
Loan Pricing Model: Design and Implementation

by

Ashish Sharma

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 22, 1996

Copyright 1996 Ashish Sharma. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Department of Electrical Engineering and Computer Science

May 22, 1996

Certified by

Professor Peter Szolovits

Thesis Supervisor

I 1,Accepted by

F.R. Morgenthaler

Chairman, Department Committee on Graduate Thesis

MASSACHUSETTS INSTITUTE

JUN I1. 1996
JBRARiF'e8

t•

Loan Pricing Model: Design and Implementation
by

Ashish Sharma

Submitted to the
Department of Electrical Engineering and Computer Science

May 22, 1996

In Partial Fulfillment of the requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

As the secondary market for commercial loans is becoming more liquid, these instruments are
becoming similar to other financial instruments in that they are traded on the market. With loans
now becoming tradable assets, the existence of metrics to measure the risk associated with them
and to evaluate fair prices becomes crucial. The loan pricing model quantifies the various risks
associated with a loan and generates a market price for the loan. The pricing model is designed as
an object-oriented system. Given that the financial algorithms undergo frequent changes, the
primary goals of the design are to achieve extensibility and reusability. Other goals of the design
include achieving high execution speed, good exception handling and high levels of abstraction.
The pricing model is implemented as a client server system, with the analytics running in C++ on
the client, and the data residing on a remote SQL server.

Thesis Supervisor: Peter Szolovits
Title: Professor of Computer Science and Engineering

Acknowledgments

I would like to thank Asim Qadir for the critical reading of an earlier version of this thesis and his
continued support in the form of suggestions and corrections. I thank Professor Peter Szolovits for
the many valuable suggestions he made, and for helping me to give the thesis a coherent structure.
I would like to thank my parents, Monica and P.D. Sharma, for their support throughout the past
years. Last but not least, I would like to acknowledge my fianc6e Anindita Mazumdar, who helped
me succeed at M.I.T. by being my biggest support and source of energy.

1. INTRODUCTION 6

1.1. Description of the problem and user requirements 6

1.2. Problems with the current implementation of the loan pricing model 7

2. SYSTEM ARCHITECTURE 9

2.1. Description of the platform used 9

2.2. Definition of a PMA and the platforms used for it 10

2.3. Bankers Trust Architecture 10

2.4. Factors affecting the choice of the system architecture 12

3. ANALYSIS OF THE EXISTING SOLUTION 14

4. DESIGN METHODOLOGY USED 15

4.1. Reasons for Choosing object oriented methodology 15

4.2. Reasons for Choosing Responsibility Driven Design (RDD) 16

5. DESIGN 20

5.1. Application architecture components 20

5.2. Application usage 28

6. IMPLEMENTATION 33

6.1. Data Structures 33

6.2. Caching 34

6.3. C++ Language Constraint Artifacts 35

7. PRODUCTION READINESS 37

7.1. Memory management 37

7.2. Exception handling 37

7.3. Testing 38

8. CONCLUSION AND FURTHER EXTENSIONS 39

9. REFERENCES 40

1. Introduction

1.1. Description of the problem and user requirements
As the secondary market for commercial loans is becoming more liquid, these instruments

are becoming similar to other financial instruments in that they are traded on the market. With

loans now becoming tradable assets, the existence of metrics to measure the risk associated with

them and to evaluate fair prices becomes crucial. Various kinds of risk such as interest rate risk,

default risk, and liquidity risk need to be evaluated before a fair price can be determined. In

summer 1994, the pricing of loans was a very tedious process. Data had to be manually gathered

from different systems and entered into a spreadsheet. The spreadsheet would then price the loans.

The whole process was extremely time consuming and error prone. However, the fundamental

problem with this implementation was that this system was not extensible and reusable.

The finance industry is highly software based because of the focus it has on information

and the means to manipulate information. The industry is very dynamic where new ways of doing

things are always being invented and existing methods are always being enhanced. In such an

environment it is necessary for the existing systems to be extensible. On the other hand, there are

some fundamental financial algorithms that are used in finance systems. Since these algorithms are

used widely, they should not be reinvented each time. The proposed solution was to redevelop the

pricing model in C++. Most of the problems in the spreadsheet implementation like abstraction,

exception handling, execution speed, and expressiveness are relatively easy to achieve in an object-

oriented system developed in C++. However, the extensibility and reusability of the system

depends on how it is designed. This thesis focuses on both these issues and proposes this design as

a model approach for similar financial applications.

The loan pricing model was a component of a new system called the Mark To Market

Portfolio Management Application (MTM PMA). This PMA performs basically two functions.

Firstly, it generates customized reports for the users. Secondly it allows users to price loans.

During my summer internship assignments at Bankers Trust, I have been involved primarily with

the design and implementation of the pricing model. Thus, the focus of my thesis will be on the

pricing model. The model was implemented as a C++ DLL in Microsoft Visual C++, running on

Windows. Chapter 2 describes the system architecture of the model and the factors affecting the

choice of we made. Since there was already a solution to the problem, the analysis of the existing

solution was an important part of the development process. This is described in Chapter 3.

However, The specific financial algorithms used to price the loans are not discussed in this thesis

as they were considered proprietary by Bankers Trust. Chapter 4 describes the different design

methodologies, and the factors leading to the choice of Responsibility Driven Design. The design

and implementation of the system are illustrated in Chapter 5 and 6 respectively. Extensibility and

reusability were the primary factors which were kept in mind during this process. For many

components of the system there were several methods of designing it. To choose the one that

would be most extensible in the future required us to understand the business problem well. Thus,

understanding the finance behind the model was essential to the design process. Finally, various

product readiness issues such as exception handling are described in Chapter 7.

1.2. Problems with the current implementation of the loan pricing model
The loan pricing model was initially developed as a spreadsheet. It was developed to

evaluate risk exposure due to credit which has been extended to customers and to price the

associated financial instruments accordingly. The problems with this approach, which the new

system attempts to solve, are:

* lack of abstraction - the format of a spreadsheet is monolithic and does not allow for

the modeling of abstractions. This makes it harder to factor logic appropriately and

obtain insights into the business domain.

* lack of separation of user interface and behavior - the user is not able to use the

model through an interface that shields him/her from the details of the implementation.

* lack of separation of data and behavior - the logic is not modularized separately from

the data.

* poor user interface - The system cannot price an arbitrary set of facilities or run for

different dates.

* lack of extensibility - small changes can introduce side effects and minor

enhancements can result in significant redesign due to the columnar nature of a

spreadsheet. This problem stems from the poor tractability of logic in a spreadsheet.

* lack of expressiveness - the basic flow of control of a spreadsheet makes it difficult to

express some kinds of computations (i.e. a numerical algorithm that requires

relaxation of parameters until convergence is achieved).

* poor security - users can modify data and behavior. There is no ability to establish

audit trails to keep track of how and when data change. The system cannot implement

different levels of security for different users.

* lack of validation - spreadsheets cannot validate input as it is entered into the

spreadsheet. Invalid inputs show up as errors in the results.

* poor exception handling - the user is not notified when errors occur. Since it is hard

to handle every dependency, invalid results are often generated and not noticed unless

the user manually verifies all outputs. Multiple severities of errors are also not

supported.

* poor execution speed - the model takes days to price a portfolio!

* heavy reliance on manual entry of input - this process is prone to many errors and is

time consuming.

2. System architecture

2.1. Description of the platform used
The user interface of the PMA is implemented using Microsoft Access. The loan pricing

model is implemented as a C++ dynamically linked library (DLL). The database is a Sybase SQL

server located on a remote server. LS2 is the primary loan system of the bank. Along with the

database server, LS2 provides an interface to access and analyze loan data. The data in the Sybase

database is populated from LS2 and other systems. The access interface implements the reporting

requirements of the users and allows the users to price the loans as well. The C++ DLL

communicates with the database directly for the inputs it needs to price a loan. This is shown in

figure 1. Stored procedures stored on the database server serve as the interface between the C++

DLL and the database. The network protocol used for communicating between the client and the

database server is TCP/IP and the API used for the database communication is Microsoft ODBC.

This is shown in figure 2.

Figure 2 Client server setup

Facility control number

lAccess User Interface LL
:. results

." Inputs needed
Data for displaying , p to price facility
the facilities

Sybase Database
Figure 1 Interaction of components

...... ..---------------------- Databaseserver
ODBC API layered on TCP/IP

Figure

2 Client

server

setup

2.2. Definition of a PMA and the platforms used for it
Applications for the business domain at Bankers Trust can be broadly divided into two

categories - product control applications (PCAs) and portfolio management applications (PMAs).

The product control applications are mostly large repositories for the official records of the bank.

They run on secured servers and the access to them is limited. PMAs on the other hand, are

applications made to run on the PC. They provide the end users the ability to effectively use the

data from the PCA. In a sense, the PCAs are the servers and the PMAs are the clients.

In addition to the differences in the software and the platform the standards for PCAs and

PMAs are very different. PCAs are generally secured databases running Sybase on a RISC

processor. Analytic PCAs are fewer in number and are typically implemented in C running on a

Unix server. The operating system for the PCAs is either Unix or Windows NT, although some

earlier PCAs have been implemented on the VAX mainframes. PMAs are developed for all the

other applications that the users need. Most analytic PMAs are written in spreadsheets using

Microsoft Excel, and running under Microsoft Windows. Visual Basic and Microsoft Access are

also widely used. C++ is used for very few PMAs today. Among other things, PCAs implement

strict security and the data in these systems is official. PMAs are not as secure and the results

generated by the PMAs are used primarily by the few people who use it.

The Mark to Market PMA tries to narrow the gap between the traditional PCAs and

PMAs. It is developed with the design concepts of a PCA, although it meets the requirements of

PMA users. Specifically, the system is designed as a client server system with the goal of making

it extensible and reusable, which makes it similar to a PCA. This PMA is also shared by more

users than other PMAs are. The security of the system is not implemented to the level of a PCA

but the system may be extended to provide a higher level of security. Therefore the MTM PMA is

different from both the PCAs and the PMAs currently developed in the bank.

2.3. Bankers Trust Architecture
Technology departments at different banks are very different. Some banks have a central

technology department and some have a technology department for each business area. For the

banks which have separate technology departments associated with each business line, often the

software developed is not shared by the different departments. Bankers Trust has different

technology departments for each business line. However there is a department called Technology

and Strategic Planning (TSP) which defines technology guidelines for the whole bank. TSP defines

this in the Bankers Trust Architecture (BTA). In the context of what software to use, BTA defines

a cost effective technology base as its objective. The architecture principles are to use a minimum

set of infrastructure components and to off- load integration to strategic vendors. The uniform

computing model from BTA 2.0 [1] is shown in figure 3. In addition to this, BTA specifies a list

of approved products in the form of templates [1]. All technology groups at Bankers Trust are

expected to use the software which has been approved in the BTA. Microsoft is an approved

vendor in the BTA and the programming language of choice for PMAs is C++.

There are pros and cons of having to choose from a selected list of products. Off loading

integration to a strategic vendor ensures the compatibility between the different components of the

system. For example, the interface between Microsoft Access and Microsoft Excel is well defined

since they are both products made by Microsoft. Using the same software applications in every

technology department ensures compatibility between applications and facilitates global

function/class libraries for all the departments. Often this also makes the system easier to maintain

and support. The firm also enjoys the benefits of economies of scale in the costs of licenses,

support etc. However, the big disadvantage of using standard software is that it is not always

possible to choose the application most suitable for the project. This has affected our choice of

platform in a major way.

Figure 3 BTA 2.0 Uniform Computing Model

*R&D

2.4. Factors affecting the choice of the system architecture
The loan pricing model was implemented using object oriented methodology, the reasons

for which are discussed in the next chapter. For this methodology the two commercially popular

languages are Smalltalk and C++. From an object oriented perspective Smalltalk is a superior

language as it is a non typed language where the building blocks are objects. C++ on the other

hand is not fully object oriented. It is an extension of C with the functionality of object oriented

programming being a subsequent addition. The major advantage of C++ over Smalltalk is that

programs written in C++ generally run faster than the corresponding ones written in Smalltalk.

Given the numerically intensive nature of the loan pricing model, C++ was chosen as the language

for development.

Given C++ as the language for programming the model, the two major commercial

vendors of C++ compilers (under OS/2 and MS Windows) are Microsoft and Borland. The

development environment of Borland C++ was superior to that of Microsoft Visual C++. Borland

C++ was more stable and their class libraries provided more functionality. However Microsoft

was a BTA approved vendor and BTA was in favor of Microsoft Visual C++. Also, from the

point of view of integration, it was preferable to use Microsoft Visual C++, since we were using

Microsoft products for other parts of the PMA as well.

The model was implemented as a DLL because one could foresee it being used by many

systems in the future. In addition to the pricing model, the PMA also had reporting requirements,

for which other applications would be more suitable. Therefore the user interface was not

developed as part of the model. We used Microsoft Access for the user interface, although the

BTA recommended solution was Microsoft Visual Basic. This decision was made primarily due to

the reporting requirements of the PMA. Microsoft Access is a database product which provides

many functions to generate automated reports. Since there was a lot of database I/O involved,

Microsoft Access was chosen. In retrospect, it was probably not a very good decision because of

the way Access interfaces with other types of databases. When Access edits a view on a table

from another database, one works directly on the table. There is no way to catch values in

intermediate stages and manipulate them. This turned out to be a major drawback of the user

interface, a drawback which would not have existed if Visual Basic was used as the tool to develop

the user interface.

Since we were using Microsoft Visual C++ and Microsoft Access, there was really no

choice other than Microsoft Windows for the operating system. The only other operating system

used on client workstations at Bankers Trust is OS/2. The advantage of OS/2 is that is a much

more stable operating system with multi threading capabilities. The disadvantages of OS/2 were

that firstly there were no comparable tools for developing the user interface under OS/2.

Secondly, the users had a distinct preference for Windows, as they were already using Windows.

Since OS/2 has the capability of running Windows code under WIN/OS2, developing the system

for Windows would allow both sets of users to use the model. The third factor in favor of

Windows was that the Bankers Trust plans to use Windows NT as the operating system for its

servers. In the future, it is probable that the loan pricing model is installed on a RISC server from

where many users will be able to access it. From this perspective it was preferable to use

Microsoft Visual C++ running under Windows.

3. Analysis of the existing solution
Since a spreadsheet version of the pricing model was already in use, the problem needed to

be approached in a non-traditional manner. The various components of the existing solution and

its usage had to be analyzed. The issues can be broadly categorized as follows

* Validation of the object hierarchy: This process involved working with the primary developer

of the pricing model to validate the abstractions and interactions made in our object model of

the solution. This validation was mostly from a business perspective to ensure that our objects

modeled the business as closely as possible. This was done in an incremental manner where

we started by discussing a preliminary version of the model (the final object hierarchy is on

page 16). For example, we verified if separate classes for interest payments, fee payments and

amortization payments were necessary. In this case it was necessary, primarily because these

payments may occur at different frequencies.

* Analyzing the data requirements: The data for the pricing model came from various sources.

Since this process needed to be automated, the sources needed to be defined precisely and

automated feeds into our database had to be arranged for as many of the sources as possible.

At the time the model was being developed most of the data came from LS2. However, some

data came from other systems of the bank and some data came from external vendors like

Bloomberg. Of these systems some of them were scheduled to be replaced by LS2 in the near

future. For these systems it was not worth arranging for automated feeds as LS2 would

provide the data in the near future. The data from external vendors, an example of which is the

data on the yield curve, needed to be automatically downloaded from the external source.

* The team structure: In addition to the developers of the system there were three groups of

people actively involved in the development of the PMA. The PMA aimed to be an official

application of the bank, i.e. the values generated by the process were to be official bank

records once they were copied into the loan system database. This required that the central

controllers of the bank be involved to monitor the security issues of the system. The other two

groups were users of the pricing model and users of the reporting component of the PMA. If

the system was developed in isolation from the users then the interface may or may not appeal

to them. Thus, users input during the development process is important.

4. Design methodology used

4.1. Reasons for Choosing object oriented methodology
The loan pricing model is a model which is evolving continuously. The reasons for

choosing an object approach to the problem, some of which are mentioned in Object Oriented

Analysis and Design [2] are

* Modeling of the underlying financial concepts - the designer thinks in term of behavior of

objects, not low level detail. In a model where the concepts and their interactions are well

defined, this methodology is preferable to the procedural approach. Encapsulation hides the

detail and makes complex classes easier to use. Once implemented, the class is like a black

box where one has to understand the behavior of the class and how to communicate with it.

* Maintainability - Loan pricing will undergo significant changes in the future. This creates a

maintainability problem. However if the behavior of the underlying concepts is correctly

captured in the objects, then it is a much easier task.

* Reusability - the loan pricing model implements some fundamental financial concepts like yield

curve calculators. Yield curves are used widely for the purpose of calculating the present value

of future cash flows. This is done by discounting the future cash flow by an interest rate which

is calculated off the appropriate yield curve. The pricing model also implements some basic

pricing techniques like binomial trees and some related abstractions like payment streams. The

binomial model , which is described in detail in section 5.1.1, is a discrete time representation

of a Markov process and is used to price assets whose past state is not relevant in predicting its

future price. These classes would be useful for any similar application written in the future.

* Evolutionary design - object oriented methodology provides the flexibility to extend the design

incrementally. This is important given that we could not understand the model completely

upfront.

* Faster Design - Applications developed in an object oriented environment are created from

preexisting components, which in this case is the class library provided [2]. For example, the

class library provided the fundamental time structures and list structures which only needed

modification to build payment streams.

* More realistic modeling - object oriented analysis models the enterprise or application area in

a way that is closer to reality than conventional analysis. The analysis translates directly into

design and implementation. In conventional techniques, the paradigm changes as we go from

analysis to design and from design to programming. With object oriented techniques, analysis,

design and implementation use the same paradigm and successively refine it [2].

4.2. Reasons for Choosing Responsibility Driven Design (RDD)
We chose Responsibility Driven Design (RDD) as the design methodology for our system.

The other alternatives we considered were Booch's Object Oriented Design methodology, the Use

Case method proposed by Jacobson, and the Fusion Method. Following is a short description of

these methods and the reasons for choosing RDD over the other methodologies.

Responsibility Driven Design (previously called the Class-Responsibility-Collaboration -

CRC methodology) designs the application from the perspective of what the responsibilities of the

objects are. In Designing Object-Oriented Software [3] responsibilities are stated to include two

key items -

* The knowledge an object maintains

* The actions an object can perform

Collaborations represent requests from a client to a server in fulfillment of a client

responsibility. An object can fulfill a particular responsibility by itself, or it may require the

assistance of other objects. RDD, as the name suggests, designs the application keeping in mind

what the responsibilities of the classes are and what other objects the class has to collaborate with

to fulfill all its responsibilities. This methodology is the simplest of the object oriented

methodologies and can be easily implemented with a minimum of tools. The only thing needed for

the design process are CRC cards, which are diagrams which capture the methods of the classes

and the interaction between classes.

Another design methodology is presented by Grady Booch in Object Oriented Design [4].

This methodology, which he calls simply object oriented design (OOD), is captured by four basic

diagrams -

* Class diagrams are used to show the existence of classes and their relationships in the logical

design of a system; a class diagram represents all or part of a class structure.

* Object diagrams are used to show the existence of objects and their relationships in the logical

design of the system. A single object diagram represents a snapshot in time of an otherwise

transitory event or configuration. An object in an object diagram denotes some instance of a

class.

* Module diagrams are used to show the allocation of classes and objects to modules in the

physical design of the system.

* Process diagrams are used to show the allocation of processes or processors in the physical

design of the system. These diagrams are important for systems that execute processes

asynchronously.

* State transition diagrams are used to show the state space of an instance of a given class, the

events that cause a transition from one state to another, and the actions that result from that

change.

* Timing diagrams are used to show the dynamic interactions among various objects in an object

diagram.

The process that Booch describes for designing a system consists of the following three

steps that may be iterated over many times.

1. The first step in the process of OOD involves the identification of the classes and objects

at a given level of abstraction; here, the important activities are the discovery of the key

abstractions and the invention of important mechanisms.

2. The second step involves the identification of semantics of these classes and objects; here

the developer must view each class from the perspective of its interface.

3. The third step involves the identification of the relationships among these classes and

objects; here we establish how the objects interact with the system.

RDD and the methodology presented by Booch have a lot of overlapping ideas. However

the methodology described by Booch (OOD) is much more detailed and rigorous. This makes it

more time consuming than RDD. OOD requires that one understand the problem fully before one

designs the system. In other words, OOD is more systematic, which is evident from the fact that

object oriented analysis is mentioned as an ideal front end to the design process. These factors

make OOD effective in designing very large systems. RDD on the other hand is more effective in

allowing the designer to incrementally add to the existing model. Therefore, RDD is better suited

for an evolutionary design. Here the design evolves along the way, object oriented analysis and

object oriented design taking place together. Given the time constraints of the project it was

necessary to design the system as fast as possible. As the project was a medium sized one, with

very few people on the development team, we chose RDD over the second approach, even though it

is less systematic.

The third methodology considered was the one described in Object Oriented Software

Engineering : A used case approach [5]. This methodology is often referred to as Objectory. The

framework of Objectory is derived from a framework called "design with building blocks". The

system is viewed as a number of connected blocks, each block representing a system service. Once

the blocks have been specified, they are designed using a top-down approach keeping in mind the

criteria of ensuring that the system being developed can support changes to its functionality and

can be adapted to new technology. The underlying architecture of this design methodology is

comprised of four different models - the requirements model, the analysis model, the design model,

and the implementation model.

The requirements model consists of actors and use cases supported with a domain object

model and interface descriptions. Actors model the prospective users who will interact with the

system and a use case specifies a flow that a specific actor invokes in a system. An actor is a user

type or category and hence one person can play the role of many actors. The description of use

cases is further enhanced using interface descriptions called MMIs (man-machine interactions).

Thereafter the object model is developed which gives an easy to understand picture of the system.

This method of approaching the problem emphasizes greatly on the outside interactions of the

system. The analysis model is developed from the requirements model. The aim is to get a robust

and logical structure that will be maintainable during the system life cycle. The functionality is

modeled using objects which are categorized as interface objects, entity objects and control objects.

The design model refines the analysis model further and also takes into consideration the current

implementation environment. This is followed by the implementation phase which consists mainly

of the source code written to implement the blocks.

Objectory approaches the problem from a different angle than that used by RDD and

OOD. This use case approach focuses more on the external interactions of the system. In our

system the internal interactions between the objects are much more complex than the external

interactions. The user interface is simple and well defined. Objectory is a useful methodology for

designing systems with highly complex user interactions and user interfaces. For this reason, we

felt that the RDD/OOD approach was more suitable for our project.

The last methodology considered was the fusion method, described in Object Oriented

Development, The Fusion Method [6]. This method attempts to integrate and extend the best

features of the most successful object oriented technologies : OMT\Rumbaugh, Booch, CRC and

Objectory. Two problems not addressed by the above methodologies that the fusion method talks

about are -

* Team working not addressed by most methodologies

* Management changes are required since the object oriented approach is fundamentally different

from the functional decomposition approach.

The fusion method attempts to address these problems by precisely dividing the process of

system development into phases and indicate what should be done in each phase. It also provides

criteria that tell the developer when to move on to the next phase. Secondly it provides

management tools for software development. The outputs of different phases are clearly identified

and there are cross checks to ensure consistency within and between phases. The three phases are

analysis, design and implementation. The phases are not described in detail here as the components

are similar to the ones used in the methodologies mentioned above. The difference lies in the fact

that the place of each component is precisely defined.

The fusion method adds value in the management domain of the system and for the

coordination of teams on large projects. These additions were not very applicable in our case since

there were only two members developing the loan pricing model. Therefore there were no

outstanding management issues that needed to be addressed. The methodology had much more

detail than we needed for the current project size. Because of these reasons, RDD was chosen over

the fusion method.

5. Design

5.1. Application architecture components
The application architecture components can be divided into three major categories - the

analytics (C++ DLL which prices the loan), the database and the user interface.

5.1.1. Analytics
The analytics is the most extensive part of the loan pricing model and is implemented in

C++. The class hierarchy is shown in figure 4 on the next page. The classes can be divided into

three major categories -

* Classes which are business domain independent classes - These classes implement general

structures which help the business specific classes price the loan e.g. time structures and the

model environment.

* Classes which are finance related but independent of loan pricing - These classes implement

finance related processes like binomial trees (described in detail later in the section). They also

implement generic assets such as options, payment streams, and bonds

* Classes which are specific to loan pricing- these classes contain information and algorithms

which are specific to the pricing model. They are the synthetic contingent liability classes. A

contingent liability is an asset that shows up as a liability on a portfolio. The assets pertinent

to the pricing algorithms were separated into two categories - the asset and the synthetic asset.

These categories separate the generic properties of the asset from the specific details of the

pricing model.

This design of the model leverages reusability as much as possible. The above categories

describe three tiers of reusability. Classes in the first category can be used by any application.

Classes in the second category can be used by any application attempting to solve a problem in the

area of finance. The classes in the third category are specific to the problem and are useful for

loan pricing only. We tried to minimize the amount of code in the third category. The design

attempts to make as much of the code reusable as possible. For example, a bond was separated

into two classes - CBond and CSyntheticBond. The CBond class implements methods which are

generic to all bonds and would be meaningful to any application using bonds. In contrast, the

CSyntheticBond class contains the specific algorithms that we use to price certain bond related

values. Hence the generic bond characteristics are separated and reusable.

IC~acilityPricingModeI

clnA• i-jCMtmCisDLL
!ftltrutures

ionx

plo

x o
CS Q LExc e ption J

CPVTimedValueLst

CTimedValueList .CCachedTlmedValueLIst

4'
C DatedValueLi

st

CPaymentTlmoUst HCPaym e
ntD

ateu st
U

CPaymentTlme -CPaym e ntDate I

Figure 4: Class hierarchy

The Business Domain Independent Classes

The helper classes are divided into the following groups of classes

Time structures: The loan pricing model requires extensive calculations using times and dates.

Methods are implemented to allow the programmer to manipulate times in the CPaymentTime

class. In many cases, times needed to be stored only in days and not in hours, minutes and

seconds. The CPaymentDate class provides for that. The CTimedValue class associates a value

with a time object, a class which is useful for the building block of a stream of payments. The

CPVTimedValue class is a type of CTimedValue class with the difference that it stores the

payment time, value as well as an associated discounted payment value. This is calculated given

the interest rate and the time expired since the business run date. This structure is used widely

since many payments are discounted to present value.

List structures: These classes implement data structures which assist in modeling data streams.

The various classes (Subclasses of CObList in the above figure) arise due to the fact that C++ is a

typed language and has to keep track of the types of the elements in a given list. Payment streams

are used to represent cash flows associated with financial assets and to represent interest rate

curves. The timed value list classes implement lists whose units are CTimedValue or

CPVTimedValue objects. The lists also provide the functionality for interpolating values between

elements of the list. The payment date and payment time lists simply store a stream of times or

dates. These classes are not as frequently used as the timed value list class.

Database brokers and SQL classes: The interface to the database is abstracted in the database

broker classes. Each business class needing input from the database has a database broker class

attached to it. Only via the database broker can the asset get the database inputs it needs. This

design decision was made to make the database as independent from the pricing process as

possible. In the future if the database interface changes then the only things that will need change

are the database broker classes and the SQL classes.

The SQL classes abstract ODBC and serve as a wrapper for the ODBC concepts used to

interface with the database. These classes include the CSQLEnvironment, CSQLConnection and

CSQLStatement classes. All the code for setting up the environment, connection and executing

queries lies in these classes. This application makes the implementation of the other classes

independent of the specific platform. For example, if we were to move the database from Sybase

to Oracle, then the pricing portion of the program will be unaltered. Only the database brokers and

the SQL classes will need modification in order to adapt to the new platform.

Model environment: This class encapsulates all the constants used in the model. There are no hard

coded values in the model. All the values are read from the database via the model environment

database broker. Examples of some of the global parameters are the maximum number of

iterations allowed for a converging process, the depth of the binomial trees etc. The model

environment class also provides access to globally used structures like the yield curve and the SQL

environment.

Finance Related Classes Independent of Loan Pricing

Binomial trees: A Markov process is a particular type of stochastic process where only the present

state of the process is relevant for predicting the future. The past history of the process and the

way in which the present has emerged from the past are irrelevant. Models of stock behavior are

usually expressed in terms of what are known as Wiener processes [7]. A Wiener process is a

particular type of Markov stochastic process. This process has also been used to describe the

brownian motion of a particle.

The binomial model is a discrete time representation of the above model. If S is the initial

price of the stock, after an interval dt it moves up to Su with the probability p and down to Sd with

the probability 1 -p. After another time interval three alternatives are generated. The probability p

is assumed constant through every time period as all relevant information about the past is

captured in the current price of the asset. It can be shown that in the limit dt -4 0, this binomial

model becomes the geometric brownian model. In the binomial model we assume a single price

movement (up or down) in dt. The binomial model can also be viewed as a numerical

approximation to the popular Black-Scholes pricing model. The binomial model approaches the

Black-Scholes model as dt->0 and the depth of the tree--> o. However, the Black-Scholes model

assumes a constant risk free interest rate and constant volatility of the asset. The binomial model

can use different interest rates for different time periods. However, statictically it is observed that

the Black-Scholes model generates accurate results using the average interest rate over the whole

time span. The binomial model is shown in figure 5.

Given the prices at the last level of the tree it is possible to backtrack and calculate the

present value of the asset. In the loan pricing model this technique is used to price the options

associated with the loan. The CTreeNode class represents a node on the binomial tree and the

CBinomialTree class implements the stochastic process. The CBinomialTree class implements the

general binomial tree algorithm. The difference in behavior between the specific options is coded

in the respective subclasses of the CBinomialTree class (e.g. CBondBinTree, CFacilityBinTree

etc.). The option objects contain the appropriate binomial tree object to which they delegate the

stochastic part of the calculation. This design provides encapsulation and reusability for the

binomial tree.

Yield curve and yield curve calculators: The yield curve calculator calculates discount factors and

other related values from the yield curve. These values are required to obtain the present value of a

future payment and are obtained from methods of the CYieldCurveCalculator classes. The actual

yield curves are stored separately in the CYieldCurve classes. This was done because the

calculations made from the yield curve are not an inherent property of the yield curve and should

Figure 5 prices movements over two time
periods using the binomial model

therefore be separated from it. In other words we separated data and behavior. As a result the

yield curve class, which represents the data aspect of the curve, can be used in different ways by

other classes if necessary. The list structures described in the previous section were used to

encapsulate the yield curve.

Assets: The class hierarchy of the asset classes is given in figure 4. A broad overview of the main

classes is as follows

* Facility and Bond classes: These classes model the loan and the bond in the system (a facility

behaves similarly to a loan). They are a subclass of contingent liabilities as they show up as

liabilities on a portfolio. The fee for holding the risk associated with these liabilities is in the form

of coupon payments. Hence these classes are also subclasses of the CSecurityWithCoupon class.

CFacility and CBond basically contain the data associated with the respective assets. They store

the payments as lists, the spread on the interest rate associated with the assets as values etc. The

facility ZRV' and the bond ZRV store calculations derived for the ZRV.

* Options: Call options and put options are derivatives in that they are financial instruments

whose value is based on another security. An option can derive its value from an underlying stock,

stock index or future. A call option gives the holder the right to buy the underlying asset by a

certain date for a certain price[7]. Conversely, a put option gives the holder the right to sell the

underlying asset by a certain date for a certain price. The classes are responsible for pricing the

option although a significant portion of the process is delegated to the binomial tree classes.

* Payment Streams: These classes model payments associated with any asset. Hence a payment

stream is a derivative by the definition given above, as it is the payment stream of some asset. In

our model, the payment streams are associated with either the facility or the bond. The names of

the subclasses of CPaymentStream are suggestive of what payment stream each one is

encapsulating.

Classes Specific to Loan Pricing

Synthetic contingent liability: The goal of the PMA is to generate a price as well as other

related results like the dollar value of a one basis point change (a basis point is a hundredth of a

percent = 0.01%). All the results required from the PMA are abstracted in the CSyntheticFacility

1 Zero recovery value. A zero recovery value facility is a facility which cannot be prepaid or defaulted on.

and the CSyntheticBond classes. As mentioned earlier, the loan pricing specific sections were

separated to facilitate reuse of the facility and bond classes.

5.1.2. Database

The database for the PMA inherited much of its structure from LS2. It is a relational

database where the tables are mostly normalized. There is a table defined for each business entity.

There exist dataless keys which are used for joining between tables. An example of this is an ID

given to each facility, called a facility ID. This key has no data associated with it and is used for

uniquely identifying a facility (a facility is a like a loan). This is done so that the identification of

the loan is not dependent on the data associated with it. Every facility also has a facility control

number, a number which is the unique external key for a facility. The facility control number is

used to identify the facility from outside LS2. For internal joins between tables, the facility ID is

used as the key. The distinction between the facility ID and the facility control number is made

because if the external identifier of the loan is changed, all the internal tables do not have to be

updated. Only the mapping between the facility control number and the facility ID need to be

updated.

Security is an important issue for the database. A typical user should not be able to see all

the columns of the tables. Therefore the database communicates with the C++ DLL only through

stored procedures. Authorizations are given to users to run stored procedures only. It is easier to

manage security this way since there are only a few nodes of communication. For example if table

T contains the data for traders A and B then giving the traders read access to T would give both of

them access to each others portfolio. Separate stored procedures are written for A and B, where

A's stored procedures explicitly checks if the data requested is in A's portfolio. Now A is given

permissions to run his/her own stored procedures only and is not given read access on the table T.

Therefore A cannot see B's position. A similar strategy is used for B. Moreover, stored

procedures exist on the server in a secure environment, which makes the implementation of

authorizations easier. Another use of stored procedures for retrieving data is that the C++ DLL

can run the stored procedures without having to worry about the table layouts. The logic of doing

several joins, returning of defaults, etc., is encapsulated in the database. A simple example of this

is when one tries to get the estimated selling time from the facility table. The stored procedure first

checks to see if it is NULL. If it is, the procedure looks up the mobility rating for the facility in the

facility table and using that rating, looks up the estimated selling time in the mobility table. This

allows the pricing model to abstract the specific table layout of the database. If the database

and/or the table layouts are changed, the C++ code is not affected. The new database will have to

perform the joins to retrieve the correct inputs.

The database could be accessed using static or dynamic SQL statements. If the DLL uses

static SQL statements, the SQL command is stored on the database as a stored procedure when the

statement is prepared. When the statement is executed this causes the procedure to be executed on

the database server. Dynamic SQL statements are not prepared and are executed on the server

whenever the DLL requests the database for results. Static SQL statements incur an overhead due

to the creation and destruction of the stored procedure associated with the SQL statement.

However, if a single statement is executed many times, this is more efficient as the database

performs various optimizations and pre compilations that allow it to retrieve the results faster.

There is a disadvantage to using static SQL statements. If the communication between the client

and the database is prematurely terminated then there are stored procedures that are left on the

database that need to be cleaned up. There was no significant pre compilation benefits of the

statements executed in the C++ code, since the only statements we had were executing stored

procedures on the database. Therefore we used dynamic SQL statements to access the database

from the DLL. The database keeps track of who changed what in the database. Every table has a

create user id, a update user id, a create time stamp and an update time stamp field. This is

another security measure in a multi user environment. The database currently does not have the

functionality to maintain audit trails. Audit trails will probably be featured in the next release.

5.1.3. User Interface
The user interface is implemented in Microsoft Access and allows the user to price one or

many facilities at a time. The user interface generates automated reports, which was another

requirement of the PMA. It also serves as an interface for users to enter and update some data in

the database. There is some security implemented at this level that does not allow users to enter

invalid data into the fields of the database. The C++ DLL communicates with the user interface

through a well defined protocol. In this thesis I will talk of the user interface only in context of the

pricing requirement of the PMA, even though the user interface implemented other requirements of

the PMA. There were meetings held with the developers of the user interface to decide the

communication protocol between the DLL and the user interface and the delegation of tasks

between the two. I was not directly involved with the design or the implementation of the reporting

aspect of the user interface.

5.2. Application usage

Another way of describing the design of the pricing process of the PMA is through the

application usage of this process. This process, as described in Figure 6, starts with the input data

being downloaded from LS2 and manual sources. Thereafter the inputs are validated and priced.

The pricing model prices the facilities and writes the outputs on the database. Finally the prices

generated are uploaded back to LS2 at the end of the month.

5.2.1. Facility inputs and data validation
At the end of each month a snapshot of LS2 data is downloaded onto the Sybase database.

This process is run as a simple batch whose task is made easier by the fact that the table layouts in

the database server mirror the corresponding ones in LS2. Currently all the inputs required for the

pricing are not available in LS2. Some of the data is obtained from other sources, some of which

are standard sources like BloombergTM. All the data from these sources has to be manually

compiled and entered into the database. Since LS2 plans to provide this data in a subsequent

release, we did not spend any effort to create automated feeds from the other systems.

The next process is to validate all the inputs to the pricing model. This happens at three

levels. For the manual inputs to the database there is some rudimentary checking done at the user

interface level to make sure that the values entered make sense. The second level is implemented

using stored procedures in the database, which validate the inputs required for pricing. There are

two stored procedures in the database which, with the help of other stored procedures, check that

the inputs are within the bounds desired for them to generate meaningful results. Some of the

data feed

write back price to database

Figure 6: Diagram of application flow

checks are simple range checks and ideally these checks should be a part of the table definition.

This would have given the database referential integrity and ensured that invalid data does not exist

in the database. However this was hard to accomplish due to management issues. Therefore

stored procedures were implemented to validate those inputs that the pricing model required. The

inputs validated by these procedures can be broadly classified into global validation and facility

specific validation.

Global inputs are validated when the model is initialized and are needed for all the

facilities. An example of this is the yield curve for the run date. Facility inputs are specific to the

facility that is being priced. The global validations are repeated every time a new business run date

is set. Facility inputs are checked whenever the price of a facility is requested. These procedures

are called from the C++ DLL, which in turn returns three different error codes to the user interface.

An error in the global input validation is critical as this means all subsequent pricing attempts will

also fail. Errors in the facility inputs are non critical errors as they do not effect subsequent

facilities. An input that generates extreme results is flagged as a warning. In the case that the user

requests the price for multiple facilities, computation continues for the latter two types of errors.

All these errors are logged in a table for inspection after a pricing run.

The reason for separating the validation from the pricing process is to give the users the

flexibility to validate the data before starting the relatively more time consuming pricing process.

The user can choose only to validate the data and run the pricing model later. In any case

validation is always done before pricing a facility. There was an option of implementing the

validation procedures in the C++ code for use during the pricing process. This would not have

added much work as the infrastructure for exception handling already existed. Validating inputs in

the C++ code would be faster as inputs would be checked only along the path of usage and one

would avoid the database overhead due to multiple reads of inputs (once for the validation and once

for the pricing). The disadvantage of this situation is that this creates a maintenance problem

where essentially the same logic is implemented in two places. Since the database overhead did not

turn out to be significant, some efficiency was sacrificed for maintainability.

The last level of error checking is not a validation. This case covers those cases where the

source of error is not known. An example of this is as follows - given an interest rate, if the model

is trying to use a numerical algorithm to converge to a price, there is a limit to the number of

iterations it should take. If the interest rate is too low for the given facility the algorithm is not able

to converge to a price. If the number of iterations exceeds this limit, the DLL raises an exception

and then the user gets an error that the procedure was unable to converge. Ideally this should not

happen as this error should be checked for in the validation procedures. The reason for these types

of errors has to be determined by the user. Typically when the reasons for these errors are

determined, the appropriate checks are added to the validation procedures. The infrastructure for

exception handling is provided in the CException class. There are catch points defined at the level

that the code was "tried". Every time an exception is thrown, it is caught at the nearest catch point

on the procedure call stack. This mechanism is used to throw exceptions related to calculations

and database queries.

5.2.2. Facility pricing
The application usage of the facility pricing process illustrates the interaction between the

objects. Analyzing the flow of data from the inputs to the outputs is another perspective from

which to design the system. Using this method of analysis the object model can be iteratively

evolved. For example, one can start off with just the basic classes (facility, bond, options,

database brokers etc.) and the fundamental output values (transfer price, hedge ratio, etc.).

thereafter we can iteratively add more classes and more interactions as we figure out how the

output values are actually determined. A detailed analysis is not presented here as it would require

one to delve into the financial algorithms used in the process, which is proprietary information.

The two main concerns while designing interactions were -

* Modeling of the interactions as they are in the business domain: Both the interactions as well

as the behavior of the classes should try to model the interactions and behaviors of the financial

entities. The design of the pricing model tries to implement a particular method in the class

where it makes the most sense from the perspective of the business domain. This approach

makes the system extensible. If the objects model reality then it is usually easier to evolve

them as the business changes.

* The use of delegation vs. inheritance: In object oriented development, inheritance and

delegation serve essentially the same purpose. We have made an attempt to use inheritance

only when the subclass is "a kind of" its superclass.

The facility pricing components were described in the previous section. Figure 7 shows a

few of the interactions involved in the calculation of the transfer price in an attempt to illustrate

how the objects interact with one another. The interactions of all the objects are not shown as it is

very complex. Moreover, some of the interactions shown are not complete. The idea is to give a

flavor of how the objects fit into the big picture.

From a high level, facility pricing has the following steps

1. Initialize model: Sets up the memory for the pricing model.

2. Price facility: This step can be repeated any number of times to price multiple facilities

3. Free model : This step frees all the memory used by the model

The inputs to the DLL come from two sources - the user interface and the database. The

user interface provides the DLL with a business run date and a facility to price. The user interface

talks to the DLL via the MTM API (application programming interface) which defines the entry

points to the DLL.

The MTM API in turn calls the CFaciliyPricingModel class to obtain the price of a

facility. The facility pricing model class does three things before trying to price anything. It

initializes the global model environment variable, validates the inputs and reads the inputs into the

correct class variables. Among other things the model environment establishes a connection with

Cbupon amounts
Figure 7: Some of the collaborations surfaced during
the pricing of a facility.

the database and generates a handle which is used for communication. The facility pricing model

then proceeds to validate all the data for the facility and, if necessary, for the global inputs. This is

done with the help of the CValidationDatabaseBroker and the CSQLStatement classes, as shown in

figure 7. Reading the inputs is the last prerequisite to pricing. This shown in the figure for the

facility inputs. Other inputs like those for associated with bond, yield curve etc. are also read at

this time. Again, the communication is established with the help of the appropriate database

broker and the CSQLStatement class. The values are populated into the appropriate variables

which in this case is an instance of the CFacility class.

The transfer price function is calculated in the synthetic facility class, which in turn

depends on the facility prepayment option, facility default option, facility ZRV and the bond ZRV

classes for information about their prices, hedge ratios etc. The coupon payment classes behave

like payment streams. They model the data and behavior of the coupon payments of their

respective underlying assets. The option classes delegate their pricing process to the appropriate

binomial tree classes. These in turn depend on the ZRV classes for other inputs (not shown in the

diagram). These interactions often lead to circular references. However, in the application there is

only a single instance of any finance related class. Therefore, all objects which point to an instance

of a particular class point to the same object.

After the outputs are calculated, they are written back to the database. Certain outputs are

also passed back to the user interface using memory locations which were specified during

initialization. Thereafter the memory used by the model is deallocated.

Although the interactions seem complex, programming these methods was not difficult.

This is because the role of every class is well defined and disjoint from the roles of the other

classes. Efforts have also been made to implement classes to abstract functions unrelated to the

pricing algorithm, an example of which is database communication.

5.2.3. Uploading prices to the database
Whenever a facility is priced, its results are written into a model output table in the

database. In addition, the prices are also returned to the Microsoft Access user interface. This is

done by putting these answers in memory locations that were passed to the DLL by the Access via

the MTM API. At the end of the month a snapshot of this table is stored on LS2 and these data

now become official.

6. Implementation
The implementation process is only touched upon in this section. Only the fundamental

data representations of the classes are discussed. I have elaborated on those areas where standard

algorithms were not used. The specific implementation of the classes is not discussed. Most of the

challenge lies in the design and specification of these classes. If this is done correctly, the

implementation process is relatively easy.

6.1. Data Structures
The data structures used in the model are as follows:

1. List structures: these structures are all subclasses of the COblist class which is a foundation

class provided in the class library. The COblist class behaves very much like a linked list of

objects. Linked lists were used instead of arrays because of the variable length of the payment

streams that were abstracted using this class. Variants of these lists are the most widely used

data structures. They are used to represent yield curves and all the subclasses of the

CPaymentStream class. This includes interest payments, fee payments, principal payments

and coupon payments. There was an option to use dynamically allocated arrays instead of lists

since they are more efficient for lookups. However this was not necessary as the lists were not

a bottleneck in the pricing process.

2. Tables: The program used tables to map strings to objects and objects to objects. This was

basically used as an optimization technique to cache intermediate values which are frequently

used. The usage of these tables is elaborated upon in the optimizations section.

3. Trees: Trees are used to represent the binomial tree classes. Binomial trees, as described in

the design section, are different from binary trees in that a node can have two parents. From

the perspective of computer science, binomial trees are not trees since there exists more than

one path between two nodes. An example of a tree structure is shown in figure 8. Every tree

node has pointers to its children and to its parents. The initialization of the tree is done

recursively. The tree node structure is initialized by passing to it the addresses of both its

parents. One of these pointers can initially be null as the parent pointers can be set at a later

time too. Whenever we are at a node and we want to initialize its child we first test to see if it

has already been initialized by the other parent. If it has, we set up the links appropriately.

This is facilitated by methods which try to find the child of node A by traversing the alternate

path to the child. This is possible since a binomial tree has more than one path from a node to

its child.

The trees are also priced in a recursive manner. The 'visited' flag is used to determine

whether the node has been already visited and priced. This ensures that the price calculation for

every node is done at most once. Here we are using recursion to price the trees, abandoning the

totally object oriented approach for this part of the program. This is done because it is a much

more efficient way to price the tree rather than sending messages between tree nodes till

convergence is achieved.

(Node 2)
ode Valt
Visited =
)UpParei
SpoDowi
)UpChilk
DDownCl(Node 1)

Node Value = 1.345
fVisited = True
poUpParent = NULL
poDownParent = NULL
poUpChild =--------------
poDownChild = ---------

Figure 8: Data structure of binomial tree

6.2. Caching
Caching is used in three different ways in the system. They are as follows

* Caching intermediate results: Intermediate values are often cached for methods which are

called many times. These decisions are based on statistics obtained by profiling the program.

An example of this is the caching of the DV01 values (dollar value of 1 basis point change in

the interest rate). A DV01 calculation is very time consuming as it depends on the many other

values, many of which are calculated using numerical approximation algorithms. Moreover,

these DV01s are requested many times and change only when the risk adjusted discount factors

(Node 3)
NodeValui
fVisited =
= poUpPa
poDownPa
poUpChilc
poDownCl

!

?11ý

change. Therefore these values are cached and the cache is flushed when the risk adjusted

discount factors change. When the DV01 is requested, the cached value is returned if it exists,

otherwise the calculations are performed.

* Lookup Tables using hash functions: This was incorporated into the design of a class where

we felt the necessity to cache the values beforehand. An example of a class that uses tables is

the CCachedValueList class. This class caches all requests for interpolated values between

lists. This is useful for structures like yield curves, where discount factors are needed for dates

at specific intervals from the business run date. These values are calculated by interpolating

over the yield curve. The list caches the values for these particular times and subsequent

requests do not need to re-interpolate over the curve. Classes for mapping strings to objects

and objects to objects are part of the standard class library and were used extensively for this

purpose.

* Memory reuse: This feature is useful when many facilities are priced at a time. The users

typically price about 200 facilities at a time, using the same business run date. The yield curve

is an example of a structure which is reused. After the first facility calculates the yield curve,

the curve and its associated discount factors are reused for all the subsequent pricing runs.

This point is further elaborated upon in the product readiness section.

6.3. C++ Language Constraint Artifacts
Several issues arose due to the fact that we were implementing the system in C++. They

are as follows:

* Hierarchy of objects: The fact that every object is created and destroyed by some other object

tends to make the hierarchy more tree like. Circular references and complex graph references

are discouraged by this C++ constraint as every object is "owned" by some other object.

* Construction and destruction code: Since C++ does not implement any garbage collection,

the destruction of objects had to be done in a systematic way. This was to ensure that the all

the memory was always deallocated upon termination. The issue for the construction

procedures was that a constructor cannot call a virtual function. This often results in the

duplication of some initialization code.

* Constraints imposed by strict typing: The fact that C++ is strictly typed affected the

implementation of certain classes. An example of this is the existence of a CDatedValue and a

CTimedValue class. Both these classes associate certain values with certain times, except that

the types of the times are different. In some other object oriented languages like Smalltalk,

implementing two classes would not be necessary. There would be one class which had

temporal values (temporal values associate a value with any point in time).

7. Production readiness

7.1. Memory management
The PMA attempts to reuse memory when ever it can. From observing the usage of the

PMA we found that most of the time multiple facilities were priced in a single pricing run. The

PMA allows the user to price another facility after it returns the results of the previous facility. If

another pricing run is requested then the PMA tries to reuse as much of the memory and

calculations that were made for the previous pricing run. As mentioned before, if the business run

date is the same as that of the previous facility pricing run then the PMA just uses the yield curves

and the yield curve calculators from the previous runs. It also avoids operations like validating the

yield curve inputs, reading the model environment variables, etc. There are cases where the

reallocation of memory is avoided. An example of this is the memory needed to store the binomial

trees. The PMA avoids deleting the memory and reallocating it every time a pricing run is

requested. This process of memory management is tricky since C++ does not have garbage

collection and all objects created have to be explicitly destroyed. This means that in all possible

cases, one has to make sure that all memory is freed upon termination of the program.

7.2. Exception handling
A framework for exception handling is provided for in the DLL. The exception handling

mechanism allows the program to throw an exception at any point during its execution. The

critical exceptions are of two types - SQL exceptions and application exceptions. SQL exceptions

are raised due to some problem related to the remote database server e.g. the inability to connect to

the database due to network problems. Application exceptions are raised due to some computation

failure like no convergence of a numerical algorithm. Application exceptions can also be used to

validate the inputs although the validation is performed by stored procedures on the database to

make it independent of the pricing process. If an exception is thrown at any point, it is caught at

the closest point on the run time call stack of the program. At the catch point, the program may

execute some code and then try to proceed along a different path or throw the exception to the next

level. Very often the code executed before throwing the exception to the next level deletes the

objects that have been initialized at that level. This is necessary to avoid memory leaks.

The system flags warnings for non critical errors. In this case the current branch is

terminated and execution proceeds to the next branch. This feature can be used when the program

fails at a point that affects some but not all of the results.

7.3. Testing
The time taken to test the PMA was a significant percentage of the total development time.

Testing was done at a unit level and at system level. Each method of every class was tested to

ensure that the outputs were as in its specification. The goal of the PMA was to duplicate the

results generated by the spreadsheet that it was replacing, and explain any discrepancies that arose.

Integration testing was done by comparing the values generated by the PMA to the values

generated by the spreadsheet. This was done for all the facilities that were being priced every

month (= 190 facilities). This method does not ensure that all the paths through the code have

been executed and tested. However, given the time constraints to put the model into production,

this testing procedure was good enough. The model was debugged till the difference of the results

of the model and the spreadsheet were within a specified tolerance.

8. Conclusion and further extensions
The loan pricing model is currently in production and is being used to price loans. The

time it takes to price a loan is approximately 10 seconds on a 486 processor as compared to about

5 minutes on the spreadsheet. In addition to being more efficient the users do not have to manually

gather all the data as the inputs are automatically downloaded from LS2. The interface is more

user friendly and is decoupled from the pricing. This allows more people to use the model without

having to experience a significant learning curve. Although the classes from the pricing model

have not been reused yet, I envision that there will be significant reuse when another similar

application is developed. Examples of other applications that might use some of these classes

include other pricing models (e.g. derivative pricing models) and various risk analysis models. Any

finance model could use the framework of payment streams, yieldcurves and asset classes.

As we move away from the problem this model may not be extensible in some ways. The

objects in the model are tightly coupled to the database table layouts. If the model were to be

extended into a generic analytical engine then a mapping mechanism would have to be added to

map the inputs to the objects. This could involve a significant amount of work. Another weakness

of the design is that although attempts were made to separate out the specifics of the pricing model,

in some cases the member functions of the generic classes are algorithm specific. Hence, some of

the classes may need some re design if the second project is completely different from this one. A

third problem may arise due to the fact that the model has not been designed for parallelism, i.e. if

we want to price several loans together in a multi processing environment, significant re design will

be required.

However, there are ways in which the system can be extended. The system is extensible

both in the business and technical domains. Some possible functional extensions involve interest

rate simulation, what-if analysis, and portfolio level risk analysis. Interest rate simulation involves

running the model using different yield curves. What-if analysis simulates various other market

scenarios. Portfolio analysis attempts to analyze a set of loans and the risk associated with them

as a whole.

As technical enhancements, parts of the system can be used to make a finance toolkit or

class libraries. While designing the system we tried to separate the application specific algorithms

into different classes. As a result, most of the classes can be reused by any system attempting to

solve a problem in a similar business area. A second extension could involve redesigning the

system using a more sophisticated design methodology. As discussed in the design methodology

section, we used RDD (Responsibility Driven Design) which is one of the simplest methodologies

to use. Using a methodology which required more analysis may improve the current object model.

On the C++ side, certain advanced techniques could be added to make coding easier. An example

of this is the usage of reference counting. This process keeps track of the active references at any

given time and destroys an object automatically when it is not being referenced.

Given the high rate of change in the field of finance, the ability of a system to evolve and

the length of the development cycle are two very important factors. We believe that the approach

used while designing and developing this pricing model helps optimize both these factors.

9. References
[1] Bankers Trust Architecture 2.0

[2] James Martin, James J. Odell, Object Oriented Analysis and Design, Prentice Hall 1992

[3] Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener, Designing Object-Oriented Software,

Prentice Hall 1990

[4] Grady Booch, Object Oriented Design with Applications, Benjamin/Cummins Publishing

Company 1991

[5] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar Overgaard, Object-Oriented

Software Engineering: A Use Case Driven Approach, ACM Press 1992

[6] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist, Fiona

Hayes, Paul Jeremaes, Object Oriented Development The Fusion Method, Prentice Hall 1994

[7] John C. Hull, Options Futures and other Derivative Securities, Second Edition, Prentice Hall

1993

