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The incidence of heart failure (HF) continues to increase rapidly in patients with
diabetes. It is marked by myocardial remodeling, including fibrosis, hypertrophy, and
cell death, leading to diastolic dysfunction with or without systolic dysfunction. Diabetic
cardiomyopathy (DCM) is a distinct myocardial disease in the absence of coronary artery
disease. DCM is partially induced by chronic systemic inflammation, underpinned by a
hostile environment due to hyperglycemia, hyperlipidemia, hyperinsulinemia, and insulin
resistance. The detrimental role of leukocytes, cytokines, and chemokines is evident in
the diabetic heart, yet the precise role of inflammation as a cause or consequence
of DCM remains incompletely understood. Here, we provide a concise review of
the inflammatory signaling mechanisms contributing to the clinical complications
of diabetes-associated HF. Overall, the impact of inflammation on the onset and
development of DCM suggests the potential benefits of targeting inflammatory cascades
to prevent DCM. This review is tailored to outline the known effects of the current anti-
diabetic drugs, anti-inflammatory therapies, and natural compounds on inflammation,
which mitigate HF progression in diabetic populations.
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INTRODUCTION

Diabetes mellitus (DM) is present in 40% of heart failure (HF) patients and is concomitant with
increased hospitalizations and risk of mortality (Tromp et al., 2020). Inflammation is widely
recognized to play a crucial role in the pathogenesis of both HF with reduced and preserved
ejection fraction. Systemic inflammation is frequently associated with abnormal cardiac structure
and function in clinical studies (Suzuki et al., 2008; Sanders-van Wijk et al., 2020): nevertheless,
conflicting outcomes have also been documented. In the Canakinumab Anti-Inflammatory
Thrombosis Outcomes Study (CANTOS) (Ridker et al., 2012), anti-interleukin (IL)-1β treatment
demonstrated a reduction in inflammatory markers in type 2 DM (T2DM); however, over a longer
duration, it failed to reduce the risk of cardiovascular events (Tan et al., 2020). Therefore, an
in-depth understanding of inflammatory molecular mechanisms is needed to outline potential
treatment strategies for managing inflammation in diabetes.
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IMMUNE SIGNALING IN THE HEART

Myocardial injury instigated from myocarditis, myocardial
infarction (MI), or metabolic stress triggers the innate and
adaptive immune response in the heart. The innate response
is a non-specific defense against cardiac injury, whereas
the adaptive response is perpetuated by B and T cells
designed to restore function (Mann, 2015). A pathological
insult prompts the generation of pathogen-associated molecular
patterns (PAMPs) or danger-associated molecular patterns
(DAMPs) from cardiomyocytes, endothelial cells, fibroblasts, and
leukocytes, depending on the stimuli (Castillo et al., 2020).
Consequently, upon ligand binding, activation of DAMP/PAMP
receptors and NLR family pyrin domain containing 3 (NLRP3)
inflammasome pathways promote the production of pro-
inflammatory cytokines, including tumor necrosis factor alpha
(TNFα), IL-1β, IL-6, and IL-18, contributing to cardiac
injury (Fairweather, 2007). The released inflammatory cytokines
result in cardiac infiltration of leukocytes stimulating a
restorative response in the heart. In various diseases, including
diabetes, due to the lack of a resolution phase of the
inflammatory state, myocardial inflammation contributes to
pathological hypertrophic growth and leukocyte-mediated death
of cardiomyocytes (Adamo et al., 2020). Besides, inflammatory
cytokines also activate cardiac fibroblasts, inducing excessive
interstitial fibrosis formation, leading to cardiac dysfunction
(Franssen et al., 2016).

MYOCARDIAL INFLAMMATION IN
DIABETIC CARDIOMYOPATHY

Hyperinsulinemia, insulin resistance, hyperglycemia, and
hyperlipidemia induce diabetic cardiomyopathy (DCM)
consequently resulting in HF (Nunes et al., 2012). DCM
is characterized by cardiomyocyte death, hypertrophy, and
fibrosis, and these aberrant events are a consequence of pro-
inflammatory cascades occurring in different cardiac cell types
(Tan et al., 2020). Diabetes-induced alterations in endothelial
(Knapp et al., 2019) and cardiac muscle cells (Filardi et al.,
2019) are reported to be one of the major causative elements
in the onset and progression of DCM. Specifically, this mini
review focuses on the inflammatory mechanisms implicated in
cardiomyocytes in diabetes.

A positive feedback loop emanates from the stress-induced
release of pro-inflammatory molecules such as TNFα, IL-
1β, and IL-6, accentuating leukocyte activation. This further
activates the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB), a transcription factor with antioxidant
function in the physiological state (Maier et al., 2012). Under
pathological conditions, such as DCM, over-activation of NF-
κB results in more prominent leukocyte recruitment to the
heart (Bajpai and Tilley, 2018). Abundant leukocyte infiltration
was exemplified in immunohistochemical staining of right
atrial tissue from T2DM patients, showing increased CD68+
macrophages compared to non-T2DM patients (Pierzynová
et al., 2019). Moreover, diabetic stress can also induce

hematopoiesis, resulting in increased circulating leukocytes
(Nagareddy et al., 2013), fueling low-grade inflammation
in the myocardium.

The Different Roles of Leukocytes in
Myocardial Inflammation
Leukocyte activation and recruitment are responsible for
diabetic cardiac injury. Neutrophils are first-responders and
secrete various inflammatory mediators, such as cytokines,
microparticles, and neutrophil extracellular traps (NETs),
which induce sustained inflammation. Of note, an increased
neutrophil/lymphocyte ratio was recently identified as an
indicator associated with subclinical DCM ocurrence (Huang
et al., 2020). Furthermore, elevated NET release following protein
arginine deiminase upregulation in neutrophils (Wong et al.,
2015) aggravates cardiac injury due to neutrophil-mediated cell
death (NETosis) in diabetes (Fadini et al., 2016).

Macrophages engulf apoptotic/necrotic cardiomyocytes and
debris to manage inflammation. However, this is impaired in
diabetes due to reduced miR-126 expression and blunted MERTK
function (Suresh Babu et al., 2016; Bajpai and Tilley, 2018).
Moreover, macrophages are classified as pro-inflammatory (M1)
and anti-inflammatory (M2), characterized by distinct sources
of activation. The phenotypic balance between these subsets is
necessary for the homeostasis of inflammatory responses. M1
macrophages arise from IFN-γ and secrete IL-6, TNFα, IL-
1β, IL-12, and IL-23, whereas M2 macrophages are polarized
by IL-4, IL-10, or IL-13 and express IL-10 and transforming
growth factor beta (TGFβ) (Van Linthout and Tschope, 2017).
M1 macrophages are more predominant in diabetes, instigating
insulin resistance by secreting resistin and prompting DCM
progression (Lehrke et al., 2004); however, the M2 phenotype
ameliorates cardiac dysfunction in DM (Jadhav et al., 2013). For
instance, elevated M2 macrophage differentiation mitigated heart
dysfunction following fibroblast growth factor (FGF)-9 (Singla
et al., 2015) and bone morphogenetic protein 7 (BMP-7) (Urbina
and Singla, 2014) treatment in diabetic rodents.

In the adaptive response, T helper (Th)-1 or Th-17 cells
secrete pro-inflammatory cytokines, whereas T regulatory (Treg)
cells secrete anti-inflammatory cytokines. In T2DM patients,
skewed Th/Treg balance and elevated T cell homing contribute to
cardiovascular complications by increasing cardiac hypertrophy
and fibrosis (Zeng et al., 2012; Nevers et al., 2015; Bajpai and
Tilley, 2018). Moreover, increased cytokines from systemic Th17
are associated with diastolic abnormality in diabetic children
(Hoffman et al., 2013). Evidently, myocardial T-cell infiltration
induces fibrosis in type 1 DM (T1DM) mice via increased
TGFβ expression, which is diminished by T-cell depletion
(Abdullah et al., 2016). Lastly, B-cells maintain the bridge
between innate and adaptive immunity via their antigen-specific
response, and their presence contributes toward sustained
inflammation in DCM. For instance, overexpression of allograft
inflammatory factor (AIF-1), an anti-inflammatory cytokine,
prevents streptozotocin (STZ)-induced cardiac dysfunction; on
the contrary, AIF-1 downregulation is associated with elevated
B-cell homing in the myocardium (Sarkar et al., 2018). The role
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of inflammatory cytokines, chemokines, and receptors in DCM is
outlined in Table 1.

NF-κB-Associated Signaling Pathways
Overactivation of molecular pathways, such as NF-κB, signal
transducer activating protein-1 (AP-1), c-Jun NH2-terminal
kinase (JNK), and p38 mitogen-activated protein kinase (MAPK),

favors the induction of a pro-inflammatory intramyocardial
milieu in DM. NF-κB pathway is the central converging point
of inflammatory triggers stemming from several pathological
stresses in diabetes, such as prolonged endoplasmic reticulum
stress, hyperlipidemia, hyperglycemia, renin–angiotensin–
aldosterone system (RAAS) activation (Knapp et al., 2019),
oxidative stress (Maier et al., 2012), and advanced glycation

TABLE 1 | The role of inflammatory cytokines, chemokines, and receptors in DCM.

Name Role Pre-clinical findings Clinical findings References

Cytokines TNFα Pro-
inflammatory

STZ-induced diabetic rats with
anti-TNFα antibody treatment:
improved LV function, ↓IL-1β

expression, and ↓cardiac collagen
content.

↑Plasma TNFα level is associated with
LV diastolic dysfunction in patients with
diabetes

Westermann et al.,
2007a,b; Dinh et al., 2009

IL-18 Pro-
inflammatory

IL-18 KO mice fed with western diet:
preserved cardiac function and
↓myocardial interstitial fibrosis

↑IL-18 level is an independent predictor
of CV events in patients with metabolic
syndrome

Troseid et al., 2009;
Carbone et al., 2017

IL-6 Pro-
inflammatory

IL-6 KO mice with STZ-induced
diabetes: improved cardiac function
and ↓interstitial fibrosis; ↓TGFβ and
↑miR-29 following high glucose

↑Plasma IL-6 level is associated with LV
diastolic dysfunction in patients with
diabetes

Dinh et al., 2009; Zhang
et al., 2016

TGFβ Fibrogenic
mediator, pro-
inflammatory

Db/db Smad3+/−mice: attenuated
cardiac diastolic dysfunction,
↓hypertrophy, and fibrosis

↑Serum TGFβ level is associated with
diastolic dysfunction in hypertensive
patients with metabolic syndrome

Sciarretta et al., 2007;
Biernacka et al., 2015

IL-1β Pro-
inflammatory

STZ-induced diabetic mice: ↑cardiac
IL-1β expression, ↑cardiac collagen
content, and LV dysfunction; also
associated with cardiac arrhythmias

Canakinumab (a human monoclonal
antibody that neutralizes IL-1β) reduces
CRP level and cardiovascular events in
patients with or without T2DM

Westermann et al.,
2007a,b; Ridker et al.,
2012; Monnerat et al., 2016

HMGB1 Pro-
inflammatory

Hyperglycemia induces ↑HMGB1
expression and NF-κB activity in the
heart. STZ-induced diabetic mice with
HMGB1 silencing: ameliorated LV
dysfunction and remodeling

↑Serum HMGB1 in patients with
diabetes with HF; HMGB1 levels
inversely related to LV ejection fraction
in HF patients with or without diabetes

Volz et al., 2010; Wang
et al., 2011; Wang W. et al.,
2014

Chemokines MCP-1 Stimulates
monocytes and
macrophages

MCP-1 induces glucose-mediated cell
death in isolated cardiomyocytes via
oxidative and endoplasmic-reticulum
stress

↑Plasma MCP-1 level in T2DM patients
associated with CV-associated
mortality

Piemonti et al., 2009;
Younce et al., 2010

MMP-2 ECM
degradation

STZ-induced diabetic mice: ↓MMP-2
and ↑Smad7 expression contribute to
cardiac fibrosis

↑Serum MMP-2 level in patients with
and without diabetes; not an
independent risk factor

Van Linthout et al., 2008;
Kobusiak-Prokopowicz
et al., 2018

Receptors CCR2 Macrophage
recruitment

CCR2 KO in STZ-induced diabetic and
CCR2 inhibition in db/db mice:
improved cardiac dysfunction,
↓oxidative stress, and M1 macrophage
infiltration along with reversing
hyperglycemia

↑CCR2 expression of circulating
monocytes associated with ↑arterial
wall inflammation in patients with high
risk of CV event, including patients with
diabetes

Verweij et al., 2018; Tan
et al., 2019

RAGE Pro-
inflammatory

RAGE KO mice fed a high-fat diet:
↓Cardiac hypertrophy, inflammation,
and collagen accumulation due to
↓oxidative stress

↑Serum cRAGE and HMGB1 levels in
diabetic HF patients vs. non-diabetic
HF patients; associated with
development and severity of HF

Tikellis et al., 2008; Wang
et al., 2011

TLR (4,2) Pro-
inflammatory

STZ-induced diabetic mice with TLR4
silencing: ↓fibrosis and expression of
TGFβ and adhesion molecules,
preserves cardiac contractility
Stimulation of TLR-2 in HL-1
cardiomyocytes ↑NF-κB activation,
thereby decreasing contractility

TLR4 mutation confers protection
against T2DM, but not against ischemic
heart diseases in diabetic and
non-diabetic patients

Boyd et al., 2006;
Manolakis et al., 2011;
Zhang et al., 2020

CCR2, C-C motif chemokine receptor 2; cRAGE, cleaved RAGE; CRP, C-reactive protein; CV, cardiovascular; ECM, extracellular matrix; HF, heart failure; HMGB1, high-
mobility group box protein 1; IL, interleukin; KO, knockout; LV, left ventricle; MCP-1, monocyte chemoattractant protein-1; MMP-2, matrix metalloproteinase-2; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells; RAGE, receptor for advanced glycation end products; STZ, streptozotocin; TGFβ, transforming growth
factor beta; TLR, Toll-like receptor; TNFα, tumor necrosis factor alpha; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; ↑, increased; ↓, decreased.
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end products (AGEs) (Palomer et al., 2013). NF-κB activation
contributes to myocardial fibrosis, hypertrophy, apoptosis, and
ventricular dysfunction (Frati et al., 2017). On the other hand,
NF-κB inhibition by IκB-α overexpression showed reduced
RAAS activation and preserved calcium handling in STZ-
induced diabetic heart (Thomas et al., 2014). ROS production in
response to hyperlipidemia, hyperglycemia, and mitochondrial
dysfunction also triggers NF-κB signaling in the diabetic heart
via degradation of IκB-α (Baker et al., 2011) and downregulation
of nuclear factor erythroid 2-related factor 2 (Nrf-2) following
Erk1/2 activation (Tan et al., 2011). Moreover, elevated DAMP
release from isolated cardiomyocytes, macrophages, fibroblasts,
and endothelial cells under diabetic conditions (Frati et al.,
2017) results in NF-κB activation accompanied by increase in
cytokines (Wang W. et al., 2014). In T1DM, NF-κB activity is
increased following hyperglycemia, oxidative stress-induced JNK
phosphorylation (Pan et al., 2014), and reduction in insulin-
induced GSK-3β phosphorylation (Wang et al., 2009; Ge et al.,
2019), thereby augmenting lipid accumulation, inflammation,
and fibrosis in the heart. Furthermore, high glucose-mediated
post-translational modifications in the p65 subunit of NF-κB
alter its activity. For example, p65 O-GlcNAcylation enhances
NF-κB activation by decreasing its binding to IκB-α (Yang et al.,
2008); on the contrary, sirtuin 1-mediated p65 deacetylation at
a lysine site (Lys310) suppresses NF-κB transcriptional activity
(Planavila et al., 2011), thereby modulating cardiac inflammation.

Roles of the Receptor for AGE- and
TLR-Mediated Cardiac Inflammation
Advanced glycation end products are generated from non-
enzymatic glycation and oxidation of proteins or lipids in
response to metabolic stress (Ahmed, 2005). The receptor
for AGEs (RAGEs) binds multiple ligands, including AGEs
and DAMPs (Ramasamy et al., 2011), contributing to the
generation of pro-inflammatory cytokines and oxidative stress
(Koyama et al., 2008). Elevated AGE formation is correlated with
collagen accumulation, myocardial fibrosis, impaired calcium
homeostasis, and mitochondrial dysfunction in the diabetic heart
(Bidasee et al., 2003). Moreover, Toll-like receptors (TLRs) are
essential to activate innate immunity by responding to PAMPs
or DAMPs and participate in adaptive immunity by regulating
the activation of circulating lymphocytes (Mann, 2011). Increased
free fatty acid (FFA) levels in diabetes promote inflammation via
AGE production and activation of TLR4 (Kim et al., 2007) and
protein kinase C (PKC) (Itani et al., 2002), resulting in increased
NF-κB activity. Furthermore, TLR4-mediated inflammatory
signaling is apparent in several animal models of T1DM (Tan
et al., 2020), such that genetic ablation of TLR4 reduced cardiac
inflammation and improved cardiac function (Dong et al., 2012).
The hetero-dimerization of RAGE and TLR stimulated pro-IL-
1β and pro-IL-18, whereas impediment of RAGE reduced the
cardiac inflammatory response in db/db mice and improved
diastolic function (Nielsen et al., 2009). Interestingly, the
interaction of AGEs with RAGE also triggers NF-κB activation,
further transcriptionally regulating RAGE expression in a
positive feedback loop (Gao et al., 2008) and aggravating

cardiac inflammation. Hyperglycemia-induced AGEs can also
directly bind to myeloid differentiation 2 (MD2)–TLR4 receptor
complex, initiating inflammatory pathways and consequent
myocardial injury, contributing to cardiac dysfunction in type 1
and type 2 diabetic mice (Wang et al., 2020).

Involvement of NLRP3 Inflammasome in
Cardiac Inflammation
Inflammasome stimulation is a two-step process requiring
priming by inflammatory stimuli. The first step is NF-κB
transcriptional upregulation of NLRP3 and pro-IL-1β. The
second step involves DAMP-mediated inflammasome assembly,
causing oxidative stress and inflammation-induced programmed
cell death, also known as pyroptosis (Luo et al., 2017). In diabetes,
mitochondrial damage has been detected as an important
contributor to inflammasome assembly through the release of
mitochondrial DNA and ROS. Moreover, excessive cytokines,
in turn, exacerbate mitochondrial dysfunction in a positive
feedback loop (Luo et al., 2014; Schilling, 2015). Interestingly,
inflammasome expression is markedly increased in rodent
diabetic hearts via oxidative stress-dependent thioredoxin-
interacting/inhibiting protein (TXNIP) activation, showing
elevated caspase-1 and IL-1β activation (Stienstra et al., 2011).
This pro-inflammatory mechanism is absent in high-fat diet-
fed mice with NLRP3 deficiency (Luo et al., 2014). NLRP3
inflammasome cleaves caspase-1 from pro-caspase 1, which is
involved in the maturation of inflammatory cytokines, such as IL-
1β, and pyroptosis-triggered fibrosis in DCM (Peiró et al., 2017).
IL-1β triggers multiple signaling pathways through its interaction
with the IL-1β receptor on cardiomyocytes in diabetic conditions
(Dinarello, 2009). For instance, in T1DM, IL-1β promoted
C/EBP homologous protein (CHOP)-dependent cell death and
cardiac dysfunction, which is attenuated by the administration of
recombinant IL-1 receptor antagonist (Liu et al., 2015). Similarly,
pharmacological inhibition of caspase-1 attenuated inflammation
and cardiac dysfunction in STZ-injected rats (Westermann et al.,
2007a). The schematic representation of inflammatory signaling
in DCM is shown in Figure 1.

THERAPEUTIC STRATEGIES FOR
PREVENTION OF DCM BY TARGETING
INFLAMMATION

Given the intimate association between inflammation and DCM,
therapeutic interventions targeting myocardial inflammation are
essential to mitigate the onset and progression of HF in patients
with DM. First, the inflammatory cascade instigators, such
as hyperglycemia, hyperlipidemia, oxidative stress, and insulin
resistance, continuously aggravate inflammation following the
onset of DCM. Therefore, managing these instigators could
aid to regulate inflammation and prevent HF development.
Second, the inflammatory signaling processes can be modulated
directly to prevent cardiac dysfunction in diabetes. For
instance, suppression of inflammation is achieved by inhibition
of pro-inflammatory cytokines, chemokines, and DAMPs;
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FIGURE 1 | Overview of signaling mechanisms underlying myocardial inflammation in diabetes mellitus. Diabetic milieu comprises of elevated leukocyte homing in
the myocardium. Pathological stresses such as hyperglycemia, hyperlipidemia, elevated RAAS, and AGEs induce secretion of pro-inflammatory molecules, adhesion
molecules, and DAMPs from the leukocytes. Moreover, these instigators also induce ROS-mediated endothelial dysfunction contributing to cardiac remodeling.
Secreted pro-inflammatory cytokines bind to the receptors, such as TLR-4–MyD88 complex, RAGE, and IL-1R, and initiate their intracellular signaling pathways.
These pathways activate NF-κB, resulting in transcriptional upregulation of inflammatory cytokines and NLRP3 inflammasome. Following NF-κB activation and
oxidative stress, inflammasome assembly leads to maturation of IL-1β and IL-18, along with induction of pyroptosis. Meanwhile, stressed or injured cardiomyocytes
release pro-inflammatory cytokines and DAMPs, contributing to aggravated inflammatory cascades. Chronic inflammatory cytokine-induced intracellular response
leads to pathological cardiac remodeling and cardiac dysfunction. AGE, advanced end glycation products; DAMP, danger-associated molecular pattern; IL,
interleukin; IL-1R, interleukin 1 beta receptor; MD2, myeloid differentiation 2; MyD88, myeloid differentiation primary response 88; NLRP3, NLR family pyrin domain
containing 3; NETosis, neutrophil-mediated cell death; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NO, nitric oxide; PKG, protein kinase
G; RAAS, renin–angiotensin–aldosterone system; RAGE, receptor for AGEs; TGFβ, transforming growth factor beta; TLR-4, Toll-like receptor 4; TNFα, tumor
necrosis factor alpha; TXNIP, thioredoxin-interacting/inhibiting protein (created with Biorender.com).

macrophage polarization toward M2 phenotype; moderation of
inflammasome activity; and restraint of leukocyte recruitment.

Anti-diabetic Drugs
Insulin Sensitizers
Current anti-diabetic therapies improve glycemic control and
insulin sensitivity in patients with diabetes and thereby indirectly
manage systemic and myocardial inflammation (Reis et al.,
2012). Abrogation of cardiac insulin resistance is shown
to mitigate inflammatory cardiac dysfunction by decreased
production of pro-inflammatory adhesion molecules, C-reactive
protein (CRP), and IL-6 (Dandona et al., 2009; Al-Huseini
et al., 2019). Metformin, the first-line anti-diabetic drug in
clinics, promotes glucose homeostasis and improves impaired
heart function in patients with diabetes by blocking pro-
inflammatory markers such as CCL11 (Dludla et al., 2020).

Notably, metformin also exhibits its anti-inflammatory effects
by inhibiting NF-κB (Hattori et al., 2006), reducing CRP
production from vessel walls (Li et al., 2009), and blocking
monocyte differentiation into macrophages (Vasamsetti et al.,
2015), irrespective of diabetic status. However, the mechanisms
of metformin’s anti-inflammatory action in DCM require
further attention.

Peroxisome proliferator-activated receptor-γ (PPARγ) is a
member of the PPAR nuclear hormone receptor superfamily,
and its activation promotes pleiotropic biological effects such
as reduced serum glucose and regulated cardiac metabolism in
DM (Liu et al., 2016). The use of a PPARγ agonist, rosiglitazone,
has shown anti-inflammatory effects in T2DM patients resulting
in improved diastolic function (von Bibra et al., 2008). In
contrast, other insulin-sensitizing agents and thiazolidinediones
present a neutral or deleterious effect on cardiac structure and
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function in T2DM patients (Naka et al., 2010), making their
anti-inflammatory role unsubstantiated in DCM.

Sodium Glucose Co-transporter 2 Inhibitors
Sodium–glucose co-transporter 2 (SGLT2) inhibitors (SGLT2is)
promote glycosuria by inhibiting SGLT2 in nephrons and thereby
improve glycemic control (Kenny and Abel, 2019). More recently,
SGLT2is have gained attention due to their ability to reduce HF
progression in patients irrelevant of their diabetic status (Natali
et al., 2017; Zannad et al., 2020). In diabetic patients, SGLT2is
likely potentiate their cardioprotective effects through multiple
actions, including amelioration of inflammation (Scheen, 2020).
SGLT2is are able to reduce endothelial inflammation in T1DM
mice (Zhou et al., 2018), decrease cardiac macrophage infiltration
in pre-diabetic rats (Kusaka et al., 2016), downregulate cardiac
cytokine expression (Radlinger et al., 2020), and attenuate
inflammasome activation (Ye et al., 2017), all of which result in
repressed secretion of pro-inflammatory cytokines and improved
cardiac function in T2DM genetic models (Aragon-Herrera
et al., 2019). Furthermore, STZ-injected rats displayed decreased
cardiac expression of NLRP3, caspase-1, and IL-1β following
SGLT2i (empagliflozin) treatment (Trang et al., 2021). SGLT2is
are suggested to alleviate cardiac inflammation independent
of their anti-hyperglycemic effect observed via reducing TLR4
and TNFα in angiotensin-II-induced cardiomyopathy in db/db
mice (Arow et al., 2020). Taken together, these studies suggest
that SGLT2is exert anti-inflammatory effects that positively
influence cardiac function in rodent models of DM; however, the
mechanistic link remains poorly defined. Of note, the majority
of data have been obtained from T1DM pre-clinical models;
therefore, the role of anti-diabetic drugs on cardiac inflammation
in T2DM needs further exploration.

Dipeptidyl Peptidase 4 Inhibition and Glucagon-Like
Peptide-1 Agonists
Dipeptidyl peptidase 4 (DPP-4) inhibitors increase incretin
hormone, glucagon-like peptide 1 (GLP-1) levels exerting
beneficial actions on glucose homeostasis and insulin sensitivity.
Both DPP-4 inhibitors and GLP-1 agonists are used in clinics
as anti-diabetic therapies; however, their role in protecting
against cardiac dysfunction in diabetes remains uncertain.
Linagliptin, a DPP-4 inhibitor, prevented cardiac dysfunction by
attenuating inflammasome activation in db/db mice following
MI. Moreover, in vitro experiments displayed a lower TLR4
in human cardiomyocytes and cardiofibroblasts following high-
glucose stimulation and linagliptin treatment. Interestingly, this
protective mechanism was absent following exenatide exposure,
which is a GLP-1 analog, suggesting that DPP-4 inhibitors
might have a direct anti-inflammatory effect regardless of
GLP-1 levels (Birnbaum et al., 2019). Contrastingly, exendin-
4, another GLP-1 analog, displayed cardioprotective effects
via enhancing AMP-activated kinase (AMPK) phosphorylation
following hyperglycemia in high-fat diet-fed mice (Wei et al.,
2019). Also, DPP-4 inhibition reduces monocyte recruitment to
the myocardium (Shah et al., 2011) and suppresses the activation
of inflammatory proteases, thereafter preventing adverse cardiac
remodeling (Kolpakov et al., 2019) in experimental models of

DCM (Zhong et al., 2015). On the contrary, DPP-4 inhibitors
also increase endogenous stromal cell-derived factor (SDF)
(Packer, 2018), a chemokine emanating from adipose tissue,
which promotes inflammation-induced fibrosis in the diabetic
myocardium, albeit diminished by SDF receptor (CXCR4)
antagonism (Chu et al., 2015). These conflicting results
require further investigation to establish their anti-inflammatory
potentials in DCM.

Anti-inflammatory Therapies
Direct immune modulation can also be beneficial in the
management of DM’s chronic inflammatory state. In T1DM mice,
administration of FTY720 inhibited cardiac fibrosis by regulating
T-cell infiltration (Abdullah et al., 2016). Nonetheless, targeting
a single inflammatory mechanism might provoke a secondary
compensatory inflammatory response. For instance, anti-TNFα

therapy (Chung et al., 2003) or IL1β suppression (Torre-Amione
et al., 2008) aggravated clinical outcomes in patients administered
with the highest doses, owing to their inadvertent or unknown
effects such as intrusion of homeostatic inflammation and agonist
activity of the antagonists (Mann, 2015).

Immunosuppressants such as methotrexate improved
myocardial inflammation via reduced expression of macrophages
in T1DM rats (Cavalcante Maranhao et al., 2017). Methotrexate
also reduced cardiovascular events in patients, though research
is limited to patients with rheumatoid arthritis (Baghdadi, 2020).
Lastly, adjunct anti-inflammatory therapies, such as statins and
canakinumab, are suggested to reduce the burden of DCM,
possibly by alleviating IL1β-dependent insulin resistance in
metabolic disorders (Gao and Ye, 2012; Liberale et al., 2019).
Overall, the current anti-inflammatory therapies seem promising
yet require further exploration in the setting of DCM.

Natural Compounds
The study of anti-inflammatory effects of natural compounds
in DCM is on the rise in pre-clinical and clinical research.
An adequate diet has demonstrated a significant implication
for maintaining cardiac function in patients with diabetes
(Kozlowska, 2017; Allen et al., 2019). For instance, quercetin,
a flavonoid, lowers systolic blood pressure in type 2 diabetic
women without a positive effect on inflammatory biomarkers
contradictory to pre-clinical data (Rivera et al., 2008; Roslan
et al., 2017), possibly due to small sample size recruitment
(Zahedi et al., 2013). However, administration of curcumin,
a turmeric root extract, lowers circulating pro-inflammatory
markers in patients with diabetes-induced organ dysfunction
(Gupta et al., 2013). Yet, its specific role in DCM patients remains
to be elucidated.

Leukocyte infiltration is one of the early inflammatory events
in DCM before the advent of clinical outcomes. There is
compelling evidence that certain natural compounds such as
isoliquiritigenin (ISL) and ginger extract can reduce macrophage
infiltration via suppressed MAPK signaling (Gu et al., 2020) and
reduced TGFβ expression (Abdi et al., 2021), respectively, in
T1DM. However, only ISL preserved cardiac function; the ginger
extract majorly prevented myocardial structural damage.
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Certain natural compounds can ameliorate cardiac
inflammation by directly modulating inflammatory responses.
Probiotics, fungi, and medicinal plants exert an anti-
inflammatory action via downregulation of TLR4 expression
(Chiang et al., 2021) and reduction of IL-1β, TNFα, MCP-1,
and TGFβ (Wang et al., 2018; Shaher et al., 2020), subsequently
preserving cardiac structure and function in T1DM rodents.
Moreover, hederagenin, a plant extract, improves cardiac
function by diminishing secretion of pro-inflammatory cytokines
and decreasing NF-κB transcriptional activity in db/db mice (Li
Y. et al., 2019). Also, PPARγ agonism by crocin, a carotenoid
compound found in saffron, reduces TNFα and IL-6 levels in
diabetic rats following MI (Badavi et al., 2020). Similar anti-
inflammatory effects were observed in clinical trials involving
type 2 patients, which is likely due to the alleviation of insulin
resistance and restoration of glycemic control; however, further
research is warranted (Behrouz et al., 2020).

The anti-inflammatory effects of natural compounds are
multifold, though varied among cell types. For instance,
syringaresinol (SYR), a cereal extract, suppressed both Kelch-
like ECH-associated protein 1 (KEAP1)/Nrf2 and TGFβ/Smad
pathway in neonatal cardiomyocytes, resulting in reduced
cardiac macrophage density and improved cardiac function (Li
et al., 2020). Interestingly, SYR can also downregulate NF-
κB activation via p38 stimulation in macrophages in vitro,
thereby reducing inflammation indirectly (Bajpai et al., 2018).
Some pleiotropic agents, such as curcumin (Zheng et al.,
2018), sophocarpine (Zou et al., 2019), and luteolin (Li L.
et al., 2019), ameliorate DCM by suppressing NF-κB signaling
pathway and the subsequent secretion of pro-inflammatory
molecules. In addition, curcumin analogs, C66 and J17,
have both direct and indirect anti-inflammatory roles. C66
lowers serum and cardiac triglyceride levels and inhibits JNK
signaling (Wang Y. et al., 2014). Moreover, J17 protects
diabetic mice and H9c2 cardiomyoblasts against high glucose-
induced inflammation by inhibition of p38 signaling pathway
(Chen et al., 2017). Interestingly, both SYR-activated p38 in
macrophages (Bajpai et al., 2018) and curcumin-inhibited p38
in cardiomyocytes modulate cardiac inflammation in diabetes.

These opposing mechanistic effects encapsulate the complexity
and challenge of targeting inflammatory mechanisms in DCM.
Overall, these natural compounds effectuate anti-inflammatory
properties in the heart, yet their mechanistic role in different
cardiac cell types, long-term implications, and clinical relevance
remain undetermined.

CONCLUSION

Myocardial inflammation is a significant causative factor in
diabetes-induced cardiac dysfunction. Positive feedback loops
between the defective cardiomyocytes and harmful inflammatory
responses lead to excessive pro-inflammatory cytokines and
the recruitment of inflammatory cells in the myocardium,
resulting in cardiac dysfunction. Clinical and pre-clinical studies
demonstrate that mitigation of myocardial inflammation is
closely linked to preserved cardiac function. Therefore, further
efforts should be made to better understand the molecular
mechanisms whereby cardiac inflammation contributes to DCM
progression. Furthermore, a notable amount of research is still
required to evaluate and develop therapeutic strategies targeting
myocardial inflammation in diabetes.
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