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Background: Histological grade is one of the most important prognostic factors of
endometrial carcinoma (EC) and when selecting preoperative treatment methods,
conducting accurate preoperative grading is of great significance.

Purpose: To develop a magnetic resonance imaging (MRI) radiomics-based nomogram
for discriminating histological grades 1 and 2 (G1 and G2) from grade 3 (G3) EC.

Methods: This was a retrospective study included 358 patients with histologically graded
EC, stratified as 250 patients in a training cohort and 108 patients in a test cohort. T2-
weighted imaging (T2WI), diffusion-weighted imaging (DWI) and a dynamic contrast-
enhanced three-dimensional volumetric interpolated breath-hold examination (3D-VIBE)
were performed via 1.5-Tesla MRI. To establish ModelADC, the region of interest was
manually outlined on the EC in an apparent diffusion coefficient (ADC) map. To establish
the radiomic model (ModelR), EC was manually segmented by two independent
radiologists and radiomic features were extracted. The Radscore was calculated based
on the least absolute shrinkage and selection operator regression. We combined the
Radscore with carbohydrate antigen 125 (CA125) and body mass index (BMI) to
construct a mixed model (ModelM) and develop the predictive nomogram. Receiver
operator characteristic (ROC) and calibration curves were assessed to verify the
prediction ability and the degree of consistency, respectively.

Results: All three models showed some amount of predictive ability. Using ADC alone to
predict the histological risk of EC was limited in both the cohort [area under the curve
(AUC), 0.715; 95% confidence interval (CI), 0.6509–0.7792] and test cohorts (AUC,
0.621; 95% CI, 0.515–0.726). In comparison with ModelADC, the discrimination ability of
ModelR showed improvement (Delong test, P < 0.0001 for both the training and test
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cohorts). ModelM, established based on the combination of radiomic and clinical
indicators, showed the best level of predictive ability in both the training (AUC, 0.925;
95% CI, 0.898–0.951) and test cohorts (AUC, 0.915; 95% CI, 0.863–0.968). Calibration
curves suggested a good fit for probability (Hosmer–Lemeshow test, P = 0.673 and P =
0.804 for the training and test cohorts, respectively).

Conclusion: The described radiomics-based nomogram can be used to predict EC
histological classification preoperatively.
Keywords: endometrial carcinoma, histological grade, radiomics, apparent diffusion coefficient, nomogram
INTRODUCTION

Endometrial carcinoma (EC) ranks sixth in terms of both
morbidity and mortality amongst malignancies that affect
women worldwide, with 320,000 new cases and 90,000 deaths
occurring per year (1). Traditionally, the incidence of the disease
has been higher amongst postmenopausal women, although,
more recently, a trend of increasing disease rates amongst
younger women has been observed (2). Studies to date have
shown that, in addition to the tumor stage, the pathological grade
of the tumor is also one important factor influencing its
treatment. Conservative therapy with progestins can be
adopted only when the disease is confined to the endometrium
and the cancer is a well-differentiated [histological grade 1 (G1)]
endometrioid adenocarcinoma (3). Less than 1.4% of low-risk
EC cases [G1 and histological grade 2 (G2)] exhibited lymph
node metastasis, while the rate of lymph node metastasis
increases to nearly 6.4% amongst high-risk EC cases
[histological grade 3 (G3)] (4). The 2009 International
Federation of Obstetrics and Gynecology (FIGO) staging
system did not consider the role of histopathological types in
patient surgical plan and prognosis. Therefore, the system is
limited in risk assessment for some non-endometrioid EC (5). To
overcome this deficiency, the 2014 FIGO guidelines were revised
to suggest that non-endometrioid EC should be treated as G3
tumors with para-aortic lymph node dissection (6). In 2015, the
European Society of Medical Oncology also recommended that
lymph node dissection should not be performed in low-risk
patients (G1 or G2, with muscular invasion ≤50%), while
systematic pelvic and para-aortic lymph node dissection should
be recommended in high-risk patients (G3, with muscular
invasion >50%) (7). While dilatation and curettage (D&C) or
hysteroscopy can suggest the histological grade before surgery,
such invasive examinations are painful, carry risks of bleeding
and infection and still exhibit a certain probability of missed
diagnosis or misdiagnosis; thus, the final accurate degree of
tumor pathological differentiation is determined surgically (8–
10). In addition, more importantly, the result of D&C is greatly
affected by the operator’s experience which may result in an
inadequate surgical resection. Developing non-invasive methods
to accurately determine tumor grade before surgery would be of
great significance, helping to alleviate patients’ pain, facilitate
surgical planning in advance and reduce rates of under-
and overtreatment.
2

While conventional magnetic resonance imaging (MRI) can
assist with determining the presence and depth of the muscular
infiltration of EC, its capacity to predict the preoperative
histological grade of a tumor is limited (11). In the past 10
years, advances in radiomic technology have made it possible to
deeply explore the biological nature of images and make up for the
deficiency of subjective observation. Through a large amount of
data extracted from medical images and high-throughput
quantitative analysis, high-fidelity target information can be
compiled to comprehensively evaluate tumor heterogeneity in
space and time (12). An increasing number of scholars are
paying attention to imaging radiomics, which has been widely
used in the preoperative diagnosis, grading, treatment sensitivity
assessment and postoperative survival prediction in patients with
brain stromal tumors, lung cancer, colorectal cancer and
nasopharyngeal cancer, thus accelerating clinical and
translational research in oncology (13–16). Previous researchers
extracted and analysed the radiomic features of MRI unenhanced
as well as enhancedMRI and postulated that the omics parameters
could be used to accurately assess both lymph node metastasis and
lymph vascular space invasion (LVSI) in EC, supporting
radiologists’ efforts in making a correct diagnosis (17, 18).
Diffusion weighted imaging (DWI) is a functional imaging
technique that has been studied for histological assessment of
tumors and there have been studies combining the role of DWI
and diffusion tensor imaging (DTI) for preoperative prediction of
the tumor pathology (19). In the present study, we extracted and
selected radiomic features from T2-weighted imaging (T2WI);
ADCmapping and arterial, venous and delayed dynamic contrast-
enhanced (DCE)-T1WI images; established a nomogram by
combining carbohydrate antigen 125 (CA125) and body mass
index (BMI) and compared such with DWI-based ADC model.
With this, we ultimately aimed to establish a more accurate
prediction model for EC histological grading that can provide
support for treatment method selection.
MATERIALS AND METHODS

Subjects
This retrospective study that incorporates anonymous data was
approved by the Ethics Committee of our hospital and the need for
informed consent was waived. A total of 421 cases of EC diagnosed
by pathology assessments after surgical resection seen at our
June 2021 | Volume 11 | Article 582495
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hospital from January 2010 to January 2020 were identified as
initially eligible for inclusion. All patients underwent MRI plain and
DCE assessments before surgery. All patients with EC underwent
postoperative tissue differentiation classification (i.e., stratification as
G1, G2 or G3, as detailed below). The inclusion criteria for this
study were as follows: (1) having undergone MRI within two weeks
before tumor resection and (2) did not receive chemoradiotherapy
or targeted therapy before MRI. The exclusion criteria were: (1)
presence of endometriosis or submucosal myoma regardless of
whether the parameter measurement was affected, (2) presence of
other malignant tumors and (3) presence of serious MRI image
artefacts affecting the ability to perform parameter measurement.
Finally, 358 patients were included in this study and were divided
into the training (n = 250) and test (n = 108) cohorts according to a
randomisation method at a ratio of 0.7 to 0.3 (Figure 1).

MRI Examination
In this study, pelvic MRI scans were acquired on a 1.5-Tesla
Siemens Avanto MRI system (Siemens, Munich, Germany)
equipped with an eight-channel body coil. Patients were asked to
fast 4 to 6 hours prior to imaging and void before the scan to reduce
motion artefacts. The scanning area ranged from the antero-
superior iliac spine to the symphysis pubis. The MRI protocol
Frontiers in Oncology | www.frontiersin.org 3
included the pelvic sagittal, coronal, and axial oblique views
(perpendicular to the long axis of the uterus). The scanning
sequence included the sagittal, coronal, and axial fat-saturation
T2WI; axial DWI and axial three-dimensional (3D) volumetric
interpolated breath-hold examination (3D-VIBE); sagittal 3D-
VIBE. DWI was acquired by echo-planar imaging (b-value = 0,
800 s/mm2). During the axial and sagittal 3D-VIBE scan, the patient
was asked to hold their breath at the end of the exhaled condition to
reduce the collection of breathing movement artefacts. Before the
contrast agent gadolinium diethylenetriamine penta-acetic acid
(Gd-DTPA; Bayer Healthcare Pharmaceuticals, Berlin, Germany)
was injected, the axial mask image was scanned; thereafter, Gd-
DTPA was injected into the cubital vein using a high-pressure
syringe (Spectris MR injection system, Medrad Inc., Warrendale,
PA, USA) at a dosage of 0.2 mmol/L/kg. Axial images in the arterial,
venous and delayed phases were collected at 25, 60 and 180 seconds
after the injection of Gd-DTPA. The sagittal 3D-VIBE images were
collected after the collection of images in the delayed phases. The
specific MRI parameters are shown in Table 1.

Histological Diagnosis
EC is primarily graded by the tumor architecture, with those
having 5% or less of solid growth considered to be G1 tumors,
FIGURE 1 | Recruitment pathway for patients in this study. EC, endometrial cancer; Low-risk= G1+G2, high-risk= G3 and non-endometrial carcinoma.
TABLE 1 | MRI protocol for GIST.

Sequences Parameters MRI Sequences

Sagittal-T2WI Coronal-T2WI Axial-T2WI Axial-DWI Axial-3D-VIBE Sagittal-3D-VIBE

Fat saturation Yes Yes Yes Yes Yes Yes
TR/TE (msec) 4340/92 4340/92 4340/92 75/2.38,4.79 4.44/2.16 4.44/2.16
Angle (°) 150 150 150 70 10 10
Slice thickness (mm) 4 4 4 4 3 3
FOV (mm2) 280 280 280 280 280 280
Voxel Size (mm3) 0.6×0.6×4.0 0.6×0.6×4.0 0.6×0.6×4.0 1.6×1.6×4.0 0.6×0.6×3.0 0.6×0.6×3.0
Interslice gap 10% 10% 10% 10% 0 0
Delay (s) 0, 25, 60, 180
Scan time (s) 145 145 145 130 17 17
b-Value (s/mm2) 0, 800
June 2021 | Volume 1
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those with between 6% and 50% of solid growth considered to be
G2 tumor and those with more than 50% of solid growth
considered to be G3 tumors (20, 21). G1 and G2 endometrioid
adenocarcinomas were classified as low-risk EC, while G3 or
non-endometrioid carcinomas (e.g., clear cell adenocarcinoma,
serous adenocarcinoma) were classified as high-risk EC,
suggesting a poorer prognosis (22).

Clinical Data
The clinical indicators in this study for analysis were age, BMI, and
serumCA125 levels. In clinical practice, BMI is quickly calculated to
make an initial assessment of whether a patient is overweight or
obese and people focus more on the presence or absence of an
abnormal BMI, rather than its specific value. Therefore, BMI
was converted into ranked data in this study. Normal weight was
suggested by a BMI of 18.5–24 kg/m2, overweightness by a BMI of
24–28 kg/m2 and obesity was by a BMI of greater than 28 kg/m2.
Low-weight patients with BMIs of less than 18.5 kg/m2 were not
included in this study as this may have been due to cachexia caused
by malignant tumors. The CA125 level was detected by
chemiluminescence microparticle immunoassay (Cobas 8000
E602; Roche Holding AG, Basel, Switzerland). Univariate analysis,
using a chi-squared test or student’s t test respectively, was
conducted to assess differences in BMI and CA125 between the
two groups. The analysis was performed in the X&Y software (X&Y
Solutions, Inc., Boston, MA, USA).

3D Segmentation and Radiomic Feature
Extraction
First, images in Digital Imaging and Communications in Medicine
format were downloaded from the PACS system of our hospital for
Frontiers in Oncology | www.frontiersin.org 4
analysis. Subsequently, the ITK-SNAP software (https://www.
itksnap.org, version 3.6.0) was applied by two radiologists with
five years of pelvic MRI diagnosis experience each who were not
aware of the histological grading and clinical data of the tumor
under review. The boundary of each tumor was delineated layer by
layer on each image, considering necrosis, cystic lesions and
bleeding areas inside the tumor during the delineation and 3D
segmented tumor images were finally obtained. We then saved the
segmented images and import them into the Pyradiomics toolkit
(https://www.pypi.org/project/pyradiomics/, version 3.0), which
was designed to facilitate the extraction of radiomic features
running in the Python environment (https://www.python.org,
version 2.7.0). The extracted radiomic features included first-order
features (n = 18), grey-level co-occurrence matrix features (n = 22),
grey-level dependence matrix features (n = 14), grey-level run-
length matrix features (n = 16), grey-level size-zone matrix features
(n = 16) and shape-based features (n = 14), for a total of 100
radiomic parameters. Figure 2 presents a T2WI image of a patient
with a low-risk EC profile as an example and describes the
extraction process of the relevant radiomic features. More
information about the texture feature-extraction methodology can
be found in Supplementary Method S1. Next, the intra-class
correlation coefficient (ICC) of the extracted radiomic parameters
assigned by the two radiologists were calculated to evaluate the
agreement of the data. An ICC of greater than 0.75 was considered
to suggest good agreement.

Statistical Analyses
Establishment of the ADC Model
On the postprocessing workstation of the Siemens MRI system
(Leonardo 3682), ADC values of tumor parenchyma were
A B DC

FIGURE 2 | Radiomics workflow of model construction. (A) MR images segmentation. First, the boundary of tumor was delineated layer by layer on each image,
considering necrosis, cystic lesions and bleeding areas inside the tumor during the delineation and 3D segmented tumor images were finally obtained using ITK-
SNAP. (B) Radiomics features extraction. According to the segmentation image, a total of 100 parameters of 6 types were extracted from each set of images.
(C) Radiomics features selection. After the parameters were normalized and dimensionality reduced, the characteristic parameters were selected and classified by
LASSO regression. (D) Model establishment. Combined with two clinical indicators of location and size, nomogram was developed to establish a preoperative
evaluation model, and its diagnostic efficacy was evaluated by ROC analysis.
June 2021 | Volume 11 | Article 582495

https://www.itksnap.org
https://www.itksnap.org
https://www.pypi.org/project/pyradiomics/
https://www.python.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zheng et al. Radiomics-Based Model in EC
manually measured by outlining circular regions of interest
(ROI). Based on the actual size of tumors, the size range of
ROI was 2.3cm2 to 14.1cm2 and the average was 6.1cm2

(Supplementary Figure 1). Special attention was given to
avoid areas of cystic degeneration, necrosis and bleeding while
including as much tumor parenchyma as possible. The above
ADC value measurements were performed by the two
radiologists mentioned above in section 2.5 of Materials and
methods. Intra-group correlation coefficients (ICC) of the
measurements were calculated after the procedure. An ICC of
greater than 0.75 was considered to suggest good agreement.
Univariate analysis, using a student’s t test, where appropriate,
was conducted to assess differences in ADC values between the
two groups. A binary logistic regression analysis was
subsequently applied to build the ADC value model. The
analysis was performed in the X&Y software.

Selection of Radiomic Features and Establishment
of the Radiomic Model
The ‘normalise’ module in the FeAture Explore program (FAE,
https://github.com/salan668/FAE, version 0.2.2) on Python
(https://www.python.org; version 3.5.4) was used to normalise
all radiomic parameters and thus eliminate the impact of the
magnitude difference between different parameters to make the
subsequent analysis results more reliable. Specifically, ‘normalise
to unit with 0-centre’ was used to normalize the data in order to
reduce large differences in the values of the different radiomics
characteristics. Then, Pearson’s correlation coefficient was
calculated. When the coefficient is larger than the threshold
value (currently the default is 0.86), one of them is removed
randomly. Through this method, dimensionality was reduced
and similar characteristic parameters were removed. The
methods of normalisation and dimensionality reduction
adopted in this study are reported in the Supplementary
materials (Supplementary Method S2). Subsequently, the least
absolute shrinkage and selection operator (LASSO) regression
module provided by the X&Y software based on the R software
(https://www.r-project.org, version 3.4.3; The R Foundation for
Statistical Computing, Vienna, Austria) was used for selecting
the radiomic features most closely related to tumor histological
grading. The complexity of LASSO regression model is
controlled by the parameter l. The larger the l, the more
refined the model is. l is screened by 10 folds cross-validation.
In the cross-validation method, the data will be divided into 10
equal fractions. First, the whole data will be fit and lambda
sequence will be generated. Then, one fraction will be excluded
each time, and the remaining nine fractions will be used for
validation, and the average and standard deviation of any error
acquired in 10 validations will be calculated. Finally, two models
are produced. One is based on lmin, that is, l when the mean
value of the error is the minimum; the other is based on l1-SE,
that is, the maximum lambda of the error mean within 1
standard error of the minimum value. In this study, we chose
the latter as the final model, because the latter included fewer
radiomic parameters and the model was more refined. Based on
the regression coefficient of the LASSO model and selected
Frontiers in Oncology | www.frontiersin.org 5
parameters, the Radscore of the training and test cohorts was
calculated and the radiomic model (ModelR) was established
based on the Radscore of the training cohort.

Development of a Radiomic Nomogram and
Comparison of Different Models
A receiver operator characteristic (ROC) curve was drawn by
MedCalc (https://www.medcalc.org/, version 18.9; MedCalc
Software BVBA, Ostend, Belgium). The area under the curve
(AUC) was then adopted to compare the diagnostic efficacy
between the ADC, radiomic and hybrid models, respectively.
Further, differences in the AUC values between the three models
were assessed using the Delong test (23). After combining the
Radscore with BMI and CA125, logistic regression analysis could
be carried out to establish a mixed model (ModelM). Thereafter,
we developed the nomogram of the mixed model to provide a
quantitative guidance tool for the clinical diagnosis of tumor
classification. The calibration of the radiomics-based nomogram
was assessed using calibration curves. The calibration effect was
evaluated with the Hosmer–Lemeshow test. Also, internal
validation was performed with bootstrapping to correct for
optimism of the model (24).
RESULTS

Clinical Characteristics
Amongst the study findings, there were no significant differences
in the distribution for age, BMI or CA125 amongst low- and
high-risk cases in the two test cohorts (i.e., all Pa and Pb values
were greater than 0.05), supporting the randomness and
equilibrium of data allocation between the two cohorts. Patient
characteristics in the training and test cohorts, respectively, are
provided in Table 2. There was no significant difference in age
between low- and high-risk patients (P = 0.517 and P = 0.729 for
the training and test cohorts, respectively). However, the BMI
distribution was different, with the proportions of overweight
and obese individuals in the high-risk group being significantly
higher than those in the low-risk group (P < 0.0001 for the
training and test cohorts) (Table 2). Further, the serum CA125
level of high-risk patients was higher than that of the low-risk
patients (P < 0.0001 and P = 0.035 for the training and test
cohorts, respectively).

Diagnostic Performance of the ADC Value
The ICC of the ADC value as measured by the two radiologists
was approximately 0.963–of note, this value is greater than 0.75,
suggesting good consistency between the two testers. Meanwhile,
the ADC values of the high-risk populations in the training and
test cohorts were 0.85 ± 0.38 and 0.90 ± 0.32, respectively, which
were significantly lower than those of the low-risk populations in
the two cohorts (1.14 ± 0.38 and 1.05 ± 0.32; P < 0.0001 and P =
0.015). The identification ability of the ADC value to discern EC
cases of different pathological risk levels was evaluated by ROC
curve drawing. The AUCs of the ADC value were 0.715 [95%
confidence interval (CI), 0.6509–0.7792; sensitivity, 61.0%;
June 2021 | Volume 11 | Article 582495
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specificity, 74.2%; Supplementary Table 1] and 0.621 (95% CI,
0.515–0.726; sensitivity, 43.1%; specificity, 79.0%; Supplementary
Table 2) for the training and test cohorts, respectively (Figure 3).

Diagnostic Performance of the Radiomic
Features
We extracted radiomic features from the final study group of 358
patients, with each having 5 sets of different MRI sequence images
andwith 500 parameters extracted fromeachpatient. An ICC value
Frontiers in Oncology | www.frontiersin.org 6
of less than or equal to 0.75, which is considered to suggest poor
parameter stability, should generally not be included in the
regression equation analysis. According to this standard, a total of
190 parameters were excluded. Amongst the remaining 310
parameters, according to the 1 standard error of the minimum
criteria (the 1-SE criteria), a log(l) value of −3.107 was chosen (10-
fold cross-validation, 1-SE criteria). Then the following three
radiomic features with nonzero coefficients were deemed by
LASSO regression to be of value in the tumor classification
A B

C

FIGURE 3 | (A) Receiver operating characteristic (ROC) of different models in the training cohort. (B) ROC of different models in the test cohort. (C) Nomogram for
predicting risk classification of EC. The nomogram was built in the training cohort with the Radscore, BMI and CA125. The probability of each predictor can be
converted into scores according to the first scale points at the top of the nomogram. After adding up the scores of these predictors in total points, the
corresponding prediction probability at the bottom of the nomogram is the malignancy of the tumor.
TABLE 2 | Patient characteristics in the training and test cohorts.

Characteristics Training cohort (n = 250) Test cohort (n = 108)

G1&G2 (n = 132) G3 (n = 118) P G1&G2 (n = 57) G3 (n = 51) P Pa Pb

Age (years) 0.517 0.729 0.481 0.450
Mean± SD 58.8 ± 13.2 57.7 ± 13.6 60.3 ± 13.9 59.4 ± 12.9
Range 37-82 35-80 37-80 36-79

BMI <0.0001 <0.0001 0.346 0.117
Normal 92 36 43 16
Overweight 31 94 13 29
Obesity 9 6 1 6

CA125 <0.0001 0.035 0.472 0.268
Mean ± SD 162.6 ± 184.6 327.4 ± 272.9 184.4 ± 203.4 277.8 ± 249.7
Range(median) 0-570 (75.5) 0-779 (358.5) 0-590 (119) 0-779 (291)
June 2
021 | Volume
 11 | Article 5
The Pa was derived from the student t or chi-square test of G1&G2 groups between training and test cohort and the Pb was derived from that of G3 groups between training and test
cohort. Bold type indicates statistically significant difference.
82495

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zheng et al. Radiomics-Based Model in EC
(Figure 4): LargeDependenceLowGreyLevelEmphasis@Venous,
Maximum2DDiameterColumn@ADC and LowGreyLevel
ZoneEmphasis@ADC. According to the coefficients of the
LASSO regression, the equation can be realised as follows:

Radscore = −1.3103 * LargeDependenceLowGreyLevel
Emphasis@Venous + 0.03765 * Maximum2DDiameterColumn@
ADC + 866.53184 * LowGreyLevelZoneEmphasis@ADC. The
radiomic model was established according to the Radscore and
the ROC curve was drawn. Here, the AUC of the model was 0.870
(95%CI, 0.828–0.913; sensitivity, 72.0%; specificity, 85.6%;Figure3
and Supplementary Table 1). In comparison with ModelADC, per
the Delong test, it was found that the AUC of ModelR was greater
than that ofModelADC (P<0.0001 for the training and test cohorts).

Radiomic Nomogram Construction and
Comparing the Performance of the
Different Models
According to the above results, BMI and CA125 may constitute
independent risk factors for predicting the histological risk.
These two clinical indicators were combined with the Radscore
to establish ModelM and the nomogram was drawn. The AUC
for the training cohort was 0.925 (95% CI, 0.898–0.951;
sensitivity, 88.8%; specificity, 81.5%; Supplementary Table 1),
which was greater than that of the radiomic model. However, in
the test cohort, there was no statistically significant difference
between the AUC of ModelM and ModelR (P = 0.317), though
this outcome may be related to the small sample size of the test
cohort. The difference between the predicted results of ModelM

and the gold standard was evaluated by plotting the calibration
curves of the training and test sets (Figure 3). The calibration
curves suggested good fitness for probability (Hosmer–
Lemeshow test, P = 0.673 and P = 0.804 for the training and
test cohorts, respectively). Figure 5 presents the tumor risk
classification score calculated by the model and suggests that it
has a good level of ability to classify the low-risk and high-
risk EC.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

The Ability of ADC Alone to Predict the
Histological Risk of EC Is Limited
Although the ADC value of the high-risk group was lower than
that of the low-risk group in this study, it was found by ROC
analysis that ModelADC, which was constructed by applying the
ADC value alone, exhibited only limited efficiency in predicting
the EC histological grade. The ADC value is a functional imaging
indicator commonly employed clinically to reflect the diffusion
of water molecules in tissues and it has been widely adopted for
the assessment of pathological grades of breast cancer, rectal
cancer and other tumors (25, 26). Typically, the lower the degree
of differentiation of tumor tissues, the larger the nucleus, the
greater the number of organelles, the more obvious the nuclear
atypia and the larger the nucleo-plasmic ratio. In addition, the
cells of high-risk tumors are larger, more numerous and more
densely packed than those of low-risk tumors. The above factors
are believed to culminate in the restriction of the diffusion
movement of water molecules inside and outside poorly
differentiated tumor cells.

One previous study suggested that the combination of whole-
tumor volume and ADC can be used for predicting tumor grade
(27). However, the diagnostic value of DWI with quantitative
analysis of ADC remains controversial. Rechichi et al. observed
that the ADC value in EC did not display a significant
relationship with tumor grade, depth of myometrial invasion
or presence of lymph node metastasis (28). The ADC value can
only reflect the average water diffusion in a tumor and the
underuse of complex signal information from within the tumor
tissue leads to an insufficient understanding of the heterogeneity
in the tumor. In this study, we found that adopting ADC alone is
less effective in predicting its classification. Therefore, to
successfully dig deep into a large amount of imaging data
gleaned from inside the tumor via different angles and to
improve the ability to identify EC of different risk levels,
A B

FIGURE 4 | (A) LASSO coefficient profiles of the clinical parameters in ModelR. (B) Binomial deviance profiles of the texture features in ModelR. According to the 1
standard error of the minimum criteria (the 1-SE criteria), a log(l) value of −3.107 was chosen (10-fold cross-validation, 1-SE criteria).
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radiomics was adopted in this study to analyse ADC, T2WI and
DCE-T1WI MRI scans.

Radiomics Can Better Reveal the
Histological Difference of EC When
Compared With ADC
Current imaging radiomic technology can automatically identify and
extract medical image features and transform them into image feature
data that can be mined through automated high-throughput
algorithms. Although radiomics operates from a more macroscopic
perspective than genomics or histological markers, the indicators in
this field remain good indicators of intra-tumor heterogeneity (29).
Heterogeneity is an important biological characteristic of
malignant tumors and manifests as inconsistencies in tumor cell
density, microvascular density, cell proliferation and apoptosis.
Tumor heterogeneity occurs due to changes in the tumor
microenvironment caused by mutations in malignant tumor genes,
which not only lead to abnormal cell proliferation and apoptosis but
also to the appearance of abnormal vascular structures (30).
Abnormal tumor angiogenesis may result in hypoxia in tumor
areas, increase the local stromal hydrostatic pressure and raise the
risks of tumor invasion and metastasis (31). Therefore, radiomics is a
Frontiers in Oncology | www.frontiersin.org 8
potential method to predict the histological grade and prognosis
of tumors.

In this study, 3 features were finally determined from amongst
310 features by LASSO regression to have the closest relationship
with tumor risk: LargeDependenceLowGreyLevelEmphasis@
Venous, Maximum2DDiameterColumn@ADC and LowGrey
LevelZoneEmphasis@ADC. One of the above three indicators is
related to venous-phase enhancement of the tumor, while the other
two are related to ADC images. LargeDependenceLowGrey
LevelEmphasis@Venous measures the joint distribution of large
dependence with lower grey-level values. The larger the parameter,
the more heterogeneous the signal may be in the venous
enhancement image. In addition to being able to characterise the
relationship between the tumor and its surrounding structure,
previous studies have shown that dynamic enhanced scanning for
EC can help identify its pathological risk. The maximum
enhancement degree of G1 differentiation EC was significantly
higher than that of G3, indicating that the nature of low-risk
tumor was similar to normal endometrium, with low cell density
and abundant glands and blood vessels. Maximum2DDiameter
Column@ADC is a shape-based feature related to tumor diameter
measured on the ADCmap. The larger the parameter is, the larger
A B

C

FIGURE 5 | (A, B) The calibration curve in the training cohort (A) and test cohort (B). The calibration curve depicted the agreement between the predicted risk
classification score and the actual results confirmed by confirmed by examination. The red line represents an ideal prediction, and the black line represents the
predictive performance. The closer the fit of the black line to the ideal line, the better the prediction. (C) Patient risk classification score output, while green bars show
scores for those who were in low-risk group and red bars show that in high-risk group.
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the tumor diameter is. Tumor size is known to be related to tumor
proliferation rate and higher histological grading may result in
faster tumor proliferation rate and therefore larger tumor size (32).
Previous studies have shown that, comparedwithT2WI andT1WI,
theECmeasuredon theADCmap is theclosest to the true sizeof the
tumor,whichmaybedue to the fact that the signals ofdilatingblood
vessels andmyometrium around the tumor arewell inhibited in the
DWI and ADCmap, therefore showing the tumor boundary most
clearly (33). Due to this advantage, in addition to distinguishing the
risk of the tumor, ADC value is also one of the important indicators
to determine whether EC hasmyometrial invasion or not (34). The
LowGreyLevelZoneEmphasis@ADC relates to the lower grey-level
size zones inside the tumor: thegreater the value, the larger the lower
grey-level zones inside the tumor may be. As compared with the
ADC value that reflects the average diffusion of water within a
tumor, this value may better reflect the extent of the limited
diffusion of water molecules in tumor parenchyma. Previous
research has also postulated that ADC images are more effective
when attempting to identify tumor properties relative to the use of
other morphological images such as T1WI and T2WI (35, 36).
Recently, some researchers have applied radiomic technology to
deeply dig into ADC images and found that they could not only
evaluate tumor grading but also predict whether the tumor had
metastasised (37, 38). This indicates that, acting as important
MRI functional images, ADC images may show greater value in
radiomic analysis than other sequences.

The Combination of Radiomic and Clinical
Indicators Further Improves the Accuracy
of Prediction
Although ModelR showed a good level of discriminative ability, we
still moved forward with adding the two commonly used clinical
indicators BMI and CA125 to explore whether the diagnostic ability
of this model could be further improved. It is a continuing trend in
the development of radiomic technology to combine histochemical
characteristics with clinical data to predict the degree of malignancy
and the prognosis of tumors. It is well known that a high BMI is an
independent risk factor for EC and it is suggested that the higher
incidence of tumors in this context may be due to heightened
oestrogen levels brought on by obesity (39). Previous studies have
also surmised that the CA125 level in EC patients is higher than that
in normal subjects, which may be because EC patients usually
experience endometrial barrier breakdown, shedding, deformation
and necrosis of trophoblastic cells and secretion of trophoblastic
cells, which will increase the CA 125 level in peripheral blood (40).
In this study, it was further discerned that a statistical difference
between EC in the low- and high-risk patient populations exists.
Therefore, we included these two indicators in ModelM.

This study ultimately determined that the level of efficiency of
ModelM for the differential diagnosis was higher than that of both
ModelR and ModelADC. Of note, no statistically significant
difference between ModelM and ModelR in the test cohort was
observed, but this may be due to the small number of test cohort
samples. A previous multi-sequence MRI radiomic analysis showed
that MRI texture features are of high diagnostic value in predicting
high-grade EC and LVSI, with accuracies of 80% and 70%,
Frontiers in Oncology | www.frontiersin.org 9
respectively (41). However, this previous study only considered
radiomic indicators and failed to comprehensively assess clinical
indicators; moreover, the sample size was small. The current study
increased the sample size and combined clinical indicators to
achieve an accuracy of 85% in distinguishing between the two
risk tumors. Another prediction study comprehensively evaluated
the predictive effect of a clinical, radiomic and mixed models on
lymph node metastasis; finally, pathology analysis confirmed that
mixed model had the strongest predictive effect on lymph node
metastasis (18). Previous researchers have also used MRI texture
analysis to predict the pathological risk grade and survival time of
patients with EC. However, this approach only applies six first-order
parameters and adopts two-dimensional image segmentation.
Although the operation is simple and less time consuming, only a
single-layer image of the diseased tissue can be obtained and it is
difficult in this manner to fully reflect the tumor information (18).
In the present study, large numbers of shape-based and second-
order features were included, with more diverse properties.
Meanwhile, 3D multi-layer segmentation was adopted such that
variations in different risk levels of tumors were more likely to be
found. At the same time, BMI and CA125 are added into the model
and the training set AUC of the comprehensive nomogram was
calculated to be about 0.925, indicating that the mixed model
showed good predictive ability. Meanwhile, in the test cohort, the
AUC of the comprehensive model reached 0.915, which confirmed
that this model had good discriminative ability.

In addition, the sensitivity, specificity and accuracy of the
radiomics based nomogram model (ModelM) for EC risk
classification were 88.8%, 81.5% and 84.9%, respectively. A previous
study has found that using D&C, sensitivities for combined pre-
operative testing for G3 endometrioid is only 56% and the specificity
is 33%, both of which are lower than that in our study (42). Therefore,
only histological procedures (curettage or biopsy) may not enough be
the only method in the diagnosis of endometrial diseases. In terms of
pathological grading of endometrial cancer, there may be
inconsistency between the results of curettage and postoperative
pathological results (43). Although almost all institutions perform
D&C for examination of endometrial cancer, there is a weakness
about using D&C for the diagnosis because this blind procedure
might miss endometrial cancer. Therefore, this procedure has a high
rate of false negatives, which is low at 51% (44). It has been reported
that less than half of the uterine cavity is curetted in 60% of cases (45),
and over 40% of women with complex atypical hyperplasia as a
preoperative diagnosis have a final confirmation of endometrial
cancer during hysterectomy (44, 46). In addition, a previous study
has shown that postoperative pathological grading is elevated in some
patients, that is, some endometrial cancers diagnosed as low
pathological grade by preoperative curettage are proved to be high
pathological grade by postoperative pathology (47). Another study
found that 50 percent of 176 patients with endometrial carcinoma
had an elevated pathological grade after surgery (48). Therefore,
although D&C is still irreplaceable as the mainstream method of
preoperative evaluation of EC, the comprehensive model based on
radiomics proposed in this study for preoperative prediction of tumor
properties may help to improve the accuracy of EC grading andmake
a supplement for the formulation of surgical plan.
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This study has the following limitations that should be
considered. First, this study is a retrospective study with small
sample size and the reliability of its conclusions needs to be
verified by a prospective study in the future. Second, the model
established in this study relied on data from a single centre and a
single MRI scanning system, so further multi-centre and multi-
modality research should be explored. Finally, although the total
number of samples in this study was large, the sample size in the
test cohort was small and the difference between ModelM and
ModelR could not be confirmed. Therefore, it is necessary to
further expand the study sample size in the future.

In conclusion, by comparing the various models mentioned
herein, we found that the mixed model based on the radiomic
model was a good predictor of the histological risk grade of EC.
In this study, several radiomics parameters based on ADC and
venous phase images were strongly correlated with tumor risk
grade. When tumor patients presented as overweight or obese
together with an elevated CA125 level and a high radiomic score,
they were more likely to be classified as high-risk cases. Using
radiomic parameter-based model and nomogram analysis can
help guide preoperative non-invasive grading of EC and avoid
possible under- or overtreatment.
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