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INTRODUCTION

Interleukin (IL)-10 is a pleiotropic cytokine known for its potent anti-inflammatory and
immunosuppressive effects. Originally identified as a product of T helper 2 cells, IL-10 is now
known to be produced by various myeloid- and lymphoid-derived immune cells participating in
both innate and adaptive immunity (1, 2). A primary function of IL-10 during infection is to inhibit
the host immune response to pathogens and microbiota, thereby mitigating tissue damage and
immunopathology. To accomplish this, IL-10 inhibits pro-inflammatory cytokine synthesis and
antigen presentation in activated monocytes/macrophages and dendritic cells, while also limiting
excessive T cell activation and proliferation (1, 2). The anti-inflammatory effects of IL-10 are
primarily mediated by its interaction with the IL-10 receptor (most highly expressed on monocytes/
macrophages), which activates the JAK1-TYK2-STAT3 pathway leading to STAT3-mediated
transcription of genes that limit the inflammatory response (1, 2). IL-10’s ability to inhibit pro-
inflammatory cytokine expression also requires the inositol phosphatase SHIP1 (3) and the anti-
inflammatory effects of IL-10 may specifically be mediated by its ability to induce SHIP1-STAT3
complex formation (4), thereby differentiating IL-10 signaling from other cytokines that activate
STAT3 (e.g. IL-6).
POSSIBLE EXPLANATIONS FOR ELEVATED IL-10 LEVELS
IN COVID-19

A common feature and presumable cause of death among patients with severe cases of the
coronavirus disease 2019 (COVID-19; caused by the SARS-CoV-2 virus) is the overproduction of
pro-inflammatory cytokines arising from excessive immune cell activation (i.e., cytokine release
syndrome, often referred to as “cytokine storm”) (5). The dramatic early rise in IL-10 – canonically
classified as an anti-inflammatory cytokine – appears to be a distinguishing feature of
hyperinflammation during severe SARS-CoV-2 infection (6) and several studies indicate that IL-10
levels predict poor outcomes in patients with COVID-19 (7, 8). Based on its well-established role
as an anti-inflammatory and immunosuppressive cytokine (1, 2), the dramatic elevation in IL-10
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could be interpreted as an attempt to temper hyperinflammation
and prevent tissue damage. However, the concurrent elevations
in IL-10 and various pro-inflammatory cytokines, and the
observed relationship between elevated IL-10 levels and disease
severity, suggest that IL-10 is either failing to appropriately
suppress inflammation (as observed in other inflammatory
conditions (9–11) or acting in a manner that deviates from its
traditional role as an anti-inflammatory molecule. Indeed, one
explanation for the seemingly paradoxical observation of
concurrently elevated IL-10 and pro-inflammatory cytokine
levels is the ability of IL-10 to act as a pro-inflammatory and
immunostimulatory molecule under certain contexts (6).
Another compelling and previously unexplored explanation is
the potential escape of activated immune cells from IL-10’s
anti-inflammatory action (i.e., IL-10 “resistance”) leading
to overexuberant pro-inflammatory cytokine responses.
In support of this hypothesis, we have reported resistance to
IL-10’s anti-inflammatory action under hyperglycemic
conditions in vitro (12, 13) and in individuals with type 2
diabetes (T2D) (12). Importantly, because T2D is a risk factor
for increased COVID-19 disease severity and mortality (which is
markedly lower with well-controlled blood glucose levels) (14),
IL-10 resistance may provide a mechanistic link between
hyperglycemia/T2D and adverse COVID-19 outcomes.
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In this article, we present evidence supporting the non-
classical pro-inflammatory effects of IL-10 as a driver of
cytokine storms during COVID-19 and consider resistance to
IL-10’s classical anti-inflammatory action as an alternative novel
mechanism underlying elevated IL-10 levels in patients with
severe COVID-19 (summarized in Figure 1). We also highlight
the potential utility of therapeutic avenues targeting components
of the IL-10 signaling pathway as a viable strategy for restoring
IL-10 action in COVID-19. Given that cytokine storms arising
from hyperinflammation propagate tissue damage that can
eventually cause multi-organ failure and death in severe
COVID-19 cases (5), a greater understanding of IL-10’s role in
COVID-19 pathogenesis is warranted for the development of
effective strategies aimed at combatting the current pandemic.
EVIDENCE SUPPORTING THE ROLE
OF IL-10 AS A PRO-INFLAMMATORY
CYTOKINE

Although typically classified as anti-inflammatory and
immunosuppressive cytokine, the effects of IL-10 are highly
context-dependent and there are several scenarios where IL-10
A B

FIGURE 1 | Potential explanations and consequences of elevated IL-10 levels in COVID-19. (A) Excessive stimulation of CD8+ T cells by IL-10 levels leads to T-cell
overactivation and enhanced IFNg levels, the latter of which further stimulates the production of pro-inflammatory factors by activated macrophages. The propagation
of systemic inflammation is presumably bolstered by the IL-10 mediated activation of tissue-resident mast cells. (B) A hyporesponsiveness to IL-10 action (i.e., IL-10
“resistance”) impairs the ability of activated monocytes/macrophages to respond to circulating IL-10, thereby enhancing the release of pro-inflammatory cytokines
such as TNFa into circulation. Mechanistically, this impairment in IL-10 action is associated with impaired STAT3 phosphorylation and appears to be driven by
elevated blood glucose levels, providing a potential explanation for severe COVID-19 related outcomes in patients with diabetes. Treatment with the SHIP1 agonist
ZPR-MN100 (previously known as AQX-MN100) overcomes high glucose-induced IL-10 resistance in macrophages and resolves colitis in IL-10 receptor knock-out
mice, highlighting the potential of SHIP1 targeted therapeutics for combatting severe COVID-19. [Created with Biorender.com].
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enhances immune cell activation and proliferation causing the
release of pro-inflammatory cytokines. For instance, Lauw et al.
(15) were the first to demonstrate the pro-inflammatory effects of
IL-10 in vivo during human endotoxemia. In this study, intravenous
administration of recombinant IL-10 (25 µg/kg) potentiated the
liposaccharide (LPS)-induced increase in IFNg and IFNg-dependent
chemokine production in healthy humans (15). These experiments
were shortly followed by studies in patients with Crohn’s disease,
where subcutaneous administration of high dose recombinant IL-10
(20 µL/kg) caused an increase in IFNg production in
phytohemagglutinin-stimulated whole-blood cultures (16).

Further support for the immunostimulatory role of IL-10
comes from studies in rodent tumour models where IL-10
administration promotes proliferation and expansion of
tumor-resident cytotoxic CD8+ T cells as well as IFNg
production, thereby enhancing antitumor activity (17). In line
with these rodent experiments, administration of pegylated
recombinant IL-10 (20 µg/kg) to human cancer patients
induces systemic immune activation as reflected by elevations
in various pro-inflammatory cytokines and expansion of both
systemic and tumour-resident CD8+ T cells (18, 19).
Collectively, these findings indicate that high doses of IL-10
can induce pro-inflammatory responses in healthy participants
as well as patients with autoimmune disease and cancer.

In light of the aforementioned findings, several lines of
evidence support the potential pro-inflammatory actions of IL-
10 in severe COVID-19 cases. First, many of the same cytokines
that are elevated with high-dose IL-10 administration in the
studies discussed above (e.g. IL-4, IL-7, IL-18, IFNg, TNFa) are
also elevated in severe COVID-19 cases in conjunction with
elevated IL-10 levels (7, 8, 20, 21). Of note, the rise in IL-10 levels
occurs during the early stages of SARS-CoV-2 infection, thus
preceding elevations in pro-inflammatory cytokines that typify
cytokine storms (8). Second, plasma levels of bacterial DNA and
LPS – two known pathogen-associated molecular patterns
(PAMPs) that activate inflammatory signaling in immune
cells – are elevated in severe COVID-19 cases (22). Although
IL-10 is a potent inhibitor of LPS-induced gene expression in
macrophages (23), the ability of high concentrations of IL-10 to
amplify pro-inflammatory responses to LPS (15) raises the
possibility that the combination of elevated IL-10 and bacterial
products drives inflammation in COVID-19. Moreover, because
LPS is a known inducer of IL-10 production in macrophages (1),
high levels of LPS may play a causal role in the observed
elevations in IL-10 during COVID-19.

Given the ability of IL-10 to potently induce T cell activation
in various cancer models (17), a final piece of evidence
supporting the potential pro-inflammatory actions of IL-10 in
COVID-19, is the observation of overactivated CD8+ T cells
despite a reduction in overall CD8+ T cell count (24). IL-10-
mediated hyperactivation of CD8+ T cells despite an overall
reduced cell count may also explain why some studies report
functional exhaustion of T cells in severe COVID-19 cases (25)
and significant inverse associations between serum IL-10 levels
and T cell count (26). The propagation of systemic of systemic
inflammation by CD8+ T cell derived cytokines (e.g., IFNg)
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would presumably be bolstered by IL-10 mediated activation of
tissue-resident mast cells (27), which are abundant in lung
epithelial membranes and have been implicated in COVID-19-
related inflammation (28–30). Taken together , the
aforementioned findings raise the intriguing possibility that the
“non-classical” pro-inflammatory actions of IL-10 may
contribute to the propagation of cytokine storms in COVID-19
(6), thus warranting further research into this avenue.
IL-10 RESISTANCE AS A LINK BETWEEN
HYPERGLYCEMIA/T2D AND SEVERE
COVID-19 – RELATED OUTCOMES

Another compelling and novel explanation for elevated IL-10
levels in the face of systemic hyperinflammation in severe
COVID-10 cases is the potential inability of IL-10 to inhibit
pro-inflammatory cytokine production and release from
activated monocytes/macrophages (e.g. IL-10 “resistance”). This
scenario may help explain why the existence of hyperglycemia and
diabetes is linked to disease severity and mortality in patients with
COVID-19 (31), and why improved glycemic control is associated
with better outcomes (14). Studies from our lab were the first to
demonstrate the concept of IL-10 “resistance” under
hyperglycemia in vitro [recently replicated by an independent
group (13)] and from immune cells isolated from patients with
T2D (12). In our experiments, the ability of IL-10 (10 ng/mL) to
inhibit TNFa production in response to LPS stimulation was
reduced in whole-blood cultures from individuals with T2D as
compared to healthy age and BMI-matched controls (12). A
similar resistance to IL-10’s anti-inflammatory action was
observed in macrophages cultured in high-glucose media
suggesting that hyperglycemia was responsible for the reduced
anti-inflammatory function of IL-10 in T2D (12). Mechanistically,
the hyporesponsiveness to IL-10 action correlated with impaired
STAT3 phosphorylation under hyperglycemia and responsiveness
was restored with a small molecule activator of the inositol
phosphatase SHIP1 (12), highlighting the STAT3/SHIP1 axis as
a potential target for restoring IL-10 action (4). Although the
concept of aberrant immune cell activation in response to high
glucose is well-established, recent in vitro experiments indicate
that exposure to high glucose also enhances SARS-CoV-2
replication in monocytes (32). This hyperglycemia-induced
potentiation of SARS-CoV-2 replication in monocytes requires
glycolytic flux (32), which is noteworthy (and perhaps further
supportive of IL-10 resistance) because the anti-inflammatory
effects of IL-10 in macrophages are typically mediated by
oxidative metabolism (33).

As mentioned earlier, levels of bacterial DNA and LPS are
elevated in patients suffering from severe cases of COVID-19
(22). Although one line of reasoning can interpret elevated LPS
levels in COVID-19 as support for the pro-inflammatory effects
of IL-10 (as above), these observations can alternatively also be
interpreted as support for IL-10 resistance. Specifically, because
the IL-10-STAT3 axis inhibits ~20% of LPS-induced genes (1),
June 2021 | Volume 12 | Article 677008
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failure of IL-10 to inhibit cytokine production from IL-10
resistant monocytes/macrophages during endotoxemia may
explain why various pro-inflammatory cytokines are elevated
despite high IL-10 levels in severe COVID-19 cases.

Based on these observations, it is tempting to speculate that a
similar resistance to IL-10’s anti-inflammatory action may
underpin hyperinflammation in COVID-19, particularly in
individuals with diabetes. Moreover, since systemic
inflammation and natural killer cell activation – both of which
are present during respiratory viral infections (34, 35) – can drive
insulin resistance in skeletal muscle (34) and adipose tissue (36),
the ensuing hyperinsulinemia/hyperglycemia may further
propagate IL-10 resistance in individuals with T2D infected
with SARS-CoV2. These speculations warrant further
investigation to determine the contribution of IL-10 resistance
to severe COVID-19 outcomes in individuals with diabetes.
POTENTIAL THERAPEUTIC AVENUES
TARGETING IL-10 SIGNALLING

If IL-10 resistance is involved in COVID-19 adverse outcomes,
then recent insights into the molecular aspects of anti-
inflammatory IL-10 signaling may provide clues for novel
therapeutic options. Chamberlain and colleagues (4) recently
reported that anti-inflammatory IL-10 signaling involves
induction of a SHIP1-STAT3 complex, which translocates to
the nucleus resulting in inhibition of macrophage activation and
resolution of inflammatory colitis in mice. In this study, a small
molecule SHIP1 agonist acted like an anti-inflammatory “IL-10
mimetic” to inhibit macrophage activation and resolve colitis in
IL-10 receptor knock-out mice. In line with these observations,
we previously demonstrated that small molecule SHIP1 agonists
could overcome high glucose-induced IL-10 resistance in
macrophages (2). Thus, it seems plausible that a loss of normal
SHIP1-STAT3 complex formation might be a mechanism that
contributes to IL-10 resistance and that SHIP1 agonists can
circumvent this to reduce inflammation. In this manner, it is
intriguing to speculate that drugs targeting SHIP1 signaling
Frontiers in Immunology | www.frontiersin.org 4
could play a role in mitigating negative consequences of
cytokine storms as a therapeutic option in COVID-19.
CONCLUSIONS

The drastic early rise in IL-10 in severe cases of COVID-19 is a
distinguishing and seemingly paradoxical observation in light of
IL-10’s classical role as an anti-inflammatory cytokine. The non-
classical pro-inflammatory effects of IL-10 provide a plausible
explanation for elevated IL-10 levels in the face of systemic
inflammation (Figure 1A). Another novel and intriguing
possibility that we have presented here is a potential “resistance”
to IL-10’s classical anti-inflammatory actions, which may provide
a mechanistic link between hyperglycemia/diabetes and severe
COVID-19-related outcomes (Figure 1B). Further investigation
into potential strategies aimed at counteracting the pro-
inflammatory effects of IL-10 on CD8+ cells or restoration of
IL-10’s anti-inflammatory action on macrophage cells may be
beneficial for combatting hyperinflammation during SARS-CoV-2
infection. In this regard, small molecule SHIP1 agonists provide a
promising avenue for exploration to restore anti-inflammatory
IL-10 signaling.
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