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Abstract

We consider a particular sub-optimal "water-pouring" scheme applied to an additive,
colored Gaussian noise channel. The scheme allocates power uniformly over an opti-
mized band of frequencies. Within the set of all noise power spectral densities yielding
a fixed water-pouring capacity, we find the noise spectrum yielding the smallest mu-
tual information between input and output when the transmitter is restricted to use
the sub-optimal scheme. The loss at high SNR is a fraction of a bit per Hz; the loss
at low SNR is less than 15%.
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Chapter 1

Introduction

From an information-theoretic standpoint, the problem of selecting the optimal power

spectral density for communication over an additive, colored Gaussian noise channel

was solved by Shannon in his original paper [9] and treated rigorously by Pinsker [8].

An essentially equivalent problem, for filtered channels with white Gaussian noise,

was solved by Holsinger [5]. Given a fixed power budget, the "water-pouring" so-

lution maximizes the rate of reliable communication. This maximum rate is called

the channel capacity [4]. Calculating the capacity, however, requires full character-

ization of the communication channel. In a practical communication environment,

channel characteristics must be estimated, permitting only an approximation to the

water-pouring solution. Channel information must also be fed back to the transmit-

ter, possibly requiring a feedback path of significant bandwidth. (Consider describing

an arbitrary noise power spectral density S,,(w) on w e [0, 7r].) Furthermore, imple-

menting a close approximation to the water-pouring solution may be computationally

expensive or excessively complex. The latter concern is not of great significance for

a DSP-based multi-carrier system, but may be important for a single-carrier system

or when decoding delay is critical.

Sub-optimal power allocation schemes have thus been popularly adopted that do

not require exact channel identification or complicated transmission spectrums. Most

schemes have been justified by an empirical verification of small capacity loss, assum-

ing a reasonable approximation to the noise power spectrum is available. Existing



analytical work supports this assessment for asymptotically large input power1 [2].

This phenomenon has inspired a folk theorem that such schemes are relatively efficient

in terms of the loss of the maximum achievable rate of reliable communication.

In this research, we find the maximum capacity loss incurred by a particular

sub-optimal power allocation scheme. The scheme we investigate restricts the input

power spectrum to be uniform over a set of frequency bands. Intuition suggests that

an intelligent choice of frequencies should keep the capacity loss modest. We show

that this is indeed true by computing the worst-case channel for every SNR. For low

SNR, where normallized loss is important, the capacity loss is at most 14.25%. For

high SNR, where absolute loss is important, the capacity loss is at most 0.1874 bits

per channel use.

While we do not consider any other sub-optimal power allocation scheme, we

expect comparable results for any related method. Similarly, we do not solve the more

difficult problem of bounding the loss in capacity due to imperfect channel knowledge.

To even define this problem requires an assumption on how the noise power spectral

density is measured; it is not clear what (if any) model is most natural.

The thesis is organized as follows. In Chapter 2 we describe the water-pouring

solution for an additive, colored Gaussian noise channel. In Chapter 3 we define our

research problem as a constrained non-linear optimization. In the remainder of the

chapter we discuss why standard approaches to its solution are not applicable. In

Chapter 4 we characterize the solution to a sub-problem that allows only bounded,

piecewise constant noise power spectral densities. In Chapter 5 we use continuity

arguments to show that the piecewise constant solution is in fact the solution to the

original problem. In Chapter 6 we present the results and discuss their implications.

'The analysis in [2] uses an error-free zero-forcing decision feedback equalizer, a physically unre-
alizable device. With an ideal DFE, sub-optimal power allocation has no loss in performance at high
SNR. As shown later in the thesis, an exact analysis reveals a high SNR loss of 0.3748 bits/sec/Hz.



Chapter 2

Background

We discuss in Section 2.1 the physical motivation for the colored Gaussian noise

channel model. We then describe in Section 2.2 a fundamental result from information

theory which asserts that there is a maximum rate of reliable communication over

this channel. The discussion naturally leads to the well-known water-pouring solution

to maximizing the achievable rate.

2.1 Additive Colored Gaussian Noise Model

We base our research on a discrete-time additive colored Gaussian noise channel.

This model arises from the sampled baseband representation of a continuous-time,

strictly band-limited, time-invariant linear channel with memory. A typical system

is diagrammed in Figure 2-1(a). Digital to analog conversion is modeled as ideal

discrete-to-continuous impulse train conversion followed by convolution with a pulse

p(t). The channel, indicated by the dashed box in the figure, is modelled as a linear

filter h(t) followed by zero-mean additive white Gaussian noise n(t) with power density

2f Watts/Hz.

The receiver is a whitened matched filter and sampler (which results in no loss of

information [7]). The resulting complex baseband discrete-time equivalent channel is

shown in Figure 2-1(b), where G(z) is the composite sampled channel, and where the

discrete-time complex circular additive white Gaussian noise fi[k] has constant power
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Figure 2-1: Channel Model

1

spectral density Sus(w) = Ao [f [(p * h)(t)]2 dt] ' -r < w < 7r.

With a simple change of basis, we can reformulate the filtered channel with white

noise as a memoryless channel with colored noise. The resulting channel is pictured

in Figure 2-1(c), where the colored Gaussian noise has power spectral density

S..(w) = Sii(w) G-'(w) 2 (2.1)

Because the real and imaginary components of the noise are independent, we will

henceforth consider only the case of a real signal x[k]. That is, one real-valued

channel use corresponds to - bit per second per Hz.

2.2 Information-Theoretic Results

2.2.1 Mutual Information

Information theory tells us that if the user of the discrete-time channel described in

Section 2.1 has an average input power constraint, there is a well-defined maximum

rate of reliable communication. Reliable communication is defined as the ability of



the receiver to reproduce one of a finite set of messages chosen by the transmitter with

an arbitrarily low probability of error. The average power constraint typically arises

either from channel constraints (e.g., FCC or AT&T regulations) or user constraints

(e.g., battery life).

Given a wide-sense stationary stochastic input process Xk, the output process Yk

is also stationary. Hence, for a fixed input power spectral density (PSD) Sx(w),w E

[0, 7r], the mutual information is maximized by a Gaussian input process [6]. The

mutual information between input and output may be defined as

1
I(X,Y) = lim -I (Xli,..., Xn;Y 17,...,Yn). (2.2)n---•co n

The mutual information is then

I(X, Y) = 1 log2 1 + dw. (2.3)2-x fo Sann(W)

The integrand in (2.3) is defined to be zero when both the input spectrum and the

noise spectrum are zero at the same frequency.

Using this expression, we define the capacity of the channel as

C = max I(X; Y), (2.4)
Sa.(w):E[X 2]<P

with an input power constraint

1/:
P=E X2 =- S.,(w)dw. (2.5)

r o

The units of capacity are bits per channel use.

Information theory tells us two critical things regarding the capacity of the chan-

nel. First, if we want to communicate reliably at any rate R (bits/channel use),

where R < C, then we can use the capacity-achieving input process to generate an

appropriate codebook. Second, if we attempt to communicate at any rate R > C,

then we are guaranteed to have a non-zero lower-bound on the probability of error.
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Figure 2-2: Water-Pouring for a Colored Channel.

2.2.2 Water-Pouring Solution

As mentioned in Section 2.2.1, the capacity of this channel, subject to the average

input power constraint P, is the maximum mutual information achievable using a

stationary Gaussian input process. The well-known maximizing solution is called the

water-pouring solution. The maximizing equations are (from [3]):

1 fo (7 - S-S,(w))+d
C(Snn) = log 1 + (w) dw (2.6)27r o Snn (W)

where the water-pouring level 7y is chosen to satisfy the power constraint1=
P= 1 ( - Snn(w))+dw. (2.7)

70

The function (x)+ is defined as (x)+ = max(0, x). These equations have been trivially

simplified by accounting for the even noise spectrum.

Looking at the solution graphically, as in Figure 2-2, it is clear why the solution is

called "water-pouring." If the power constraint P is interpreted as a volume of water,

A)a

| b



the input PSD which maximizes the mutual information is determined by the height

of the water in its minimum potential energy configuration. A graphical example is

shown in Figure 2-2(a), and the resulting input PSD is shown in (b).





Chapter 3

Problem Definition

3.1 Basic Description of the Scheme

A common approach to implementing an approximation to the water-pouring solution

for a known channel is to use a uniform power allocation over an intelligent choice of

bandwidth. Unlike the water-pouring approach, the input spectrum is not weighted

according to the noise.

Consider again the water-pouring solution pictured in Figure 2-2 - the input

power density is largest where the noise power is smallest. The assumption, backed

by empirical observation, is that a uniform power approach never reduces the mutual

information between input and output too far from capacity (as calculated in (2.3)

and (2.6)).

We take a game-theoretic approach to calculating the capacity loss due to a uni-

form power allocation. Nature selects a channel (i.e., a noise power spectral density

S.,) from among those that yield a fixed capacity C using a fixed power P, where

capacity is calculated via the water-pouring equations (2.6) and (2.7). Given P and

Sn,, the user then selects a set of frequency bands to maximize the mutual informa-

tion I(X; Y) when uniform power allocation is enforced. We pit nature against man

by finding the worst possible channel to give the user.

We note in passing that the water-pouring frequency bands are usually not the

best bands to use with a uniform power allocation. For example, the water-pouring
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Figure 3-1: Uniform Power Allocation

solution might use a small amount of power over a large bandwidth; a uniform power

allocation restricted to use the same bandwidth would be highly sub-optimal. This

restriction does not seem to be particularly natural (nor particularly interesting).

Hence we consider the more general problem where the user may select bands freely.

Note also that we do not restrict the user to allocate all power over a contiguous

band. For example, the allocations sketched in Figure 3-1 are both allowed, though

our restriction to a uniform power allocation requires that the height of the input

spectrum over both bands in (b) be equal.

We now precisely define the minimax problem.

3.2 Detailed Problem Definition

We parametrize the problem by considering all noise power spectral densities which

achieve some fixed capacity C. We assume that all noise PSD's are Lebesgue mea-

surable. Though we would hope for analytical reasons to deal only with continuous

functions, it will turn out that the worst-case noise PSD is piecewise continuous. We

I 11 0)



do not, however, assume this a priori.

Define the class of admissible noise power spectral densities as

A(C) = {Sn,(.) I C(Snn) = C}. (3.1)

The capacity is calculated according to the general water-pouring equations (2.6) and

(2.7), assuming a power constraint of P.

The sub-optimal power allocations available to the user have the form

P if we W

S..(w) = 2y(W) (3.2)
0 if w W,

where W C [0, r] is some (not necessarily contiguous) subset of the frequency band

and p(.) is Lebesgue measure.

From (2.3) applied to a uniform power allocation, the mutual information is

1 (P33
R(Sn,, W) = I log 1 + dw. (3.3)2-x 1W2 p (W) Son(W))

For every noise PSD, the user optimizes the choice of signalling frequencies W. We

denote the maximized mutual information R*(Snn):

R*(Snn) = max R(Snn, W) (3.4)
wc [0, 7r]

= max log 1+ dw. (3.5)
wc [o,r] 27 fw 2p(WV)Sn.(w))

Note that we can assume any fixed value for P without loss of generality, because the

power constraint P has no effect on the set of rates

{R*(S,,) I Sr,, E A(C)}. (3.6)

To see this, assume that Sn, has capacity C and rate R*(Snn) with power constraint

P. If the power constraint is changed to aP, then aSn achieves the same capacity



C (with water-pouring level a7) and the same rate R*(Sus). For the remainder of

the thesis, we assume P = 2 (which slightly simplifies the equations).

3.3 Monotone Rearrangement

We can greatly simplify our problem by realizing that we need only consider mono-

tonically non-decreasing noise power spectra rather than arbitrary measurable ones.

Looking at the capacity and sub-optimal rate equations ((2.6) and (3.5), respectively),

we see that both depend only on the distribution of the noise power spectra.

Given any noise spectrum S,, we can find an equivalent nondecreasing noise

spectrum S ,., with the same distribution [10, App B.2], hence S., and S,,,, will

have the same capacity and sub-optimal rate [1].

The governing equations simplify for monotonically non-decreasing noise func-

tions:

C(Snn) = log )dw (3.7)2 7r o Snn ( W)

P = 2 = Sn ( Su(cj)) dw (3.8)

A(C) = {Sun(-) I C(Snn) = C}, (3.9)
1 R bbw ( 1 \

R(S7,wbw) = log 1 + dw, (3.10)27 o0 WbwS.n(w)

and finally,

R*(Snn) = maxR(Sn, wbw). (3.11)
Wbw

The water-pouring bandwidth w7 is the smallest frequency for which 7 - Sn,(w) < 0.

In writing the above equation for R(Snn, wbw), we have assumed the user allocates

his power over the frequency band of measure Wbw with lowest noise power. Also, for

notational purposes, define w,. to be the bandwidth Wbw which maximizes (3.11). The



final minimax optimization problem then becomes:

L(C) = C - min max I(X; Y) (3.12)
Snn(.)eA(C) s., uniform

E[X 2]<2

= C- min R*(Snm). (3.13)
s.n(.)EA(c)

3.4 What is Hard?

The constrained optimization problem (3.13) is surprisingly difficult to solve.

First, the calculus of variations cannot easily be applied because the noise spectra

we consider may be discontinuous at any number of points. We consider discontinu-

ous functions because, in a sense, they are the completion of the continuous functions.

While discontinuous spectra are not physically meaningful, restricting the optimiza-

tion to continuous spectra is of no help because the optimizing spectrum turns out

to be discontinuous.

Second, the constraint set A(C) of noise power spectral densities yielding capacity

equal to C is not convex. Furthermore, loosening the constraint set to B(C) =

{S..(.) C(Snn) > C} still results in a non-convex set. Consider Figure 3-2, where

both noise spectra Snn, and Sn2n 2 yield capacity equal to C. Then the convex

combination Sf33 = - Snl1, + !Sn2n 2 necessarily yields a lower capacity. Thus Sn,3 ý3

is not in A or B.

Third, the functionals C(Sn,) and R*(Sn,) are integrals with varying (and differ-

ent) end-points. The capacity functional integrates over the water-pouring bandwidth

[0, w•], while the sub-optimal rate functional integrates over an optimized bandwidth

[0, w,]. Recall that both wy and w, vary with Su,.

Fourth, neither C(Sn,) nor R*(S.n) is continuous in any of the LP[0, 7r] spaces.

We solve this problem in the next chapter by bounding all noise PSD's below (almost

everywhere) by an arbitrarily small but fixed lower bound b.
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Chapter 4

Necessary and Sufficient

Conditions

As mentioned in Section 3.4, we consider a sub-problem of the original. We bound

the noise functions above by an arbitrarily large but fixed upper bound B, and we

bound them below by an arbitrarily small but fixed lower bound b (for continuity).

We solve this sub-problem in the following chapters. We first solve a simpler,

related sub-problem that is restricted to piecewise constant noise spectra. We then

use continuity to prove the result is the same for the general bounded sub-problem.

The bounded and piecewise constant sub-problems are defined in Sections 4.1 and

4.2. In Section 4.3, we argue that the infimum over piecewise constant noise spectra

is achievable. In Section 4.4, we derive necessary conditions on the solution; with

achievability, this implies that the solution has one of a small number of forms.

4.1 Bounded Power Spectra

We define a sub-problem of the original constrained optimization problem stated in

Equation (3.13). We will call this sub-problem the bounded problem. The set of

allowable noise power spectral densities is

A(C, b, B) = {S~ I C(Snn) = C, b < San(w) 5 B}, (4.1)



where 0 < b < B are arbitrary (but fixed) lower and upper bounds. The bounded

problem is:

Lb,B(C) = max C - R*(Sus). (4.2)
S.n .EA(C,b, B)

We find that the maximizing power spectrum Sn does not track either bound as they

are loosened appropriately (b --+ 0 and B --+ o).

The upper bound allows the noise spectrum to be uniformly approximated with a

series of piecewise constant functions (see Section 5.1) and guarantees the existence

of a solution to the simplified problem defined below (see Section 4.2). The lower

bound is needed for the continuity of capacity in the L' norm (see Section 5.2).

The upper bound does not appear to be an essential restriction, since the water-

pouring and uniform allocation bandwidths w7 and w., automatically avoid regions

with sufficiently large noise power. The lower bound eliminates the possibility of a

noise spectrum for which all capacity is achieved in the neighborhood of a spectral

null. We consider this to be a physically unreasonable case and thus ignore it. Unlike

the upper bound, however, our arguments cannot be easily extended to eliminate the

lower bound.

4.2 Piecewise Constant Power Spectra

Rather than solving (4.2) directly for the maximizing noise power spectrum, we search

for a solution within the class of piecewise constant power spectra with a finite number

of steps. While this restricted class is small, we will see in Section 5.4 that it is rich

enough to solve the bounded problem (4.2).

Let T(M) be the set of bounded, non-decreasing step functions with at most M

steps, and let

KC(C, M) = A(C, b, B) f T(M) (4.3)

be the set of bounded M-step power spectra that have capacity C. The bounds



p1 p2

Figure 4-1: Representative Member of T(M)

(b, B) are omitted from the notation for brevity. To avoid confusion with general

S,, E A(C, b, B), we denote members of K(C, M) by Si.

We reduce (4.2) to the following simplified problem:

WM(C) = mmin R*(Sjf). (4.4)
S,•,CK(C,M)

Since the noise spectra in IC(C, M) are non-decreasing step functions, this is a 2M-

dimensional constrained optimization problem. A representative step function is

sketched in Figure 4-1. We parametrize Sf by the step heights N = [N1 , N 2 ... , NM]

and step positions p = [pl, p2,... , PM], and we refer interchangeably to (N, p) and

the corresponding Sf. To solve (4.4), we take the following approach. First, we show

that an achievable solution exists (i.e., the minimum is not just an infimum). We do

this by showing that C(N, p) and R*(N, p) are continuous with respect to the Eu-

clidean norm on the (bounded) (N, p) space. Second, there are only two possibilities

for the solution to (4.4): either w., is on the edge of a step, or w,. is on the interior of

a step. For each case, we derive necessary conditions for local extrema and conclude

that only a small number of configurations are possible.

t



4.3 Achievability

We now establish the continuity of C(N, p) and R*(N, p). Given any Sf E K,

we know from the water-pouring solution that w, must lie at the end of some step.

Assume w, = p,, the end of the r t h step. Then the equation for capacity simplifies to

C(N, p) = C(Ses) (4.5)

= (pi - pi-1) In j) (4.6)
i+1

r 1 r
= E(Pi - Pi-1) In 1 I + (pj - pj_)Nj - In (Ni). (4.7)

i=1 7 j=1

Some implicit constraints are 'y Nr, Po = 0, PM = <r, 0 < Pi • P2 < .. < PM, and

b < N < N 2 _ . < NM < B.

From (4.7), it is clear that C(N, p) is a continuous function with respect to the

Euclidean norm on R2M. Furthermore, the bounded 2M-dimensional space is closed

and thus compact. Hence, the subset of R2M corresponding to IC(C, M) is compact.

For Wbw E [Ps-1, P], the equation for the sub-optimal rate is

8-11
R(Si ,wbw) = R(Np, wbw) = (pi- Pi-1)ln 1 + Wb1N

i=1bw

( 1 48
+ (wbw - p,-1 )ln 1 + Wb( 1(4.8)Wbw Ns

R*(S) = R*(N, p)= maxR(Si,,wbw). (4.9)
Wbw

The optimizing bandwidth w. lies on some step s, so that w* E [P,-l, P,]. Unlike wy,

w., need not be an endpoint of a step. For Wbw E (Ps-1iPs),

aR In(1 +1 (Pi - Pi-1)O~bw In 1 = .+w. 1

- * - Ps-1) (4.10)
w. (w.Ns + 1)

At the left and right end-points Wbw = P-I1 and Wbw = Ps, (4.10) remains valid for

right and left partial derivatives, respectively. Thus, if w. C (pS-1, p.), the continuity



R(S~~ ,co~)
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Figure 4-2: Multiple Peaks in R(Sas, w,)

of (4.10) in Wbw implies that 0. If = p, however we know only that

OR > 0 and OR <0.
OWbw *- OWbw W.,+ -

To establish the continuity of R*(N, p), we rewrite it as

R*(N, p) = R(N, p, w,(N, p)), (4.11)

where

w,(N, p) = arg max R(N, p, Wbw). (4.12)
Wbw

It suffices to show that both R(N, p, wbw) and w,(N, p) are continuous. The former is

clear. The latter is intuitively reasonable, but we have not established this rigorously.

One way in which w,(N, p) can fail to be continuous is if R(N, p, Wbw) has multiple

peaks in wbw, as sketched in Figure 4-2. However, we believe that ob 2 
2 < 0,Obw I L0

which would imply that R(N, p, wbw) is unimodal in Wbw. (Even if w,(N, p) is not

continuous, still R*(N, p) is almost certainly so.) Granted continuity of R*, a global

minimum noise spectrum is achievable within the M-step problem (4.4).



4.4 Necessary Conditions

4.4.1 Sub-Case: Necessary Conditions When w. e (Ps-1, ps)

We now derive necessary conditions that must be satisfied by any local extremum

Sea e IC(C, M) for which w,. is on the interior of a step, w, E (Ps-1,Ps). In such

cases, we have already established that C(N,p), R(N,p, wbw), and 0R (N, p, wbw)

are continuous. Hence, Lagrange multipliers may be used.

Form the functional

J = R(N,p, Wbw)+ AC(N,p) + A'R (N,pbw). (4.13)
8Wbw

Provided that (N, p) is a regular point (an issue we do not address), we are guaranteed

that for any local extremum (N, p), a pair of constants (A, A') exist such that J is

stationary. Since in this sub-case w, is at a point of zero derivative,

8J
0 = 4 (4.14)

aWbw
= R aC a 2 R

= - +A-+ 2 (4.15)
OWbw &Obw O bw 2

= A 2 . (4.16)
&jbw 2

The last equation follows because is zero, while the second term is zero because

capacity is independent of Wbw. Under the assumption (still to be verified) that the

second derivative is not zero, from (4.16) we conclude that A' = 0. The functional in

(4.13) simplifies to

J = R(N, p, Wbw) + AC(N, p). (4.17)

We proceed by deriving necessary conditions on the local extrema in this subcase.

Recall that w, = p, for some step r.



Result 1: If wY < w,, which implies 7 _ N,+1 , then

OJ OR OCO M- + A a  
(4.18)

9Nrl jKNr+1 ONr+1
ORON4+i (4.19)

1
= min ((pr+l - pr), (w, - Pr)) Nr+i + + (4.20)

0. (4.21)

The minimum term above takes care of both s = r +1 and s > r +1. Since 8_ = 0
ONr+1

for local extrema, local extrema must satisfy w >_ w,. The water-pouring bandwidth

w7 is always at least as large as the uniform allocation bandwidth w,.

Result 2: If w7 > ps, that is, if the water-pouring bandwidth is past the step containing

w,, then

OJ OR OC
-+= A A (4.22)

ONs+1  ONs+1  ONs+l1
BC

= A9 (4.23)o9Ns++

0. (4.24)

This follows because A cannot be 0 (or the capacity constraint would be inactive),
OR 0 ic *<pad'C<0sicw=0 since w. and < 0 since w^ > ps,+ by assumption. Thus we see

that local extremum must satisfy r = s. In other words, w. C (Ps-1, PS) and w, = ps.

Result 3: For any i < s,

OJ
0 = (4.25)

ONj
OR aC

= O- + A (4.26)

+ (A) (4.27)
= N N+ !  N, -y•  Ni"

This equation must be satisfied by every i < s for the same A. Fixing i = 1, we can

solve for A as a function of Nx. Solving this equation for any 1 < i < s with the given



A results in a quadratic equation whose two roots are Ni = N1 and Ni = - - N1 .

This means that for all local extrema, there are at most two levels less than Ns,

namely N1 and - -N 1. In other words, s < 3 for every local extremum.

Result 4: If ps < r, then

8J
0 = (4.28)

aps
DR DCR + A C (4.29)
0 Ps aPs

DC
= A0  (4.30)

0. (4.31)

This follows because w. < p, implies that R = 0. Furthermore, since w = p

implies that -y > N8 , clearly c > 0. Thus every local extremum must satisfy

w = pS = ps+l = = PM = 7. In other words, there are at most three distinct

steps (of non-zero width).

Finally, note that we can immediately eliminate the case where w, is on the first

step. If this were the case, then s = 1 and S• is constant. The obvious water-pouring

and uniform allocation solutions are identical: w, = w, = 7r, which contradicts the

assumption that w. is on the interior of a step.

Combining all points above, we have a relatively small set of functions satisfying

the necessary conditions for local extremum when R = 0 and w* e (Ps-i, p8 ). We

summarize the left-over possibilities in Figure 4-3. Note that the figure is not complete

in that we have not considered the bounds (b, B). When we take these bounds into

account, the resulting possibilities allow two extra steps with noise power densities

equal to the bounds (b, B).
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Figure 4-3: Local Extrema Possibilities for First Sub-Case

4.4.2 Sub-Case: Necessary Conditions When w, = Ps

We now consider the remaining possibility, where w. is on the boundary of a step,

w, = ps. There are two possibilities for Rat w: either

R 0 and R <0, (4.32)
OWbw aW- bw .+

or

R > 0 and R <0. (4.33)
OWbw .- DWbw +

Without loss of generality, we interpret w,. = p8 as meaning w, is located at the right

end of step s rather than the left end of step s + 1.

In both cases, Results 1-3 above from the interior point sub-case still apply. To

summarize, then, the necessary conditions are w, = p, and s < 3. Since w., is assumed

to equal p, in this sub-case, these necessary conditions imply wY = w,.

Additionally, note that if dR = 0 and dR < 0, then Result 4 alsodwbwIw - dwbw Iw,+

applies. Specifically, 0 unless p, = 7r, and this implies that w = 7r.
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Figure 4-4: Local Extrema Possibilities for Second Sub-Case

Unfortunately, in the second case, the analysis leading to Result 4 does not apply.

This is clear because increasing ps necessarily would increase the rate R* - after all,

(dWbw) •) > 0. Some simplification is still possible, however. Any number of steps to

the right of w. is equivalent to a single step since they affect neither R* nor capacity.

Furthermore, w, = p, implies that N ,+1 > 7. Without any loss of generality, we need

only consider the case N8 +,1 = Ns+2 - - - _Y.

In parallel with the discussion at the end of Section 4.4.1, we can immediately

eliminate the case w, = p . This is in fact a local extremum, but it is a maximum of

R(N,p,w,) not a minimum: R(N, p,w,) = C(N, p).

Thus, the picture does not change much from the case where w* E (Ps-1, Ps). All

additional extremal possibilities are summarized in Figure 4-4. Again, if the bounds

(b, B) are active, we must insert additional steps at b and B.

Remarkably, regardless of the value of M (and taking the bounds into account),

no more than six steps are required to minimize the uniform allocation rate for a

fixed capacity. This will prove essential in the analysis that follows. The results of a

partial numerical search over the possibilities is given in Chapter 6.



Chapter 5

Continuity Solves the Bounded

Problem

We now show how to use the general M-step problem to solve the bounded problem

(4.2). We show that any noise spectrum S., E A(C, b, B) considered in the bounded

problem may be approximated by a piecewise constant function Sin with a finite

number of steps M. We then show that the capacity achieved with Saj is close to

C(San). In the previous chapter we found that the minimum achievable rate for a step

function of M steps achieving a fixed capacity does not depend on M (for M > 5) -

WM(C) = W6(C) for all M > 5. We use this result to prove that the noise spectrum

which solves the bounded problem is simply that which solves W6 (C).

5.1 Continuity of M-step Approximations

Given a non-decreasing noise function S., bounded above by B, we can find a series

of piecewise constant, non-decreasing functions Si, each with a finite number of steps,

such that B > S1 (w) > S2 (w) > ... > S,(w) > b Vw E [0, r] and such that

Si(w) -+ S.,(w) uniformly [1].

We rewrite this in a useful form for our continuity argument. Given any S, and

e > 0, we can find a piecwise constant function Si with M(E) or fewer steps, such that

B > Si (w) > Sn(w) and IISi - S,,|o < e.



5.2 Continuity of Capacity

Given S,, and any other noise power spectral density Si _ S,, with ISi - S"i00 < ,

we can bound IC(Sn) - C(Si)I. Using (3.7) for capacity,

C(SA) = J0YiV

Since Si _ S,,,, -y _ 7- and w.Y, > w-.

In Yz dw.
SS (w))

(5.1)

Thus

(5.2)

Now, Si < So, + c implies

C(S ) >_ in dw.o S.. (G) + E)

Since In (-) is

(5.3)

a convex function of x for positive oz and 0,

C(Si) Ž In (Snw )f S..GV) edw.
- Sonn(w)

Finally, since S,, _ b, and thus 7 > b as well,

CS)>In -Ye dL;-(S 0 S,,,,(w) b 27[

> C(S.f ) -( E.
b b2

We thus have the desired continuity of capacity in the L' sense.

5.3 Continuity of M-Step Sub-Problem

Recall that we defined the following problem in Chapter 4:

mmin R*(Su,).
Sff EK(C,M)

(5.4)

(5.5)

(5.6)

C(SA) > In dw.)

WM(C) (5.7)



In that chapter we found that the minimizing noise spectrum has no more than six

steps, which implies that WM (C) is constant in M for M > 6. In other words, we

can define

WF(C) - mm R*(Sj). (5.8)
Sfa EUm= =K(C,M)

WF(C) is the minimum R*(Sf) over all noise power spectral densities with capacity

C and a finite number of steps. Then WF(C) = W6 (C) = WM(C) for all M > 6.

Furthermore, we assert that WF(C) is a continuous, strictly increasing function of

capacity. Both results are critical to proving that WF(C) solves the bounded problem.

5.4 Simplifying the Sub-Problem via Continuity

Consider any noise spectrum S,, which achieves a water-pouring capacity C(Sss)

and a uniform allocation rate R*(S.s). We will prove, using the continuity results

above, that we can find an upper bound on C(S.s) - R*(Sus) that depends only on

C(S.,). Furthermore, we achieve this upper bound using the spectrum that solves

Fix x > 0. By the continuity of WF(C), we can find an e > 0 such that

WF(C(S.n) + -b2) - WF(C(Sn)) < X. (5.9)

Using the continuity of step-function approximations to Sn, we can find an M-step

noise spectrum S• _ Sn, such that

IISf - Senll < 6. (5.10)

By continuity of the capacity function established in (5.6), this implies

C(Sfi) > C(Sn,)- -. (5.11)



Returning to the original bounded problem (4.2),

C(Sn.) - R*(Sn.) = (C(Snn) - R*(Sj)) + (R*(Sj) - R*(Snn)). (5.12)

Since Saf Ž Snn, the second term in (5.12) is negative, and thus

C(Snn) - R*(Snn) < C(S.) - R*(Sf). (5.13)

By definition of the function WF,

C(Snn) - R*(Snn) < C(Snn) - WF(C(Sfi)). (5.14)

Combining the monotonicity of WF(C) in capacity with (5.11), we find

C(Snn) - R*(S.n) • C(Sn) - WF(C(Snn) - ). (5.15)

Our choice of e in (5.9) ensures that

C(Snn) - R*(Snn) •5 C(Snn) - WM(C(Snn)) + x.

But x > 0 was arbitrary and WM = 1476. Thus, for any Snn,

C(San) - R*(Sn.) < C(Sn) - W-(C(S.n)).

(5.16)

(5.17)

Since S.n, is an arbitrary member of A(C(Snn), b, B), we can solve the original

bounded problem for any fixed capacity simply by determining W6 (C) for all C.

We again emphasize that this result follows only because WM = W6 for all M > 6..

It is interesting to note that we do not need to prove the achievability of a solution

in the general bounded optimization problem. Indeed, (5.17) means

sup C(Snn) - R*(S1).8
Sn EA(C,b,B)

WF(C) = (5.18)



However, since WF(C) is achievable with a 6-step solution S6, and since S6 E A(C, b, B),

the supremum is achieved. The supremum in (5.18) thus becomes a maximum. This

last fact is not of great importance, however, because the point of this research is

simply to find a tight lower bound on the rate loss.





Chapter 6

Numerical Wrap-Up

6.1 Solution Method

In Chapters 4 and 5, we reduced the solution of the bounded problem to the search

for the worst-case M-step noise function satisfying the necessary conditions sketched

in Figures 4-3 and 4-4 (recall that we must also include the possiblity that the noise

functions have two extra steps equal to the bounds (b, B)).

Based on additional perturbation arguments not developed here, we believe that,

for sufficiently small b and large B, the worst-case noise spectrum has only two steps

for all C. We searched numerically over this class; as expected, W2 (C) appears to be

a continuous, strictly increasing function of capacity.

6.2 Results

We find that, to the limits of numerical precision, the optimizing noise spectrum does

not track the bounds as b and B are loosened toward 0 and oc. We presume, then,

that we have actually solved the original (unbounded) optimization problem.

We present our results in the form of two graphs. Refer to Figure 6-1. The top

graph plots the fractional rate loss due to uniform power allocation. The bottom

graph plots the absolute rate loss. Both are shown with capacity on a logarithmic

axis to better illustrate asymptotic behavior.
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6.3 Discussion

Recall that the results presented are calculated for a discrete-time, real, additive

Gaussian noise channel. A loss of L bits per channel use corresponds to a loss of !L

bits/sec/Hz in the passband channel.

We see that the bound on the normallized rate loss reaches a maximum asymptotic

value around 14 percent for low-capacity channels. The fractional loss decreases

monotonically as capacity increases.

On the other hand, the absolute rate loss reaches a maximum asymptotic value

around 0.1874 bits per channel use for very high-capacity channels. The absolute loss

increases monotonically with capacity.

Since the absolute loss is bounded by a small number, we see that the issue of

precise power allocation is of more importance in moderate- to low-capacity cases.

The fractional loss is in excess of 7 percent for all rates below 4 bits/sec/Hz.

Note that we not only bound the sub-optimal capacity loss, but we also charac-

terize particularly bad (worst-case) channels. One might reasonably wonder if the

worst-case noise spectrum can arise in practice. Based on limited numerical results,

the ratio of highest to lowest noise power density for the optimized spectrum is mod-

est.

6.4 Future Work

Some steps in the derivation of the worst-case capacity loss have not been rigorously

addressed. Specifically,

1. a2 = 0, which simplifies the Lagrange multiplier approach.

2. The monotonicity of R(N, p, wbw) with respect to Wbw.

3. The continuity of R*(N, p) over the bounded space of (N, p).

4. The regular point issue in the Lagrange multiplier approach.

5. The continuity of WF(C) = W6(C) in capacity.



6. The rigorous justification that W6 (C) is just W2(C).

Regarding Item 1, if we can show that 92 R2  < 0 for all noise spectra, then we

believe that Items 2 and 3 will easily follow. We do not believe that any of 1-6 pose

a threat to the conclusion, save perhaps 6 (which could result in a small change in

the numerical results for WF(C)). It may be possible to derive a close-form solution

to W2 (C) by taking partial derivatives with respect to the step locations pi, but the

expressions are discouragingly complex.

The results of this thesis may be applied to a particular time-varying memoryless

channel for which the transmitter is permitted to either use the channel at full power

or remain silent at each step. Regardless of the marginal fading statistics, if the

transmitter has appropriate information about the channel, the maximum rate loss

is again 14 percent. Interestingly, the worst-case channel has only two states; in the

less favorable state, the transmitter should adopt a probabilistic strategy which uses

the channel a fraction of the time (corresponding to *-P-).
P2 -P1

A more general framework for this research would address the loss in performance

due to partial or incorrect knowledge of the channel at the transmitter. This might

arise from imperfect channel measurement, limited feedback from the receiver, or

time-variation in the channel.
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