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Platelets are the main players in thrombotic diseases, where activated platelets not

only mediate thrombus formation but also are involved in multiple interactions with

vascular cells, inflammatory components, and the coagulation system. Although in vitro

reactivity of platelets provides information on the function of circulating platelets, it is

not a full reflection of the in vivo activation state, which may be relevant for thrombotic

risk assessment in various disease conditions. Therefore, studying release markers of

activated platelets in plasma is of interest. While this type of study has been done

for decades, there are several new discoveries that highlight the need for a critical

assessment of the available tests and indications for platelet release products. First,

new insights have shown that platelets are not only prominent players in arterial vascular

disease, but also in venous thromboembolism and atrial fibrillation. Second, knowledge of

the platelet proteome has dramatically expanded over the past years, which contributed

to an increasing array of tests for proteins released and shed from platelets upon

activation. Identification of changes in the level of plasma biomarkers associated with

upcoming thromboembolic events allows timely and individualized adjustment of the

treatment strategy to prevent disease aggravation. Therefore, biomarkers of platelet

activation may become a valuable instrument for acute event prognosis. In this narrative

review based on a systematic search of the literature, we summarize the process of

platelet activation and release products, discuss the clinical context in which platelet

release products have been measured as well as the potential clinical relevance.

Keywords: platelets, biomarkers, thrombosis, venous thromboembolism, atrial fibrillation, arterial thrombosis

INTRODUCTION

Platelet thrombus formation is a process of crucial importance in hemostasis and thrombosis,
starting with platelet activation, adhesion, and aggregation at the vessel wall surface that is damaged
by trauma, inflammation, or, in case of atherosclerosis, altered by an atherosclerotic plaque (1, 2).
In general, upon vascular damage the platelet membrane glycoprotein (GP) Ib/V/IX complex
interacts with vonWillebrand factor (vWF) from the damaged endothelium leading to the adhesion
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of platelets (2, 3). Tethered platelets bind to collagen through
their GPVI and integrin α2β1 receptors, which potently trigger
platelet activation. The activation process continues toward the
release of soluble mediators from activated platelets, an increase
of cytosolic Ca2+, and the formation of a platelet thrombus.
In parallel, fibrin formation is triggered by the tissue factor-
driven-coagulation cascade and amplified by thrombin-mediated
feedback reactions as well as the contact activation pathway.
Platelet and coagulation activation are highly intertwined with
multiple interactions between these two processes. Not only
is thrombin a key mediator of platelet activation, platelets
also promote coagulation via phosphatidylserine exposure and
receptor-mediated binding of coagulation factors (4).

Upon activation, platelets release more than 300 proteins,
including P-selectin (CD62P), CD40 ligand (CD40L), platelet
factor 4 (PF4), and many others (5). Some of these platelet
release markers can reflect the in vivo platelet activation status
and hence have already been investigated in clinical studies
addressing the involvement of platelet activation in patients with
different thrombotic diseases. The soluble platelet biomarkers
may provide a better way of assessing the thrombotic risk
than the conventional platelet function tests. Impaired in vitro
platelet activation based on platelet function tests, may on the
one hand point to dysfunctional platelets, but on the other
hand to prior activation in the circulation potentially resulting
in an exhausted platelet phenotype. Therefore, soluble platelet
activation markers reveal the in vivo platelet activation status
and provide information on the underlying pathophysiological
mechanisms in thrombosis-related disease (6).

The role of platelets in atherothrombotic disease,
characterized by arterial thrombus formation as a consequence
of atherosclerotic lesion disruption, is well-established.
Vascular occlusion underlies the occurrence of ischemia in
specific vascular beds, resulting in coronary artery disease
(CAD), myocardial infarction (MI), peripheral artery disease
(PAD), and ischemic stroke (IS) (7). Although in arterial

Abbreviations: 11-DH-TxB2, 11-dehydrothromboxane B2; ACS, Acute coronary
syndrome; ADAM, A disintegrin and metalloproteinase family of proteinases;
ADAMTS, A disintegrin and metalloproteinase with a thrombospondin type
1 motif; ADP, Adenosine diphosphate; AF, Atrial fibrillation; AIS, Acute
ischemic stroke; AMI, Acute myocardial infarction; APT, Antiplatelet therapy;
ATP, Adenosine triphosphate; Beta-tg, β-thromboglobulin; CAD, Coronary
artery disease; CD40L, CD40 ligand; CLEC-2, C-type lectin-like receptor
2; CXCL, CXC ligand; DVT, Deep vein thrombosis; ELISA, Enzyme-linked
immunosorbent assay; GP, Glycoprotein; HDL, High-density lipoprotein; HETE,
Hydroxyeicosatetraenoic acid; IS, Ischemic stroke; MI, Myocardial infarction;
MMP, Metalloproteinase(s); PAD, Peripheral artery disease; PADGEM, Platelet
activation-dependent granule external membrane protein; PAI-1, Plasminogen
activator inhibitor 1; PCI, Percutaneous coronary intervention; PDGF, Platelet-
derived growth factor; PF4, Platelet factor 4; PG, Prostaglandin; PLA,
Platelet-leukocyte aggregates; PMA, Platelet-monocyte aggregates; PNA, Platelet-
neutrophil aggregates; PSGL-1, P-selectin glycoprotein ligand-1; RANTES,
Regulated upon activation, normal T-cell expressed and presumably secreted; RPR,
Residual platelet reactivity; sCD40L, Soluble CD40 ligand; sCLEC-2, Soluble C-
type lectin-like receptor 2; SDF-1α, Stromal cell-derived factor-1α; sP-selectin,
Soluble P-selectin; TFPI, Tissue factor pathway inhibitor; TGF-β, Transforming
growth factor β; TNF, Tumor necrosis factor; TSP-1, Thrombospondin-1; TxA2,
Thromboxane A2; TxB2, Thromboxane B2; UFH, Unfractionated heparin; VEGF,
Vascular endothelial growth factor; VTE, Venous thromboembolism; VWF, Von
Willebrand factor.

thromboembolism—as a consequence of atrial fibrillation—and
venous thrombosis, coagulation activation is the predominant
process, accumulating evidence demonstrates pathogenic roles
of platelets herein (8). The conventional treatment strategy for
atherothrombotic disease and arterial/venous thromboembolism
is based on antiplatelet and anticoagulant drugs, respectively.
Especially for patients with atherothrombotic events, the
combined antiplatelet and anticoagulant treatment appears
beneficial and has recently gained more attention (9).

The active participation of platelets in cardiovascular diseases
and the established fact that antiplatelet therapy decreases the risk
of (recurrent) thrombotic events underlines the importance of
research in platelet pathophysiology (10). In this narrative review
based on a systematic search of the literature, we summarized
the process of platelet activation and release products, discuss
the clinical context in which platelet release products have been
measured as well as the potential clinical relevance. Here we
focus on soluble platelet biomarkers in patients with arterial
thrombosis, venous thrombosis, and atrial fibrillation.

PLATELET RELEASE FACTORS

Activated platelets release small biomolecules and more than
300 proteins, which regulate hemostatic, inflammatory, and
angiogenic responses of platelets, leukocytes, and vascular cells.
Major sources of the platelet protein releasate are granule cargos
and proteolytically cleaved/shed membrane-bound proteins
such as receptors and platelet-derived extracellular vesicles.
Advanced enzyme-linked immunosorbent assay (ELISA)-based
assays and mass spectrometry approaches enable the qualitative
and quantitative assessment of platelet-released proteins in
plasma and of isolated platelets, respectively (11). Platelets
contain three major types of granules: α-granules, dense or δ-
granules, and lysosomes (12, 13). Rapid granule release can be
induced by diverse agonists like thrombin, collagen, and their
related peptides (11). The platelet α-granule secretome covers
the majority of released platelet proteins, which are synthesized
in megakaryocytes or endocytosed from plasma. The α-granules
contain large adhesive proteins [vWF, thrombospondin-1 (TSP-
1), vitronectin, fibronectin], coagulation factors (factor V, VII, XI,
XIII), mitogenic factors [platelet-derived growth factor (PDGF),
vascular endothelial growth factor (VEGF), transforming growth
factor β (TGF-β)], protease inhibitors [protein C, plasminogen
activator inhibitor 1 (PAI-1), tissue factor pathway inhibitor
(TFPI)], membrane proteins [P-selectin (CD62P), CD40L],
chemokines [β-thromboglobulin (beta-tg), PF4, Regulated upon
Activation, Normal T-Cell Expressed and Presumably Secreted
(RANTES), stromal cell-derived factor-1α (SDF-1α)], and several
other molecules, which are released immediately upon platelet
activation (14). Activated platelets also release thromboxane A2
(TxA2), a product of arachidonic acid metabolism (15), and
several other eicosanoids (16).

In contrast, dense granules secrete small soluble molecules,
such as serotonin, glutamate, adenosine diphosphate (ADP),
adenosine triphosphate (ATP), histamine, polyphosphate, Ca2+,
and Mg2+ (17, 18). Together with TxA2, they function as
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positive feedback mediators of platelets to promote platelet
aggregation and platelet-based coagulation. Platelet-derived
serotonin promotes thrombosis development by inducing
vasoconstriction and enhancing platelet activation and thrombus
formation. The platelet lysosomes contain enzymes required for
extracellular matrix degradation, cell migration, antimicrobial
activity, and thrombus remodeling (19, 20). Among these
enzymes are cathepsin D and E, β-hexosaminidase, elastase, and
heparanase (11). The classical flow cytometry protein for dense
granule and lysosomal membrane detection is CD63.

In addition to the release of soluble proteins from granules,
proteolytic cleavage of platelet membrane proteins occurs mainly
by metalloproteinases (MMP) and the shed fragments can
modulate cellular responses. The platelet sheddome, excluding
plasma proteins and platelet-derived extracellular vesicles,
contains at least 69 membrane proteins (21, 22). Only a fraction
of all membrane proteins is cleaved, among these are the
externalized surface proteins P-selectin and CD40L, the receptor
GPIbα, GPV subunits of the GPIb-IX-V complex, and GPVI (21,
23–25). The ectodomains of the receptors are shed in response to
ligand engagement, elevated shear, coagulation, or apoptosis.

Platelet Secretome
Upon activation, platelets secrete beta-tg from α-granules that
are derived from the proteolytic cleavage of platelet basic
proteins resulting in CTAPIII, CXCL7, and beta-tg. Beta-tg shares
significant homology with PF4 (26). Bothmolecules belong to the
chemokine CXC subfamily (27) and are expressed in monocytes,
granulocytes, T-cells, and mast cells (7). Yet, platelets have been
proposed as the primary and the most rapidly available source of
the aforementioned chemokines (28). Beta-tg accounts for almost
10% of the α-granules content and is released into the blood with
PF4 and other proteins upon platelet activation (27). The half-
life of beta-tg in the blood is 100min (29), depending on renal
clearance (30, 31), while PF4 is rapidly cleared by binding to
endothelial cells (32).

Another chemokine secreted by platelet α-granules is SDF-
1α or C-X-C motif chemokine ligand 12 (CXCL12), which
is involved in inflammatory pathways. SDF-1α is expressed
by various cells throughout the body, including immune,
stem, and endothelial cells (33), but platelets are thought to
be the primary source. Following platelet activation, SDF-1α
remains surface-bound and a strong stimulus is required to
mediate release. ADP stimulation appears to be most potent in
inducing SDF-1α release. Although SDF-1α in the circulation
is susceptible to proteolytic degradation, it might be protected
in the microenvironment of platelet thrombi (34). There is
evidence that SDF-1α via its chemokine receptor CXCR4 induces
TxA2 production and dense granule release, which altogether
contributes to thrombus formation (35). In addition, ligation of
SDF-1α to CXCR4 and CXCR7 regulates monocyte function and
macrophage/foam cell differentiation, indicating an important
role of SDF-1α in inflammation (36).

TSP-1 is a high-molecular multidomain glycoprotein
expressed by various cell types including endothelial cells,
monocytes, macrophages, fibroblasts, smooth muscle cells,
dendritic cells, and B-cells (37). Similar to the previously

mentioned proteins, the main source of TSP-1 is platelets,
where it is one of the most abundant granule proteins,
synthesized by megakaryocytes. After platelet activation, TSP-1
is released from the α-granules and found either bound to the
platelet membrane or in its soluble form in plasma. TSP-1 has
multiple functions in hemostasis, angiogenesis, proliferation,
migration, endocytosis, immune reactions, and apoptosis. In
addition to vWF, TSP-1 has been identified as a high shear
substrate for human platelets (38). The TSP-1-CD36 interaction
promotes thrombus formation and stabilization under high
shear conditions (39). Platelet-originated TSP-1 suppresses the
activity of several proteases, amongst others, MMP-2 and−9,
plasmin, and cathepsin G. TSP-1-deficient mice models were
characterized by improper thrombosis and extended bleeding
time (40).

VWF is a multimeric glycoprotein present in platelet α-
granules and in Weibel-Palade bodies of endothelial cells
(41). Weibel-Palade bodies secrete vWF continuously, but the
amount of released vWF can be greatly increased in response
to inflammatory stimuli. Since vWF is mainly secreted by
endothelial cells, it is a marker for endothelial cell activation
rather than platelet activation. After secretion, vWF multimers
are cleaved by a disintegrin and metalloproteinase with a
thrombospondin type 1 motif, member 13 (ADAMTS13),
which is essential for maintaining normal hemostasis. At
sites of vascular damage, collagen-bound vWF binds to
the platelet GPIbα-IX-V complex and mediates platelet
adhesion, especially under high shear conditions occurring
in the arterial system. Furthermore, vWF functions
as a carrier protein for coagulation factor VIII in the
circulation. There are several reviews discussing the role
of vWF in platelet activation and inflammation bringing
vWF fame of a risk factor for both arterial and venous
thrombosis (42–44).

Activated platelets also produce several eicosanoids, including
TxA2, prostaglandin (PG) D2, PGE2, 11-, 12-, and 15-
hydroxyeicosatraenoic acid (HETE), through arachidonic acid
metabolism by the cyclooxygenase and lipoxygenase pathways
(16). TxA2 is synthesized by platelets as well as endothelial
cells, macrophages, and neutrophils (45). Via both autocrine and
paracrine mechanisms, TxA2 stimulates platelet activation and
further aggregation (46, 47). The half-life of TxA2 is about 30 s,
therefore it cannot be measured under physiological conditions
(46). However, the stable TxA2 metabolite thromboxane B2
(TxB2) has a half-life of 5–7min and can be assessed by
mass spectroscopy, liquid chromatography, and ELISA. A more
common approach is to determine the level of TxA2 by
measuring the TxB2 urine metabolite 11-dehydrothromboxane
B2 (11-DH-TxB2).

PGD2 is mostly released by macrophages, but also to some
extent by platelets, and is assumed to be a platelet activation
inhibitor. PGE2 is mainly synthesized by endothelial cells and
to a lesser extent by platelets. The effect of PGE2 on platelets
is concentration-dependent; at low concentrations, it enhances
platelet aggregation, while it inhibits aggregation at higher
concentrations. 12-HETE is mainly produced by platelets but its
effect on platelet activity is not fully investigated (48).
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Platelet Sheddome
While the platelet secretion markers are rapidly released upon
platelet activation, receptor shedding in vitro requires strong
platelet stimulation for a prolonged time (6). Shedding results in
a soluble shed fragment and a remnant platelet-bound fragment
and hence in the loss of receptor-ligand binding function (49).
Especially the proteolytic release of GPIbα, GPV, and GPVI has
been thoroughly investigated in the last decades.

GPIbα and GPV are part of the GPIb-IX-V complex,
expressed exclusively in platelets and megakaryocytes (50) and
critical for vWF-dependent platelet adhesion (2). Upon platelet
activation, GPIbα shedding is dependent on a disintegrin and
metalloproteinase (ADAM)17 activity, whereas GPV can be
cleaved by ADAM10/17 and thrombin (51). ADAM17 has
a decisive role in GPIbα shedding, determining 90% of the
glycocalicin plasma levels, whereas ADAM10 deficiency has no
impact on GPIbα shedding. Shear, oxidative stress, serotonin,
and GPVI agonists are prominent triggers for ADAM17-
mediated GPIbα shedding, resulting in the soluble ectodomain
glycocalicin (51, 52). It is hypothesized that glycocalicin is
able to trigger hepatic thrombopoietin production in vivo (53),
however, the exact role of glycocalicin remains an object of
further explorations. In the case of GPV, the main regulator
of the shedding process is thrombin and it results in complete
elimination of GPV from the platelet surface.

GPVI is another platelet lineage-specific molecule and it
functions as a receptor for collagen and fibrin among others
(54). The ectodomain shedding is differently regulated by
ADAM10 and 17, and the intact receptor is released as a soluble
fragment (55). Physiological agonists leading to GPVI shedding
are collagen, fibrin, shear stress, antiplatelet autoantibodies, and
factor Xa (52). The time frame of GPVI release is dependent
on the potency of agonists and, for example, convulxin results
in experiments in faster shedding than collagen. The platelet
specificity of these receptors makes GPIbα, GPV, and GPVI
attractive candidates for identifying platelet activation in vivo.

Contrary to GPVI and the GPIb-IX-V complex, ADAM10/17
are not involved in the shedding of the C-type lectin-like receptor
2 (CLEC-2) upon platelet activation (56). CLEC-2 is abundantly
expressed in platelets and megakaryocytes and not in other
blood cells (57), albeit a small amount of CLEC-2 is present in
liver Kupffer cells (58). Soluble CLEC-2 (sCLEC-2) is shed as
a small fragment or could be released bound to other platelet
microparticles (56, 59), whereas sGPVI is always shed as a
separate fragment. To date, only podoplanin has been recognized
as a physiological ligand for CLEC-2 (57). Mouse studies indicate
that CLEC-2 has only a minor role as an adhesion receptor in
hemostasis, although CLEC-2maintains vascular integrity at sites
of inflammation in the skin. There is accumulating evidence that
the CLEC-2-podoplanin interaction plays an important role in
thromboinflammation due to the upregulation of podoplanin on
tissue-resident macrophages and stromal cells (57). The exact
role of CLEC-2 in arterial thrombosis is not completely clear.
However, in a mouse model of deep vein thrombosis, comprising
inflammatory events, CLEC-2 deficient mice or mice treated
with an anti-podoplanin antibody demonstrated substantially

decreased thrombus formation (60). In addition, podoplanin
can be highly expressed on tumor cells and the platelet CLEC-
2/podoplanin axis was shown to promote tumor progression,
metastasis, and cancer-induced thrombosis (61).

P-selectin, also known as CD62P, GMP-140, PADGEM
(platelet activation-dependent granule external membrane
protein), is a transmembrane single-chain glycoprotein (62) and
the largest among the selectin family (63). Platelet P-selectin
is embedded on the membrane of α-granules and also stored
in Weibel-Palade bodies of vascular endothelial cells. Upon
platelet activation, the membrane of α-granules merge with
the platelet membrane via exocytosis, leading to P-selectin
translocation to the platelet surface where it is rapidly cleaved
off or slowly internalized, resulting in the release of soluble
P-selectin (sP-selectin), whereas endothelial surface P-selectin
is internalized within 30min (21, 32, 64). The platelet surface
P-selectin is usually referred to as CD62P and can be measured
by flow cytometry in contrast to plasma released sP-selectin.
The shedding mechanism remains unknown (21). It was shown
that binding of platelet P-selectin to P-selectin glycoprotein
ligand-1 (PSGL-1) on leukocytes leading to leukocyte rolling
(65) and endothelial cells is required for P-selectin shedding,
but the protease responsible for this is not discovered yet (66).
Platelet-leukocyte aggregates (PLA) can be detected in blood
and recognized as one of the most reliable markers for platelet
activation (67). There is evidence from mice studies that rather
dimeric than monomeric sP-selectin contributes to activation of
leukocytes, thereby promoting vascular leukocyte recruitment
and microvesicle formation (68).

Several studies acknowledged that the plasma level of sP-
selectin originates predominantly from platelets, even though it
may also be an indicator of endothelial cell activation, hence
plasma levels of sP-selectin have been recognized as a biomarker
of activated and degranulated platelets (64, 69, 70). This was also
supported by the positive correlation between the level of sP-
selectin and platelet count. SP-selectin activates leukocytes and
promotes their adhesion to platelets (68).

Similar to P-selectin, CD40L (CD154 or GP39) is another
externalized surface protein, which has potent pro-inflammatory
properties (71) and belongs to the cytokine tumor necrosis
factor (TNF) family (72). CD40L is detected on the surface
of various cells including hematopoietic cells, like platelets,
basophils, monocytes, macrophages, and non-hematopoietic
cells such as mast, endothelial, and smooth muscle cells (72),
suggesting a broad range of CD40L functions in vivo (73).
Upon platelet activation by collagen or thrombin, CD40L, also
located within the α-granule membrane, is mobilized to the
platelet surface (21) and is enzymatically cleaved by MMP-2
and MMP-9 within a period of minutes to hours to generate
soluble CD40L (sCD40L) (74). Despite the numerous sources of
CD40L mentioned above, it was estimated that more than 95% of
plasma sCD40L is derived from activated platelets and therefore
might reflect the platelet activation status (75). SCD40L increases
thrombus stability and promotes the expression of tissue factor,
chemokines, and pro-inflammatory biological response modifier
molecules (76).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 June 2021 | Volume 8 | Article 684920

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Baidildinova et al. Soluble Platelet Activation Markers

The shedding of receptor ectodomains represents an efficient
mechanism for the irreversible downregulation of receptor
expression on the platelet surface, resulting in decreased ligand
binding. This leads to an essential and tight control of platelet
responsiveness in primary hemostasis and coagulation but also
in inflammatory processes where activated platelets modulate the
activation state of leukocytes and vascular cells through direct
receptor/glycoprotein-mediated interactions. The physiological
functions of released factor from platelets are summarized in
Figure 1.

PLATELET BIOMARKERS IN
THROMBOTIC DISEASES

Arterial Thrombosis
Coronary Artery Disease
Atherosclerosis is a systemic chronic disease resulting from
lipid accumulation in the intima of arteries and chronic
inflammation accompanied by platelet activation (81, 82).
Coronary artery disease (CAD), defined by the presence of
significant atherosclerosis within one or more major coronary
arteries, is prone to trigger atherothrombosis on ruptured or
eroded atherosclerotic plaques (83), a process in which platelets
play a dominant role.

Several studies reported increased levels of platelet biomarkers
in patients with CAD, demonstrated mainly by elevated levels
of sP-selectin (84–87), sCD40L (86, 88), and sGPV (84, 86)
compared to healthy individuals or non-CAD patients (Table 1).
Lindmark et al. (85) reported elevated levels of platelet-monocyte
(PMA) and platelet-neutrophil aggregates (PNA) measured by
flow cytometry. The PMA and PNA levels were significantly
higher in patients with unstable CAD vs. stable CAD, who in turn
were characterized by slightly but not significantly higher levels
compared to controls. Details of these studies are presented in
Supplementary Table 1. The levels of sP-selectin were shown to

be comparable between South Asian and white European CAD
patients on antiplatelet drugs (89).

Various research groups have suggested that the
administration of antiplatelet drugs leads to a decline in
the level of platelet activation biomarkers. The level of sP-
selectin was lower in patients with stable CAD receiving aspirin
compared to aspirin-naïve patients (90), while 5-day aspirin
administration did not influence the level of sP-selectin in
another study (84). The association between on-aspirin platelet
reactivity and the level of beta-tg was studied by Pettersen
et al. (93) who demonstrated that CAD patients with high
residual platelet reactivity (RPR) had a higher level of beta-
tg. At the same time, these patients were not characterized
by hypercoagulability based on thrombin generation, and
hence the authors speculated that the high on-aspirin RPR
would rather depend on increased endothelial cell and platelet
activation. However, no clinical outcomes were investigated for
further exploration.

There is evidence that clopidogrel administration to aspirin-
treated patients with CAD significantly reduced the levels of sP-
selectin and sCD40L (90–92). In the study of Kaufman et al.
(90), the decrease in sP-selectin and sCD40L after administration
of a loading dose of clopidogrel did not correlate with platelet
reactivity, indicating that the decline in soluble protein levels
was likely due to initially elevated levels as a consequence of
the percutaneous coronary intervention (PCI) procedure. The
level of sP-selectin correlated moderately with sCD40L levels and
platelet aggregation in response to arachidonic acid, ADP, and
collagen, revealing a link between platelet activity and platelet
aggregability (90).

The elevation of sCD40L is particularly evident in patients
with recent MI who had higher levels of sCD40L than patients
with non-MI CAD, or no CAD-patients (88). Higher sCD40L
was accompanied by increased platelet activation as evidenced
by increased PMA, PNA, and platelet-surface activated αIIbβ3,

FIGURE 1 | Physiological functions of platelet release factors (77–80). beta-tg, β-thromboglobulin; CD40L, CD40 ligand; CLEC-2, C-type lectin-like receptor 2; GP,

glycoprotein; PF4, platelet factor 4; PSGL-1, P-selectin glycoprotein ligand-1; SDF-1α, stromal cell-derived factor-1α; TxA2, thromboxane A2; TxB2, thromboxane B2;

s, soluble.
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TABLE 1 | Soluble biomarkers of platelet activation in coronary artery disease (CAD) patients.

Biomarker Clinical

phenotype

Acute/chronic

phase

Results:

↑, ↓, =

Study group Reference group References

sP-sel CAD Chronic ↑ CAD patients on aspirin and dalteparin HV (84–86)

CAD Chronic ↑ CAD Patients Hospitalized non-CAD patients (87)

CAD Chronic = White Europeans with CAD on

antiplatelet drugs

South Asians with CAD on antiplatelet

drugs

(89)

CAD Chronic ↓ CAD patients on aspirin and heparin

after clopidogrel administration

CAD patients on aspirin and heparin

before clopidogrel administration

(90)

sCD40L CAD Chronic ↑ CAD patients on antiplatelet drugs HV (86)

CAD Chronic ↑ CAD patients with MI on aspirin Hospitalized CAD patients without MI

and non-CAD patients

(88)

CAD Chronic = CAD patients on aspirin and clopidogrel

with: ACS (myocardial infarction or

unstable angina), non-fatal ischemic

stroke or transient ischemic attack,

cardiovascular death, hospitalization for

revascularization

Hospitalized CAD patients on aspirin

and clopidogrel without ischemic events

(91)

CAD Chronic ↓ CAD patients on aspirin and clopidogrel CAD patients on aspirin alone (91, 92)

sCD40L CAD Chronic ↓ CAD patients on aspirin and heparin

after clopidogrel administration

CAD patients on aspirin and heparin

before clopidogrel administration

(90)

beta-tg CAD Chronic ↑ CAD patients with high on-aspirin RPR CAD patients with low on-aspirin RPR (93)

sGPV CAD Chronic ↑ CAD patients on antiplatelet drugs HV (84, 86)

SDF-1α CAD Chronic and

acute

↑ CAD patients on aspirin with a stroke or

dead

CAD patients without the primary

endpoints

(94)

Beta-tg, β-thromboglobulin; CAD, coronary artery disease; HV, healthy volunteers; MI, myocardial infarction; RPR, residual platelet reactivity; sCD40L, soluble CD40 ligand; SDF-1α,

stromal cell-derived factor 1; sGP, soluble glycoprotein; sP-sel, soluble P-selectin. ↑, Increased compared to healthy controls; ↓, Decreased compared to healthy controls;=, Unchanged

compared to healthy controls.

determined by flow cytometry in whole blood. The extent
of platelet activation was related to CAD stability, with the
highest platelet activation in recent-MI patients. However,
platelet CD62P did not differ between the groups. SCD40L was
associated with female gender, hematocrit, and C-reactive protein
and inversely associated with hypertension (91). However, no
associations between sCD40L and clinical outcomes were noted
in this study.

SGPV levels have been found increased in CAD patients
(84, 86), one study appraised sGPV as a relevant biomarker for
atherosclerotic patients (84). The second study indicated that
platelet activation probably better correlates with intima-media
thickness than with angiographic severity of CAD or may reflect
thrombogenic abnormalities (86).

Ghasemzadeh et al. (94) reported in a study population of 599
patients that higher plasma SDF-1α level was associated with a
nearly 5- and 6-fold increase in the risk of MI and cardiovascular
death, respectively, providing a potentially powerful prognostic
tool for patients with CAD.

Peripheral Artery Disease
Peripheral artery disease (PAD) is a severe systemicmanifestation
of atherosclerosis that typically becomes symptomatic in the legs
(claudication) but also carries a high risk for MI and ischemic
stroke. Similar to symptomatic CAD, patients with confirmed
PAD who are treated with antiplatelet and possible anticoagulant
drugs, are characterized by increased levels of sP-selectin (95–99),

sCD40L (98), and sGPV (84) compared to healthy volunteers
(Table 2, Supplementary Table 1).

The level of sP-selectin was also higher compared to healthy
volunteers in a study that included patients with presumed PAD,
as well as those in whom the diagnosis was confirmed (102).
SP-selectin correlated with the severity of PAD (99). This is
also confirmed by Zamzam et al. (101), who demonstrated sP-
selectin and PF4 were significantly higher in a group with chronic
limb-threatening ischemia compared with non-PAD controls
but did not differ between PAD and non-PAD groups. The
levels of sP-selectin were significantly higher in type 2 diabetic
patients with the atherosclerotic disease compared to patients
with type 2 diabetes only or healthy subjects, while sCD40L
levels were significantly elevated in diabetes patients compared
to control subjects, with no difference between two diabetic
subgroups (104).

Platelet surface CD62P and CD63 (a dense granule and
lysosome membrane glycoprotein), as well as sP-selectin, were
higher in the patients compared to the control group (98).
CD62P well (r = 0.525) and mildly (r = 0.314) but significantly
correlated with CD63 and sP-selectin, respectively. Tsakiris
found no correlation between CD62P and sP-selectin (100).
SCD40L failed to correlate with any of platelet activation
markers both in the study of Blann et al. (98) and Tan
et al. (104).

Tsakiris et al. (100) investigated the association between
sP-selectin and sCD40L levels in relation to the development
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TABLE 2 | Soluble biomarkers of platelet activation in peripheral artery disease (PAD) and atherosclerotic patients.

Biomarker Clinical

phenotype

Acute/chronic

phase

Results:

↑, ↓, =

Study group Control group References

sP-sel PAD Chronic ↑ PAD patients on aspirin, clopidogrel,

warfarin

HV (95–99)

PAD Chronic ↑ PAD patients on aspirin and vitamin

K-antagonists with restenosis

PAD patients on aspirin and vitamin

K-antagonists without restenosis

(100)

Ischemia,

PAD

Chronic ↑ Chronic limb ischemia on aspirin Non-PAD controls on aspirin (101)

Ischemia,

PAD

Chronic ↑ Chronic limb ischemia, PAD patients on

aspirin

PAD patients on aspirin (101)

PAD Chronic = PAD patients on aspirin Non-PAD controls on aspirin (101)

PAD Chronic = PAD patients on no drugs HV (102)

PAD Chronic = PAD patients on aspirin and clopidogrel PAD patients on aspirin (103)

Atherosclerotic

disease in

type 2

diabetes

Chronic ↑ Type 2 diabetic patients with

atherosclerotic disease on aspirin

HV and type 2 diabetic patients without

atherosclerotic disease

(104)

sCD40L PAD Chronic ↑ PAD patients on aspirin, clopidogrel,

and warfarin

HV (98)

PAD Chronic = PAD patients on aspirin and vitamin

K-antagonists with restenosis

PAD patients on aspirin and vitamin

K-antagonists without restenosis

(100)

sCD40L PAD Chronic = PAD patients on aspirin and clopidogrel PAD patients on aspirin alone (103)

Atherosclerotic

disease in

type 2

diabetes

Chronic ↑ Type 2 diabetic patients with and

without atherosclerotic disease on

aspirin

HV (104)

PF4 Ischemia,

PAD

Chronic ↑ Chronic limb ischemia on aspirin Non-PAD controls on aspirin (101)

Ischemia,

PAD

Chronic = Chronic limb ischemia, PAD patients on

aspirin

PAD patients on aspirin (101)

PAD Chronic = PAD patients on aspirin Non-PAD controls on aspirin (101)

sGPV Coronary

and

Peripheral

Atherosclerosis

Chronic ↑ Patients with coronary and peripheral

atherosclerosis on aspirin

HV (84)

11-DH-

TXB2

PAD,

presumed

Chronic ↑ Patients with presumed PAD on no

drugs

HV (102)

11-DH-TXB2, 11-dehydrothromboxane B2; HV, healthy volunteers; PAD, peripheral artery disease; PF4, platelet factor 4; sCD40L, soluble CD40 ligand; sGP, soluble glycoprotein;

sP-sel, soluble P-selectin; TSP-1, thrombospondin-1. ↑, Increased compared to healthy controls; ↓, Decreased compared to healthy controls; =, Unchanged compared to healthy

controls.

of restenosis within 6 months after peripheral angioplasty
in patients with PAD. While sP-selectin was associated with
outcome (restenosis), no such association was found for sCD40L.
SCD40L was suggested to be more linked to endothelial
activation due to its correlation with other endothelial activation
markers (100). Eikelboom et al. (103) addressed the additive
effect of clopidogrel-mediated platelet inhibition on top of aspirin
treatment, showing inhibition of ADP- and collagen-induced
platelet aggregation, but no reduction in sP-selectin and sCD40L.

Since sCD40L did not correlate with any other markers of
platelet activation (sP-selectin, CD62P, CD63) (98, 104), sP-
selectin may be a more reliable biomarker for atherosclerotic
patient stratification than sCD40L. Burdess et al. (105) criticized
the use of sP-selectin and sCD40L measured by ELISA due to
the lack of consistency of measured levels in the same group
of patients within 1 day and between days and found poor and

no correlation with flow cytometry results confirming results of
Tsakiris et al. (100), Blann et al. (98), and Tan et al. (104).

Platelet biomarkers in relation to atherosclerotic risk factors
were addressed in a population-based study with nearly 3,000
participants; no significant associations were found between
sCD40L level and the risk factors (106). The authors also
claimed that sCD40L is not a useful tool to screen for
subclinical atherosclerosis. Another study included more than
300 patients with atherosclerosis after PCI with endovascular
stent implantation (107) and found a strong correlation of
PF4, TSP-1, and sCD40L with each other as well as with peak
thrombin generation and endogenous thrombin potential, while
sP-selectin only correlated weakly with TSP-1. This was explained
by assuming that PF4, TSP-1, and sCD40L are mostly of platelet
origin, whereas sP-selectin is primarily released by endothelial
cells in patients with advanced atherosclerosis.
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SGPVwas increased in both PAD andCADpatients compared
to healthy subjects but was insensitive to 5 days of aspirin
treatment (84). Since we found only two studies that measured
sGPV in PAD and CAD patients (84, 86), current data on this
biomarker are still limited.

Acute Coronary Syndrome and Myocardial Infarction
Acute coronary syndrome (ACS) describes the predominant
situation of symptomatic CAD due to ischemia of the heart,
oftentimes in response to atherothrombotic occlusion (108).
CAD is the most common cause of arterial thrombosis in ACS
andMI. Platelets are the main culprits in the development of ACS
and subsequent cardiovascular events (109).

While many studies, as discussed above, show evidence of
increased platelet activity in CAD, studies in ACS focus more
on the dynamics of platelet release markers in response to
pharmacological intervention. Studies investigating the effect of
αIIbβ3 antagonists on the release of platelet biomarkers showed
reduced sCD40L release from activated platelets (110, 111)
(Table 3, Supplementary Table 1). In the study by Ray et al.
(111), sCD40L was associated with coronary thrombosis and
three different treatments were compared: bivalirudin alone,
bivalirudin with αIIbβ3 inhibitors, and unfractionated heparin
(UFH) with αIIbβ3 inhibitors. Bivalirudin, the direct thrombin
inhibitor, in large-scale randomized trials has been demonstrated
to reduce bleeding and thrombocytopenia compared to heparin
plus αIIbβ3 inhibitors, while ischemia rates in patients after PCI
were similar (112). Ray et al. (111) described levels of sCD40L to
be significantly lower in the UFH group compared with the other
two groups, indicating that UFH combined with αIIbβ3 inhibitors
reduced sCD40L release more strongly than bivalirudin with or
without αIIbβ3 inhibitors.

The second study described the reducing effect of treatment
with two different αIIbβ3 antagonists (eptifibatide or abciximab)
on plasma sCD40L levels after PCI compared to pre-PCI
(110). This reduction was not observed in patients without
αIIbβ3 antagonists (control); baseline levels were comparable
between the different treatment groups. For control patients
not treated with clopidogrel before the PCI, clopidogrel
administration at the end of the procedure reduced plasma
sCD40L significantly 18–24 h after PCI. PMA followed a similar
pattern, however, the correlation between the two markers was
not assessed.

In another study, ADP-induced platelet aggregation was
measured in ACS patients and the patients were subsequently
divided into the “high aggregation” (above median) or “low
aggregation” (below median) group (113). Elevated sCD40L
and sP-selectin levels were found in ACS patients with
relatively high platelet aggregability in response to ADP.
The authors speculated that CD40L-related enhancement
of inflammation and coagulation theoretically might
increase the risk of restenosis and in-stent thrombosis in
CAD patients and, as a prove, referred to several studies
that found associations between restenosis and the CD40
system (125–127).

The study in ACS patients addressing sGPVI demonstrated
an inverse correlation between plasma sGPVI levels and platelet

count; comparable results were found for platelet surface-
expressed GPVI levels. This suggests that patients with lower
platelet counts have a higher platelet activation state and, in
line with this, these patients were prone to have poorer clinical
outcomes (composite of MI, stroke, cardiovascular death) (109).
So far, only one study addressed sGPVI levels in relation
to platelet count in ACS patients (109). Other correlations
with the severity of the disease or clinical outcomes were
not described.

In patients with acute MI (AMI) there is evidence for elevated
plasma levels of sP-selectin (128), sCD40L (118), and sGPV
(121, 123, 124) compared to healthy individuals. A constant
elevation of sP-selectin in patients with AMI over the period
of 3–6 months was presented by Christersson et al. (117) and
Järemo et al. (116). Patients with AMI had significantly higher
sP-selectin levels compared with stable angina patients and
outpatients without a history of coronary heart disease (115).
In the study of Christersson et al. (117), aspirin-treated patients
randomized to higher doses of a direct thrombin inhibitor
showed lower sP-selectin levels than patients on lower doses
or placebo. Another study reported no difference in the sP-
selectin level in AMI patients at 3–6 h after infarction compared
to 1 day after infarction (116). In the study of Huisse et al.
(123), elevated plasma levels of sGPV were found in combination
with increased flow cytometry assessed CD62P and activated
αIIbβ3 presentation ex vivo in AMI patients compared to healthy
volunteers, confirming platelet activation by different tests.

Following up on the topic of drug-related effects on platelet
release factors, the addition of statins to conventional aspirin
therapy was not beneficial in AMI patients (120). Several
articles addressed sCD40L in AMI patients in comparison
to other thrombotic diseases. An elevated sCD40L level was
observed in patients with AMI compared to age/sex-matched
controls with stable CAD (119). In another study, sCD40L
levels were higher in patients with MI and diabetes than
in subjects with MI alone or those with diabetes alone.
However, the difference was not statistically significant which
might be explained by the low number of study subjects
in each group (121). Interestingly, the levels of sCD40L
distinguished not only patients with thrombus formation vs.
control subjects but also patients with high-burden thrombus
formation in the infarct-related artery vs. low-burden thrombus
formation (118).

Together with sP-selectin and sCD40L, sGPV was also
elevated in AMI and ACS patients (121, 124) and was recognized
as a more sensitive marker of thrombus-induced platelet
activation than platelet-derived microparticles (123). Similar
to CAD, SDF-1α was also studied in AMI patients, showing
that increased SDF-1α levels were associated with the risk
factors older age, lower levels of high-density lipoprotein (HDL)
cholesterol, and smoking. After adjustment for these factors,
SDF-1α correlated with incident heart failure and all-cause
mortality (129).

Acute Ischemic Stroke
Ischemic stroke, not based on cardiac embolism, is
predominantly a consequence of atherothrombosis in the
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TABLE 3 | Soluble biomarkers of platelet activation in acute coronary syndrome (ACS) and acute myocardial infarction (AMI) patients.

Biomarker Clinical

phenotype

Acute/chronic

phase

Results:

↑, ↓, =

Study group Reference group References

sCD40L ACS Chronic ↓ ACS patients on aspirin, clopidogrel,

and abciximab or eptifibatide (αIIbβ3

antagonists)

ACS patients on aspirin, clopidogrel,

and no αIIbβ3 antagonists

(110)

ACS Acute ↑ ACS patients on bivalirudin and

provisional αIIbβ3 inhibition

ACS patients on UFH and mandatory

αIIbβ3 inhibitors

(111)

ACS Chronic and

acute

↑ ACS patients with “high” platelet

aggregability on aspirin, clopidogrel,

thienopyridine, ticlopidine, enoxaparin

ACS patients with “low” platelet

aggregability on aspirin, clopidogrel,

thienopyridine, ticlopidine, enoxaparin

(113)

sGPVI ACS Acute ↑ ACS patients with high platelet count ACS patients with low platelet count (109)

sP-sel AMI Chronic ↑ AMI patients on antiplatelet therapy HV (114)

AMI Chronic ↑ AMI patients on aspirin, ticagrelor, and

heparin

Stable angina patients on antiplatelet

therapy

(115)

AMI Chronic ↑ AMI patients on aspirin, ticagrelor, and

heparin

Outpatients without history of coronary

heart diseases on antiplatelet therapy

(115)

AMI Chronic = AMI patients after 3–6 months of

recovery on aspirin

Acute MI patients on aspirin (116)

AMI Acute ↓ AMI patients on dual therapy with

ximelagatran and aspirin

AMI patients on aspirin only (117)

sCD40L AMI Acute ↑ AMI patients on aspirin and clopidogrel HV (118)

AMI Acute and

chronic

↑ AMI patients on aspirin Stable CAD patients on aspirin (119)

AMI Acute = AMI patients on aspirin and statins AMI patients on aspirin only (120)

sCD40L Post-MI in

diabetes

mellitus

Chronic = AMI patients with DM and non-DM on

aspirin, abciximab, eptifibatide, and

heparin

HV (121)

AMI Acute ↓ AMI patients with thrombectomy AMI patients without thrombectomy (122)

sGPV AMI Acute ↑ AMI patients on aspirin, abciximab, and

heparin

HV (123)

AMI Acute ↑ AMI patients with DM and non-DM on

aspirin, abciximab, eptifibatide, and

heparin

HV (121)

AMI Acute ↑ AMI patients on aspirin, clopidogrel,

abcixibam, eptifibatide, ticlopidine, and

heparin

HV (124)

ACI, acute cerebral ischemia; ACS, acute coronary syndrome; AMI, acute myocardial infarction; CAD, coronary artery disease; HDL, high-density lipoprotein; HV, healthy volunteers;

sCD40L, soluble CD40 ligand; SDF-1α, stromal cell-derived factor 1; sGP, soluble glycoprotein; sP-sel, soluble P-selectin; UFH, unfractioned heparin; DM, diabetes mellitus. ↑, Increased

compared to healthy controls; ↓, Decreased compared to healthy controls; =, Unchanged compared to healthy controls.

carotid and other cranial arteries (130). Platelet activation
as measured by release markers during an acute ischemic
stroke (AIS) has been demonstrated in many studies, showing
elevated plasma levels of sP-selectin (131–138), sCD40L (134),
sGPVI (139), and sCLEC2 (140, 141) in comparison to healthy
volunteers (Table 4, Supplementary Table 1).

In several studies, sP-selectin again was an indicator of platelet
activation and increased levels were found in patients with AIS,
independent of treatment with antithrombotics (133–137). This
increase was also reported for CD62P (134). In a randomized
study with patients at high risk of recurrent IS, treatment groups
with different antiplatelet therapies (APT) were compared. A
significant reduction in sP-selectin was demonstrated 10 days
after treatment with terutroban or clopidogrel plus aspirin,
while a decreasing trend was reported after treatment with
aspirin or terutroban plus aspirin (142). Spontaneous and

arachidonic acid-induced platelet aggregation was either low or
decreased both at baseline (day 0) and day 10. The impaired
aggregation response is an expected observation since patients
were on aspirin during the run-in period. In that case, sP-
selectin might be recognized as a more sensitive marker for
assessing the antiplatelet drug effect. Both aspirin and clopidogrel
lowered the sP-selectin level in patients with acute cerebral
infarction (132). SP-selectin in this study positively correlated
with flow cytometry detected PMA (r = 0.454, P < 0.05).
Additionally, the prognostic value of sP-selectin levels was
underlined by its strong correlation with the onset time of
progressive IS (137).

In one study, plasma levels of sCD40L and platelet CD62P
were found to be similar in AIS patients compared to controls
(143). However, platelet surface CD40L expression and PMA
levels were higher in patients compared to controls as assessed
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TABLE 4 | Soluble biomarkers of platelet activation in acute ischemic stroke (AIS) patients.

Biomarker Clinical

phenotype

Acute/chronic

phase

Results:

↑, ↓, =

Study group Control group References

sP-sel AIS Chronic ↑ ACI patients on no drugs, aspirin,

clopidogrel, ticlopidin or warfarin

HV (131)

AIS Acute ↑ ACI patients on either aspirin or

clopidogrel

HV (132)

AIS Acute ↑ AIS patients on no drugs HV (133)

AIS Acute ↑ AIS patients on aspirin HV (134, 135)

AIS Acute ↑ AIS patients HV (136, 137)

Cerebral

ischemic

event

and/or

carotid

stenosis

Chronic ↓ Patients on 10-day treatment with

terutroban or aspirin plus clopidogrel

Patients on aspirin (day 0) (142)

sCD40L AIS Acute ↑ AIS patients on aspirin HV (134)

AIS Acute = AIS patients on aspirin and warfarin Individuals without coronary

atherosclerosis

(143)

PF4 AIS Chronic ↑ AIS patients on no drugs, aspirin,

clopidogrel, heparin or warfarin

Hospitalized patients with a chronic

non-vascular neurological disorder

(144)

sGPV AIS Chronic ↑ AIS patients on no drugs, aspirin,

clopidogrel, heparin or warfarin

Hospitalized patients with a chronic

non-vascular neurological disorder

(144)

sGPVI AIS Acute ↑ AIS patients HV (139)

AIS Chronic ↓ AIS patients on aspirin, clopidogrel, or

vitamin K antagonists

Hospitalized patients without AIS (145)

sCLEC2 AIS Acute ↑ AIS patients HV (140, 141)

AIS, acute ischemic stroke; HV, healthy volunteers; PF4, platelet factor 4; sCD40L, soluble CD40 ligand; sCLEC-2, soluble C-type lectin-like receptor 2; sGP, soluble glycoprotein; sP-sel,

soluble P-selectin; ACI, acute cerebral ischemia. ↑, Increased compared to healthy controls; ↓, Decreased compared to healthy controls; =, Unchanged compared to healthy controls.

with flow cytometry. The control group included individuals
without coronary atherosclerosis but with similar treatment and
risk factors for cardiovascular diseases, which might explain the
lack of difference in the level of sCD40L. The lack of significance
might also be due to the small sample size of 41 patients vs.
10 controls.

SGPV was elevated in patients with AIS compared
to control patients without vascular complications and
antithrombotic treatment; this sGPV increase was not influenced
by antithrombotic treatment (144). Multivariate analysis
demonstrated a correlation between sGPV and stroke, platelet,
and leukocyte counts, but not with cardiovascular risk factors.
Interestingly, sGPV positively correlated with the PF4 level.

There are two studies where sGPVI was measured;
elevated sGPVI levels were found in IS patients compared
to healthy volunteers (139), while reduced sGPVI levels were
seen in comparison to patients with non-ischemic events
(145). In the latter study, the control group consisted
of patients with other cerebral disorders, which might
distort the interpretation of the sGPVI level in IS patients.
Additionally, Wurster et al. (145) evaluated GPVI levels in
chronic IS patients whereas Al-Tamimi et al. (139) investigated
acute phase patients. Interestingly, Wurster et al. (145)
did report increased levels of platelet-surface GPVI in IS
patients. Inconsistency between soluble and platelet-surface
expressed GPVI levels might be explained by the method

used to measure sGPVI, since a newly developed ELISA assay
was applied.

Two articles originating from the same cohort of AIS patients
consisting of 323 individuals with a follow-up of 1 year showed
that sCLEC-2 might be used as a predictor for AIS; the elevated
level of the biomarker was significantly correlated with stroke
progression and death. Patients with the highest sCLEC-2 level
had an 8-fold higher risk of progressive stroke or death compared
to the patients in the lowest quartile (140, 141).

Atrial Fibrillation
Although atrial fibrillation (AF) is currently considered a
condition that in the vast majority of cases requires oral
anticoagulation to prevent thromboembolic stroke, research
from past decades also considered the role of platelets in
this setting (146–148). For this reason, there is quite some
literature on the involvement of activated platelets in AF-related
hypercoagulability. Many studies reported elevated levels of
sP-selectin (149–156) and sCD40L (154, 157, 158) in patients
with AF compared to healthy subjects. In addition, increased
concentrations of plasma beta-tg (84, 151, 159, 160) and sGPV
(160) were documented (Table 5, Supplementary Table 1).
Choudhury et al. (153) additionally measured platelet
surface CD62P and CD63 by flow cytometry in whole
blood. Both markers were elevated in AF patients as well as
sP-selectin compared to healthy people. However, CD62P
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TABLE 5 | Soluble biomarkers of platelet activation in atrial fibrillation (AF) patients.

Biomarker Clinical

phenotype

Acute/chronic

phase

Results:

↑, ↓, =

Study group Control group References

sP-sel AF Chronic ↑ AF patients on no drugs HV (149, 150)

AF Chronic ↑ AF patients on aspirin, clopidogrel, and

warfarin

HV (151–156)

AF Chronic = AF patients on aspirin and warfarin HV (70, 159,

161–167)

AF Chronic = AF patients on aspirin and warfarin AF patients on warfarin only (70)

AF Chronic = AF patients with vascular events on

aspirin

AF patients without vascular events on

aspirin

(162)

AF Chronic = AF patients with worse renal function AF patients with better renal function (168)

AF Chronic = AF patients with atrial thrombus on

antiplatelet and anticoagulant drugs

AF patients without atrial thrombus on

antiplatelet and anticoagulant drugs

(169)

AF Chronic = AF patients with hypertension on aspirin

and warfarin

AF patients with normotension on

aspirin and warfarin

(170)

AF Chronic = AF patients on apixaban AF patients on rivaroxaban (171)

AF Chronic ↓ AF patients on no drugs HV (172)

sCD40L AF Chronic ↑ AF patients on aspirin, clopidogrel, and

warfarin

HV (154, 157,

158)

AF Chronic ↑ AF patients with thrombotic events on

warfarin

AF patients without thrombotic events

on warfarin

(173)

AF Chronic ↑ AF patients with atrial thrombus on

antiplatelet and anticoagulant drugs

AF patients without atrial thrombus on

antiplatelet and anticoagulant drugs

(169)

AF Chronic ↑ AF patients with stroke and MI on

aspirin and anticoagulants

AF patients without stroke and MI on

aspirin and anticoagulants

(174)

beta-tg AF Chronic ↑ AF patients on aspirin, clopidogrel, and

warfarin

HV (84, 151, 159,

160)

AF Chronic = AF patients on no drugs HV (164)

AF Chronic = AF patients on no warfarin HV (172)

AF Chronic = AF patients on apixaban AF patients on rivaroxaban (171)

sGPV AF Chronic ↑ AF patients on aspirin and warfarin HV (160)

sGPVI AF Chronic ↓ AF patients on apixaban or rivaroxaban AF patients on warfarin (175)

TSP-1 AF Chronic = AF patients on apixaban AF patients on rivaroxaban (171)

AF, atrial fibrillation; beta-tg, β-thromboglobulin; HV, healthy volunteers; MI, myocardial infarction; sCD40L, soluble CD40 ligand; sGP, soluble glycoprotein; sP-sel, soluble P-selectin;

TSP-1, Thrombospondin-1. ↑, Increased compared to healthy controls; ↓, Decreased compared to healthy controls; =, Unchanged compared to healthy controls.

strongly correlated with CD63 (r = 0.6; p < 0.001), but not
with sP-selectin.

However, some studies found no difference or even a decrease
in biomarker levels when comparing patients with AF and
controls. This was observed most strikingly for sP-selectin. Yet
the majority of articles demonstrating no difference between the
groups adjusted the association between sP-selectin levels and
AF severity or prognosis for confounding factors. For example,
sP-selectin in AF patients correlated with diabetes but not with
other recognized AF risk factors such as increasing age, recent
heart failure, and prior cerebral ischemia (70). The absence of an
association between sP-selectin levels and AF or cardiovascular
risk was again claimed by this group a year later (161, 162). In
one of their studies, Conway et al. (70) pointed out that the lack or
absence of adequate adjustment for cardiovascular diseases may
falsely link changes in sP-selectin levels to AF.

The level of sP-selectin was found to be unrelated to clinical
outcomes (IS, MI, or vascular death) (162) and left atrial

thrombus formation (169) in AF patients. Similar sP-selectin
levels were reported when comparing different treatment groups;
patients on warfarin plus aspirin vs. warfarin alone (70) or
patients on rivaroxaban vs. apixaban (171). In the study by
Steppich et al., rivaroxaban and apixaban did not influence levels
of beta-tg and TSP-1. However, these direct oral anticoagulants
were found to be more effective than warfarin in suppressing
sGPVI measurements (175).

SCD40L was elevated in AF patients with embolic events,
atrial thrombus formation (169, 173), stroke, and MI (174)
compared to AF patients without these conditions. Other studies
provide evidence that sCD40L is inversely related to stroke
risk (176). In one of the largest studies including 880 subjects,
Lip et al. reported that patients at the highest risk of stroke
as determined by increased age and blood pressure, impaired
left ventricular function, and previous thromboembolism, had
lower levels of sCD40L than people without any of these factors.
SCD40L, in contrast to sP-selectin and beta-tg, was a prognostic
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biomarker for vascular events in AF patients (173, 174). No
correlation was found between sCD40L and sP-selectin in the
study of Choudhury et al. (154).

Beta-tg levels were higher in patients with AF and similar to
sP-selectin indifferent to aspirin (159, 160), warfarin (160, 172),
rivaroxaban, and apixaban (171) administration. No relation was
found between platelet aggregation induced by ADP, collagen,
epinephrine, and thrombin and the plasma platelet activation
markers sP-selectin (151), beta-tg (151, 160), and sGPV (160).

One of the unsolved questions in AF research is whether
any of the observed changes in platelet biomarkers reflect the
arrhythmia per se, or the comorbidity (152–154). An effect of AF
was postulated based on two studies showing that lone AF was
associated with elevated sP-selectin compared to age-matched
controls. Lone AF patients had also enhanced sGPV levels (160)
further supporting a role of platelet activation in AF since sGPV
comes exclusively from platelets.

Venous Thrombosis
Despite the fact that venous thrombosis is traditionally not
regarded a condition that is dependent on platelet activation,
clinical studies have clearly shown a protective effect of low-
dose aspirin on recurrent venous thromboembolism (VTE). This
effect is most likely explained by the inhibition of platelets as
the low dose of aspirin does not have any demonstrable anti-
inflammatory effects in humans (185). Although the effect of oral
anticoagulation is clinically more relevant than APT to prevent
recurrent VTE, the involvement of platelets in venous thrombosis
remains of interest, particularly for settings in which the addition
of APT may be considered, like in acute VTE or periprocedural,
in case of venous stenting.

One of the most thorough explorations on platelet biomarkers
in VTE was done by Riedl et al. (23), who studied several
biomarkers and their mutual associations. The researchers
compared sP-selectin, sCD40L, PF4, and TSP-1 among three
groups: cancer patients with VTE, cancer patients without VTE,
and healthy subjects. Interestingly, only sP-selectin was elevated
among all biomarkers in cancer patients with VTE, compared
to the other groups which were not different from each other,
indicating that VTE rather than cancer was responsible for the
sP-selectin increase (Table 6, Supplementary Table 1). Although
TSP-1 was increased in both cancer groups compared to healthy
volunteers, it was not affected by the presence of VTE. The
authors concluded that sCD40L, PF4, and TSP-1 cannot predict
VTE development, while sP-selectin, on the contrary, could have
predictive potential (23). SCD40L, PF4, and TSP-1 mutually
correlated with each other and weakly with sP-selectin which is
released not only by platelets but also by endothelial cells. Based
on this, Riedl et al. (23) suggested that VTE is more associated
with endothelial rather than platelet activation.

This conclusion is also supported by Migliacci et al. (181) who
measured the level of sP-selectin and sCD40L in VTE patients
and compared them to controls. However, it is important to
mention that the control group included subjects with AF and
valve prosthesis together with healthy volunteers. In accordance
with the findings of Riedl et al., the level of sP-selectin was
significantly higher in the patient group in contrast to sCD40L,

which was similar between the patients and controls. In this
study, also plasma vWF level was measured, which was higher in
patients and correlated weakly but significantly with sP-selectin.
The fact that vWF reflects endothelial activation and is stored
together with sP-selectin in endothelial cells (186), supports the
suggestion that endothelial activation is more pronounced in
VTE patients compared to platelet activation and is responsible
for the elevation of sP-selectin level in plasma.

In contrast to the above-mentioned study (23), Furio et al.
(177) observed a significant increase in PF4 levels in deep vein
thrombosis (DVT) patients compared to healthy volunteers.
However, it should be considered that Riedl et al. (23) studied
cancer patients with VTE in the acute phase, while Furio et al.
(177) included patients with DVT in a chronic phase that, in
addition to possible effects of anticancer treatment, may explain
differences in results for this biomarker.

TxB2 was significantly elevated in patients with confirmed
VTE diagnosis, independent of aspirin intake, in contrast to
patients with excluded VTE (183). Non-aspirin VTE cases
presented significantly shorter closure times with collagen/ADP
and collagen/epinephrine in the platelet function analyzer
compared to controls. Within the group of non-aspirin users,
platelet aggregability in response to ADP or collagen was lower
in VTE-cases compared to patients with excluded VTE. Patients
with VTE showed higher platelet CD63 surface presentation
ex vivo and lower platelet-dependent thrombin generation
triggered by tissue factor, independent of therapy.

Other studies mostly concentrated on sP-selectin
unanimously observing elevated levels of this biomarker in
patients compared to healthy subjects, regardless of the location
of venous thrombosis. SP-selectin was higher in patients with
DVT (177–180) and acute pulmonary embolism (184). In
line with elevated sP-selectin plasma levels in patients with
DVT, Furio et al. (177) observed increased platelet CD62P
presentation. In contrast, Chung et al. (184) reported unaltered
platelet CD62P expression and PLA, but increased activated
integrin αIIbβ3 in patients with acute pulmonary embolism
compared to controls. In the study of Kyrle et al. (182), sP-
selectin appeared to be predictive for VTE recurrence, i.e.,
individuals with VTE and higher sP-selectin levels were more
likely to have a second VTE event.

However, some studies questioned if sP-selectin reflects
platelet and not endothelial activation since the levels of sP-
selectin did not correlate with sCD40L (23, 181) and TSP-1
levels (23). Another study provided evidence that the elevated
sP-selectin level and enhanced urinary 11-DH-TxB2 excretion
in DVT patients was due to increased platelet activation (179).
Therefore, we conclude that the question about the presence of
platelet activation in DVT patients remains open. However, sP-
selectin might be used as a prognostic tool for the recurrent VTE
or incidence of VTE in cancer patients.

CONCLUSIONS AND PERSPECTIVES

Platelets are important contributors to the development of
arterial thrombotic events. They are involved in atherosclerotic
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TABLE 6 | Soluble biomarkers of platelet activation in patients with venous thromboembolism (VTE).

Biomarker Clinical

phenotype

Acute/chronic

phase

Results:

↑, ↓, =

Study group Control group References

sP-sel DVT Chronic ↑ DVT patients on anticoagulants HV (177–180)

PF4 DVT Chronic ↑ DVT patients on anticoagulants HV (177)

sP-sel VTE Acute ↑ Patients with cancer-associated VTE HV, cancer patients without VTE (23)

VTE Chronic ↑ VTE patients with and without

anticoagulant therapy

Subjects without VTE (181)

VTE Acute ↑ VTE patients on no drugs with a

recurrent event

VTE patients on no drugs without

recurrent events

(182)

sCD40L VTE Acute = Patients with cancer-associated VTE HV, cancer patients without VTE (23)

VTE Chronic = VTE patients with and without

anticoagulant therapy

Subjects without VTE (181)

PF4 VTE Acute = Patients with cancer-associated VTE Cancer patients without VTE (23)

TSP-1 VTE Acute = Cancer patients with and without VTE HV (23)

TxB2 VTE Acute ↑ VTE patients on aspirin, clopidogrel,

vitamin K antagonists, heparin group,

and direct FXa inhibitors

Subjects with excluded VTE on aspirin,

clopidogrel, vitamin K antagonists,

heparin group, and direct FXa inhibitors

(183)

sP-sel Acute

pulmonary

embolism

Acute ↑ Acute pulmonary embolism patients on

enoxaparin, heparin, and warfarin

HV (184)

DVT, deep vein thrombosis; HV, healthy volunteers; PF4, platelet factor 4; sCD40L, soluble CD40 ligand; sP-sel, soluble P-selectin; TSP-1, Thrombospondin-1; VTE,

venous thromboembolism. ↑, Increased compared to healthy controls; ↓, Decreased compared to healthy controls; =, Unchanged compared to healthy controls.

plaque formation and plaque rupture can lead to ischemia or
infarction (187). Platelets are involved in thrombosis not only
as the first violins of the blood coagulation process, but also as
promoters of inflammation (188). The identification of changes
in the level of plasma biomarkers associated with upcoming
thromboembolic events could allow timely adjustment of the
treatment strategy in order to prevent the disease aggravation.
Therefore, biomarkers of platelet activation may become a
valuable instrument for the prognosis of acute events.

An ideal biomarker should be specific, accurate, reproducible
by a simple technique, independent from pre-analytical artifacts,
cost-effective, and acceptable to patients (26, 32, 188). In contrast
to plaque material, platelets are accessible through routine
venipuncture and are easily counted within a minute by a
standard cell counter. This allows serial sampling and long-
term monitoring.

However, despite numerous clinical studies evaluating platelet
biomarkers, data remain inconclusive. Several biomarkers were
suggested but none of these can be recognized as a robust
diagnostic marker. Interindividual variability and inconsistencies
in cutoff values impede the implementation of biomarkers of
platelet activation in the wide clinical practice. Besides this, the
ex vivo manipulations like the blood drawing procedure and
centrifugation can pre-activate platelets and distort real numbers
of biomarkers level (189–192). The measurements can be also
influenced by the type of anticoagulation, storage, and thawing
procedures (32).

A common problem in the summarized clinical studies may
be limited power due to small sample sizes and confounding
due to incomplete or absent adjustment for risk factors for

thrombosis, as identified as a problem in assessing sP-selectin
levels in AF. There are many molecules expressed by platelets.
Some of them are exclusive for platelets such as GPIbα, GPV, and
GPVI, whereas others are also synthesized by other cells, e.g., P-
selectin, CD40L, and SDF-1α. Our review demonstrates that the
limelight of clinicians’ attention was obviously mainly focused on
sP-selectin and sCD40L. Currently, sP-selectin is recognized as
an important marker of platelet activation and was found to be
elevated in a broad range of conditions including various types
of cardiovascular diseases (unstable angina, thrombocytopenia,
arterial hypertension, stroke, AMI, congestive heart failure) as
discussed, but also in other conditions, including autoimmune
disorders (Sjogren’s syndrome, systemic lupus erythematosus),
diabetes, or psychiatric disorders (64, 193–200).

Increased values of sCD40L have been found in cardiovascular
diseases including PAD (128), CAD (86), AF (154, 157, 158,
173, 174), AIS (134), and also in patients with diabetes (201).
Similarly, beta-tg and PF4 were reported to be altered in other
diseases too, including cancer (202–205), ischemic heart disease
(206), and AF (207). SGPVI reflected activation of platelets in
patients with AIS (139), microangiopathy (208), rheumatoid
arthritis (59, 209), and Alzheimer’s disease (210). Thus, it can be
concluded that the above biomarkers do not specifically reflect
thrombosis but probably also reflect diverse other processes some
of which may in part be associated with platelet activation. At
this stage, there are no data indicating distinct platelet activation
profiles related to specific diseases, or predicting diseases (21).

Platelet activation is a well-known contributor to the
pathogenesis of arterial thrombosis and leads to increased levels
of platelet activation biomarkers. As discussed, some markers
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FIGURE 2 | Platelet released activation biomarkers in arterial and venous cardiovascular diseases determined by ELISA-based tests. AIS, acute ischemic stroke; AMI,

acute myocardial infarction; beta-tg, β-thromboglobulin; CAD, coronary artery disease; CD40L, CD40 ligand; CLEC-2, C-type lectin-like receptor 2; GP, glycoprotein;

PF4, platelet factor 4; SDF-1α, stromal cell-derived factor-1α; TxA2, thromboxane A2; TxB2, thromboxane B2; PAD, peripheral artery disease; s, soluble; ↑, increased

compared to healthy controls; ↓, decreased compared to healthy controls; =, unchanged compared to healthy controls.

are platelet specific, whereas others may be increased due to
activation of other cell types including endothelial cells. So
far, it remains challenging to distinguish the exact input of
platelet activation and vessel wall pathology into the increase
of sP-selectin or sCD40L based on the data provided. Similarly,
elevations of biomarkers and risk associations may vanish upon
adjustment for confounding factors, as mentioned for AF.

Evidence for using platelet biomarkers as a prognostic and
stratifying tool in DVT is still scarce. Interestingly, a recent study
described platelet-related parameters in patients with confirmed
VTE compared to patients with suspected but unconfirmed
VTE, independent of the underlying cardiovascular profile (183).
Herein VTE patients were characterized with elevated expression
of platelet activation markers in combination with lower platelet-
dependent thrombin generation in vitro. These findings clearly
underscore the role of platelets in VTE. A current overview of
platelet released activation biomarkers in arterial and venous
cardiovascular diseases determined by ELISA-based tests is
presented in Figure 2.

Several authors recommend implementing a combination
of several biomarkers, which allows a more objective
assessment of a patient’s current state since the pathogenesis
of thrombosis is a complex process involving the interplay
between inflammation, coagulation, and cellular activation
(211–214). It is also worthwhile to link biomarker assays
to platelet function tests and platelet surface markers
to obtain a more comprehensive understanding of the
disease state.

It becomes obvious that there is a need for larger clinical trials
to investigate the diagnostic potential of the biomarkers discussed
in the thrombosis setting (32). The application of machine
learning for the identification of signatures of platelet biomarkers
could better reflect the biological complexity and multifactorial
processes and overcome the high interindividual variability and
limitations due to the scatter of measurement results. The
newly available high-throughput protein technologies open up
possibilities here that could lead to new insights.

Inclusion of newer, less well-studied plasma markers
of platelet activation, such as sGPVI, sGPIbα, SDF-1α,
sGPV, and sCLEC2, in clinical studies might be valuable
in the search for reliable thrombotic biomarkers. For
interpretation and comparison, future studies measuring
biomarkers should ideally report detailed information on
clinical parameters, pre-analytical and analytical variables. This
information should be stratified and analyzed to determine
its influence on the association between disease severity and
biomarker level.
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