnecessary effort of searching for common

factors between functions which usually do not have common factors.

Better results can be achieved by searching the network for the expressions which

are complements and deleting one of them from the network. For example, in the

following multiple output function,

F1 = ax (b + c + d)

F2 = b' ' x x d' x (a + e)

after the first level of factorization the result will be,

F1 =a x [1]

F2 = [2] x [3]

[1] = b+c+d

[2] = b' x c' x d'

[3] = a + e

as one can see b + c + d and b' x c' x d' ([1] and [2]) are complements and one of

them can be deleted and be expressed as the inversion of the other. This will result

in the following solution which is better than the first one,

FI = ax [1]

F2 = [1]'x [3]
[11 = b+c+d

[3] = a + e

Although extracting common factors which have two literals from two outputs,

will not improve the total number of literals, it is possible to find the same factor

in another level of factorization, in this case it will decrease the number of literals.

Therefore, the implemented program extracts two-literal factors as well.

Chapter 8

Boolean Factorization

With slight modifications to the methods of the Chapters 4 through 7, some Boolean

equalities like a x a' = 0 and a x a = a can be used. To use these Boolean equalities,

instead of each kernel, a range should be used.

For two functions X and Y, the result of X x Y will not be changed, if we multiply

Y by a function whose ON-SET is a superset of the ON-SET of X, or we add to Y

a function whose OFF-SET is a superset of the ON-SET of X. In other words,

X Y =X x (f ix (Y+f 2))

where ON - SETf, 2 ON - SETx,

OFF- SETf2 D_ ON- SETx

Using this fact, for each co-kernel pair a range can be defined.

1. Single output functions

For a single output function, the range of a co-kernel can be defined as,

R = {cokerneli x kernels, cokernel$ + kerneli}

As one can see using equalities, a x a' = 0 and a x a = a will result in,

Xi x Ri = cokerneli x {cokerneli x kerneli, cokernel' + kerneli}

= {cokerneli x kerneli, cokerneli x kerneli}

= cokerneli x kerneli

= Xi x YZ

which means this transformation has not changed the cubes which will be cov-

ered by each co-kernel pair.

2. Multiple output functions

For a co-kernel pair of a multiple output function ({ao, al,..., a(,-1)}, Yj) where

ai is a set for 0 < i < (n - 1), the range can be defined as,

Ri = {kerneli x fi,

where ON-

OFF -

in other words,

ON - SETf,

OFF - SETf2

kerneli + f 2}

SET1 D ON- SET•a for 0 < i < (n- 1),

SETf2 2ON-SETa,, for 0 < i < (n- 1)

2 (ON - SETao U ON - SETal U ... U ON - SETanJ_) ,

S(ON - SETao U ON - SETai U... U ON - SETan._).

Ri = { kerneli x (ao U a, U ... U a(n-1)) , kerneli + (a, n a' n ... n al)) }

Chapter 9

Results

The technique described in this thesis has been implemented as an option to the SIS

package. The results and run-times were collected on a DEC ALPHA 3000 machine.

Table 9.1 shows the number of literals achieved by the RIC algorithm and CPU

time for several examples in comparison with number of literals achieved by two

different SIS algorithms, namely, fx (an algorithm for cube and kernel extraction),

and gkx (an algorithm for kernel extraction).

As one can see, the results achieved by RIC algorithm are much better than gkx.

The results are sometimes better than fx, but in cases with many common cubes

between different outputs, it cannot find a solution as good as the one achieved by

fx. Note that for arithmetic functions RIC algorithm usually produces better results

than either fx or gkx.

The RIC algorithm can be used as a preprocessor before running fx to get better

results. In other words, after running RIC algorithm, fx can be used to extract cubes

between different outputs.

Table 9.2 shows the number of literals achieved by running fx after the RIC algo-

rithm for some examples in comparison with number of literals achieved by running

quick-factor after fx.

Table 9.3 shows the number of literals achieved by using different methods for

In/Out Cubes CPU Time RIC gkx fx
(sec) # literals # literals # literals

ADD4 9/5 135 16.96 55 80 73
XOR5 5/1 16 0.76 16 28 16
INC 7/9 99 8.76 190 255 176
SQUAR5 5/8 32 8.39 103 132 110
BW 5/28 87 5.06 252 317 213
MISEX1 8/7 32 1.15 79 100 72
MISEX2 25/18 29 1.12 164 184 112
5XP1 7/10 75 415.49 136 176 138
RD53 5/3 32 6.04 57 73 52
RD73 7/3 141 150.4 144 179 130
B12 15/9 82 7.21 101 122 105
SAO2 10/4 78 82.41 161 287 160
VG2 25/8 110 4.66 121 133 94
T481 16/1 481 877.62 62 74 36

Table 9.1: CPU time and the number of literals in comparison with gkx and fx.

Table 9.2: Number of
quick-factor after fx.

literals using fx after RIC algorithm in comparison with using

In/Out Cubes greedy B and B fx with
with fx with fx Quick factor

literals # literals # literals
ADD4 9/5 135 54 54 66
XOR5 5/1 16 16 16 16
INC 7/9 99 190 - 171
SQUAR5 5/8 32 95 - 106
BW 5/28 87 216 - 208
MISEX1 8/7 32 72 68 70
MISEX2 25/18 29 110 117 110
5XP1 7/10 75 136 128 123
RD53 5/3 32 57 53 51
RD73 7/3 141 142 - 120
B12 15/9 82 94 96 97
SAO2 10/4 78 148 147 153
VG2 25/8 110 95 100 92
T481 16/1 481 56 - 36

Number of literals for different methods of counting the literals of expres-

computing the cost of kernels, intersections, and cubes on the results generated by

RIC. As one can see, the differences in the results are generally small. Note that for

some functions, using quick-factor and good-factor have given worse results than sim-

ply counting the literals without factoring. The reason is that this simple estimation

of literals does not take into account that there will be some common factors between

different expressions, and simply considers each expression separately.

Table 9.4 shows the results achieved using the minimum of the greedy algorithm

with two different cost functions in comparison with the Branch and Bound algorithm.

In both cases, good factor was used to factorize each expression before computing its

cost. Note that for function VG2, the result achieved by the greedy method is better

than the Branch and Bound method. The reason is that minimizing the number of

literals in one level of factorization does not necessarily guarantee the minimization

of the final result.

In/Out Cubes Without Factoring Quick Factor Good Factor
literals # literals # literals

ADD4 9/5 135 55 55 55
XOR5 5/1 16 16 16 16
INC 7/9 99 212 190 190
SQUAR5 5/8 32 101 103 103
BW 5/28 87 250 252 252
MISEX1 8/7 32 74 79 79
MISEX2 25/18 29 164 164 164
5XP1 7/10 75 148 143 136
RD53 5/3 32 54 57 57
RD73 7/3 141 135 144 144
B12 15/9 82 100 102 101
SAO2 10/4 78 160 165 161
VG2 25/8 110 120 121 121
T481 16/1 481 100 62 62

Table 9.3:
sions.

Table 9.4: Number of literals for
method.

the greedy method and the Branch and Bound

9.1 Conclusion

In this thesis a new method for factorization of Boolean functions using kernel inter-

section has been proposed. The proposed method has the possibility of limiting the

levels of factorization which does not exist in other methods. The results achieved

by this method are much better than kernel extraction method implemented in the

SIS package (gkx). In some cases it is better than kernel and cube extraction method

implemented in the SIS package (fx).

9.2 Future work

The presented algorithms can be implemented using Binary Decision Diagram (BDD)

data structures. This can halp to decrease the memory requirement and increase the

speed of the method.

In/Out Cubes Greedy B and B
literals # literals

ADD4 9/5 135 55 55
XOR5 5/1 16 16 16
MISEXI 8/7 32 79 72
MISEX2 25/18 29 164 164
5XP1 7/10 75 142 136
RD53 5/3 32 57 54
B12 15/9 82 101 96
SAO2 10/4 78 161 154
VG2 25/8 110 121 126

Bibliography

[1] R. Brayton, Gary D. Hachtel, Arthur Richard Newton, and A. L. Sangiovanni-

Vincentelli, editors. Logic Minimization Algorithms for VLSI Synthesis. Kluwer

Academic Publishers, Norwell, MA, 1979.

[2] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A

Multiple-Level Logic Optimization System. IEEE Transactions on Computer-

Aided Design of Integrated Circuits, CAD-6(6), pages 1062-1081, November

1987.

[3] M. Dagenais, V. K. Agarwal, and N. Rumin. McBOOLE: A Procedure for

Exact Boolean Minimization. IEEE Transactions on Computer-Aided Design of

Integrated Circuits, CAD-5(1), pages 229-237, January 1986.

[4] J. Darringer, W. Joyner, L. Berman, and L. Trevillyan. Logic Synthesis through

Local Transformations. IBM Journal of Research and Development, 25(4):272-

280, July 1981.

[5] H. Fleisher and L. I. Maissel. An Introduction to Array Logic. IBM Journal of

Research and Development, 19(3), pages 98-109, March 1975.

[6] M. R. Garey and D. S. Johnson, editors. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company, New York,

1979.

[7] Gary D. Hachtel, Arthur Richard Newton, and Alberto L. Sangiovanni-

Vincentelli. An Algorithm for Optimal PLA Folding. IEEE Transactions on

Computer-Aided Design of Integrated Circuits, CAD-1(2), pages 63-76, April

1982.

[8] S. J. Hong, R. G. Cain, and D. L. Ostapko. Mini: A Heuristic Approach for

Logic Minimization. IBM Journal of Research and Development, 18(4):443-458,

September 1974.

[9] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued Minimization for

PLA Optimization. IEEE Transactions on Computer-Aided Design of Integrated

Circuits, CAD-6(5), pages 727-751, September 1987.

[10] Richard L. Rudell. Logic Synthesis for VLSI Design. PhD dissertation, University

of California, Berkeley, College of Engineering, April 1989.

[11] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, and R. K. Sequential Circuit

Design Using Synthesis and Optimization. In Proceedings of the Int'l Conference

on Computer Design: VLSI in computer, pages 328-333, October 1992.

