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Abstract. The analytical expressions and graphs for determining a limiting 
load have been obtained using the methods of the theory of limiting balance. 
The processes of strain of the beams after formation of a plastic hinge until 
their complete destruction have been investigated. The dependences of a 
bearing capacity of the beam on its parameters and characteristics of the 
foundation soils have been obtained. The regularities of formation of plastic 
hinges have been revealed depending on a place of application of the load. 
The limiting values of the load have been calculated analytically, and the 
forms of deformation of the beam have been established at the time of the 
appearance of the first plastic strains and in the limiting state. The 
comparative analysis of the research results of the adopted model with the 
numerical studies of the elastoplastic beam has been carried out. 
Keywords. Beam on an elastic foundation, the theory of limiting balance, 
limiting moment. 

1 Introduction 
The object of research is a beam on a continuous elastic foundation loaded with a parametric 
concentrated force. The purpose of the study is to evaluate the bearing capacity of a beam on 
an elastic foundation using the methods of the theory of limiting equilibrium. The modern 
practice of calculating the structures on a foundation being strained mainly uses the finite 
element method implemented in various software packages. The disadvantage of these 
theories and methods of calculations is that elastic models are used for beams or slabs having 
different models of the foundation, which does not allow determining a true margin of safety, 
since a limiting state of the structure is accompanied by the appearance of plastic strains in 
it. Therefore, the methods of limiting balance make it possible to supplement the existing gap 
in this issue. The research topic is relevant because structural elements are often found lying 
on an elastic foundation in construction practice, such as strip foundations of buildings, 
railway sleepers, etc. Calculation of a beam on an elastic foundation in general is reduced to 
solving a contact problem between the beam and the foundation. The usual solution of such 
contact problem has great difficulties and is not suitable for engineering calculations. 
Therefore, to solve engineering problems associated with the calculation of a beam on an 
elastic foundation, approximate approaches are used. At the same time, a dependence is 
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established between the reactive resistance and the settlement of the elastic foundation, for 
example, according to the hypothesis of a proportional dependence between the reaction and 
the settlement (the hypothesis of the Winkler foundation). 

A promising approach to solving this problem is the use of the finite element method and 
the limit equilibrium method.  

2 Materials and methods 
The methods of the theory of limiting balance, first proposed in the work [1], are now widely used 
in assessing the bearing capacity of various building structures. Many publications are devoted to 
development and improvement of the methods of the theory of limiting balance [2-9], especially 
regarding calculation of the reinforced concrete structures [3-4, 10-12], including the beam ones 
[11-12]. At the same time, these methods are practically not used when calculating the beams 
and slabs lying on a foundation being strained. The works [9-18] are rare exceptions.  

The theory of calculating the structures, lying on an elastic foundation, has been widely 
developed in the works [9-20], where the following models of the elastic foundation are used: 
a Winkler's model (otherwise called a model of the coefficient of subgrade reaction); a model 
of the elastic homogeneous isotropic half-space; a model of the elastic homogeneous isotropic 
layer; a model of the foundation with two elastic characteristics. In some works, other models 
are used too, which are mainly combinations of the above. The modern practice of calculating 
the structures on a foundation being strained mainly uses the finite element method 
implemented in various software packages. The disadvantage of these theories and methods of 
calculations is that elastic models are used for beams or slabs having different models of the 
foundation, which does not allow determining a true margin of safety, since a limiting state of 
the structure is accompanied by the appearance of plastic strains in it. Therefore, the methods 
of limiting balance, which in this work are implemented on the example of a beam under a 
concentrated force, make it possible to supplement the existing gap in this issue. 

3 Results and discussion 

3.1 Limiting load corresponding to the appearance of plastic strains 

A beam lying on an elastic Winkler's foundation is considered. A rigid-plastic model of strain 
is adopted for the beam. A bearing capacity of the beam at this stage of the calculation will 
be associated with the achievement of a bending moment of the limiting value (a yield point) 
in any section of the beam. In this case, the influence of the lateral force on the bearing 
capacity will be considered insignificant and not taken into account.  

The strains for the accepted model of the beam in any section will be equal to zero as long 
as a bending moment in the section is less than a yield moment: М < My, and the strains 
appear at М = MТ. For a multi-strength beam, for example, a reinforced concrete beam with 
different reinforcement of the upper and lower layers, the condition for the absence of strains 
will be written as: −𝑀𝑀�

� < 𝑀𝑀 < 𝑀𝑀�, where 𝑀𝑀� is a limiting moment for the case of positive 
bending (the lower fibers of the beam are stretched), 𝑀𝑀�

� is a limiting moment for the case of 
negative bending (the upper fibers are stretched). 

3.2 A yield point for the force, applied in the middle 

First, let us consider the simplest case of loading the beam with a concentrated force applied 
in the middle. The task is to determine the limiting value of the concentrated force (a yield 

point – РТ), corresponding to the appearance of plastic strains. The solution is sought using 
the kinematic and static methods the theory of limiting balance, which, respectively, give an 
approximation from above and from below to a true value of the limiting load. In this case, 
let us assume that bottom of the beam does not come off the foundation due to a sufficient 
swamp weight – a constant load evenly distributed along the entire length of the beam. 

With an increase in the parametric load Р, the beam, before the appearance of plastic 
strains, is immersed in the elastic foundation as an absolutely rigid body, overcoming the 
bearing reaction r = kbv = P/l, where k is a coefficient of foundation subgrade reaction, b is 
a width of the beam foundation, v – a foundation settlement. 

 

 
Fig. 1. Schemes of the beam strains at the moment of forming a plastic hinge.

Since the greatest bending moment occurs under the force P, it is obvious that the first 
plastic strains will occur in the middle of the beam in the form of formation of a plastic hinge 
(see diagram in Figure 1), the opening of which is determined by the angle 2θ = 4/l, where 
is an infinitesimal displacement of the point of application of the force Р. The reaction of the 
foundation in this case consists of two parts: 
r(х)= 𝑟𝑟� + r′(х), where 𝑟𝑟�= kb𝑣𝑣�= Py/l; r′(х)= kbv′(x)= kb (1-2x/l); x is a coordinate calculated 
from the point of application of the force Р. The balance equation for a work of the internal 
and external forces is written in the form: 
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This solution, obtained by the kinematic method, is an approximation from above. 
Therefore, let us consider a solution by the static method, using a yield condition М ≤ М y 
and the balance equations: 
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Taking into account the uniform distribution of the foundation reaction up to an 
appearance of the plastic hinge, the same formula is obtained (1). 
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Thus, the solutions by the both methods of the theory of limiting balance coincide, which 
means an accuracy of the obtained formula and a truth of the limiting value of the force for 
the adopted model of the system. 

3.3 A yield point at arbitrary arrangement of the concentrated force 

Let us now consider a beam loaded with a concentrated force applied at a certain distance 𝜂𝜂𝜂𝜂 
(0 ≤ 𝜂𝜂 ≤ 0𝜂𝜂 from the beginning of the beam (Fig. 2а). In this case, let us also assume that 
the bottom of the beam does not come off the foundation due to a constant load uniformly 
distributed along the entire length of the beam. In this case, the balance equations of the 
system can be written in the form: 
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The greatest bending moments can occur in the sections of our beam with the coordinates 
𝑥𝑥 = 𝜂𝜂𝜂𝜂𝜂 𝑥𝑥 = 𝑥𝑥�, which, with the yield conditions, can be written in the form: 
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is a coordinate of the largest negative moment. 
Thus, the problem of finding 𝑃𝑃� (a yield point) for a given 𝜂𝜂 is reduced to finding the 

maximum largest value of the function (2) when the conditions (4) and (5) and the equation 
(3) are satisfied. For each 𝜂𝜂(0 − 0.𝜂) of the conditions (4) and (5) with the involvement of 
(3) from (2) the values 𝑃𝑃 are determined, the largest of which is a limiting value of the force 
РТ, corresponding to appearance of a plastic hinge under the concentrated force (a positive 
hinge with the moment 𝑀𝑀�) or in the section to the right of the force (a negative hinge with 
the moment −𝑀𝑀�

�).  
The Figure 2b shows the dependence 𝑃𝑃�́ = 𝑃𝑃� 𝜂𝜂 𝑙⁄ 𝑀𝑀� on the place of force application for 

three types of beams: 𝑀𝑀�
� = 𝑀𝑀�, 𝑀𝑀Т

� = 0𝜂𝜂𝑀𝑀� and 𝑀𝑀�
���. 

 

 
 

а) b) 

Fig. 2. а) design diagram of a beam; b) dependencies of a limiting force 𝑃𝑃�́ оn 𝜂𝜂𝜂𝜂. 

As can be seen from the graphs, when the force is close to the edge, the yield point arises 
by forming a negative hinge with the moment −𝑀𝑀�

�. With distance from the edge, the values 
of the limiting force increase and reach the maximum value: 𝑃𝑃� ≈ 3.18𝑀𝑀� 𝑙𝑙⁄  at 𝜂𝜂 ≈ 𝜂.1𝜂 for 
𝑀𝑀�

� = 𝑀𝑀�; 𝑃𝑃y≈ 2.45𝑀𝑀yl at 𝜂𝜂 ≈ 𝜂𝜂21 for 𝑀𝑀�
� = 𝜂.5𝑀𝑀�  and 𝑃𝑃� ≈ 1.2𝜂𝑀𝑀� 𝑙𝑙⁄  at 𝜂𝜂 = 1 3⁄  for 

𝑀𝑀�
� = 𝜂. The plastic hinges then start being formed under the force 𝑃𝑃�, which diminishes 

while approaching the middle of the beam. Moreover, the smallest value 𝑃𝑃� at 𝑀𝑀�
� ≤ 𝑀𝑀� 

occurs when the force is applied to the end of the beam (𝜂𝜂 = 𝜂). For example, when 𝑀𝑀�
� =

𝑀𝑀� this force is 1.185 times less than 𝑃𝑃�, applied to the middle (𝜂𝜂 = 𝜂𝜂5). 

3.4 Load corresponding to the limiting state 

After the formation of the first plastic hinge, two scenarios are possible: a further strain 
continues without increasing the force, i.e., the limiting state sets in, and the beam turns into 
a mechanism; the further growth of strains (an increase in the opening angle of the plastic 
hinge with a possible formation of other zones of plastic straining) providing an increase in 
the load to the limiting value. 

For the latter option, until the limiting state starts, all intermediate states of the system are 
statically admissible and kinematically possible. At the same time, it should be borne in mind 
that the strains can be so great that it is necessary to take into account a geometric nonlinearity 
of the system. 

Let us consider a beam, loaded with the force 𝑃𝑃, applied in the middle. After the formation 
of the plastic hinge under the force 𝑃𝑃 let the beam continues being strained with further 
opening of the hinge (increase in the bend angle 𝛼𝛼) until other plastic zones appear, i.e., until 
the next plastic hinges appear. Let us define the force corresponding to a given state, which 
will be considered a limiting one and denoted as Р��. 

 

 
Fig. 3. Diagrams of strain of the beam after the formation of the plastic hinge. 

Next, taking into account the symmetry of the scheme, let us consider the balance of a half of 
the beam (Fig. 4), where, instead of the initial length of the beam, its projection 𝑙𝑙 = 𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 
is introduced, which, after the formation of the plastic hinge, changes as the beam are loaded 
further. The reaction of the foundation is divided into two parts so that relative to the point О the 
moment from the uniformly distributed part is equal 𝑀𝑀�, and the moment from the unevenly 
distributed part should be equal to zero. Then the balance equations can be written in the form: 

𝑟𝑟�
𝑙𝑙��𝑐𝑐𝑐𝑐𝑐𝑐�𝛼𝛼

8
= 𝑀𝑀Т;

𝑃𝑃
2
= 𝑟𝑟�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼
2

+ 𝑟𝑟�
𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼

4
. 

4

E3S Web of Conferences 274, 03029 (2021) https://doi.org/10.1051/e3sconf/202127403029
STCCE – 2021



Thus, the solutions by the both methods of the theory of limiting balance coincide, which 
means an accuracy of the obtained formula and a truth of the limiting value of the force for 
the adopted model of the system. 

3.3 A yield point at arbitrary arrangement of the concentrated force 

Let us now consider a beam loaded with a concentrated force applied at a certain distance 𝜂𝜂𝜂𝜂 
(0 ≤ 𝜂𝜂 ≤ 0𝜂𝜂 from the beginning of the beam (Fig. 2а). In this case, let us also assume that 
the bottom of the beam does not come off the foundation due to a constant load uniformly 
distributed along the entire length of the beam. In this case, the balance equations of the 
system can be written in the form: 

𝑃𝑃 =
(𝑟𝑟� + 𝑟𝑟�)𝜂𝜂

2
; (2) 

�
1
2
− 𝜂𝜂� 𝑟𝑟� + �

1
6
−
1
2
𝜂𝜂� (𝑟𝑟� − 𝑟𝑟�) = 0 ⇒ 𝑟𝑟� =

3𝜂𝜂 − 1
2 − 3𝜂𝜂

𝑟𝑟�. (3) 

The greatest bending moments can occur in the sections of our beam with the coordinates 
𝑥𝑥 = 𝜂𝜂𝜂𝜂𝜂 𝑥𝑥 = 𝑥𝑥�, which, with the yield conditions, can be written in the form: 

𝑀𝑀(𝜂𝜂𝜂𝜂) =
𝜂𝜂�(1 − 𝜂𝜂)�

6
[𝑟𝑟�(1 − 𝜂𝜂) + 𝑟𝑟�(2 + 𝜂𝜂)] ≤ 𝑀𝑀�; 

(4) 

𝑀𝑀(𝑥𝑥�) = 𝑟𝑟�
𝑥𝑥��

2
− (𝑟𝑟� − 𝑟𝑟�)

𝑥𝑥��

6𝜂𝜂
− (𝑟𝑟� + 𝑟𝑟�)

𝜂𝜂(𝑥𝑥� − 𝜂𝜂𝜂𝜂)
2

≥ −𝑀𝑀�
�𝜂 (5) 

where 

𝑥𝑥� =
𝑟𝑟�𝜂𝜂

𝑟𝑟� − 𝑟𝑟�
�1 −

𝑟𝑟�
𝑟𝑟�
� 

is a coordinate of the largest negative moment. 
Thus, the problem of finding 𝑃𝑃� (a yield point) for a given 𝜂𝜂 is reduced to finding the 

maximum largest value of the function (2) when the conditions (4) and (5) and the equation 
(3) are satisfied. For each 𝜂𝜂(0 − 0.𝜂) of the conditions (4) and (5) with the involvement of 
(3) from (2) the values 𝑃𝑃 are determined, the largest of which is a limiting value of the force 
РТ, corresponding to appearance of a plastic hinge under the concentrated force (a positive 
hinge with the moment 𝑀𝑀�) or in the section to the right of the force (a negative hinge with 
the moment −𝑀𝑀�

�).  
The Figure 2b shows the dependence 𝑃𝑃�́ = 𝑃𝑃� 𝜂𝜂 𝑙⁄ 𝑀𝑀� on the place of force application for 

three types of beams: 𝑀𝑀�
� = 𝑀𝑀�, 𝑀𝑀Т

� = 0𝜂𝜂𝑀𝑀� and 𝑀𝑀�
���. 

 

 
 

а) b) 

Fig. 2. а) design diagram of a beam; b) dependencies of a limiting force 𝑃𝑃�́ оn 𝜂𝜂𝜂𝜂. 

As can be seen from the graphs, when the force is close to the edge, the yield point arises 
by forming a negative hinge with the moment −𝑀𝑀�

�. With distance from the edge, the values 
of the limiting force increase and reach the maximum value: 𝑃𝑃� ≈ 3.18𝑀𝑀� 𝑙𝑙⁄  at 𝜂𝜂 ≈ 𝜂.1𝜂 for 
𝑀𝑀�

� = 𝑀𝑀�; 𝑃𝑃y≈ 2.45𝑀𝑀yl at 𝜂𝜂 ≈ 𝜂𝜂21 for 𝑀𝑀�
� = 𝜂.5𝑀𝑀�  and 𝑃𝑃� ≈ 1.2𝜂𝑀𝑀� 𝑙𝑙⁄  at 𝜂𝜂 = 1 3⁄  for 

𝑀𝑀�
� = 𝜂. The plastic hinges then start being formed under the force 𝑃𝑃�, which diminishes 

while approaching the middle of the beam. Moreover, the smallest value 𝑃𝑃� at 𝑀𝑀�
� ≤ 𝑀𝑀� 

occurs when the force is applied to the end of the beam (𝜂𝜂 = 𝜂). For example, when 𝑀𝑀�
� =

𝑀𝑀� this force is 1.185 times less than 𝑃𝑃�, applied to the middle (𝜂𝜂 = 𝜂𝜂5). 

3.4 Load corresponding to the limiting state 

After the formation of the first plastic hinge, two scenarios are possible: a further strain 
continues without increasing the force, i.e., the limiting state sets in, and the beam turns into 
a mechanism; the further growth of strains (an increase in the opening angle of the plastic 
hinge with a possible formation of other zones of plastic straining) providing an increase in 
the load to the limiting value. 

For the latter option, until the limiting state starts, all intermediate states of the system are 
statically admissible and kinematically possible. At the same time, it should be borne in mind 
that the strains can be so great that it is necessary to take into account a geometric nonlinearity 
of the system. 

Let us consider a beam, loaded with the force 𝑃𝑃, applied in the middle. After the formation 
of the plastic hinge under the force 𝑃𝑃 let the beam continues being strained with further 
opening of the hinge (increase in the bend angle 𝛼𝛼) until other plastic zones appear, i.e., until 
the next plastic hinges appear. Let us define the force corresponding to a given state, which 
will be considered a limiting one and denoted as Р��. 

 

 
Fig. 3. Diagrams of strain of the beam after the formation of the plastic hinge. 

Next, taking into account the symmetry of the scheme, let us consider the balance of a half of 
the beam (Fig. 4), where, instead of the initial length of the beam, its projection 𝑙𝑙 = 𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 
is introduced, which, after the formation of the plastic hinge, changes as the beam are loaded 
further. The reaction of the foundation is divided into two parts so that relative to the point О the 
moment from the uniformly distributed part is equal 𝑀𝑀�, and the moment from the unevenly 
distributed part should be equal to zero. Then the balance equations can be written in the form: 

𝑟𝑟�
𝑙𝑙��𝑐𝑐𝑐𝑐𝑐𝑐�𝛼𝛼

8
= 𝑀𝑀Т;

𝑃𝑃
2
= 𝑟𝑟�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼
2

+ 𝑟𝑟�
𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼

4
. 
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Hence 
𝑃𝑃 =

8𝑀𝑀�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝑟𝑟�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2

, (6) 

taking into account 
𝑟𝑟� − 𝑟𝑟� = 𝑘𝑘𝑘𝑘𝑘𝑘�, а𝑟𝑟� + 2𝑟𝑟� = 𝑘𝑘𝑘𝑘𝑘𝑘� = 𝑘𝑘𝑘𝑘 

𝑟𝑟� is expressed, in terms of the opening angle of the plastic hinge: 
𝑟𝑟� =

𝑘𝑘𝑘𝑘𝑙𝑙�

6
𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐. (7) 

Then, substituting (7) into equation (6), we get: 

𝑃𝑃 =
8𝑀𝑀�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+

𝑘𝑘𝑘𝑘𝑙𝑙�
�

24
𝑐𝑐𝑠𝑠𝑠𝑠2𝑐𝑐. 

Next, assuming that the bottom of the beam does not come off the foundation, the 
coordinate 𝑥𝑥� and the maximum negative moment, arising in the given section, are 
determined: 

𝑥𝑥� =
−(𝑟𝑟� − 𝑟𝑟�)𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

3𝑟𝑟�
; 𝑀𝑀���

� = (𝑟𝑟� − 𝑟𝑟�)
𝑥𝑥�

�

2
+ 𝑟𝑟�

𝑥𝑥�
�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
. 

Thus, the determination of the limiting load 𝑃𝑃�, corresponding to the appearance of the 
second (negative) plastic hinge, is reduced to the problem of maximizing the function: 

𝑃𝑃�(𝑐𝑐) = 𝑚𝑚𝑚𝑚𝑥𝑥 �
8М�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+

𝑘𝑘𝑘𝑘𝑙𝑙�
�

24
𝑐𝑐𝑠𝑠𝑠𝑠2𝑐𝑐� (8) 

while fulfilling the restrictions: 
𝑀𝑀���

� ≥ −𝑀𝑀�
�; 0 < 𝑥𝑥� < 𝑙𝑙 2⁄ . (9) 

It should be noted that, in the general case, to the specified constraints (9) one can add 
some constraints for the upsetting of the beam, as well as for the opening angle of the plastic 
hinge, since the plastic properties of the material have boundaries. The solution to the 
problem was implemented using the software package «Mathematica 9.0».  

As a result of calculations, a dependence of the ultimate load 𝑃𝑃� on the parameter 𝛽𝛽 =
�𝑘𝑘𝑘𝑘 �4𝑀𝑀�𝑡𝑡�⁄ ���

, taking into account the «stiffness» of the foundation and the beam, is 
obtained, where 𝑡𝑡 = 𝑡𝑡 𝑡𝑡� 𝑀𝑀�⁄  is a coefficient, connecting the stiffness of the beam with a 
yield moment of the section. Figure 4b shows a graph of the dependence of these values, 
reduced to a dimensionless form: 𝑃𝑃� = 𝑃𝑃�𝑙𝑙 �8𝑀𝑀��⁄ , 𝛽𝛽 𝑙𝑙� 2.⁄  In the same place, for 
comparison, the results of calculation 𝑃𝑃� by the finite element method for an elastoplastic 
model using the software package LIRA-SAPR are shown. To take into account the plastic 
properties of the elastoplastic model, after reaching the bending moment under the 
concentrated force of the value 𝑀𝑀�, an ordinary hinge is inserted into the design scheme in 
this section with the addition of the moments 𝑀𝑀� on both sides. 

 

 
а) b) 

Fig. 4. Dependences: а) of the yield limit 𝑃𝑃�; b) of the limiting load 𝑃𝑃� on the parameter 𝛽𝛽 𝑙𝑙� 2⁄  at 
𝑀𝑀�

� = 𝑀𝑀�. − -is a rigid plastic model; - - is an elastoplastic model. 

 
Fig. 4а shows the results of calculations to determine a yield point, also reduced to a 

dimensionless form: 𝑃𝑃� = 𝑃𝑃�𝑙𝑙 �8𝑀𝑀��⁄ . 
Fig. 5 shows the dependences of the ultimate load 𝑃𝑃� и and the opening angle of the 

plastic hinge 𝛼𝛼 on the parameter 𝛽𝛽 𝑙𝑙� 2⁄  for a reinforced concrete beam with different lower 
and upper reinforcements: 𝑀𝑀�

� = 0 (without upper reinforcement); 𝑀𝑀�
� = 0.5𝑀𝑀�  and 𝑀𝑀�

� =
𝑀𝑀� (equally reinforced). 

 

 
а) b) 

Fig. 5. Dependences on 𝛽𝛽 𝑙𝑙� 2⁄ : а) of the limiting load 𝑃𝑃�; b) of the opening angle of the hinge α. 

As can be seen from Fig. 4а, the graphs of the appearance of the first plastic hinge (under 
the force 𝑃𝑃) for the rigid-plastic and elasto-plastic models of the beam coincide only for the 
short rigid beams, the length of which 𝑙𝑙� ≤ 2/𝛽𝛽. As for the long (𝑙𝑙� > 2/𝛽𝛽) elastoplastic 
beams, a plastic hinge is formed at a higher force, which at 𝑙𝑙� ≥ 4/𝛽𝛽 can be accepted with 
the sufficient accuracy 𝑃𝑃� = 4𝛽𝛽𝑀𝑀�. The difference is explained by elastic wave-like damped 
deflections of the beam, preceding the appearance of the plastic hinge, which are neglected 
in the rigid-plastic model. 

The second plastic hinges appear with negative opening. In this case, the values of the 
concentrated force 𝑃𝑃� for the adopted rigid-plastic model are greater than those for the 
elastoplastic model, which is also explained by the neglect of the elastic strains. Moreover, 
for all the beams 𝑙𝑙� ≥ 5.4 𝛽𝛽⁄  long, the difference is constant and amounts to 40%.  

As can be seen from the graphs in Fig. 4b and 5а, the negative plastic hinges are not 
formed in all the beams, but only in the rather long ones. The short beams can be strained 
without the formation of the other plastic zones at any high load values. The limiting length 
of the beam and the corresponding 𝑃𝑃� and 𝛼𝛼�, when the formation of plastic hinges becomes 
impossible, are: 

− 𝑙𝑙� = 2.82 𝛽𝛽⁄ , 𝛼𝛼�� = 35.5° и 𝑃𝑃� = 1.84 for the beams with 𝑀𝑀�
� = 0; 

− 𝑙𝑙� = 5.10 𝛽𝛽⁄  𝛼𝛼�� = 35.5° и 𝑃𝑃� = 4.85 for the beams with 𝑀𝑀�
� = 0.5𝑀𝑀�; 

− 𝑙𝑙� = 5.96 𝛽𝛽⁄  𝛼𝛼�� = 35.5° и 𝑃𝑃� = 7.02 for the beams with 𝑀𝑀�
� = 𝑀𝑀�. 

With an increase in the length of the beam, 𝑃𝑃� decreases and practically reaches the 
smallest values for the lengths of the beams indicated below: 

− 𝑙𝑙� ≥ 2.05 𝛽𝛽⁄ , 𝑃𝑃� = 1.51 for the beams with 𝑀𝑀�
� = 0; 

− 𝑙𝑙� ≥ 4.51 𝛽𝛽⁄ , 𝑃𝑃� = 3.95 for the beams with 𝑀𝑀�
� = 0.5𝑀𝑀�; 

− 𝑙𝑙� ≥ 5.40 𝛽𝛽⁄ , 𝑃𝑃� = 5.73 for the beams with 𝑀𝑀�
� = 𝑀𝑀�. 

It should be noted that for the long beams the second plastic hinge arises at a small 
opening angle of the average plastic hinge, but as the length of the beams approaches the 
above values 𝑙𝑙� (Fig. 5b) a sharp increase in the opening angle is observed, which reaches 
the same value for all cases – 35.5 at 𝑙𝑙� = 𝑙𝑙�. 
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Hence 
𝑃𝑃 =

8𝑀𝑀�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝑟𝑟�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2

, (6) 

taking into account 
𝑟𝑟� − 𝑟𝑟� = 𝑘𝑘𝑘𝑘𝑘𝑘�, а𝑟𝑟� + 2𝑟𝑟� = 𝑘𝑘𝑘𝑘𝑘𝑘� = 𝑘𝑘𝑘𝑘 

𝑟𝑟� is expressed, in terms of the opening angle of the plastic hinge: 
𝑟𝑟� =

𝑘𝑘𝑘𝑘𝑙𝑙�

6
𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐. (7) 

Then, substituting (7) into equation (6), we get: 

𝑃𝑃 =
8𝑀𝑀�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+

𝑘𝑘𝑘𝑘𝑙𝑙�
�

24
𝑐𝑐𝑠𝑠𝑠𝑠2𝑐𝑐. 

Next, assuming that the bottom of the beam does not come off the foundation, the 
coordinate 𝑥𝑥� and the maximum negative moment, arising in the given section, are 
determined: 

𝑥𝑥� =
−(𝑟𝑟� − 𝑟𝑟�)𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

3𝑟𝑟�
; 𝑀𝑀���

� = (𝑟𝑟� − 𝑟𝑟�)
𝑥𝑥�

�

2
+ 𝑟𝑟�

𝑥𝑥�
�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
. 

Thus, the determination of the limiting load 𝑃𝑃�, corresponding to the appearance of the 
second (negative) plastic hinge, is reduced to the problem of maximizing the function: 

𝑃𝑃�(𝑐𝑐) = 𝑚𝑚𝑚𝑚𝑥𝑥 �
8М�

𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+

𝑘𝑘𝑘𝑘𝑙𝑙�
�

24
𝑐𝑐𝑠𝑠𝑠𝑠2𝑐𝑐� (8) 

while fulfilling the restrictions: 
𝑀𝑀���

� ≥ −𝑀𝑀�
�; 0 < 𝑥𝑥� < 𝑙𝑙 2⁄ . (9) 

It should be noted that, in the general case, to the specified constraints (9) one can add 
some constraints for the upsetting of the beam, as well as for the opening angle of the plastic 
hinge, since the plastic properties of the material have boundaries. The solution to the 
problem was implemented using the software package «Mathematica 9.0».  

As a result of calculations, a dependence of the ultimate load 𝑃𝑃� on the parameter 𝛽𝛽 =
�𝑘𝑘𝑘𝑘 �4𝑀𝑀�𝑡𝑡�⁄ ���

, taking into account the «stiffness» of the foundation and the beam, is 
obtained, where 𝑡𝑡 = 𝑡𝑡 𝑡𝑡� 𝑀𝑀�⁄  is a coefficient, connecting the stiffness of the beam with a 
yield moment of the section. Figure 4b shows a graph of the dependence of these values, 
reduced to a dimensionless form: 𝑃𝑃� = 𝑃𝑃�𝑙𝑙 �8𝑀𝑀��⁄ , 𝛽𝛽 𝑙𝑙� 2.⁄  In the same place, for 
comparison, the results of calculation 𝑃𝑃� by the finite element method for an elastoplastic 
model using the software package LIRA-SAPR are shown. To take into account the plastic 
properties of the elastoplastic model, after reaching the bending moment under the 
concentrated force of the value 𝑀𝑀�, an ordinary hinge is inserted into the design scheme in 
this section with the addition of the moments 𝑀𝑀� on both sides. 

 

 
а) b) 

Fig. 4. Dependences: а) of the yield limit 𝑃𝑃�; b) of the limiting load 𝑃𝑃� on the parameter 𝛽𝛽 𝑙𝑙� 2⁄  at 
𝑀𝑀�

� = 𝑀𝑀�. − -is a rigid plastic model; - - is an elastoplastic model. 

 
Fig. 4а shows the results of calculations to determine a yield point, also reduced to a 

dimensionless form: 𝑃𝑃� = 𝑃𝑃�𝑙𝑙 �8𝑀𝑀��⁄ . 
Fig. 5 shows the dependences of the ultimate load 𝑃𝑃� и and the opening angle of the 

plastic hinge 𝛼𝛼 on the parameter 𝛽𝛽 𝑙𝑙� 2⁄  for a reinforced concrete beam with different lower 
and upper reinforcements: 𝑀𝑀�

� = 0 (without upper reinforcement); 𝑀𝑀�
� = 0.5𝑀𝑀�  and 𝑀𝑀�

� =
𝑀𝑀� (equally reinforced). 

 

 
а) b) 

Fig. 5. Dependences on 𝛽𝛽 𝑙𝑙� 2⁄ : а) of the limiting load 𝑃𝑃�; b) of the opening angle of the hinge α. 

As can be seen from Fig. 4а, the graphs of the appearance of the first plastic hinge (under 
the force 𝑃𝑃) for the rigid-plastic and elasto-plastic models of the beam coincide only for the 
short rigid beams, the length of which 𝑙𝑙� ≤ 2/𝛽𝛽. As for the long (𝑙𝑙� > 2/𝛽𝛽) elastoplastic 
beams, a plastic hinge is formed at a higher force, which at 𝑙𝑙� ≥ 4/𝛽𝛽 can be accepted with 
the sufficient accuracy 𝑃𝑃� = 4𝛽𝛽𝑀𝑀�. The difference is explained by elastic wave-like damped 
deflections of the beam, preceding the appearance of the plastic hinge, which are neglected 
in the rigid-plastic model. 

The second plastic hinges appear with negative opening. In this case, the values of the 
concentrated force 𝑃𝑃� for the adopted rigid-plastic model are greater than those for the 
elastoplastic model, which is also explained by the neglect of the elastic strains. Moreover, 
for all the beams 𝑙𝑙� ≥ 5.4 𝛽𝛽⁄  long, the difference is constant and amounts to 40%.  

As can be seen from the graphs in Fig. 4b and 5а, the negative plastic hinges are not 
formed in all the beams, but only in the rather long ones. The short beams can be strained 
without the formation of the other plastic zones at any high load values. The limiting length 
of the beam and the corresponding 𝑃𝑃� and 𝛼𝛼�, when the formation of plastic hinges becomes 
impossible, are: 

− 𝑙𝑙� = 2.82 𝛽𝛽⁄ , 𝛼𝛼�� = 35.5° и 𝑃𝑃� = 1.84 for the beams with 𝑀𝑀�
� = 0; 

− 𝑙𝑙� = 5.10 𝛽𝛽⁄  𝛼𝛼�� = 35.5° и 𝑃𝑃� = 4.85 for the beams with 𝑀𝑀�
� = 0.5𝑀𝑀�; 

− 𝑙𝑙� = 5.96 𝛽𝛽⁄  𝛼𝛼�� = 35.5° и 𝑃𝑃� = 7.02 for the beams with 𝑀𝑀�
� = 𝑀𝑀�. 

With an increase in the length of the beam, 𝑃𝑃� decreases and practically reaches the 
smallest values for the lengths of the beams indicated below: 

− 𝑙𝑙� ≥ 2.05 𝛽𝛽⁄ , 𝑃𝑃� = 1.51 for the beams with 𝑀𝑀�
� = 0; 

− 𝑙𝑙� ≥ 4.51 𝛽𝛽⁄ , 𝑃𝑃� = 3.95 for the beams with 𝑀𝑀�
� = 0.5𝑀𝑀�; 

− 𝑙𝑙� ≥ 5.40 𝛽𝛽⁄ , 𝑃𝑃� = 5.73 for the beams with 𝑀𝑀�
� = 𝑀𝑀�. 

It should be noted that for the long beams the second plastic hinge arises at a small 
opening angle of the average plastic hinge, but as the length of the beams approaches the 
above values 𝑙𝑙� (Fig. 5b) a sharp increase in the opening angle is observed, which reaches 
the same value for all cases – 35.5 at 𝑙𝑙� = 𝑙𝑙�. 
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Thus, a force 𝑃𝑃Т must be applied to form a plastic hinge in the middle of the beam. The 
further strain of the beam to the formation of the negative plastic hinges requires a significant 
increase in the load to a value, that can be taken as a limiting state of the beam, since the 
further strain of the beam (see Figure 6) is associated with small changes in the load under a 
significant increase in the opening angle of the middle hinge and an increase in the plastic 
zones, which, starting from those negative hinges appearing at 𝑃𝑃 𝑃 𝑃𝑃�, approach the middle 
of the beam up to the distance 𝑙𝑙� 2⁄ . Further, with an infinite increase in the load, the beam 
is strained only due to the opening of the middle plastic hinge. 

 

 

Fig. 6. A change of 𝑃𝑃� upon opening of the plastic hinge for the beam βl = 10. 

4 Conclusion 
1. Straining of the beam on an elastic foundation under the influence of the concentrated load 
has been studied using the methods of the theory of limiting balance.  

2. The limiting values of the load have been derived analytically, and the forms of 
straining of the beam at the moment of the appearance of the first plastic strains and in the 
limiting state have been established.  

3. The dependences of the indicated loads on the coefficient, generalizing the stiffness of 
the foundation and the beam, have been obtained, which are shown in the form of the graphs.  

4. A comparative analysis of the results of the studies of the adopted model has been 
carried out with the numerical studies of the elastoplastic beam. 

5. The analytical expressions and graphs, obtained in this work, can be useful in the 
practical calculations of beam structures on an elastic foundation in assessing the bearing 
capacity of beams, as well as in determining a yield point 𝑃𝑃� of short beams 𝑙𝑙� ≤ 2𝛽𝛽 long. 
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further strain of the beam to the formation of the negative plastic hinges requires a significant 
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of the beam up to the distance 𝑙𝑙� 2⁄ . Further, with an infinite increase in the load, the beam 
is strained only due to the opening of the middle plastic hinge. 

 

 

Fig. 6. A change of 𝑃𝑃� upon opening of the plastic hinge for the beam βl = 10. 
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straining of the beam at the moment of the appearance of the first plastic strains and in the 
limiting state have been established.  

3. The dependences of the indicated loads on the coefficient, generalizing the stiffness of 
the foundation and the beam, have been obtained, which are shown in the form of the graphs.  

4. A comparative analysis of the results of the studies of the adopted model has been 
carried out with the numerical studies of the elastoplastic beam. 

5. The analytical expressions and graphs, obtained in this work, can be useful in the 
practical calculations of beam structures on an elastic foundation in assessing the bearing 
capacity of beams, as well as in determining a yield point 𝑃𝑃� of short beams 𝑙𝑙� ≤ 2𝛽𝛽 long. 
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