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Treating the speech communities as homogeneous entities is not an accurate

representation of reality, as it misses some of the complexities of linguistic interactions.

Inter-individual variation and multiple types of biases are ubiquitous in speech

communities, regardless of their size. This variation is often neglected due to the

assumption that “majority rules,” and that the emerging language of the community will

override any such biases by forcing the individuals to overcome their own biases, or risk

having their use of language being treated as “idiosyncratic” or outright “pathological.”

In this paper, we use computer simulations of Bayesian linguistic agents embedded in

communicative networks to investigate how biased individuals, representing a minority of

the population, interact with the unbiased majority, how a shared language emerges, and

the dynamics of these biases across time. We tested different network sizes (from very

small to very large) and types (random, scale-free, and small-world), along with different

strengths and types of bias (modeled through the Bayesian prior distribution of the agents

and the mechanism used for generating utterances: either sampling from the posterior

distribution [“sampler”] or picking the value with the maximum probability [“MAP”]). The

results show that, while the biased agents, even when being in theminority, do adapt their

language by going against their a priori preferences, they are far from being swamped

by the majority, and instead the emergent shared language of the whole community is

influenced by their bias.

Keywords: language evolution, iterated learning, interindividual variation, Bayesian agents, communicative

networks

1. INTRODUCTION

As highlighted in the presentation of the Research Topic, “[t]he question whether all languages
are similarly complex is at the center of some of the most heated debates within linguistics.”
This statement is based on the axiomatic assumptions that, once complexity is defined, it is both
measurable for each language and commensurable between languages. Needless to say, the fact
that heated debates have been flourishing for at least two decades suggests that these assumptions
have led to multiple interpretations of how complexity should be defined and how it should be
considered, and consequently that the complexity jigsaw puzzle has still to be solved. Several
contributions to this Research Topic specifically address these aspects, e.g., Ehret et al. (2021)
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on the equal complexity aspect, or Ehret et al. (2021)
and Joseph (2021) on measuring complexity, to name just
a few. Another heated debate is about the existence of
putative complexity trade-offs within each language (i.e., do
phonological, morphological, and syntactic complexities interact
and compensate or combine?), as primarily discussed in
Easterday et al. (2021). From an epistemological standpoint,
this strand of research pertains to the notion of magnitude
of complexity, a term coined as early as the beginning of the
twentieth century in linguistics (e.g., Zipf, 1965, p. 66).

Here we adopt a different perspective on linguistic complexity,
namely the view that language is a complex adaptive system.
This strand of research stemmed from the field of cybernetics
after World War II and thrived in the 1970s. In his more
recent work, Jakobson adopted this perspective, stating that
“[l]ike any other social modeling system tending to maintain
its dynamic equilibrium, language ostensively displays its self-
regulating and self-steering properties” (Jakobson, 1973, p.
48). More recently, the fact that language exhibits properties,
such as emergence, self-organization, etc., typically explaining
the dynamics and structure of complex adaptive systems, was
convincingly articulated by Beckner et al. (2009) in a seminal
paper, and is further supported by many theoretical, simulation-
based, and experimental studies (see e.g., the contributions in
Mufwene et al., 2017, among others). From this perspective,
the main question is not to determine whether language A is
more or less complex than language B (or whether a difference
between their, let’s say, phonological complexity, is compensated
by a difference in syntactic complexity in the opposite direction),
but to understand the mechanisms that explain the observed
variation, its extension, and its evolution. As pointed by Forker
(this issue), variation is probably an important aspect influencing
the course of linguistic evolution, and her contribution echoes
what can also be referred to as degrees of freedom in a systemic
approach. In our paper, we aim at better understanding how
the existence of variation among speakers within a population
(or linguistic community) may shape the language (as a social
convention) and its evolutionary trajectory through time (in
the sense of change in a cultural evolutionary system on the
glossogenetic timescale and not during human evolution at
the phylogenetic timescale; Fitch, 2008). Our approach adopts
a multi-agent simulation paradigm and is thus a computer
modeling contribution to this Research Topic, inscribed in
a productive research tradition of simulation studies using
simplified languages and simplified linguistic agents acting in a
simplified (socio-linguistic) environment (see below for a state of
the art and references). Specifically, we focus on language change
in heterogeneous populations containing a proportion of agents
that are intrinsically biased toward a variant of the language.
Thus, we aim to use this agent-based approach to understand
whether a small proportion of individuals with such a bias can
influence the structure of the language of the whole population,
whether the bias of some individuals can resist to the pressure
of the majority, and what effect (if any) does the structure of the
network have on the rate of convergence.

Despite being so often repeated, the fact that there are about
7,000 languages being used around the world (Hammarström

et al., 2018) should still evoke awe and wonder. This diversity
is not restricted to the “languages,” but instead pervades all
levels below and above it: from the striking geographic skew
of the distribution of languages and language families, and of
the number of their speakers, to intra-linguistic dialectal and
sociolinguistic variation, and to the myriad ways individuals
differ in how they acquire, perceive, process, and produce
language (Dediu et al., 2017; Hammarström et al., 2018). Despite
centuries of inquiry, the reasons for this diversity and its
patterning remain one of the greatest enigmas of the language
sciences (Evans and Levinson, 2009). However, one of the main
explanatory factors is the way changes in language, usually small,
accumulate, and amplify across time in space, resulting in this
astonishing diversity (Evans and Levinson, 2009; Levinson and
Evans, 2010; Bowern and Evans, 2014; Dediu et al., 2017). There
are currentlymany proposals that identify various factors shaping
language change, ranging from those internal to language (Lass,
1997; Campbell, 1998; Bowern and Evans, 2014), to demography
and population movements (Ostler, 2005; Hua et al., 2019), to
environmental and ecological factors (Everett et al., 2016; Bentz
et al., 2018), and even to the biology and cognition of the
language users (Dediu et al., 2019; Wong et al., 2020). However,
this enigma cannot be answered without fully embracing the
complexity of language itself, “evolving” and “living” at the
interface of biology, cognition, society, and culture (Levinson,
2006; Mufwene et al., 2017).

Here, we take a broad cultural evolutionary view of
language change (Cavalli-Sforza and Feldman, 1981; Croft, 2008;
Richerson and Boyd, 2008; Dediu et al., 2013) in which linguistic
variation is first generated through innovation, and then it may
spread (or not) through the linguistic community, due to the
complex interplay between random factors (akin to drift in
evolutionary biology) and various types of selective pressures
(or biases). Even though predicting language change (and
evolutionary change, in general) is notoriously hard (Stadler,
2016), the mechanisms underlying language change have been
the object of intensive study in particular in sociolinguistics
(Milroy and Gordon, 2008; Meyerhoff, 2015) and historical
linguistics (Bowern and Evans, 2014), but also in phonetics
and phonology (Ohala, 1989; Yu, 2013). Of special interest is
the so-called “actuation problem” (Weinreich et al., 1968; Yu,
2013; Dediu and Moisik, 2019), which can be briefly stated
as “[w]hy do changes in a structural feature take place in a
particular language at a given time, but not in other languages
with the same feature, or in the same language at other times?”
(Weinreich et al., 1968, p. 102). Multiple answers have been
proposed, building upon various mechanisms. In sociolinguistics
(Labov, 2010; Yu, 2013), the spread (or not) of linguistic variants
is linked to their different valuations and to the frequency of
interactions between interlocutors. Other explanations are based
on selective forces that favor the spread of variants that are
“better” functionally in some way (e.g., by optimizing articulatory
effort, enhancing perception, or being cognitively easier to
process; Christiansen and Chater, 2008; Croft, 2008; Blythe and
Croft, 2012; Culbertson et al., 2012; Dediu et al., 2017; Blasi
et al., 2019) or through frequency-dependent processes (Pagel
et al., 2019). The mechanism of neutral evolution (or drift)
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where randomness plays the main role (Kauhanen, 2017) has
also been suggested. Far from being mutually exclusive, these
explanations are probably present to various degrees in many
cases of language change.

However, an essential factor that is sometimes neglected
by such theories is that language users differ not only with
respect to their socio-economic and political roles, but in myriad
other ways (Dediu et al., 2017; Dediu and Moisik, 2019), and
it has been suggested that focusing on this pool of inter-
individual variation may help solve the long-standing actuation
problem (Baker et al., 2011; Stevens and Harrington, 2014;
Dediu and Moisik, 2019). Here, we are focusing on a specific
aspect of actuation, namely on the spread of linguistic variants
in a network of language users that have different capacities,
constraints and preferences (which we generically term biases).
While language users may diverge with regard to their biases,
they are also embedded in a converging communicative network
that structures their repeated linguistic interactions. Biases can
be found as ubiquitous variation among normal individuals
in the acquisition, perception, processing, and production of
language (it is important to highlight here the normal dimension
of variation, as opposed to the much more studied extremes
of this variation usually regarded as pathological). This ranges
from variation in the anatomy of the speech organs (such as
the shape of the hard palate), producing subtle effects on the
production of vowels (Dediu et al., 2019) and consonants (Moisik
and Dediu, 2015; Dediu and Moisik, 2019), to the learning of a
second language (Hanulíková et al., 2012; Xiang et al., 2015), to
vocabulary size (Mainz et al., 2017), speech rate (Coupé et al.,
2019), and to the processing of pitch in Heschl’s gyrus, affecting
the perception of linguistic tone even in native speakers of
tone languages (Dediu and Ladd, 2007; Wong et al., 2020). For
manymore examples, see, among others, Stevens andHarrington
(2014) and Dediu et al. (2017). As it is the case with the most
complex phenotypes, this variation is due to complex interactions
between genes, environment and culture (Deriziotis and Fisher,
2013; Dediu, 2015; Devanna et al., 2018), and is pervasive,
multivariate and usually very small, in the sense that it doesn’t
significantly impede communication.

To make this more precise, an example—in some ways,
extreme—might help: some languages and varieties, such as
Spanish, Italian, Scottish English, and Romanian, use the alveolar
trill /r/, but there is a small minority of native speakers that
apparently cannot produce this sound. While this incapacity
varies in degree and is resolved, in most cases, spontaneously
or through speech therapy during childhood, it does persist into
adulthood in a small percentage of the population otherwise not
affected by other speech and language deficits. As it happens, one
of the authors is such a case, as he cannot produce the alveolar
trill used in his native language, and instead systematically
replaces it with a slightly retroflex approximant/õ/; other such
native speakers might use other substitutions (such as the voiced
uvular trill /ö/ or the voiced uvular fricative /K/). Importantly,
this speech deficit is recognized by the native speakers and
stigmatized (in fact, there is a particular mocking word for this
idiosyncrasy), and is specifically targeted by teachers and speech
therapists in children. Thus, using the concepts introduced

above, this incapacity represents in some speakers a strong bias
against the alveolar trill and, while its etiology is currently unclear
and most probably diverse, it seems safe to assume that it is stable
throughout the lifespan, costly to overcome for those that do, and
negatively stigmatized by the speech community.

While the example above is of a strong bias present in only
very few individuals, there are other types of inter-individual
variation that result in (very) weak biases at the individual level
that are, however, more widely shared within a group. For such
cases, previous work has shown, using mathematical modeling,
computer simulations, and experimental approaches, that
variants induced by weak biases may be amplified by the repeated
use and transmission of language under specific conditions
(see Dediu et al., 2017; Janssen, 2018, for more comprehensive
reviews). Early work under the Bayesian framework (Griffiths
and Kalish, 2007; Kirby et al., 2007) has produced surprising
results in the sense that, when considering simple transmission
chains composed of one agent per generation, Bayesian samplers
always converge on the prior, whilemaximum a posteriori (MAP)
may amplify initially weak biases. Dediu (2008, 2009) shows
that ad-hoc and Bayesian learning mechanisms behave differently
in single-agent chains, homogeneous and heterogeneous two-
agent chains, and complex populations, and that, in some cases,
variants induced by weak biases are indeed expressed at the
level of the community language. Navarro et al. (2018) show
that mixing agents with different biases in the same transmission
chain results in the expression of the variants induced by
the stronger biases by the repeated transmission of language
(“extremists win”), but in an indirect and non-transparent way.
In their seminal work, Kirby et al. (2008) found that transmission
chains composed of human participants also amplify individually
weaker tendencies toward compositionality, findings that have
been replicated, refined and contextualized since (see reviews in
Tamariz and Kirby, 2015, 2016; Culbertson and Kirby, 2016).
Focusing specifically on the anatomy of the vocal tract, Dediu
et al. (2019) show, using a computer model of the vocal tract
capable of learning to produce vowels (using artificial neural
networks and genetic algorithms), that variation in the shape of
the hard palate results in very weak effects on the production of
the learned vowels. These weak effects are amplified by a classic
iterated learning transmission chain to the level of observed
intra-dialectal variation. In the same vein, Blasi et al. (2019)
show, using a combination of approaches, that variation in
bite due to food consistency between agricultural and hunter-
gathering populations, results in tiny differences in the effort
required to produce labiodental sounds (such as “f” and “v”).
These differences in effort are presumably amplified to produce
robust statistical differences in the frequency of these sounds
between languages.

This amplification of weak biases thus raises a crucial question
relevant to language evolution, change and diversity, and, more
generally, to cultural evolution: under what conditions does this
amplification take place (or doesn’t)? But before we proceed, we
need to clarify our terminology: on the one hand, such biases have
causes (sociolinguistic, environmental, anatomical, etc.) and any
given individual may or may not be affected, i.e., the bias may
be present or absent (for discrete, binary biases, such as having
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a frenulum of the tongue) or have a certain numeric value (for
continuous biases, such as the degree of overjet/overbite); when
zooming out at the level of a linguistic community, we are then
talking about the bias being present with a certain frequency (for
discrete biases) or have a certain distribution (for continuous
biases). On the other hand, such a variant, when present in
an individual, may or may not be expressed in the individual’s
linguistic behavior (e.g., not being able to articulate the alveolar
trill or a lower probability of producing labiodentals); at the
level of the linguistic community, a variant can be expressed
with a certain frequency or have a certain distribution, and it
may (or may not) be further amplified by the repeated use and
transmission of language. These concepts are parallel to those
from medical genetics concerning the presence of a deleterious
allele in an individual’s genotype (say, a mutation in one of the
opsin genes on the X chromosome), its phenotypic expression
(as red/green abnormal color perception), and the population
frequency of such deficiencies.

With these, the simplest question concerns, for a given
bias, the minimum frequency of the biased individuals in the
community (i.e., the individuals expressing the bias), so that
its effects are expressed and amplified in the language of the
whole community. To use our “extreme” alveolar trill example,
we know that about 1% of non-trilling speakers (an estimate
based on the available unsystematic data) is not enough to change
the Romanian language away from the alveolar trill and toward,
say, a “French-style” uvular fricative, but would 10, 25, 50% do?
The complementary question is: for a given frequency, what is
the minimum bias strength that would allow the variant to be
expressed and amplified? And what is the time trajectory of the
spread for a given strength and bias? On top of these questions,
we must also not think of the speech community as a shapeless
pool of speakers, each equally likely to speak to, and to learn
from, any other speaker, which is completely unrealistic (Milroy
and Gordon, 2008; Meyerhoff, 2015). Therefore, we focus here
on speakers connected through communicative networks which
structure the communicative exchanges, controlling thus the
probability that any two speakers will interact. To the questions
above concerning the bias strength and frequency, we thus add
questions concerning the influence of the size of the network
(the number of speakers in the community), of the structural
properties of the network (random, small world, scale-free), and
of the position that biased individuals have in the network (e.g.,
high vs. low centrality, bridging two subnetworks, etc.) on the
spread of the bias.

The spread of innovation, behaviors and attitudes (among
others) in social networks has received a lot of attention.
Moreover, inter-individual variation seems to play an important
role in these processes of network spread (Granovetter, 1978;
Karsai et al., 2016). Language is not an exception, with studies
ranging from “classic” sociolinguistics (Milroy and Gordon,
2008) to more recent network-centric (Ke et al., 2008; Fagyal
et al., 2010; Abitbol et al., 2018). Language change has also been
studied using real-world examples, such as the vowel chain shift
in Ximu or the consonant convergence in Duoxu (Chirkova and
Gong, 2014, 2019), and using experimental approaches (Raviv,
2020; Raviv et al., 2020) showing that we must consider the

structure of the connectivity in linguistic communities. Social
structure, and more specifically the average degree, the presence
of shortcuts and the level of centrality can have an effect on
linguistic categorization (Gong et al., 2012a) or the degree of
diffusion of a variant in a population (Gong et al., 2012b).
Using a communication game model where the probability of
communication between agents is influenced by their mutual
understanding, Gong et al. (2004) put forward the co-evolution
of language and social structure, as well as the emergence of
networks exhibiting small-world characteristics (see section 2).

Considering the speakers as individuals with different
properties embedded in structured networks brings to the fore,
on the one hand, the intrinsic complexity of the processes
governing the amplification of variants induced by weak biases,
and the contribution of individual variation to the complexity,
robustness, and diversity of language, on the other. We present
here a computational framework that allows us to perform
an initial exploration of these questions, and we show that,
in apparent contradiction with the “common sense” view (but
see Navarro et al., 2018, for similar results in simpler social
settings), even relatively weak individual biases affect the shared
language of the whole community in structured communicative
networks. Thus, far from being “swamped” by the tyranny of the
majority, individual variation affects language and may even be
one of the drivers behind the emergence of linguistic diversity
and complexity. As Trudgill (2011a,b) points out, there are
three decisive factors influencing the emergence of linguistic
complexity: population size, degree of language contact, and
the density of social networks—our framework naturally models
the first and the third, while the second represents a natural
future extension.

In section 2, we present our Bayesian agent-based model
and the different parameters used in this analysis, such as the
network type and size, the proportion of biased agents and the
strength of the bias, the proportion of biased influencers, and the
initial language of the society. In section 3, we investigate if, and
how, the inclusion of biased agents in the network changes the
language of the society, and the factors affecting the stabilization
of the language. We close by discussing the limitations and
implications of our findings, and suggest several future directions
of study.

2. METHODS

Our simulation framework is based on previously published
models (Dediu, 2008, 2009) and has three main components:
the language, the agents, and the communicative network. The
language is modeled here as being composed of one (or more)
binary features, that are obligatorily expressed in each individual
utterance produced or perceived by the agents. We may think
of these abstract features as representing, for instance, the use
of the alveolar trill /r/ (value 1) or of a different r-like sound
(value 0), the use of pitch to make a linguistic distinction (1)
or not (0), having a subject-verb word order (1) or a verb-
subject order (0), making a gender distinction (1) or not (0),
using center embedding (1) or not (0), or any other number
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of such alternatives. Thus, if we take the /r/ interpretation, a
set of utterances 1,1,1 might be produced by an agent that can
trill without issues, a 0,0,0 by one that cannot, and 1,0,1 by
an agent that either does not make the distinction or whose
propensity to trill is affected by other factors (e.g., socio-linguistic
or co-articulatory). Each agent embodies three components:
language acquisition, the internal representation of language, and
the production of utterances. The first concerns the way observed
data (in the form of “heard” utterances) affect (or not) the internal
representation of language that the agent has. The second is the
manner in which the agent maintains the information about
language. And the third, the way the agent uses its internal
representation of the language to produce actual utterances.

We opted here for a Bayesian model of language evolution as
introduced by Griffiths and Kalish (2007), and widely used in
computational studies of language evolution and change (e.g.,
Kirby et al., 2007; Dediu, 2008, 2009, among others). In this
approach, there is a universe of possible languages (discrete or
continuous), h ∈ U, and an agent maintains at all times a
probability distribution over all these possible languages. Initially,
before seeing any linguistic data, the agent has a prior distribution
over these possible languages, p(h), and, following exposure to
new data (in the form of observed utterances), d = {u1, u2, ...un},
this probability is updated following Bayes’ rule, resulting in

the posterior distribution p(h|d) =
p(d|h)·p(h)

p(d)
that reflects the

new representation that the agent has of the probability of each
possible language h ∈ U. In this, p(d|h) is the likelihood that
the observed data d was generated by language h, and p(d)
is a normalization factor ensuring that p(h|d) is a probability
bounded by 0.0 and 1.0. When it comes to producing utterances,
we implemented two widely-used strategies (among, the many
possible ones; Griffiths and Kalish, 2007): a language h can be
sampled at random from the universe of possible languages
proportional to its probability in the posterior distribution
p(h|d)—a so-called sampler strategy (or SAM), or the agent
can systematically pick the language hm that has the maximum

posterior probability maxh∈U [p(h|d)]—a so-called maximum a

posteriori strategy (or MAP).
In this paper, we model a single binary feature and

consequently the utterances, u, collapse to a single bit of

information, “0” or “1.” The observed data, d, become binary

strings, and one of the simplest models of language is that of

throwing a (potentially unfair) coin that returns, with probability

h ∈ [0, 1], a “1” (otherwise, with probability 1 − h, a “0”). Thus,

the universe of our languages, h, is the real number interval

U = [0, 1] ⊂ IR, and the likelihood of observing an utterance u ∈

{0, 1} is given by the Bernoulli distribution with parameter h; for a
set of utterances d = {u1, u2, ...un}, the likelihood is given by the
binomial distribution with parameters k = |{ui = 1}i=1..n| (the
number of utterances “1”), n (the total number of utterances),
and h : p(d|h) = Binomial(k, n, h) = n!

k!(n−k)!
hk(1 − h)n−k, where

x! = 1 · 2 · ... · (x− 1) · x; thus, we can reduce the set of utterances
forming the data d, without any loss of information, to the
number of “1” utterances (k) and the total number of utterances
(n). In Bayesian inference we sometimes use the conjugate prior
of a given likelihood, in this case, the Beta distribution defined

by two shape parameters, α and β1, with probability density
f (x,α,β) = 1

B(α,β)
xα−1(1− x)β−1, where B(α,β) normalizes the

density between 0.0 and 1.0. With these, the prior distribution
of language h is f (h,α0,β0), with parameters α0 and β0 defining
the shape of this distribution (see below), and the posterior
distribution, updated after seeing the data d = (k, n), is p(h|d) =
f (h,α1,β1), where α1 = α0 + k and β1 = β0 + (n − k);
thus, the posterior distribution is also distributed Beta, with the
shape parameter α “keeping track” of the “1” utterances, and β

of the “0” utterances, and the Bayesian updating is reduced to
simple (and very fast) arithmetic operations. When it comes to
utterance production, a SAM agent chooses a value h ∈ [0, 1]
from the B(α1,β1) distribution [i.e., proportional to f (h,α1,β1)],
while a MAP picks the mode of the distribution, hM =

α1−1
α1+β1−2 ;

afterward, the agent uses this number between 0.0 and 1.0 as the
parameter of a Bernoulli distribution (a coin throw) to extract a
single “0” or “1” value with this probability—this value then is the
utterance that the agent produces.

This choice (Bernoulli/Beta) does not necessarily reflect how
data is used by real humans in learning a language, but
it has several major advantages, most notably its simplicity,
transparency, and computational efficiency making it possible
to run very large simulations on a consumer-grade computer in
reasonable time (Dediu, 2009). Probably the most relevant here
concerns the fact that the bias can be modeled only through
the shape parameters of the prior Beta distribution, α0 and
β0, as the likelihood function is fixed to the Binomial, and
the utterance produced offers only a limited choice between
SAM and MAP. However, the Beta distribution is flexible, and
can be used to represent from (almost) flat (or uninformative)
distributions, to extremely peaked and to “U”-shaped ones.
Moreover, for unimodal cases, we can model not only the
mode (i.e., the “preferred” value), but also the variance (i.e.,
how “strong” is this preference, operationally, how much data
is needed to change the preferred value). In our simulations,
we chose four different initial prior Beta distributions. The
first one is almost flat, and centered around 0.5 (unbiased
agents). In the three other conditions (biased agents), the
agents have an intrinsic bias toward the variant “0” (the mode
of their initial prior Beta distribution is 0.1), with various
bias strength. This is visually captured by the “narrowness”
of the Beta distribution, which may vary from quite flat and
skewed to very narrow. See Supplementary Materials for more
information for these parameters’ choice, and Figure 1 for a
visual representation of these distributions and of how they
are updated upon seeing data. Note that here, the terms
“biased agents” and “unbiased agents” do not refer to the
mathematical properties of their Beta distributions. Instead,
these terms refer only to the presence of an intrinsic bias, that
is, a bias oriented toward the variant “0” before the agents
hear any utterances (from the community convention, or from
each other).

The initial language parameter corresponds to two situations
(see Figure 1): on the one hand, it can model the (quite

1In our simulations, the initial values of α and β are always higher than 1.
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FIGURE 1 | The evolution of some examples of Beta priors (thick solid curves) after seeing some data (utterances), to become successive Beta posterior distributions

(thin curves). Blue: an agent strongly biased against the feature; red: an agent weakly biased against the feature; and black: an unbiased agent. (Top) The prior

distributions before seeing any data (“at birth”), which corresponds to the case where no initial language exists in the society. (Middle) The Beta distributions updated

after seeing n = 4 utterances all containing the value “1” (an initial language is present in the society; mildly biased toward “1”); (Bottom) An example to see the

evolution of a Beta prior after seeing n = 10 utterances “1.” The evolution of the priors highly depends on the bias’ strength: it is very fast for weak bias, and slower for

strong bias.

unrealistic) case where agents are born in a society without
any pre-existing language or where they are not exposed to
any linguistic input (k0 = 0, n0 = 0), so that the agents
must create their first utterances based only on their prior
bias. On the other hand, it can model the more common
case where agents are born in a society with a pre-existing
language already biased toward the use of the feature (k0 =

4, n0 = 4); this is modeled by presenting all the agents
with the same 4 utterances “1” in the initial iteration, so that
the first utterances generated by the agents are based both on
their prior bias and the linguistic input from the society. In
this analysis, the variant supported by agents having a bias
(both strong or weak) is always the utterance “0.” In the
case of absence of pre-existing language, biased and unbiased
agents both start without input. In the case of a pre-existing
language, biased and unbiased agents both start with an input
(exposure to four utterances of “1”): thus, the “unbiased agents”
start communicating with an internal distribution of language
biased toward the community convention (the variant “1”). We
remind here that the terms “unbiased” and “biased” used to
describe the agents refer only to the presence or absence of an
intrinsic bias acquired by the agents before they start hearing

any type of utterance. For a visualization of this dynamic (see
Figure 1).

Finally, the network represents the socio-linguistic structure of
a community, and constrains the linguistic interactions between
agents. The agents are the network nodes, and if there is an edge
between two nodes then those two agents will engage in linguistic
interactions. Note that we consider here only static networks:
there is no change, during a run, in the number of nodes and
the topology of the network (i.e., the pattern of edges connecting
the nodes). The only change implemented in the properties of the
nodes is the update of the posterior distribution, p(h|d), which is
the agent’s internal representation of the community’s language,
and does change with new data. Likewise, our model does not
include directed nor weighted edges (i.e., the two connected
agents can interact symmetrically, and there is no way to specify
that two agents might interact “more” than others), but we do
think that dynamic weighted directed networks are an important
avenue to explore in the future. Here, we use three classes of
network topology, namely random, small-world, and scale-free
networks (Figure 2). The first is a highly unrealistic baseline
model (Erdős and Rényi, 1959), where we specify the number of
agents and the overall connectivity of the graph (in this model,

Frontiers in Psychology | www.frontiersin.org 6 June 2021 | Volume 12 | Article 626118

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Josserand et al. Interindividual Variation and Language Change

FIGURE 2 | Examples of random, small-world, and scale-free networks with N = 40 nodes. The degree distribution is the probability distribution of the nodes’ degree

(the number of connections each node has to other nodes) over the whole network. The average path length is the average number of steps along the shortest paths

for all possible pairs of network nodes. The clustering coefficient corresponds to the density of neighborhood, i.e., the degree to which nodes in a graph tend to

cluster together (Watts and Strogatz, 1998).

always equal to 0.12) giving the probability of adding an edge
between any two nodes. However, as real-world networks are not
generated randomly, we focus instead on small-world and scale-
free networks. To generate the small-world networks, we use the
classic “beta model” of the Watts-Strogatz algorithm (Watts and
Strogatz, 1998): the algorithm first creates a ring of nodes, where
each node is connected to a number N of neighbors on either
side (here, N = 4), and then rewired with a chosen probability
p (p = 0.1). This process leads to the creation of hubs and the
emergence of short average path lengths. Small-world properties
were popularized byMilgram (1967)’s “Six degrees of separation”
idea, and are found in many real-world phenomena, such as
social influence networks (Kitsak et al., 2010) and semantic
networks (Kenett et al., 2018). Contrary to small-world and
random networks, scale-free ones exhibit a power-law degree
distribution: very few nodes have a lot of connections, while a lot
have a limited number of links, and are found, for example, on
the Internet (Albert et al., 1999) or in cell biology (Albert, 2005).
To generate them, we used the preferential attachment algorithm
(Barabási et al., 2000), which starts from a seed of nodes and
gradually adds new ones; new links are created between the
newly-added nodes and the pre-existing nodes following the rule
that themore a node is connected, the greater its chance to receive
new connections. Formally, the probability pi that a new node is

connected to node i is pi =
ki∑
j kj

, where ki is the degree of node

i, and the sum is over all pre-existing nodes j.
Putting everything together (Figure 3), time is discretized

into iterations, starting with iteration 0 (the initial condition

2We slightly modified the Erdos-Renyi algorithm, in order to study networks

without sub-graphs and/or isolated nodes (by randomly adding a link to isolated

nodes). This can change the overall connectivity of the graph in very small

networks (see Supplementary Materials).

of the simulation) in increments of 1. At each new iteration,
i > 0, all agents produce one utterance, u ∈ {0, 1}, using
their own internal representation of language and production
mechanism (as described above). These utterances are “heard”
by their neighbors (the “listeners”), who update their own
internal representation of the language (also as described above)
using a broadcasting mode. More precisely, in a given iteration,
each agent is selected in turn in a random order (random
permutation) and is allowed to produce one utterance (“speak”),
utterance which is “heard” by all its network neighbors. The
network is asynchronous, which means that the language value
of listeners is updated immediately after hearing the speaker’s
utterance (in opposition to the synchronous network, where
the language values of all agents are updated simultaneously
at the end of each iteration, after all agents have talked).
The choice of using an asynchronous network was driven by
its lower computational cost; but the model was also run
in a synchronous mode and the results were very similar
(see Supplementary Materials). A special case is represented
by the initial iteration i = 0, where the model can either
start with the agents’ own prior distributions (as defined, for
each agent, by its own parameters α0 and β0, that may differ
between agents), or we can “train” all agents on the same
set of initial utterances u1, u2...ul ∈ {0, 1} representing a
pre-existing language shared by the whole community before
the experiment starts. Note that not all agents in a network
must share the same prior distribution (defined by α0 and
β0) or utterance generating mechanism (SAM or MAP), and
this is, in fact, one of the most important parameters we
manipulate in our simulations. With time, due to how the
Bayesian model was implemented, the internal distribution of
agents’ language becomes narrower and narrower (that is, the
α and β parameters of their posterior distribution increase
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FIGURE 3 | The evolution of the agents’ internal representation of the language (node color) after 1 and 30 iterations in a scale-free network of n = 30 agents. In each

iteration, all individuals speak and receive the utterance produced by all their neighbors. (Left) Initial state of the network before any interaction (i.e., reflecting the prior

biases); (Middle) after 1 iteration; (Right) after 30 iterations.

TABLE 1 | Parameters defining our simulations (see also Table 2).

Parameter Variable name Dependencies Comments

Network size, N size_net None The number of nodes (i.e., agents); it is fixed for a given run

Bias location and strength, µ0

and λ0

bias_strength None See Figure 1

Utterance production mechanism,

UPM

learners None

Frequency of biased agents, υ prop_biased None The proportion of agents in the network that are biased; note that here we consider

networks containing a single type of biased agents

Proportion of highest centrality

agents that are biased, TOP

influencers_biased Depends on υ “Random” means that the biased agents are randomly placed in the network agent

centrality, while “biased influencers” ensures that the top 10% highest centrality agents are

biased (if υ ≥ 10%, otherwise υ)

Network type, T network None Controls the class of network topology (see Figure 2 for examples).

Initial language, k0 and n0 init_lang None The total number of utterances (n0) and the number of utterances “1” (k0) presented to all

the agents in the network in the initial iteration i = 0 (see Figure 1)

Maximum number of iterations, I tick None The maximum number of iterations to run

Number of independent replications

per condition, R

rep_id none The number of independent runs (replications) for a given condition

with time). Thus, utterances heard earlier have a larger impact
on the internal representation of the language, compared
with utterances encountered later. This, in turn, leads to a
progressively reduced difference between the SAM and MAP
strategies (see Supplementary Materials). In other terms, one
could say that agents gain some confidence in their conception
of the language, as they become more resistant to change
with time.

With these, our simulation framework allows the
manipulation of several parameters (see Table 1), but we
limited ourselves to the conditions given in Table 2.

The size of social networks depends on how social networks
are defined in the literature, they can vary between a few
individuals and 5,000 or more individuals (Hill and Dunbar,
2003). Small groups, such as support cliques and sympathy
groups, have in general a clustering of relationships between 5
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TABLE 2 | Values used in our analysis.

Parameter Values—Main study Values—Systematic bias effects study

Network size, N 10 (“tiny”)

50 (“small”)

150 (“medium”),

500 (“large”) and

1,000 (“very large”)

150 (“medium”)

Bias location and strength, µ0 and λ0 µ0 = 0.5, λ0 = 0.9 (“unbiased”)

µ0 = 0.1, λ0 = 0.6 (“biased flexible”)

µ0 = 0.1, λ0 = 0.1 (“biased rigid”)

µ0 = 0.1, λ0 = 0 (“biased fixed”)

µ0 = 0.1 (biased)

λ0 = 0.01 to 0.99,

in steps of 0.01

Utterance production

mechanism, UPM SAM (“sampler”)

MAP (“a posteriori maximizer”)

SAM (“sampler”)

Frequency of biased agents, υ 0% (“fully unbiased”)

10%

30%

50%

100% (“fully biased”)

0–100%, in steps of 1%

Proportion of highest centrality agents that are biased, TOP 0% (“random”)

10% (“biased influencers”)

0% (“random”)

50% (“biased influences”)

100% (“biased

extremely influent”)

Network type, T (for random and smallworld, same parameters as before) “Random”

“Scale-free”

“Small-world”

“Random”

“Scale-free”

“Small-world”

Initial language, k0 and n0 k0 = 0, n0 = 0 (“no initial language”)

k0 = 4, n0 = 4

(“initial language”)

k0 = 4, n0 = 4

(“initial language”)

Maximum number of iterations, I 5,000 500

Number of independent replications per condition, R 100 50

Due to computational costs, we performed two different types of analysis, using different sets of parameters. In both cases, all possible combinations of parameters were performed R

times. While the variables in “main study” are used to understand which predictors affect the language value of agents and in which ways, the “systematic bias effect study” helps us

understand to which extent the strength of the bias and the proportion of biased agents in the population affect the language value of the population after I iterations. See the text for

more details.

and 15 people, whilemodern hunter-gatherer societies are usually
described as containing from 30 to 50 individuals (Dunbar,
1993). As reported in the ethnographic literature, there are also
higher-level grouping such as the mega-bands (500 individuals)
and tribes (1,500–2,000 individuals) (Dunbar, 1998). Here, due to
the computational costs involved, we were limited to 1,000 people
in a population.

In order to test our hypotheses and to further explore the
simulation results, we use the following outcomes (dependent
variables): the language value, la, the heterogeneity between
groups, hs, and the stabilization time, ts.

Language Value
The language value of an agent at a given moment varies between
0 and 1, and is the mode of the Beta distribution representing
the internal belief of the agent concerning the distribution of
the probability of utterances “1” in the language. Biased agents
typically start with a lower la than the unbiased agents, thus
favoring the variant “0.” We also define the language value
of a given group of agents (for example, a community or the
whole network) as the mean of the language values of all the
agents in the group. We decided to focus on the language

value observed after 5,000 iterations, because the language value
was always stabilized after this period (see Figure 13). Given
that our focus here is on understanding the effect of various
parameters on the emergent language and the fact that we need
to aggregate over multiple agents, we also estimate various types
of variation. First, the inter-replication variation is estimated
by computing the standard deviation of the language values
obtained among the R replications after 5,000 iterations. It
captures the influence of various sources of randomness on each
particular run of a given condition, and it depends on the size
and the type of network, the strength of the bias, and the initial
value of the language (see Supplementary Materials). It is higher

for random networks compared to scale-free and small-world

networks, and higher for smaller networks. Furthermore, a weak

bias and the absence of an initial language both amplify this

variation. However, inter-replication variation is low, confirming

the relevance of themean of the agents’ language values across the
different replications. Second, inter-individual variation across

the agents in a given network is an important outcome: we

found that most biased and unbiased agents have very similar
behaviors within their respective groups, justifying the use of
the mean language values of the biased (langval_biased) and
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the unbiased agents (langval_control). We also computed the
mean language value of the whole population (langval_all):
even if there may be variation between groups (the biased
vs the unbiased agents) and between agents, this value is a
global indicator of the average language used in the population.
Third, there are differences between the unbiased and the biased
agents (diff): here we used the signed difference between the
mean language values of the unbiased agents and the mean
language values of biased agents, as this gives very similar
results to the much more computationally expensive method
of computing all pairwise differences between all unbiased and
biased agents.

Heterogeneity Between Groups
In order to study the possible differences in the language
values of the agents belonging to different communities, we
first detect the structural communities within the network
using the Louvain community detection algorithm (Blondel
et al., 2008) as implemented in NetLogo’s nw extension
package, which detects communities by maximizing modularity
based on the connections agents share with each other,
and not on the agents’ language values (see Figure 4).
Since the network is static, we then use the detected
communities to compute the language value of each community
for each iteration. Our measure of heterogeneity between
groups is the standard deviation of these mean language
values across communities. Thus, a low number indicates
that all communities have approximately the same mean
language value, whereas a high number indicates that the
communities have rather different language values. (Note that
this value was not computed for networks containing only
10 agents).

Stabilization Time
Intuitively, stabilization time captures how long (in terms of
interaction cycles) it takes for the language of a given network
to reach a stable state. Given the inhomogeneous nature of
the network, we consider two measures: the moment when the
language value of the biased agents stabilizes (stab_biased) and the
moment when the language value of the control agents stabilizes
(stab_control) (Figure 5); these measures are estimated using the
language values of their respective populations. The estimation
is based on the method developed in Janssen (2018, p. 79)
and used a fixed-size sliding window within which we estimate
the change in the language value, we multiply this number by
10,000, round it, and stop if this number is equal to zero (i.e.,
the slope is within ±0.00001 of 0.0) for 50 consecutive steps.
Practically speaking, the maximum number of ticks of our model
is nIterations = 5, 000, and the size of the sliding window is
ω = nIterations/10. For a given window, we estimated the
change, t(eg) using the following formula, where g is the number
of iterations.

t(eg) =
(eg+w − eg)

ω
∗ 10, 000 (1)

On the rounded t(eg) values, we find the first value of g,
gstabilization, when the rounded value of t(eg) = 0, and we stop if
for 50 consecutive steps (i.e., g ∈ [gstabilization..(gstabilization+50)]),
there is no change, t(eg) = 0; in this case, the stabilization time is
the first moment where there was no change, namely gstabilization.

Our framework is implemented in NetLogo 6.1.1 (see
here), the experiments were run on an Intel(R) Xeon(R)
W-2255, 64 Gb RAM system under Ubuntu 18.04, and the
results analyzed using R 3.6.3/Rstudio 1.4 on machines
running Ubuntu 18.04 and macOS 10.15 (Catalina);
the full source code and results are available at Github
(mathjoss/bayes-in-network). The runtimes were between 6 h
(scale-free networks) and 3 days (random networks) for the main
analysis. It is possible to study networks up to 2,000 agents, but
above 1,000 agents, the computations are too slow and would
require access to a computer cluster.

3. RESULTS

We present here a summary of the most relevant results
for our discussion, with the full results, including
the actual data and R code, being available in the
accompanying Supplementary Materials, to which
we also make explicit reference in some cases. Note
that the predictors are systematically standardized (z-
scored, with mean 0 and standard deviation 1) for all
regression analyses (so that we can directly compare
their regression slopes, β), and the p-values of all the
pairwise tests are corrected for multiple testing using
Bonferroni’s method.

3.1. Can a Minority of Biased Agents Affect
the Language of the Whole Population?
We hypothesized that the bias of a minority of agents present
in a population is not swamped by the unbiased majority, but
contributes to the language of the whole population. More
concretely, the population containing biased agents will use more
of the variant “0” compared to the population without any biased
agents. As an example, Figure 6 shows the change across time in

the language value of a scale-free network with 500 SAM agents,

of which 10% are biased. It can be seen that the language of

the network is clearly affected by the biased minority, in that

even the language value of the unbiased majority is “attracted”
away from its initial language toward the language value of the
biased minority, resulting in an overall language, qualitatively
somewhere in between the unbiased majority’s and the biased
minority’s languages.

But what factors, and how exactly, allow the minority’s variant
to be expressed in the language of the population?We used linear
regression using lm function (R Core Team, 2020) to investigate
the influence of the parameters on the language values of all
the agents after 5,000 ticks, and the results (Figure 7) show that
almost all variables have a statistically significant effect on the
language value, but only the proportion of the population that
is biased (prop_biased), the strength of the bias (bias_strength),
and the initial language value (init_lang) have large effect sizes.
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FIGURE 4 | Structural communities detected in a very simple scale-free network using the Louvain algorithm. On the left is the original network with all connections,

and on the right the four communities detected by the algorithm (shown in different colors and with the inter-community connections removed).

FIGURE 5 | Stabilization times for the biased and the unbiased agents. This example uses a scale-free network with 500 agents, with SAM agents, where 10% of the

top influencers are strongly biased, in the presence of an initial language.

A different quantification of the influence of these
parameters is shown in the bottom part of Figure 7.
Interestingly, we found that the effect of influencers_biased
is negligible. However, it has a small interacting effect
with network type, the bias’ strength and the percentage
of biased agents: the language value of the population
in scale-free networks with strongly biased agents is
lower when there are 10% of biased influencers (note

that no interactions were entered in this regression
model; however, interactions effects are available in the
Supplementary Materials). A very small effect size is also
observed for the network type: the language value of the
population is relatively similar for scale-free, small-world and
random networks.

Figure 8 shows the joint influence of the proportion of biased
agents and the strength of the bias on the population’s language

Frontiers in Psychology | www.frontiersin.org 11 June 2021 | Volume 12 | Article 626118

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Josserand et al. Interindividual Variation and Language Change

FIGURE 6 | Language (vertical axis, as language values) is changing across time (horizontal axis, in ticks) in a scale-free network with 500 SAM agents of which 10%

are biased. Each individual curve represents the mean language value of the biased minority (purple) and the unbiased majority (light green) for 100 independent

replications. Top: The minority is strongly biased; bottom: the minority is weakly biased. (Left) The biased minority is not overrepresented among the most influential

agents in the network; (Right) the 10% most influential agents are occupied by biased agents.

value for the set of values in the “Systematic bias effects study”
(see Table 2). We decided to further investigate the effect of
these two parameters due to their large effect sizes (see Figure 7).
In this study, we ran 50 independent replications for each of
all the possible combinations of the bias strength (going from
0.0 = very strongly biased to 1.0 = very weakly biased, in steps
of 0.01) and the proportion of biased agents in the population
(going from 0 to 100% in steps of 1%). For each replication,
we computed the mean language value of the population
after 500 iterations, and we then averaged the 50 independent
replications for each combination by taking their mean: for
example, the averaged mean language value of the population for
the condition {bias_strength=0.70 & prop_biased=35} is 0.67, but
is 0.22 for the condition {bias_strength=0.15 & prop_biased=80}.
As Figure 8 shows, in general, the aggregated mean language
value progressively increases with the proportion of biased agents
and the strength of the bias.

In order to better visualize the shape of the relationship
between the bias strength and frequency (i.e., linear or not), and
also to check if the proportion of biased influencers impacts
the results, we also show the set of isolines for the mean
language value of the population (see Figure 8). These isolines
are defined as the maximum values of the combination of
bias_strength and prop_biased for a given set of language values.
Interestingly, the relationship between the strength of the bias
and the proportion of biased agents is relatively linear when

the proportion of biased agents is high and/or when the bias
is strong, but becomes nonlinear for low frequencies of the
biased agents and for weak biases. In this latter case, the effect
of biased agents on the language value of the population is
much stronger than expected. Moreover, this analysis helps to
understand under what conditions an initial language strongly
favoring “1” may change to a language favoring the variant “0”:
while only in populations with a large proportion of strongly
biased agents (>50%) does the language strongly favor “0” (a
language value of 0.2), it is enough for only 15–20% of the
populations to have a strong bias for the language to reach a
moderate preference for “0” (language value of 0.4). However,
note that while these particular values critically depend on
the initial language (i.e., the number of initial utterances and
the distribution of “0” and “1” utterances), they do support
qualitative inferences concerning the influence of biased agents
in a population.

Taken together, these results clearly show that biased agents,
even if in minority, can have an impact on the language of
the whole population: indeed, the bias of the agents is far from
being swamped by the majority! In the remaining sections we
will unpack the reasons for these findings by exploring different
hypotheses. First, as we could see in Figure 6, we test in which
way the biased and the unbiased agents influence each other,
and we suggest that the biased agents “drag down” the language
value of unbiased ones. Second, we hypothesize that biased
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FIGURE 7 | (Top) The results of the linear regression of the language values of all agents after 5,000 ticks on various parameters. Degrees of freedom (df) = 119,991,

adjusted R2 = 79.4%. The variable “learner” is a factor with two levels (SAM and MAP) and treatment contrast, with the baseline level MAP included in the intercept.

The same applies to the variable “network,” with “random” being the baseline level included in the intercept. (Bottom) The results of unpaired Wilcoxon tests (with

adjusted significance stars, where ns: p > 0.05; *p <= 0.05; **p <= 0.01; ***p <= 0.001; ****p <= 0.0001) between the language values (vertical axis) across

multiple replications vs. the parameters (horizontal axis).
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FIGURE 8 | (Top) The aggregated mean language value (color) function of bias strength (horizontal axis, systematically varying between 0.0 and 1.0 in steps of 0.01)

and proportion of biased agents in the population (vertical axis, varying between 0 and 100% in steps of 1%). For each of the possible combinations of these two

parameters, a colored dot indicates the aggregated mean language value of the population. (Bottom) The different language values are plotted with isolines, in

contrast to the continuous scale used in the figure on the top. The isolines are the maximum values of the combination of bias_strength and prop_biased for a set of

language values, and color represents the value of the language isolines. We used a network with an initial language, containing 150 SAM agents.

agents maintain a trace of their bias in their language, even
after interacting with the unbiased agents; this thus “lowers” the
mean language value of the whole population, and makes the
biased agents use a different language compared to the unbiased
agents, the different types of languages “cohabiting” together in
the same population. Third, we explore the hypothesis that inter-
individual variation within a population leads to the emergence
of linguistic communities using different languages. We note that
these hypotheses are not mutually exclusive, but can be all true
to some extent, beyond the framework provided by the rather
simple and naive modeling approach proposed here.

3.2. How Do the Biased Agents Affect the
Language of the Whole Population?
3.2.1. Hypothesis 1: The Biased Agents Affect the

Unbiased Agents (the “Language Compromise”

Hypothesis)
When biased and unbiased agents are mixed together in a
network, their language values, very different at first, tend
to converge toward a common language value (Figure 9).

Adding an initial language to the society drastically changes
the language value of the population, which is not surprising

since the unbiased agents, after hearing the four initial

utterances of “1,” learn a high language value, while the biased

agents will shift toward intermediate language values. In the

following, we focus on the more realistic case where an initial

language is present. Indeed, even if the case without an initial
language is interesting from a theoretical perspective on the

origins of linguistic systems, we assume that, normally, the
individuals are born embedded in a society with a pre-established
language system.

We performed unpaired Wilcoxon tests comparing the

language values of the unbiased agents in a population with

biased agents to those in a population without biased agents,

for all possible combinations of parameters, and we corrected

the p-values for multiple testing using the Bonferroni method.

These adjusted p-values show that, in the vast majority of
the combinations (93%, 670/720), the language values of the
unbiased agents in a society with biased agents are significantly
different from those of a homogeneous unbiased population.
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FIGURE 9 | The final language value of the whole population for a scale-free network with 150 SAM agents. The solid line (1) shows the initial value of the language for

the unbiased agents, while the dotted lines (2) show the initial value of the language for biased agents. The horizontal axis shows the different cases considered

(combinations of bias strength and proportion of biased agents in the populations), the vertical axis is the language value of the population, and the colored boxplots

show the distribution of the language values among the biased (blue) and unbiased (green) agents.

Among the 50 replications with no significant differences, 33
were networks with only 10 agents, and the remaining 17 were
random or small-world networks with a low proportion of
weakly biased agents. In these simulations, the biased agents are
distributed randomly in the network, so that both the biased
and the unbiased agents are likely to hear utterances that will
change the posterior probability of their language value: each
utterance “0” heard by an unbiased agent will slightly modify the
distribution of its internal language value.

This hypothesis is supported: agents within a finite population

tend to share quite a similar language, which means that the

biased agents do affect the unbiased agents, and vice-versa.
However, are the inter-individual differences always swamped
by communicating within such a population? Thus, does
communication necessarily force conformity among agents? We
hypothesize that this is not the case, and that instead the
biased agents manage to maintain a trace of their initial bias
in their language, even after interacting repeatedly with the
unbiased agents.

3.2.2. Hypothesis 2: The Biased Agents Do Maintain a

Trace of the Initial Bias in Their Language, Even After

Repeatedly Interacting With the Unbiased Nodes (the

“Bias Resilience” Hypothesis)
To test this hypothesis, we measure the difference in the language
values between the unbiased agents and the biased agents after
5,000 iterations: the higher the signed difference, the more
different the languages used by the two types of agents are. A
multiple regression analysis shows that only the network type
(network) and size (size_net), the proportion of biased agents
(prop_biased), and the strength of their bias (bias_strength)
have a large effect size (Figure 10 zooms in on their effects
and the Supplementary Materials). We observe that in random
networks, this difference is very small, while in scale-free and
small-world networks, this difference is present and depends on
the proportion of biased agents and the strength of their bias.

We also performed unpaired Wilcoxon tests comparing the

language values of the biased and the unbiased agents in all sets

of combinations, using Bonferroni multiple testing correction.
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FIGURE 10 | Top row: The difference between the languages of the unbiased and the biased agents after 5,000 iterations, function of network type and influencers

biased (panels), size (color), and bias frequency and strength (horizontal axis). We used SAM agents, there is no enrichment of biased agents among the top

influencers, and agents were exposed to an initial language.

FIGURE 11 | An example of linguistic community emergence in scale-free (left) and random (right) networks with 50 SAM agents, 10% of which are strongly biased

(triangles) while the remaining 90% are unbiased (circles). Agent colors represent their language value; agents were exposed to an initial language.
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FIGURE 12 | The difference in heterogeneity between linguistic communities function of network type (columns) and size (colors), and bias strength (rows) and

frequency (horizontal axis). The networks contain SAM agents, no influencers are biased, and there is an initial language.

The adjusted p-values are almost always significant for scale-free
networks (except for 44 networks with 10 or 50 agents, often
weakly biased); significant for 52% of the small-world networks,
especially for big networks with strong biases; however, most
random networks do not show a significant difference, with the
exception of a few very small networks. Particularly in scale-
free networks, the proportion of the top-influencers that are
biased also affects the difference in language values between the
unbiased and the biased agents (see Figure 10), especially in
networks with 10% of strongly biased agents.

These results allow a more nuanced view of the first
hypothesis’ conclusions: while the biased agents do affect the
unbiased agents and all agents do tend to reach a language
compromise, the biased agents still manage to maintain a trace
of their initial bias in their language, even after interacting with
the unbiased agents.

3.2.3. Hypothesis 3: The Emergence of Linguistic

Communities With Different Languages (the

“Linguistic Polarization” Hypothesis)
Our results so far show that network type and size generally
influence the language value of the population, suggesting

that this may be due (in part) to the emergence of linguistic
communities using different languages within the network
(Figure 11). We estimate the existence of such linguistic
communities through the heterogeneity of the language values
between structural communities in the network (as detected
by the Louvain community-detection algorithm). A multiple
regression analysis (see Supplementary Materials for full results)
shows that only network type has a big effect size on the
heterogeneity between communities (Figure 12). It can be seen
that the linguistic communities do not generally emerge in
random networks3. On the other hand, scale-free and small-
world networks tend to behave differently: even when there are
only unbiased agents in the network, we can see the emergence
of linguistic communities differing in their language, suggesting
that network structure itself favors the emergence of linguistic
communities. However, if the network contains only strongly
biased agents, all agents will share the same language before and
after interacting with each other, precluding the emergence of
linguistic communities. The maximum heterogeneity between

3Note that the relevance of using Louvain algorithm to extract communities in

random networks is debatable.
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FIGURE 13 | Stabilization time for the biased and the unbiased agents (color), in different types of networks (columns) with two different sizes (rows), for various bias

frequencies and strength (horizontal axis). The agents are SAM, there are no biased influencers, and there is an initial language.

communities is found in scale-free networks when there is a
minority of strongly biased agents.

We performed unpaired Wilcoxon tests comparing the
heterogeneity of, on the one hand, the unbiased agents in a
population with biased agents, to that of the unbiased agents in
a population without biased agents, on the other, for all possible
combinations of parameters, and we corrected the p-values for
multiple testing using the Bonferroni method. These adjusted p-
values show that, in scale-free networks with a strong bias, having
biased agents in the network significantly affects the emergence of
linguistic communities (86%, 83/96); this is also true, to a smaller
extent, for small-world networks with strongly biased agents
(75%, 72/96). However, in scale-free and small-world networks
containing weakly biased agents, only about half of the time
the comparisons are significant (45% for scale-free, and 54% for
small-world); thus, the heterogeneity observed in these networks
is probably mostly due to the structure of the network itself.

Thus, the hypothesis 3 is supported by our results to a certain
extent: heterogeneity between linguistic communities seems to
naturally emerge in heterogeneous scale-free and small-world
networks but only with agents who are not too weakly biased;
moreover, strongly biased agents amplify the language differences
between linguistic communities in scale-free networks.

3.2.4. Putting the Three Hypotheses Together: Even

Rare and Weak Biases Matter!
The results show that the bias, even in a minority, is not
swamped by the majority: instead, it affects the language of
the whole population. As the agents are interacting, the biased
and the unbiased agents are influencing each other’s language:
consequently, the biased agents “pull” the language values of
the others toward the value preferred by their bias. In random
networks, all agents eventually agree on the same language
value (unless the network is very small), but, due to their
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internal structure, both small-world and scale-free networks
see the emergence of linguistic communities diverging in their
languages. Moreover, in scale-free networks (and, to a smaller
extent, also in small-world networks), the biased agents do retain
a trace of their bias in language, and, when strongly biased,
they help amplify the differences between linguistic communities.
Thus, network structure is a key parameter for understanding
the structural properties of the emergent languages, but does
it also affect the speed with which the language reaches its
stable state?

3.3. When Does the Language Stabilize?
To answer this question, we analyse the agents separately
depending on their type (unbiased vs. unbiased) as the languages
of the two types might stabilize at different times. Thus, we
performed linear regressions for the biased agents, and for the
unbiased agents separately (see Supplementary Materials for full
results). While most of the variables have a significant effect, only
the proportion of biased agents, the strength of the bias, and
the size and type of network have a large effect size. As we can
see in Figure 13, there is an interaction between network size
and type: while stabilization time decreases with size in random
networks, it is stable in small-world and scale-free networks.
The stabilization time for biased and unbiased agents in all
types of networks with weakly biased agents is approximately
the same. However, for networks with strongly biased agents,
the proportion of biased agents influences the stabilization of
the language of the two types of agents differently: the lower
the proportion of biased agents, the bigger the difference in
stabilization time between the biased and the unbiased agents.
That is to say, when only a small proportion of the population
is biased, the language of these biased agents will need a long
time to stabilize, but when half of the population is biased,
unbiased and biased agents will reach stability at approximately
the same time. In scale-free and small-world networks, this
difference is positively affected by network size, and is higher for
scale-free networks.

Thus, stabilization time varies widely depending on network

type and size, and the strength and frequency of the bias. In all

three types of networks, the language stabilizes at roughly the
same time when the networks are small, but only in random
networks the language stabilizes faster as network size increases.
Overall, agents in scale-free networks tend to require more time
to stabilize. When the agents are strongly biased, the difference in
stabilization time between the biased and the unbiased agents is
negatively influenced by the proportion of biased agents.

4. DISCUSSION

We introduced here an agent-based model that quantitatively
investigates the dynamics of amplification and expression, to the
level of the population’s language, of linguistic variants influenced
by individual-level biases. While our study is by far not the
first to investigate the influence of communicative structure on
language transmission (Gong et al., 2004, 2012a) nor of the
effects of biases on language change and evolution (e.g., Kirby
and Hurford, 2002; Kirby et al., 2007), we are the first (to our

knowledge) to combine the two in a non-trivial way, by allowing
agents with intrinsically different biases to interact through a
structured communicative network. We show that, contrary to
the “intuitive view” that the biased minority ends up adopting
the language of the unbiased majority, even weakly biased agents
present in a small part of the population can affect the language
of the whole population, when the communicative network of the
population is structured. The reverse is also true, as biased agents
are accommodating to the unbiased agents. Thus, the language
value of the population reflects often mostly the initial language
of the society carried by unbiased agents. The influence of the
bias increases with the strength and the population frequency
of the bias, but, unlike Navarro et al. (2018), we do not find
here evidence for a disproportionately large influence of strongly
biased agents. However, our results show that even weak and rare
biases can exert a stronger influence than a priori expected, as the
relationship between population language, bias strength and bias
frequency is not linear. Maybe counter-intuitively, far from being
“swamped” by the majority, weakly biased agents representing
but a minority, can nevertheless disproportionately influence
the language of the majority. With hindsight, these results may
appear unsurprising given our use of a Bayesian model which, by
definition, given enough data should move away from its prior
and come to reflect the observed data. However, we have to point
out that it is far from clear what “enough data” means, how the
structured nature of the interactions affects this process, and that
real languages might be far from a state of equilibrium (e.g.,
Cysouw, 2011)—therefore, even in this constrained context our
results are arguably unexpected, showing that even weak and rare
biases, implemented in a way that favors erasure by the incoming
data, do survive in the emergent, community-wide behavior.

We tested here three hypotheses concerning the manner
in which individual-level biases may influence the population’s
language. First, we investigated the way in which the biased
and the unbiased agents interact and influence each other.
Our findings match the prediction that the presence of biased
agents has a significant effect on the language that emerges
in the population, as their bias affects the language of the
unbiased agents. More generally, all agents tend to converge, after
interacting repeatedly, toward a compromise in their language
somewhere between the initial language of the biased and
the unbiased agents. Interestingly, while the network structure
does not affect the final language at which the population
stabilizes, it does affect the speed with which it stabilizes: this
is faster in larger random networks, and generally slower in
scale-free networks. This is consistent with Raviv et al. (2020)’s
experimental findings, where it is suggested that stability is faster
in denser networks, while sparser networks would be slower
to stabilize. Differences in convergence times between different
network structures was also found in the statistical physics
literature that studies cultural dynamics (Baxter et al., 2008;
Castellano et al., 2009; Blythe, 2015). In our simulations, the
high connectivity in random networks led agents to receive many
utterances from their neighbors at each iteration, while in scale-
free networks, each agent heard, on average, less utterances at
each iteration. However, in scale-free networks, it is important
to note that the internal representation of the influencers evolves
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faster (i.e., become “narrower” around a specific value) than for
poorly connected individuals.

The role of network structure is also highlighted by our second
hypothesis: we expected that the biased agents would manage to
retain a trace of their bias in their language even after interacting
repeatedly with the unbiased agents. Strikingly, our findings
match this expectation, but only in scale-free networks (and, to a
smaller extent, also in small-world networks). In such networks,
the biased agents stabilize on a slightly different language than
the unbiased agents, making the two groups easily identifiable
even after repeated interactions. Moreover, our results show
that the presence of the bias among the top influencers in the
network (agents with the highest network centrality) results in
the amplification of these inter-individual differences (especially
through the creation of an “elite” community with a different
language), but, importantly, does not have a strong effect on
the final language of the whole population (except for very
small scale-free networks with 10% of strongly biased agents).
Thus, communication does not necessarily enforce uniformity
among the agents, but instead inter-individual variation persists
even after repeated interactions in structured networks. But
then, how do these types of networks match the reality of
human linguistic interactions? While a consensus has not yet
been reached (Ke et al., 2008), most authors (Xiao Fan Wang
and Guanrong Chen, 2003; Kaiser and Hilgetag, 2004) suggest
that a realistic model should incorporate features of both scale-
free and small-world networks, and that random networks are
definitely out. As such, our own results can be taken to support
these suggestions: indeed (as discussed in section 1), there is
widespread inter-individual variation in language that persists
into adulthood, but our simulated randomnetworks lost all traces
of inter-individual variation (see Heterogeneity intra group in the
Supplementary Materials).

The third hypothesis further explores the idea that inter-
individual variation may lead to the emergence of linguistic
communities using different languages. Our results show,
indeed, that even without any inter-individual differences in
the beginning, as long as the initial bias is too strong, the
structure of scale-free and small-world networks leads to the
emergence of communities differing in their languages. This is
broadly in line with fundamental sociolinguistic theory and data
showing that multi-level structured linguistic variation within
linguistic communities is the norm (Labov, 1975; Milroy and
Gordon, 2008;Meyerhoff, 2015). Our study addresses these issues
in a novel way, by explicitly modeling both inter-individual
variation and structured linguistic interaction. We found that
adding biased agents (and especially strongly biased agents)
randomly in the scale-free and small-world networks amplify
the linguistic variation between the communities, but how does
such inter-individual variation influence the emergence of such
communities? We suggest that randomly placing biased agents
within a network may lead to the presence of several biased
agents within the same structural community (i.e., a community
due to the connectivity structure of the network), while some
other structural communities may end up without any biased
agents. Therefore, communities with many biased members will
tend to differ in the use of the variant affected by the bias

from the communities without any biased members. However, in
reality the biases may not always be randomly distributed in the
population, but instead have a patterned distribution (due to a
combination of geographic, historical, and demographic factors),
as found for biases rooted in human genetics (Dediu and Ladd,
2007; Wong et al., 2020) or the vocal tract (Dediu et al., 2017;
Blasi et al., 2019; Dediu and Moisik, 2019), feeding precisely into
this amplification and differentiation process.

Interestingly, our results also contribute to the debate
concerning the differences between modeling the linguistic
agents as Bayesian samplers (SAM) or maximizers (MAP). Early
influential studies of simple transmission chains (Griffiths and
Kalish, 2007; Kirby et al., 2007) found that SAM and MAP
differ fundamentally in their asymptotic behavior, in that SAM
always converge to their prior distribution, while MAP’s behavior
is more complex (including the amplification of weak biases).
However, these simple results don’t generalize in more complex
settings (Dediu, 2009; Ferdinand and Zuidema, 2009; Smith,
2009; Perfors and Navarro, 2014), and our results are in line
with these findings: allowing the interactions between agents to
be structured by non-random networks fundamentally alters the
way language emerges in populations of SAM and MAP agents
and may even erase the alleged differences between them.

Most studies of language change suggest that the replacement
of one variant by another tends to follow an “S”-shaped (or
sigmoid) curve (Ke et al., 2008; Blythe and Croft, 2012), where
the new variant starts as very rare, increases in frequency
initially slowly, then very rapidly, then slows down again,
until the total replacement of the old variant. However, our
simulations do not show such results because our agents
have no mechanism that forces them to pick one variant
over the other, their choices being instead probabilistic. Thus,
it is very unlikely that one variant will completely replace
the other in their languages, but, in future work, if such a
behavior is deemed necessary, we could easily implement such
a selection mechanism.

Despite its novelty, the work presented here suffers from
several limitations that may impact its generalizability and
realism. First, we use a Bayesian approach to model language
acquisition and production: while this has a respectable pedigree
both in the cognitive sciences in general and in studying language
evolution and change in particular, it is also heavily debated to
what degree the Bayesian paradigm reflects reality (e.g., Kirby
et al., 2007; Griffiths et al., 2008; Dediu, 2009; Ferdinand and
Zuidema, 2009; Perfors, 2012; Hahn, 2014). Our choice here
was rather pragmatic, in the sense that our Bayesian models
are very simple mathematically, computationally fast, flexible
enough, and arguably realistic enough given the aims of our
study: “[a]ll models are wrong, but some are useful” and here,
a Bayesian agent usefully abstracts away from the enormous (and
only partially understood) complexity of language acquisition
and production but still captures the fact the linguistic behavior
of one’s community affects one’s own representation of language,
as well as the many factors affecting one’s use of language.
Importantly, we do believe that the main qualitative findings of
our study do not critically depend on the use of Bayesian models,
but this is, of course, an empirical question to be answered by
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future studies where only the agent model is changed, keeping
everything else the same. Moreover, this is but a first step in
a longer research programme and we do consider a variety of
models, Bayesian and not (see for some examples of such non-
Bayesian models in our own work, Dediu, 2008), as appropriate,
given the parameters of interest in each study. Second, we only
modeled at most two discrete types of agents co-existing in
a population (biased and unbiased), but the reality is much
more complex and continuous; while this shortcoming can be
addressed by allowing more types of agents (or a continuous
distribution of agents) in a network, it greatly complexifies the
experimental design and the analysis of the results. Third, the
structure of our networks is rather artificial and is fixed in
time; while the first issues can be addressed through the use of
real-world data (e.g., sociolinguistic case studies or data derived
from social media such as Facebook and Twitter), the second
is more complex to implement, as it requires not only the
change in network topology and connection strength, but also
the removal of agents (death or emigration) and the introduction
(birth or immigration) of new agents (naive or with a pre-
existing language), and themove to amulti-generation paradigm.
However, the fixity of our network structure might affect our
results, as it is expected that the linguistic interactions themselves
alter the topology and strength of the connections, creating thus
complex feedback loops between the evolution of the network
and of the language. Fourth, our results must be critically
combined with real-world data derived from observational
(Abitbol et al., 2018) and experimental studies (Raviv, 2020), in
order to refine the model but also to inform future real-world
experimental design, data collection and analysis.

In conclusion, our results—while preliminary—show that
inter-individual variation, especially when structured by
communicative networks, does affect language, and may even be
one of the drivers behind the emergence of linguistic diversity
and complexity. They also highlight that, when discussing the
influence of biases on language change and diversity, inquiring
only about the effects of bias strength and frequency in the

population misses the essential role played by the fact that there
is structure to human interactions, and that rarely two linguistic
exchanges are mirror images of each other. Combined with other
types of evidence, with the ubiquity of inter-individual variation,
and the quintessentially structured nature of human interactions,
this suggests that we must focus our attention on this rather
neglected factor in the origins and evolution of the bewildering
patterns of linguistic diversity still visible around the world.
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