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Abstract. Cement-concrete pavements of roads and airfields are the most 
durable type of pavement. The design service life of cement-concrete 
pavements is 40-50 years, in Russia this period is 20-25 years, and for 
asphalt-concrete pavements is 10-15 years. The real, actual overhaul period 
of asphalt concrete pavements, is much lower than the design one (according 
to the Federal Road Agency of Russia «Rosavtodor», on average, 3-5 years 
or even less), therefore, work aimed at increasing the durability of cement-
concrete pavements is of particular relevance. The main technical 
parameters of road concrete that characterize its durability are compressive 
strength, flexural tensile strength, water absorption and others. The most 
important parameter is the frost resistance of concrete, which is primarily 
influenced by the structure of the pore space. This paper shows the way of 
obtaining concretes based on aggregates, the frost resistance of which is 
lower than the frost resistance of the resulting concrete.  
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1 Introduction 
Quality improvement of road pavements has been repeatedly emphasized at the level of the 
Government of Russian Federation (RF) and its subjects, the «Strategy for the development of the 
building materials industry for the period until 2020 and for the future until 2030», as well as the 
«Action Plan for the implementation of the Strategy» have been developed. These documents set 
the task of increasing the share of cement concrete roads construction in Russia up to 50% by 
2030. Currently, the main technical standards on design of concrete pavements valid in RF are: 

- SP 34.13330.2012 «Automobile roads»; 
- GOST 33100-2014 «Automobile roads of general use. Rules of roads projecting»; 
- GOST 26633-2015 «Heavy-weight and sand concretes. Specifications»; 
- GOST 31384-2017 «Protection of concrete and reinforced concrete structures against 

corrosion. General technical requirements»; 
- GOST 32960-2014 «Automobile roads of general use. Traffic load models, application 

of the load models». 
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It should be noted that the requirements for raw materials of concretes based on them, set 
out in these documents, are very contradictory. So, according to the requirements of technical 
standards, the frost resistance level of a large aggregate must be not less than the frost 
resistance level of concrete, which significantly limits the availability of the raw material 
base. The highest requirements for the technical properties of concrete are given in GOST 
31384-2017, according to which the compressive strength class of concrete should be B35, 
frost resistance level F2200, while there are no requirements for flexural tensile strength, 
which is a very important indicator for concretes of this purpose. In SP 34.13330.2012, the 
minimum design classes of concrete for compressive strength are B30, and flexural tensile 
strength Вtb4,0. The minimum design frost resistance level is F2150. 

In general, higher requirements are imposed on concretes for road and airfield pavements 
and base courses compared to concretes for hydraulic engineering or general construction 
[1-3]. This is due to more difficult operating conditions of road concrete [4]. The synergistic 
impact of dynamic loads and atmospheric factors on pavement, especially in the presence of 
anti-icing solutions on it, contributes to intensification of destructive processes in concrete 
[5-7]. In this case, the most important parameter for preserving the operational properties of 
concrete will be the indicator of its frost resistance level [8, 9]. In a series of works [10-16], 
the authors pay great attention to the quality of materials in the construction of cement-
concrete roads, industrial and civil structures. 

The frost resistance of concrete, first of all, will be influenced by the quality of the 
materials used and the structure of the pore space. So, according to GOST 26633-2015, the 
introduction of air-entraining additives into the composition of road concrete is mandatory. 
At the same time, the requirements in considered technical standards for the amount of 
entrained air also differ from each other, but in general it ranges from 4.0 to 7.0%.  

It is well known [17, 18] that ability of concrete to resist destruction during repeated 
freezing and thawing in a water-saturated state is due to the presence in its structure of closed 
«reserve» pores, unfilled with water. As a result of diffusion movement of water during its 
transition from one state of aggregation to another, the pressure from growing ice crystals on 
the walls of open pores decreases. A lot of work is devoted to the study of the pore space by 
various methods [19-21]. 

Depending on size in body of concrete, the pores can be divided into three groups: 
- 0,1÷1,6 nm in size – gel pores; 
- 1,6÷50 nm in size – contraction pores; 
- 50 nm – capillary pores. 
Gel pores are characterized by minimum permeability of concrete for liquids and gases 

[22]. The transfer of liquid phase in gel pores is possible only by the mechanism of molecular 
diffusion. Water in the gel pores does not freeze during the operation of concrete and 
reinforced concrete structures, which is explained by their size, content of electrolyte 
additives in pore fluid of concrete. 

Capillary pores of concrete can be represented as a part of the volume of cement paste 
water not filled with cement hydration products [23]. Any concrete has micro-capillaries. 
They are capable of capillary condensation of moisture, which makes the materials 
hygroscopic. Macro-capillaries with a radius greater than 0.1 microns (usually up to 10 
microns) are filled with water only in direct contact with it. Capillary pores are the main 
defect in the structure of the cement stone.  

The freezing point of water in a capillary-porous body depends on the size of the 
capillaries. For example, in capillaries with a diameter of 1.57 mm, water freezes at -6.4 ° C; 
0.15 mm at -14.6 ° C; 0.06 mm -18 ° C. In pores with a diameter of less than 0.001 mm, 
water practically does not freeze; it acquires the properties of a pseudo-solid body.  

A vacuum is created in the pores of concrete due to contraction, and they are filled, 
depending on the hardening conditions, with air or water. It is customary to consider the 
contraction volume not as an independent type of pore, but as a part of capillary porosity. 

Conditionally closed pores of concrete include air bubbles in cement stone and concrete. 
The total pore volume, their size, number and specific surface area can be controlled by the 
introduction of air-entraining or gas-forming additives. Air pores obtained by introducing air-
entraining additives into the concrete mix significantly change the structure of the cement 
stone. The number of air pores in 1 cm3 of cement stone can reach one million, and the surface 
of these pores is 200-250 cm2. Through this surface, excess water enters the air pores, which 
is displaced from the capillaries when the concrete is frozen. Only sufficiently small air pores 
less than 0.5-0.3 mm in size have a protective effect. 

As a criterion for assessing the effectiveness of the protective action of air pores in 
concrete so-called «distance factor» proposed by T. Powers [24] are widely used. For its 
calculation, it is assumed that in the cement stone there is a certain idealized system of 
identical air pores located at an equal distance from each other. In this case, the farthest points 
from the air pore are the points of the cement stone lying in the corners of the cube. The 
distance from such a point to the pore edge (along the diagonal of the cube) is the distance 
factor (FR) determined by the formula (1): 
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where Vcs – volume of cement stone, λ – specific surface area of the air pore system, cm2/cm3, 
Vap – volume of air pores in concrete. In a microscopic study of thin sections of concrete, the 
FR is determined by measuring the length of the chords of the pores and their number along 
a range of lines. Based on the measurement results, the volume of air pores and their specific 
surface area are calculated. Simplistically, the distance factor can be represented as the 
average distance between air pores in a cement stone. It is believed that to obtain concretes 
of high frost resistance, the distance factor should not exceed 0.2-0.25 mm. 

It should be noted that it characterizes the parameters of the air pore system in the cement 
stone, which protects these pores. This is another advantage of the distance factor over the 
volume of air, which is related to the volume of the concrete mix. 

The distance factor, like «protected volume» of the cement stone, is calculated from the 
specific surface area of  air pores. The efficiency of air pores will be the greater, the higher their 
specific surface area is, therefore, the less is thickness of cement stone layer when it is evenly 
distributed over this surface. The specific surface area is a qualitative characteristic of air pores, 
since it does not take into account their content. In this regard, it loses to the distance factor. 

In works of Batrakov V.G. and Kuntsevich V.O. [25, 26] about optimal parameters of a 
system of conditionally closed pores in frost-resistant concretes, it was found that the 
permissible value of the average size of conditionally closed pores, calculated from the 
condition of ensuring high strength and frost resistance, and the permissible value of the 
minimum diameter of conditionally closed pores dmin (2), allows, in the first approximation, 
to assess optimal distribution of conditionally closed pores by their sizes: 
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where L̅ – distance factor, Wз – the amount of water frozen in the capillaries of the cement 
stone, determined by the value of the water-cement ratio (W/C) and degree of hydration of 
cement stone. 
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Thus, an increase in the content of cement stone in concrete requires not only a finely 
dispersed, but also a more uniform system of conditionally closed pores. More severe 
freezing regimes, requiring a decrease in the distance factor to ensure high frost resistance, 
shift the optimal distribution of conditionally closed pores towards smaller sizes and narrow 
them. A decrease in W/C expands the range of possible fluctuations in the size of 
conditionally closed pores. 

The most important operational factors for concrete, in addition to the number of freezing and 
thawing cycles, include degree of water saturation and concrete freezing temperature. A decrease 
in strength of concrete after freezing and thawing is observed only when its water saturation is 
above a certain value, which, in turn, is associated with value of negative temperature. The value 
of the critical water saturation can be achieved not only when concrete is saturated with water 
before freezing, but also as a result of redistribution of pore water in freezing concrete in the form 
of steam. The water saturation of concrete increases in the presence of salts. 

The purpose of this work is to investigate the possibility of increasing the frost resistance 
of cement concretes (up to grade F2200) for road construction based on crushed stone and 
gravel of grade F150 by directionally regulating its pore structure with a complex of air-
entraining and plasticizing additives. 

2 Materials and methods 
As a binder for the production of concrete was used Portland cement 500-DO-N of 
Mordovcement JSC. 

Table 1. Physical and mechanical properties of Portland cement. 

Normal 
density of 

cement 
paste, % 

Setting time, 
hour: min Compressive strength, MPa Product 

size Soundness 
Beginning Ending steaming 3 days 28 days 

24.6-26.4 3:15 4:15 43.3 36.3 56.5 97.8 OK 

Table 2. Chemical composition of cement. 

Content of 
sulfur oxide (VI) SO3 

Fraction of alkalic oxides R2O 
expressed as Na2O 

Content of 
chloride ion Cl- 

3.00 0.79 0.019 

Table 3. Chemical and mineralogical composition of hard-burned brick. 

Tricalcium 
silicate 

C3S 

Dicalcium 
silicate 

C2S 

Tricalcium 
aluminate 

C3A 

Tetracalcium 
alumoferrite 

C4AF 

Magnesium 
oxide 
MgO 

62.67 14.18 6.54 13.60 1.27 
 
As a coarse aggregate, the study used gravel with characteristics М800-1000 and F1150, 

as well as crushed stone made of this gravel. 
The following additives were used as concrete modifiers: 
- air-entraining additive Master Air based on surfactants, in a dosage of 0.1 to 0.6%; 
- plasticizer additive Master Glenium based on polycarboxylate ester, in a dosage of 0.2 

to 0.9%. 
Concrete formulations were made from an optimized grain ratio of inert materials using 

modifiers in various combinations. The compositions are shown in Table 4. 

Table 4. Concrete compositions. 

mix 
№ 

Cement 
weight, kg 

Mass of inert 
aggregates, kg 

Coarse 
aggregate type Additive type Additive 

dosage, % 

1 

375 1750 

Crushed gravel Master Air 0.3 
Master Glenium 0.6 

2.1 Crushed gravel Master Air 0.6 
Gravel Master Glenium 0.6 

2.2 Crushed gravel Master Air 0.6 
Gravel Master Glenium 0.6 

3.1 Crushed gravel Master Air 0.6 
Gravel Master Glenium 0.2 

3.2 Crushed gravel Master Air 0.6 
Gravel Master Glenium 0.2 

4.1 Crushed gravel Master Air 0.1 
Gravel Master Glenium 0.9 

4.2 Crushed gravel Master Air 0.1 
Gravel Master Glenium 0.9 

 
Frost resistance was assessed by the third method at low temperatures (-50 ° C) in a saline 

solution of sodium chloride (GOST 10060-2012).  
The pore structure of concrete was studied by X-ray volumetric scanning of one dry sample 

from each series on a phoenix/X-ray industrial tomograph with a volume resolution of 0.1 mm 
in each direction. This method is widely used in the study of building materials [27, 28]. 

The paper presents the results of studying the structure and mechanical properties of road 
concrete prepared on gravel and crushed stone from gravel. The samples were made with 
different air entrainment conditions and, as a consequence, with different types of porosity. 

The processing of the results of X-ray volumetric scanning was carried out by deriving 
the following diagrams for each series: 

1. «Pore diameter – pore surface area». An indicator similar to that designated above. 
Accepted for analysis to compare the degree of influence on frost resistance;  

2. «Pore diameter – pore compactness». The position of each point on the diagram corresponds 
to a paired characteristic – the diameter of the sphere described around the pore and the ratio of 
the pore volume to the volume of the sphere described around it. The diagram is accepted for 
analysis from the point of view of evaluating the approximation of pore shapes to a form that 
provides the possibility of ice expansion in the dimensions of pores partially filled by water; 

3. «Pore diameter – pore volume». It is accepted for analysis as an indicator of the 
efficiency of pore distribution in sample, which minimizes the distance factor, which directly 
affects the frost resistance level. 

3 Results and discussion 
A series of samples was made on gravel mixes and on mixes of crushed stone from gravel. 
Concrete strength class B35. The test results of some mixes are shown in the table 5. 

The test results given in the table show that it is possible to obtain concretes that satisfy 
requirements of technical standards for strength and frost resistance using aggregates, with 
frost resistance level lower than that of the resulting concrete. As can be seen from the table, 
almost all mixes have a frost resistance level of F2200 and higher, with the exception of mix 4. 

Mix 4 has an air-entraining additive content of 0.1%, as a result of which concretes with 
low frost resistance were obtained. An increase in the dosage of the air-entraining additive 
(mix 2 and 3) to 0.6% allows an increase in frost resistance up to F2300, but leads to a 
decrease in strength characteristics. An increased amount of superplasticizer of 0.9% (mix 4) 
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allows to increase the strength of concrete, but negatively affects frost resistance. As a result 
of the optimization of the air-entraining and superplasticizing additives, a composition 
(composition 1) has been developed, which has high frost resistance (F2300) and high 
strength characteristics (60.8 MPa). 

Table 5. Frost resistance and strength characteristics of concrete. 

mix 
№ 

Forst 
resistance 

level/numb
er of cycles 

Loss of 
mass, % 

GOST 10060 
requirements, % 

Compression 
strength, МPа 

Design strength, 
MPа 

C
on

tr
ol

 m
ix

 

B
as

ic
 m

ix
 

1 F2300/37 0.75 < 2 67.53 60.8 

Xlmin = 57.5; 
Xllmin = 53.5 

Xllmin ≥ Xlmin·0.9 
53.5>57.5·0.9=51.8 

2.1 F2200/20 0.66 < 2 53.5 49.3 

Xlmin = 49.9; 
Xllmin = 45.6 

Xllmin ≥ Xlmin·0.9 
45.6>49.9·0.9=44.95 

2.2 F2300/37 1.29 < 2 56.1 39.0 

Xlmin = 54.4; 
Xllmin = 31.4 

Xllmin ≥ Xlmin·0.9 
31.4<54.4·0.9=49.0 

3.1 F2200/37 1.15 < 2 50.1 47.6 

Xlmin = 46.9; 
Xllmin = 45.5 

Xllmin ≥ Xlmin·0.9 
45.5>46.9·0.9=42.19 

3.2 F2300/37 1.78 < 2 52.9 40.1 

Xlmin = 48.9; 
Xllmin = 34.5 

Xllmin ≥ Xlmin·0.9 
34.5<48.9·0.9=44.0 

4.1 F2150/20 0.45 < 2 53.5 48.5 

Xlmin = 48.4; 
Xllmin = 46.0 

Xllmin ≥ Xlmin·0.9 
46,0>48,4·0,9=43.6 

4.2 F2200/20 0.66 < 2 53.4 44.8 

Xlmin = 46.4; 
Xllmin = 34.4 

Xllmin ≥ Xlmin·0.9 
34.4<46.4·0.9=41.8 

 
Fig. 1-5 show the study results of the pore structure of the composition of concrete No. 1. 

Based on the analysis of an array of similar data, the authors propose the use of a special 
algorithm that allows, on the basis of an effective combination of technological parameters, 
to design compositions of road concretes with increased frost resistance and predict their 
properties. 

 

 
Fig. 1. General view of the sample and position of scanning planes. 

 
Fig. 2. View on the scanning plane. 

 
Fig. 3. Diagram «Pore diameter – pore compactness». 
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Fig. 4. Diagram «Pore diameter – pore surface area». 

 
Fig. 5. Diagram «Pore diameter – pore volume». 

Following method of statistical data processing is planned to be used as a mathematical 
apparatus for predicting frost resistance functions from correlated technological parameters. 
The authors propose to use the following method of statistical data processing. Frost 
resistance value for a certain combination of technological parameters (value of control 
function at required point) is calculated as weighted from the known frost resistance values 
at adjacent points, inversely proportional to the distance in the reduced factor space, and is 
determined by the formula: 
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where Yreq – the predicted value of frost resistance from the required combination of 
technological parameters (the predicted value of the control function at the required point of 
the reduced factor space); 

Di – distance in the represented factor space from point «i» to the required point. 
The factor space must be reduced to a unit space in order to ensure the possibility of 

considering indicators with significantly different scales as parameters. 
Each term in the formula corresponds to the product of previously experimentally obtained 

value of frost resistance (control function) with a specific combination of technological 
parameters (at point «i» of the factor space) – by the specific weight of this point. 

Thus, the more distant the known points are from the required one, the less weight is 
assigned to the function value at this point during forecasting. Using this algorithm will reduce 
the database required for forecasting and identify the most significant parameters. As a result, 
it is necessary to determine the most effective combination of technological parameters. 

4 Conclusions  
1. Based on the experimental and theoretical studies performed by the authors possibility of 
obtaining concretes with frost resistance level (F2200) higher than aggregate frost resistance 
level (F1150) has been shown. These indicators are achieved due to the rational combination 
of air-entraining and plasticizing additives. 

2. The evaluation of the qualitative analysis of the diagrams in the aspect of assessing the 
influence of the nature of the pores on the frost resistance indicators of the developed 
compositions is of considerable interest for further research. Revealing these regularities will 
make it possible to determine the method of the most effective air entrainment, corresponding 
to the maximum combinations of frost resistance and strength. The identification of patterns 
is assumed in the format of constructing regression models and other methods that provide a 
linkage of correlated parameters to varying degrees. 
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Fig. 5. Diagram «Pore diameter – pore volume». 
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