
Digital Implementation of a Frequency-lowering

Channel Vocoder

by

Jeffrey J. Foley

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1996

@ Jeffrey J. Foley, MCMXCVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant others the right to do so.

OF TEcCHNOLOGY

JUN 1 1 1996

A uth aw s .. -
Department -,, EfcOric l E/gineering a~ puter Science

February 7, 1996

C ertified by
Louis D. Braida

,lHIenry F woirrhn Professor of Electrical Engineering
Thesis Supervisor

Accepted by
F.R. Morgenthaler

Chairman, uepartmenu uommittee on Graduate Theses

Digital Implementation of a Frequency-lowering Channel

Vocoder

by

Jeffrey J. Foley

Submitted to the Department of Electrical Engineering and Computer Science
on February 7, 1996, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Electrical Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

A frequency-lowering channel vocoder reintroduces the high-frequency components of
a speech signal, often inaudible to a hearing-impaired listener, into lower frequencies
by the addition of select narrow-band noise signals which act as artificial speech cues.
Such vocoder systems have met with some success in previous, analog implementa-
tions. This study presents a digital implementation of the channel vocoder system,
allowing for greater flexibility in the selection of filter banks, the determination of
noise levels, and the decision to suppress signal processing when it is shown to be un-
necessary. The digital implementation is based on the Motorola DSP96002 processor
and Ariel Corporation's DSP-96 Digital Signal Processing Board, using Motorola's
DSP96KCC Optimizing C Compiler to facilitate the programming of the DSP board.
Adjustable specifications for the system are derived from an interface between the
DSP board and a controlling personal computer. The controlling personal computer
also allows for both monitoring and dynamic adjustment of run-time system param-
eters.

Thesis Supervisor: Louis D. Braida
Title: Henry E. Warren Professor of Electrical Engineering

Acknowledgments

First and foremost, I would like to thank my mom and dad, not only for the obviou$

help they've $acrificed over the year$, but also for their incredible patience, under-

standing, and ability to pull me up when I was slipping into the doldrums. I'm sure

they'll agree, though, that this has been quite a step up from the science project on

the paper boy BASIC program in fifth grade...

Many thanks to my advisor, Prof. Lou Braida, who exhibited enormous patience

and understanding when I "burned out" over the summer. When I came to him for

advice or assistance, he always came through, even when I was running way behind

schedule.

Dave Lum was invaluable in providing day-to-day assistance with the little quirks

and problems I encountered while working in the lab. He never failed to help me out,

whether by providing detailed technical advice or just by being in his perpetual good

mood.

I can't forget to thank all the people who nagged and kidded and annoyed me

about not having graduated yet. Amazing what kind of incentive that provides, just

trying to get them to STOP IT!

And of course, I truly owe it all to the One Upstairs. All things are possible with

the help of the Lord.

Contents

1 Introduction 7

2 Background 9

2.1 Linear amplification. 10

2.2 Frequency lowering 10

3 System Design 12

3.1 Previous vocoder systems 12

3.2 Present system 15

3.2.1 Sampling rate 16

3.2.2 Filters 16

3.2.3 Noise 18

3.2.4 PC interface 18

4 Code 23

4.1 Personal computer code 23

4.1.1 Downloading the DSP board code 23

4.1.2 DSP board interface 26

4.1.3 Monitoring and altering the system 28

4.2 DSP board code 29

4.2.1 Initial setup 29

4.2.2 Sampling I/O 30

4.2.3 Filtering 30

4.2.4 PC interface .

4.2.5 Noise.....

5 Conclusions

5.1 Functionality of current system

5.2 Suggestions for further work

5.2.1 Evaluation

5.2.2 Improvement

A Source Code

A.1 Code for controlling personal computer

A.2 Code for Ariel DSP-96 board

35

35

37

37

37

39

39

47

.

.................

.

.................

.................

.......... °...o..

List of Figures

3-1 Block diagram of vocoder system 13

3-2 Lippmann's vocoder system 13

3-3 Posen's modified vocoder system 14

3-4 Digital implementation of vocoder system 15

3-5 Design of filter using Matlab's remez function 18

3-6 Example analysis filterbank designed by Matlab's "remez" function. 19

3-7 Example synthesis filterbank designed by Matlab's "remez" function. 20

3-8 High-pass (a) and low-pass (b) filters for signal processing cutoff de-

termination. Low pass filter used to simulate hearing loss (c) 21

4-1 Overview of the digital vocoder system 24

4-2 A sample configuration file 24

4-3 Interrupt usage for PC to DSP board interface. 27

4-4 DSP board sampling procedure 31

5-1 RMS levels reported by the PC for constant-tone inputs 36

Chapter 1

Introduction

Many persons suffering from sensorineural hearing impairments, though left with little

or no hearing in higher frequencies, still retain limited hearing in lower frequencies. As

the fields of psychoacoustics and signal processing have progressed, various techniques

aiming to improve the hearing of such patients have been invented and reinvented.

Most often these techniques attempt to improve the speech reception of individuals

with high-frequency hearing loss by incorporating the high-frequency components of

a speech signal into the individual's hearing range. Such attempts have met with

only limited success.

This project is a digital implementation of one of the more promising frequency-

lowering systems, a channel vocoder. Previous implementations of vocoder systems,

limited by available technology, were based on analog circuits and thus lacked flex-

ibility. Nevertheless, studies of these earlier vocoder implementations have shown

encouraging results. The newer system, implemented through an internal digital sig-

nal processing board on a personal computer, obviates the problem of inflexibility.

With the high speed capabilities of the programmable Motorola DSP96002 proces-

sor, modifying system parameters becomes as easy as editing a configuration file and

reloading the processor's program. In this manner, a user can customize the system

with personal filterbank design and noise level specifications while receiving immedi-

ate feedback on additional changes.

This thesis presents the digital implementation of the analog frequency-lowering

channel vocoder system studied by Posen [6], detailing the design and programming

issues and improvements from the analog system which he implemented. Chapter

2 offers some background information on other systems which attempt to improve

hearing reception, comparing their advantages and drawbacks to those of the channel

vocoder system. Chapter 3 focuses on the operation of a vocoder system and the

design of both earlier systems as well as design issues and changes for the current

system. Chapter 4 details the current system, describing the controlling code for

both the personal computer and the DSP board. Chapter 5 summarizes the work

and findings of the present study with suggestions for further improvements. An

appendix includes a listing of the code for the DSP board and the controlling personal

computer.

Chapter 2

Background

The key difficulty for persons with sensorineural hearing impairments lies in the fact

that certain speech elements which make possible the mental transformation from

"acoustic signal" to "intelligible speech" are imperceptible. For example, the cues

may fall below the listener's threshold of hearing, or they may be masked by internally

generated sounds such as tinnitus. For whatever the reason, the failure to detect these

speech cues is what impairs the decoding of acoustic speech signals.

Acoustic systems designed to improve speech reception focus on recovering these

inaudible speech cues for the listener suffering from high-frequency hearing loss by am-

plifying, frequency shifting, remapping, or otherwise reintroducing the cues back into

the acoustic speech signal. One difficulty inherent in this task, however, is to incor-

porate the lost speech cues while still preserving other lower-frequency cues already

present in the speech signal. Often these cues are distorted, masked, or otherwise

obliterated by the process of amplifying and transposing the higher-frequency speech

cues. [1]
This chapter's overview of these acoustic systems outlines not only their advan-

tages and disadvantages, but also how the channel vocoder system described in this

project overcomes some of the other systems' problems.

2.1 Linear amplification

Effective and elegant in its simplicity, linear amplification of an incoming speech

signal is a common approach to combatting hearing loss. It recovers the previously

undetectable speech cues by increasing their level to one that is above the listener's

threshold of hearing. Most mild and moderate hearing losses can be corrected by

means of linear amplification. Often such an amplification system is improved by

tailoring its frequency-gain characteristic to match the audiogram of a patient or by

introducing limiting factors, such as an automatic volume control, to avoid painful

peak sound levels or "holes" in the speech signal.

Because of the general success of linear amplification in treating the hearing-

impaired, studies of other systems often compare their efficacy to that of amplification.

Despite its proven worth, however, linear amplification has its own difficulties. Since

the elevation of a subject's absolute threshold is not accompanied by an equivalent

rise in the discomfort threshold of the subject, the auditory area available between the

hearing and pain thresholds diminishes, leaving less available space for the amplified

signal to fall. Additionally, sensorineural impairments are often accompanied by

resolution loss or sound distortion, problems which amplification will only aggravate.

Finally, a listener with no hearing in a given frequency range will never be able to

benefit from amplification techniques. [1]

2.2 Frequency lowering

If a listener has no hearing in a given frequency range, frequency lowering can be used

to move spectral components to regions of better hearing. In this manner a listener

with high-frequency hearing loss may still benefit from high-frequency speech cues

sufficiently lowered in frequency to perceptible frequencies.

Many frequency-lowering systems, including slow playback, frequency shifting,

transposition, and spectral warping, have been studied; an analysis of such systems

can be found in [1], [3], and [8]. In general, these systems performed poorly compared

to linear amplification. The shifting, imposition, or compression of spectral compo-

nents to recover imperceptible high-frequency characteristics distorted temporal and

rhythmic patterns, fundamental frequency contours, and phoneme durations.

A promising frequency-lowering technique based on channel vocoding has recently

been studied. Channel vocoders create a controlled, artificial version of high-frequency

speech elements in the lower frequency range. This idea takes advantage of the fact

that the majority of lost higher-frequency speech cues are bands of noise associated

with consonants. An initial short burst of noise, for example, distinguishes a stop

consonant, while sustained periods of higher-frequency noise are indicative of frica-

tives or affricates. The vocoder system takes the input signal, analyzes it for the

presence of high-frequency energy, and then adds in a corresponding lower-frequency

signal approximating the buzz or hiss of the imperceptible high-frequency cues. This

process gives the listener a sense of the lost information without masking the low-

frequency components of the speech, as most frequency lowering techniques do, and

without risking pain or distortion, as amplification does.

Both Lippmann [4] and Posen [6] studied vocoder-based frequency-lowering sys-

tems, each concluding that the vocoder processing improved the recognition of stop,

fricative, and affricate consonants. Posen, whose study noted that the processing also

degraded the perception of semivowels and nasals, modified Lippmann's system to

reduce these degradations. His results indicated that the vocoder system was success-

ful in improving intelligibility, given sufficient subject training to become accustomed

to the perceptively different processed speech. The positive results of Posen's system

suggest that a vocoder-based system holds promise for improving the speech reception

of hearing-impaired subjects.

Chapter 3

System Design

Channel vocoders operate by analyzing the speech signal with a bank of band-pass

filters whose outputs control the addition of low-frequency noise signals to the signal

(Figure 3-1). In this manner lost high-frequency information regarding stop, affricate,

and fricative consonants is recovered without deeply affecting the rest of the speech

signal. This chapter briefly examines the designs of Lippmann's and Posen's vocoder

system before presenting an in-depth look at design issues and specifications for the

current project.

3.1 Previous vocoder systems

This project's channel vocoder was based on the analog systems previously con-

structed by Lippmann [4] and Posen [6].

In Lippmann's system (Figure 3-2), speech sounds passed through a bank of

eight bandpass filters with center frequencies ranging from 1000-8000 Hz. Lippmann

grouped the eight filters into two 2/3-octave-wide low-frequency analysis bands, and

two octave-wide high-frequency analysis bands. The output of these analysis bands

controlled the levels of corresponding low-frequency noise in the 400-800 Hz range.

Lippmann evaluated the vocoder system using CVC nonsense syllables formed from

16 consonants and 6 vowels.

Posen made some adjustments to Lippmann's system in his preliminary study, the

output
signal

Analysis

filters
I

Synthesis

filters

weightings

VOCODER

Figure 3-1: Block diagram of vocoder system.

>ooutput
A signal
A signal

Figure 3-2: Lippmann's vocoder system.

input
speech
signal

input
speech
signal

input
speech
signal

Analysis Filters

Level Detectors

S output
signal

I

] Io l
I I I

Il

Attenuation Control7
MINICOMPUTER

Figure 3-3: Posen's modified vocoder system.

most significant adjustment being a narrowing of the analysis range. Eight contiguous

1/3-octave filters were combined to form four 2/3-octave wide analysis bands with

center frequencies spanning a range of 1000 to 5000 Hz. RMS level detectors were

used to measure the output levels of the analysis bands and thus control the output

levels of the low-frequency noise signals. The noise-band signals were generated by

passing wide-band noise through a bank of 1/3-octave synthesis filters with center

frequencies ranging from 400 to 800 Hz. A 1 dB increase in a given analysis band

signal caused a 1 dB increase in the corresponding noise-band signal. The noise-band

level was also partially controlled by the level of the low-frequency sounds present

in the signal so that low-frequency cues would not be masked by the noise. Posen

evaluated his vocoder system using CV nonsense syllables formed from 24 different

consonants and 3 vowels.

After evaluating this system, Posen noticed that the intelligibility of nasals and

semi-vowels, which were not evaluated under Lippmann's study, suffered under the

vocoder signal processing. These consonants, which by their nature exhibit both

noisy and periodic qualities, are characterized by low-frequency and mid-range energy.

sampled
innt i-i- -output

F
speech
signal

signal

Threshold

Filters

Figure 3-4: Digital implementation of vocoder system.

Posen corrected this problem by adding an additional qualifier to further improve

intelligibility: a means of suppressing the addition of low-frequency noise signals if

the input signal had significantly more low-frequency energy than high-frequency

energy (Figure 3-3). He first determined a corner frequency separating "high" from

"low" frequency, roughly about 1400 Hz, based on spectral plots of consonant-vowel

pairs from male and female speakers. The system would then, with two more filters,

determine the ratio of high-frequency energy EH to low-frequency energy EL based on

resultant RMS values. This ratio was then compared to a threshold T to determine

whether to suppress the signal processing. If EH/EL < T, then the processing would

be suppressed.

Subjects listening to sets of consonant-vowel syllables processed by the vocoder

independently agreed upon the threshold value which would suppress processing for

as many nasals and semivowels as possible.

3.2 Present system

The present vocoder system, though modeled after Posen's analog system, has been

modified to better fit the needs and abilities of the digital equipment available (Fig-

ure 3-4). The digital implementation of the system is based on the Motorola DSP96002

processor and Ariel Corporation's DSP-96 Digital Signal Processing Board, using Mo-

torola's DSP96KCC Optimizing C Compiler to code the processor's program. Some

aspects of Posen's system were modified in order to accomodate an important con-

straint on the DSP-96 board: speed. The DSP-96 must be able to sample the speech

signal, perform the necessary signal processing, and produce an output signal in real-

time. Other modifications have been made to take advantage of the flexibility of a

digital implementation. Though the frame of Posen's system remains, every attempt

has been made to generalize the vocoder specifications such that an experimenter can

continuously adjust system parameters without modifying, recompiling, and reloading

the processor's source code.

3.2.1 Sampling rate

The DSP-96 board can only sample the input signal at one of several specific rates.

For the sake of speed, slower sampling rates are beneficial; the fewer data points the

board has to manipulate each second, the fewer calculations the system will need to

perform in order to maintain a continuous output. However, since the system is to

detect speech features as high as 5 kHz, the Nyquist sampling theorem states that

the system's sampling rate must be at least 10 kHz. The DSP board samples at the

lowest possible rate which is equal to or greater than the Nyquist rate-in this case,

11.025 kHz.

3.2.2 Filters

The filters comprising the vocoder system include a group of analysis filters, a group

of synthesis filters, and two threshold filters. The analysis-synthesis filter pairs de-

termine the amplitude of the low-frequency noise added to the speech signal. The

threshold filters compute the high- and low-energy in the speech signal in order to

implement Posen's threshold ratio.

Lippmann's and Posen's vocoder systems both used eight analysis filters. Rather

than combining the results of each pair of digital filters to control a given noise band,

thus requiring extra filtering calculations, the digital vocoder is designed for four

filters, each representing one analysis band and controlling one noise band.

For filtering calculations, discrete Fourier transforms (DFTs) effectively represent

the finite-duration filter sequences used by the vocoder. A fast Fourier transform

(FFT) algorithm provided in the Ariel C library calculates these DFTs. Since it is

impossible to represent the indefinite-length input sequence with a single DFT, the

system segments the input sequence into smaller blocks of finite sequences and uses

the overlap-add block convolution method to perform the filtering.

The overlap-add method and the FFT algorithm impose constraints on the selec-

tion of the N-point FFT, input segment length L, and filter length P of the system.

The FFT algorithm requires that N be a power of 2. By the overlap-add method,

N > L + P - 1. Though longer filter sequences allow for better filter design, they

require more computation time and memory on the DSP board.

Initially, the system used 512-point FFTs with filters 128 points long. After im-

plementing only a few analysis filters, however, it became apparent that the Motorola

processor could not keep up with the filtering calculations. Constant-tone input

signals analyzed by just two filters before being passed through the system would

come through with discontinuities, as the system simply could not fill the output

buffer quickly enough. The final system used 256-point FFTs with filters 64 points

in length; for these values the tones passed without distortion.

A filterbank based on Posen's system was designed to help test the digital voco-

der's performance. Four contiguous 2/3-octave filters with center frequencies from

1000-5000 Hz formed the analysis filterbank (Figure 3-6), and four contiguous 1/3-

octave filters with center frequencies ranging from 400-800 Hz comprised the synthesis

filterbank (Figure 3-7). A high-pass filter and a low-pass filter, each with a cutoff

frequency of 1400 Hz, served as the threshold filters, and a low-pass filter with a cutoff

of 1000 Hz was designed to simulate high-frequency hearing loss (Figure 3-8).

Filter sequences for the vocoder system can be designed by any process so long as

the end result is an ASCII file of the proper length and format. The filters should take

>> Al_prep = [0 794.3 891.3 1413 1585 5512.5);
>> M = [0 0 1 1 0 0];

>> N=128 ;
>> sampfreq = 11025;

>> Al = Al_prep * 2 / samp-freq;

>> aal = remez(N-l, Al, M);
>> AA1 = fft(aal, N);

Figure 3-5: Design of filter using Matlab's remez function.

into account the sampling rate of 11025 Hz, and the FFT of each filter should have a

bandpass magnitude of approximately 1.0 to avoid any scaling errors. Several filter

design techniques are discussed in [5] and [9]. Test filterbanks for the digital system

were designed with the help of MATLAB's remez function, which approximates a

desired frequency response with an optimal equiripple FIR filter using the Parks-

McClellan algorithm (Figure 3-5).

3.2.3 Noise

The artificial low-frequency cues added to the speech signal are produced by filtering

wide-band noise. The outputs of the synthesis filters are then scaled to appropriate

levels based on the ouptut levels of each of the corresponding analysis filters. The

DSP-96 produces its own noise to generate the low-frequency artificial cues by gen-

erating a pseudorandom sequence of numbers. The sequence is passed through each

of the synthesis filters in turn to produce narrow-band noise. The noise, representing

the low-frequency cues, is then scaled and added to the input signal.

Rather than generate four random number sequences, one for each synthesis filter,

the DSP-96 generates one random sequence for all four filters.

3.2.4 PC interface

Though the entire vocoder system could be run solely from the DSP board, the

addition of a personal computer allows a user to control the operation of the system

without recompiling the board code after each modification. The PC handles the

Analysis filters

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

I I I I I I

I I I I . I .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
I I I I I I I

I I I I I
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 3-6: Example analysis filterbank designed by Matlab's "remez" function.

0

0
I I I I I

F

Synthesis filters

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 3-7: Example synthesis filterbank designed by Matlab's "remez" function.

1

0.5

I I I I I I I I j
I I I I I j

.4

1

0.5

1.5I
1 -

0.5 -

0 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.5

1

0.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 3-8: High-pass (a) and low-pass (b) filters for signal processing cutoff deter-
mination. Low pass filter used to simulate hearing loss (c) .

1

n

0

1.5

1

0.5

A

0

downloading of not only the board's program but also the appropriate parameters and

filters. While the board program executes, the PC can request status information and

vary run-time parameters without disturbing the continuous operation of the DSP

board.

Chapter 4

Code

This chapter takes an in-depth look at both the personal computer program and the

DSP board program.

The PC and the DSP board each require its own program and compiler. The PC

code was compiled with the computer's local ANSI-C compiler. The code for the DSP

board was compiled using the Motorola DSP96KCC compiler and optimizer on a SUN

workstation. A Make file steps through the code compilation, code parallelization,

interrupt routine preparation, and linking to standard files and libraries. [10]

4.1 Personal computer code

The PC code has two functions. First, it initializes the DSP board, providing it

with its previously compiled program and passing it the user-specified values for

operation. Second, it allows the user to monitor and control the output of the DSP

board while the system operates by modifying system variables, including or bypassing

various components of the system, displaying the results of the filterbank analysis,

and checking the board for errors. The PC code can be found in Section A.1.

4.1.1 Downloading the DSP board code

user

config

parame

input

signal

output

signal

Figure 4-1: Overview of the digital vocoder system.

MS scale values for noise-band signals
threshold value

200
0.2
11

1
tr% I#- et!tpe fr

200 200 200

11
toggle states for input signal, threshold usage,

Sand low-pass filter

0

oise-band signalsa

aal_64 aa2_64 aa3_64 aa4_64 analysis filter filenames

ssl_64 ss2_64 ss3_64 ss4_64 synthesisfilterfilenames

lp64 lofreq hifreq

low-pass and high-pass "threshold" filtersh

low pass filter for hearing loss simulation

Figure 4-2: A sample configuration file.

n

Upon execution of the PC code, the program calls the DspRunCompiledO function

to load the Ariel Janus monitor and the compiled board code onto the Ariel board.

Janus is a bootloadable port monitor program for the 96002 processor which supports

program control, data transfer, monitor relocation, and other functions. As Janus is

responsible for preparing the DSP board to accept a non-bootloadable program, it

must be downloaded prior to downloading the board code. The Ariel program is then

loaded into the P-memory of the DSP board where it can be quickly accessed by the

processor. Execution of the Ariel program begins immediately after downloading; the

Janus monitor is relocated to run in the background. See [2] for more information

about the Janus monitor and downloading DSP programs to the DSP-96 board.

Rather than using a long list of command line parameters to set each variable,

the executable accepts only one argument: a configuration file specifying all the

appropriate filter filenames and values for the system. A sample configuration file is

shown in Figure 4-2. The file must specify, in the following order:

* the analysis filters

* the corresponding synthesis filters

* the high-pass and low-pass filters for suppression determination

* the low-pass filter

* the multiplication factors for noise-level amplitude

* the threshold ratio for suppression determination

* whether to include the input and noise-band signals in the output signal

* whether to use the low-pass filter

* whether to use the threshold ratio for suppression determination

When the configuration information has been loaded by the controller program,

it feeds the information to the DSP board.

4.1.2 DSP board interface

Communication between the PC program and the DSP board during program exe-

cution is handled completely by interrupt service routines. The PC sends a hardware

signal to the DSP-96 redirecting control to a particular address in memory. This

address contains instructions which direct the program flow to a specified subroutine.

Once the subroutine completes its operations, control returns to the program's point

of execution just before the interrupt signal was received. Special instructions are

necessary to initialize the interrupt-driven routines; see [2] and [10].

All interrupt routines used by this system follow the same basic handshake format

(Figure 4-3). The PC, after verifying that the DSP board is ready to receive data,

first sends values to the DSP board while the Ariel program is running (Figure 4-3a).

The PC then calls the interrupt via a signal from qcmdm96 (). The DSP-96, notified

by the signal, suspends its program to run the interrupt routine (Figure 4-3b). In

the routine, the DSP-96 receives the values sent by the PC and then sends back

an acknowledgement. Based on the identity of the interrupt routine that has been

called, the DSP-96 knows both how to interpret the newly received value and how to

respond to the PC. The board program then returns to its earlier point of execution,

and the PC interprets the success of the routine based on the response from the board

(Figure 4-3c).

The PC opens up each ASCII file in turn, reads the filter data point by point, and

sends the information to the DSP-96 via SendValue (). The PC calls GetValue ()

to verify receipt of the data. After loading the filter data onto the DSP-96, the PC

program calls a series of interrupt routines via ToggleSignal(), ToggleNoise (),

ToggleRatioUsage(), and ToggleLowPass () to initialize certain variables used by

the DSP board with the values read in from the configuration file. The PC keeps its

own copy of these toggle variables to avoid unnecessary requests to the DSP board

for their status. Once the initialization of these variables is accomplished, the PC

commands the DSP-96 to begin its operation, and the PC program moves on to its

second function.

- SendValueo

Ox 1 CO

- qcmd_m96(0xEO) :

OxI1CO

Ariel Program

interruptgedata

interrupt get_data() {

Ariel Program

interruptgetdata() {

gethostfloato;

SGetValueO -

OxiCO

Ariel Program

interrupt getdata() {

gethostfloat()O;

put host_float();

Figure 4-3: Interrupt usage for PC to DSP board interface.

v

4.1.3 Monitoring and altering the system

Once the board program has received the filter data, it enters a loop of sampling input

and generating output, and running independently of the PC program, continuing

even after the PC program terminates. However, by calling some of the same interrupt

routines which initialized the DSP board, the PC can change key variables used by

the DSP-96. Functions such as CheckRMS() and CheckErrors () call the appropriate

DSP board interrupt routines to obtain information on system performance.

To facilitate the debugging of system parameters, the user can suppress certain

components of the vocoder system by selecting from a list of menu options. These

components include:

* the addition of the input signal to the output

* the addition of any or all noise-band signals to the output

* the low-pass filtering of the output

* the use of the threshold ratio to suppress processing

The same toggle functions used to initialize these parameters are called for this

purpose.

The text menu also allows the user to:

* view the output levels of the analysis and synthesis filter

* view the total number of sampling errors (See 4.2.2)

* change the levels of the noise-band signals

* change the threshold ratio for suppression determination

* quit the PC program (though the board continues to operate)

These options place calls to CheckRMS O, CheckErrors O, ChangeNoise O,

ChangeRatio (), and Quit(), which in turn call the appropriate DSP board inter-

rupt routines.

4.2 DSP board code

The DSP board is the core of the vocoder system. It simultaneously samples the input

signal, filters the input signal, generates narrow-band noise signals, adds the noise-

band signals back into the input at levels dependent on information gleaned from

the filtering operations, and produces an output signal. While executing all these

real-time operations the board remains alert for information requests or parameter

alterations by the controlling PC program. The code for the DSP board can be found

in Section A.2.

4.2.1 Initial setup

Since the DSP board code is not bootloadable, the Janus port monitor program must

be downloaded onto the DSP board. Once Janus is resident on the board and the

DSP board code has been downloaded, the program immediately begins execution.

A few data buffers must be initialized prior to proceeding with the program.

In order to use the sampling circuitry of the DSP-96 board, two buffers of C-type

iobuffer must be set up and reserved for input and output from the board with the

init _input buf f er () and init output _buf f er () procedures. To employ the signal

processing procedures in the ariel.h library, the board declares buffers specifically

set up to hold complex numbers. The data type complex, along with procedures

for accessing the real and imaginary parts of the buffer data, handles the necessary

memory organization. To make these buffers readily accessible by the board, hence

increasing its speed, the #pragma command declares storage for the buffers in available

space on the board's SRAM rather than its slower DRAM. For more information on

memory organization refer to [2] and [10].

Other variable declarations and initializations by the board code that need only

be performed once are executed prior to the main loop of the program. This includes

the zero-padding of buffers, the reception of filter data from the personal computer,

and the FFT calculation for each of these filters.

4.2.2 Sampling I/O

After setting up the input and output buffers and making a call to set-sample-rate (),

a call to startsampling() prepares the DSP-96 for sampling with appropriate inter-

rupt routines, then causes the DSP board to store samples into the input buffer and

playing samples from the output buffer. The DSP board continues to place and play

samples until the program terminates. This high-level interaction between the pro-

gram and the DSP board's A/D and D/A converters abstracts the complex real-time

processes of sampling, coordinating all synchronization, wait-states, and interrupt

procedure calls without further code. The ariel.h library procedures get-input ()

and put _output () retrieve or pass sample data to these input/output buffers (Fig-

ure 4-4).

The DSP board program's main loop pulls CHUNKSIZE samples from the input

buffer and places them in the buffer datain. The DSP board then performs the

necessary filtering operations upon the sampling information in data-in without cor-

rupting the buffer data. When the DSP board has prepared a dataout buffer com-

plete with narrow-band noise and the original input data, the data-out samples are

passed to the output buffer, and the loop repeats. Any samples either written to an

overflowing input buffer or played from an exhausted output buffer will increment

the number of errors returned by the get-input () or putoutput () functions. The

number of these errors is reported to the PC by a call to interrupt errors check().

4.2.3 Filtering

In the implementation of the vocoder system, the bulk of the DSP board's com-

putations is devoted to filtering. Filtering requires the implementation of a linear

convolution of the input signal with the given filter sequence. This linear convolution

may be obtained by performing a circular convolution of sufficient length using the

Discrete Fourier Transforms (DFTs) of the two sequencess. This section details the

implementation of the filtering process in the DSP board code.

The ariel.h library includes signal processing functions to compute both the

inputbuffer
data_in

outputbuffer

0

get-input()

0

CHUNK

SIZE

INPUT_BUFFER_SIZE

0

data_out

putoutput()

OUTPUT_BUFFER_SIZE

0

CHUNKSIZE

Figure 4-4: DSP board sampling procedure.

f\\I
.... _m_

N-point fast Fourier transform (FFT) and the N-point inverse FFT of a complex

buffer. Both reaLfft () and inv_fft () require two buffers of data type complex; the

complex array tempbuffer, used as an intermediate buffer for each of these functions,

contains corrupted data after the call. The FFTs of the noise, input, and filter

sequences are stored into noisebuffer, input-signal, or one of the filter data

arrays, respectively.

As each filter is downloaded to the DSP board it is temporarily placed in the zero-

padded datain buffer until all FILTERSIZE points have been received. The program

next performs the FFT of the filter response sequence and stores it in the appropriate

filter buffer, then repeats the procedure for the next filter. This process improves

the speed of the program by computing the FFTs just once.

The overlap-add method of block convolution is implemented using several buffers.

The indefinite-length input signal is segmented into smaller finite sequences by reading

in CHUNKSIZE data points from the input buffer. To save time, the sequence is zero-

padded prior to the main loop by assigning the remaining (FFTSIZE - CHUNKSIZE)

points in the datain array to zero. The program calculates the FFT of the input

and stores it in input-signal. A call to multbuff() 0 then performs an element

by element multiplication of inputsignal with the precalculated FFT of the given

filter. The program calculates the inverse FFT of the result and stores it in the

dataout array. The overlapping FILTER-SIZE points at the end of the resultant

sequence dataout, representing time-aliased points from the circular convolution,

are copied in the overlap buffer corresponding to that filter and then added into

the next convolution performed with that filter. The information in dataout is only

used to calculate an RMS level and store it in the rms array; the data is written over

when calculating the next filtering operation.

4.2.4 PC interface

As described above, all communication between the DSP board and the PC is accom-

plished by the use of interrupt service routines. Upon execution, the DSP board loops

in a wait state until it has received all of filter information from the PC program.

As the PC sends a value to the DSP board, it calls the interrupt get data()

routine. The DSP board temporarily leaves its wait state, places the received data in

the datain array (since it is not needed for sampling data at the time), increments

the index counter, and returns the counter value back to the PC. When the Check()

function reports that FILTERSIZE data points have been received, the program pro-

ceeds with the FFT calculations for that filter and begins accepting values for the

next filter.

The PC can initialize and later control various run-time parameters by calling

other interrupt routines. The interrupt _toggles () function toggles the input signal,

use of the threshold ratio, and use of the low pass filter, depending on which signal the

PC sends. The interrupt togglenoise () function toggles the presence of each of

the noise-bands in the output signal. The interrupt _set _value () function accepts

a signal and a value from the PC, the signal indicating whether the threshold ratio

or one of the noise-band scale factors should be set to the value provided.

4.2.5 Noise

The DSP board code is also responsible for the generation of narrow-band noise. This

is accomplished by first generating wide-band noise, then passing the wide-band noise

signal through the synthesis filters. It is the vocoder system's addition of the narrow-

band noise back into the input signal which creates the artifical lower-frequency speech

cues for an impaired listener.

To create the wide-band noise, the code uses a variation of the Box-Muller method

for generating random deviates with a normal (Gaussian) distribution, as described

in [7]. The gasdev () function implements this procedure, using the rani () function

to generate random numbers quickly. The data placed in the noise buffer, created

by a series of calls to gasdev (), is then filtered through the synthesis filter to create

narrow-band noise signals in the noiseout buffers. The overlap-save method is

again used for this filtering, with noise replacing data-in and noiseout replacing

data-out.

The amplitude of the noise signals is controlled by the RMS level calculated from

the analysis filterbank output. Because the set of noise signals is of an arbitrary

unitless amplitude, the noiseout signals are multiplied by the appropriate RMS

values (stored in rms) after dividing by a preset factor, rmsscalevalue. This factor

can be specified in the configuration file or modified during run-time.

Chapter 5

Conclusions

5.1 Functionality of current system

The current system functions as described in chapter 4. Specifications from a con-

figuration file are successfully read in by the personal computer and downloaded to

the DSP board. The board responds to PC status queries. A constant-tone input

produces the expected results: the RMS value reported to the PC for the appropri-

ate frequency range increases, and low-frequency noise for the corresponding band

is added to the signal (Figure 5-1). At a threshold level of roughly 0.2, the DSP-96

added noise for the the /z/ and /t/ phonemes in the consonant-vowel syllables /zu/

and /ta/ but suppressed noise for the /1/ in /li/.

Problems surfaced with maintaining enough speed to avoid sampling errors under

certain conditions. The random sequence generator could not generate a new random

sequence for each loop of the program without causing sampling errors; consequently,

the generator was moved outside of the main loop and the synthesis filterings were

performed on the same noise sequence. Other combinations of conditions also caused

sampling errors to occur: if the PC requested information from the DSP board while

the low-pass filter simulating hearing loss was active, or if the threshold filters were

active and the input signal never fell below the threshold level, then the DSP-96

would be unable to feed data to the output sampling buffer with enough speed to

avoid errors.

I I

/ N

N.

/
'I

'I
150

1

I
I
I
I

I
I

I

\ I

V
I'

I'

\-
\l/

\

--- -0- -0-
0 I I

I

-x- - X_-

"--

C-'

U 1000 2000 3000 4000 5000 6000
constant-tone frequency (Hz)

Figure 5-1: RMS levels reported by the PC for constant-tone inputs.

,.~ ,z f~
Le_

200

100

--- 4-

I I

I/

- +1-

-- 0----

I I

/

/

-

\
\

-

5.2 Suggestions for further work

5.2.1 Evaluation

Extensive testing of the viability of the vocoder system as a hearing aid still remains.

Such testing would help optimize vocoder specifications, such as filter design, noise

scaling, and the suppression threshold, that were previously limited by the available

analog equipment. Experiments could include subject feedback in determining system

settings.

Analysis and synthesis filterbanks which differ from the standards set by the analog

vocoder systems could also be implemented. These filterbanks, for example, might

feature filters that are not contiguous, of unequal bandwidths, or that control more

than one noise-band, in order to explore the effect of weighting different frequency

ranges of speech. Filterbanks could be designed based on the audiogram of a hearing-

impaired listener.

5.2.2 Improvement

Some modifications to the source code might improve the system further.

The sampling errors necessitate more modifications to the program to improve its

speed. Loading up a pregenerated array of random numbers rather than generating

them during run-time would improve speed, as would reducing the sizes of the FFTs

and the filters.

More functionality could be added to the PC controlling program: for example, a

way to reset the board in case of errors, a means of replacing a filter "on the fly," or

perhaps even a more user-friendly, informative interface for a subject to use instead

of the crude text menu currently implemented.

More complicated methods of controlling changes to the amplitude of noise signals

might also be implemented. The current system does not exert control over the noise-

band levels based on the level of low-frequency sounds already present in the input

signal, as Posen's system did. Noise levels could be specified as a percentage of the

signal amplitude rather than as a multiplicative factor to make the determination of

RMS scale values more intuitive for a user.

Appendix A

Source Code

A.1 Code for controlling personal computer

The code for the personal computer side of the system was compiled using the stan-

dard C compiler available on the machine. The code consists of a header file and

main file.

/* pc.h -- last update 2/1/96 */
/ * Jeff Foley */

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <m96/dsp.h>

#include "/ollie/ j f oley/Code/lib/runcompiled.h"

#include "/ollie/jjfoley/Code/lib/waitm96 .h"

10

#define JANUSMONITOR "janusl.lod"

#define BOARDPROGRAM "board. lod"

#define MAXWAIT 10

#define MAX_STR 80

#define NUMFILTERS 4

#define NUM_MORE FILTERS 3

#define NUM ARGS 2

#define DEBUG 0

#define OFF 0

#define ON 1 20

/ * menu options */

void ToggleNoise(int *current value);

#define SIGNALTOGGLE 1

void ToggleSignal(int *current value);

#define RATIOTOGGLE 2

void ToggleRatioUsage(int *currentvalue);

#define LPF_TOGGLE 3

void ToggleLowPass(int *currentvalue);

void CheckRMS(void); 30

void CheckErrors(void);

void ChangeRatio(void);

void ChangeNoise(void);

void Quit(void);

/ * other useful functions */

void Help(void);

void FileError(char *);

void SendValue(float);

void GetValue(int); 40

/* pc.c -- last update 2/1/96 */

/* Jeff Foley */

#include "pc.h"

main(int argc, char * argv[])

{
FILE *fp; FILE *fpl; int i; float value, retrieved, t;

char choice;

char filtfile[MAXSTR]; 10

int signalon=1, noiseon[NUM FILTERS], ratio-on=0, lpfon=0;

float threshold;

/ * ----- INITIALIZE BOARD CONFIGURATION----- */

if (argc != NUMARGS) Help();

get-configm96(NULL);

DspRunCompiled(BOARDYPROGRAM, JANUS-MONITOR, 0, 1);

if (!(fp = fopen(argv[1], "r"))) FileError(argv[1]); 20

/ * read in rms levels and threshold ratio*/

for(i=0; i<NUMFILTERS+1; i++) {

fscanf(fp, "%f", &value);

qsend float_m96(i);

qsendjfloat m96(value);

qcmd m96(0xEO); /* calls interrupt service routine at Oxi CO*/

}
/ * read in initial toggle states */

for(i=0; i<NUMFILTERS; i++) { 30

fscanf(fp, "%f", &value);

if (value) noiseon[i]=ON;

else {
noise on[i]=OFF; qsendfloat_m96(i); qcmd m96(0xDO);

}
}
fscanf(fp, "%.f", &value);

if (!value) {
signal on=OFF; qsendjfloatm96(SIGNAL TOGGLE); qcmdm96(0xCO);

1 40

fscanf(fp, "%f", &value);

if (value) {
ratioon=ON; qsend float m96(RATIOTOGGLE); qcmd m96(0xCO);

}
fscanf(fp, "%f", &value);

if (value) {

lpf_on=ON; qsendfloatm96(LPF TOGGLE); qcmd_m96(0xCO);

}

/ Send the analysis, synthesis, lowpass, and high- and low-freq filters 50

to the DSP board */

for (i=0; i<NUM_FILTERS*2 + NUM-MOREJFILTERS; i++) {

fscanf(fp, "%s", filtfile);

if (!(fpl = fopen(filtfile, "r"))) FileError(filtfile);

printf("File '%s' -- >",filtfile);

if (i < NUMFILTERS) printf(" Analysis filter #%d\n", i+1);

else if (i < NUM_FILTERS*2) printf(" Synthesis filter #%d\n", (i%4)+1);

else if (i == NUM_FILTERS*2) printf(" Low Pass filter\n");

else if (i == NUMFILTERS*2+1) printf(" Low Frequency filter\n");

else if (i == NUMFILTERS*2+2) printf(" High Frequency filter\n"); 60

else printf(" Additional (unknown) filter\n");

while (fscanf(fpl, "%f", &value) != EOF) {

SendValue(value);

GetValue(i);

}

/ ----- MAIN MENU --- 1- /

70

while (1) {

printf("\nOptions:\n");

printf(" (1) turn input signal");

if (signal-on) printf(" off\n"); else printf(" on\n");

printf("(2) toggle noise-band signals on and off\n");

printf("(3) turn threshold ratio usage");

if (ratio on) printf(" off\n"); else printf(" on\n");

printf("(4) turn low-pass filtering");

if (lpfon) printf(" off\n"); else printf(" on\n");

printf("(5) check filter outputs\n"); so

printf("(6) check total sampling errors reported\n");

printf(" (7) change threshold ratio\n");

printf(" (8) change levels of noise-band signals\n");

printf(" (q) quit\n");

choice = getchar();

if (choice == ' \n') choice = getcharo;

if (choice == ' 1')

ToggleSignal(&signal-on);

else if (choice == '2')

ToggleNoise(noise on); 90

else if (choice == '3')

ToggleRatioUsage(&ratio on);

else if (choice == '4')

ToggleLowPass(&lpf on);

else if (choice == '5')

CheckRMSO;

else if (choice == ' 6')

CheckErrors 0;

else if (choice == '7')

ChangeRatio(); 100

else if (choice == ' 8')

ChangeNoise0;

else if (choice == 'q')

QuitO();

else printf("* Not a menu option *\n");

}
}

/* ----- MENU FUNCTIONS----- */

110

void ToggleSignal(int *current value) {

printf("\n<< Input Signal ");

if (*current value) {

printf("Off >>\n"); *currentvalue=OFF;

} else {
printf("On >>\n"); *currentvalue=ON;

}
qsend_float_m96(SIGNALTOGGLE);

qcmd_m96(0xCO); /* calls interrupt service routine at 0x180 */

} 120

void ToggleNoise(int *currentvalue) {

int which;

printf("\nWhich noise-band (1-%d)?", NUMFILTERS);

scanf("%d",&which);

if (which < 1 1 which > NUMFILTERS) {

printf("\n* Invalid noise-band *\n");

} else {

printf("\n<< Noise Signal %d ", which);

if (current value[which]) { 130

printf(" Off >>\n"); currentvalue[which]= OFF;

} else {

printf("On >>\n"); currentvalue[which]=ON;

}
qsendfloatm96(which-1);

qcmd_m96(0xDO); /* calls interrupt service routine at OxlAO */

}
}

void ToggleRatioUsage(int *currentvalue) { 140

int new-value;

printf("<< Threshold Ratio Usage ");

if (*current-value) {

printf(" Off >>\n"); *currentvalue=OFF;

} else {

printf(" On >>\n"); *currentvalue=ON;

}
qsendfloatm96(RATIOTOGGLE);

qcmdm96(0xCO); /* calls interrupt service routine at 0x180 */

} 150

void ToggleLowPass(int *currentvalue) {

int newvalue;

printf("\n<< Low Pass Filtering ");

if (*current-value) {

printf(" Off >>\n"); *currentvalue=OFF;

} else {

printf(" On >>\n"); *currentvalue=ON;

}
qsend_float m96(LPFTOGGLE); 160

qcmdm96(0xCO); /* calls interrupt service routine at 0x180 */

}

void CheckRMS(void) {

int i;
qcmdm96(0xAO); /* calls interrupt service routine at Ox14O 1
for (i=0; i<NUMFILTERS; i++) {

printf("Filter #Y.d: RMS level Y.g\t", i+l, qget float m960);

printf("RMS scale value: %g\t", qget float m960);

printf("Noise: %.g\n", qgetfloat m96(); 170

}
printf("Threshold ratio set to %g\n", qgetfloatm960());

}

void CheckErrors(void) {

qcmdm96(0xBO); /* calls interrupt service routine at 0x160 */

printf("\nTotal number of sampling errors: %. 1f\n", qgetfloatjm96());

}

void ChangeRatio(void) { 180

float new_ratio;

printf("\nWhat should the new threshold ratio be?");

scanf(" /f", &new ratio);

qsendfloat m96(NUMFILTERS);

qsendfloat_m96(newratio);

qcmdm96(0xEO); /* calls interrupt service routine at Oxl CO /

}

void ChangeNoise(void) {

int which; float newlevel; 190

printf(" \nWhich noise-band (1-%.d) ? ", NUM_FILTERS);

scanf("%d",&which);

printf("\nWhat should the new level be?");

scanf("%f",&newlevel);

if (which > NUMFILTERS 11 which < 1) {

printf ("\n* Invalid noise-band *\n");

} else {

printf("\n<< Noise Signal Level %d set to %g", which, newlevel);

qsend float_m96(which-1);

qsendfloat m96(newlevel);

qcmd_m96(0xEO); /* calls interrupt service routine at Ox1 CO*/

}

void Quit(void) {

/ * if anything needs to be cleaned up before exiting, do it now */

exit(-1);

}

/* ----- ADDITIONAL USEFUL FUNCTIONS----- -*/

void Help(void) {

printf("\nUsage: pc configfile\n");

printf("where configfile is a text file with specs for the vocoder.\n");

printf("See sample.cfg for an example of a valid config file.\n");

exit(-1);

}

void FileError(char *filename) {

printf("\nCouldn't open file \"%s\", exiting...\n", filename); exit(-1);

}

void SendValue(float value) {

if (DEBUG) printf("\nValue: %.f", value);

if (WaitCanSendM96(0,DFLT,MAX WAIT) == -1) {

printf("\n*** Timed out waiting to send to DSP board ***\n");

exit(-1);

} else {

qsend floatm96(value);

qcmd m96(0x90); 230

}
}

void GetValue(int i) {

float retrieved;

if (WaitCanGetM96(0,DFLT,MAXWAIT) == -1) {

printf("\n*** Timed out waiting to receive from DSP board ***\n");

exit(-1);

} else {

retrieved = qget floatm960; 240

if (DEBUG) printf("\tGot value: %f ",retrieved);

}
if (retrieved == -1) {

printf("** Board rejected value loading filter #%d", i);

}

A.2 Code for Ariel DSP-96 board

The code for the digital signal processing board was compiled using the g96k compiler

on a SUN workstation A Make file, as specified by Sexton in his document, ensures

that the proper compiler, parser, and optimizer are invoked on the C code.[10). This

code also consists of a header file and main file.

/* board.h -- last update 2/3/96 */

/ * Jeff Foley */

#include <ariel.h>

#include <math.h>

/ * system parameters */

#define INPUTBUFFERSIZE 5000

#define OUTPUTBUFFERSIZE 5000

#define SAMPRATE 11025.0 10

#define RMSINIT SCALENVALUE 750

#define FILTER SIZE 64 / * 32 */

#define CHUNK SIZE 193 / 97 */ / FILTERSIZE < CHUNK SIZE /
#define FFTSIZE 256 /* 128 */ /* FFT SIZE = FILTER SIZE + CHUNK SIZE- 1 */

#define NUMFILTERS 4 / * number of analysis-synthesis filter pairs */

#define NUMMORE_FILTERS 3 /* for the lowpass and 2 threshold filters */

#define TOTALFILTERS NUMFILTERS*2+NUM MORE FILTERS

#define SIGNAL-TOGGLE 1

#define RATIO_TOGGLE 2 20

#define LPFTOGGLE 3

#define ON 1

#define OFF 0

#define LPFFILTER NUM_FILTERS*2

#define LOFILTER NUM_FILTERS*2+1

#define HI_FILTER NUM_FILTERS*2+2

/* definitions for "quick and dirty" random generator,

taken from _NumericalRecipes inC */

unsigned long myidum, itemp; 30

float rand;

#ifdef vax

static unsigned long jflone = 0x00004080;

static unsigned long jflmsk = Oxffff007f;

#else

static unsigned long jflone = 0x3f800000;

static unsigned long jflmsk = Ox007fffff;

#endif

/* interrupt service routine prototypes -- IMPORTANT: Names must begin 40

with "interrupt" for parser to detect and setup interrupts properly */

void interrupt getdata(void);

void interrupt rms check(void);

void interrupterrors_check(void);

void interrupttoggles(void);

void interrupttogglenoise(void);

void interruptsetvalue(void);

int check(void);

float ranl(void); 50

float gasdev(void);

void GenerateNoiseSignal(void);

void multbuff(complexU, complexo, complex[]);

static iobuffer inputbuffer[INPUTBUFFERSIZE];

static iobuffer output buffer[OUTPUTBUFFER SIZE];

/ *complex numbers put into 1-mem for greater speed in filtering calculations*/

#pragma Irun 1:$108000

static complex tempbuffer[FFTSIZE]; 60

static complex inputsignal[FFTSIZE];

static complex noisebuffer[FFTSIZE];

static complex filter[NUM.FILTERS*2+3] [FFTSIZE];

#pragma lrun

float datain[FFT SIZE];

float dataout[FFTSIZE];

float thresholdout[FFT SIZE];

float noise_out[NUMFILTERS][FFTSIZE];

float noise[FFTSIZE]; 70

float rms[TOTALFILTERS];

float overlap[TOTALFILTERS] [FFTSIZE];

float timer; int errors=0; /* sampling variables */

/ * Parameters which can be changed by config file */

int index=0, lpf_on=0, signalon=1, ratioon=0, noiseon[NUMFILTERS];

float rmsscalevalue[NUMFILTERS];

float ratio= 1.0;

Int Drocess=UiN;

/* board.c -- last update 2/1/96 */
/ * Jeff Foley */

#include "board. h"

main()

{
int i, j, k;

initinputbuffer(input buffer,INPUT BUFFERSIZE);

init outputbuffer(output buffer,OUTPUTBUFFERSIZE); 10

/* specify user interrupt vectors (between 0x120 and OxIlFE) */

setjinterrupt(0x120,(void (*)(void))interrupt-getdata);

setinterrupt(0x140,(void (*)(void))interruptrmsscheck);

set-interrupt(0x160,(void (*)(void))interrupt errorsscheck);

setjinterrupt(0x180, (void (*)(void))interrupttoggles);

setinterrupt(0xlAO,(void (*)(void))interrupttoggle-noise);

set-interrupt(0xl CO,(void (*)(void))interruptsetvalue);

/ * initialize noise levels, overlap buffer; zero-pad input-signal for FFTs */

for (i=0; i<NUM FILTERS; i++) { 20

rmsscale value[i] = RMS_INITSCALEVALUE;

noise on[i] = ON;

}
for (i=0; i<TOTALFILTERS; i++) {

for (j=0; j<FILTER_SIZE-1; j++) {

overlap[i][j]=0;

}
}

for (j=FILTERSIZE; j<FFTSIZE; j++) {

data in[j]=0; 30

}

/ * FFT the filters and stuff them into "filter" buffers */

for (i=0; i<TOTAL FILTERS; i++) {

while(checkO == 0); / * wait for filters to be loaded in and padded */

real fft(datain, tempbuffer, filter[i], FFThSIZE);

index=0;

}

/ * preset narrow-band noise signal */ 40

GenerateNoiseSignal();

realfft(noise, tempbuffer, noisebuffer, FFT.SIZE);

for (i=0; i<NUMFILTERS; i++) {

multbuff(noisebuffer, filter [i+NUMYFILTERS], tempbuffer);

invjfft(tempbuffer, noise out[i], FFTSIZE);

}

setsamplerate(SAMPRATE, NORMAL-MODE, ANALOGIO);

start-sampling();

50

/ * ----- MAIN LOOP--- */

for (;;){

reset timer();

errors += getinput(CHUNK-SIZE,0,datain);

real fft(datain, tempbuffer, input-signal, FFTSIZE);

if (ratio on) {

rms[HIFILTER]=0;

rms[LOFILTER]=0; o60

for (i=LO FILTER; i<HIFILTER+1; i++) {

multbuff(input _signal, filter[i], tempbuffer);

inv_fft(tempbuffer, thresholdout, FFTSIZE);

for (j=O; j<FILTER.SIZE-l; j++) {

threshold out[j] += overlap[i][j];

overlap[i][j] = threshold out[j+CHUNKSIZE];

}
for (j=0; j<CHUNK SIZE; j++) {

rms[i] += thresholdout[j] * threshold out[j];

} 70

rms[i] = sqrt(rms[i] / CHUNKSIZE);

}
if (rms[HI FILTER] / rms[LO FILTER] > ratio)

process = ON;

else process = OFF;

} else process = ON;

if (!signalon) {

for (i=0; i<CHUNK SIZE; i++) {

data_in[i] = 0; 80

}
}
if (process == ON) {

for (i=0; i<NUM_FILTERS;i++) {

/* multiply inputsignal buffer with each filter buffer,

store in tempbuffer */

multbuff(input signal, filter[i], tempbuffer);

inv_fft(tempbuffer, data-out, FFTSIZE);

/* data out[O] thru dataout[CHUNKSIZE- 1] are "good points"; 90

data out[CHUNK SIZE] thru data_ out[FFT SIZE] are "aliased points" */

/* add old overlap information, save new info for next iteration */

for (j=0; j<FILTERSIZE-1; j++) {

dataout[j] += overlap[i] [j];

noiseout[i] [j] += overlap[i+NUM FILTERS] [j];

overlap[i][j] = data out[jD+CHUNKSIZE];

overlap[i+NUMFILTERS] [j] = noiseout[i] [j+CHUNKSIZE];

100

/ * calculate RMS value from filter */

rms[i]=0;

for (j=0; j<CHUNK_SIZE; j++) {

rms[i] += data out[j] * data out[j];

}

rms[i] = sqrt(rms[i] / CHUNKSIZE);

/ * multiply noise signal based on rms value and add to data in */

if (noiseon[i]) {

for (j=0; j<CHUNKSIZE; j++) { 110

datain[j] += noiseout[i][j] * rms[i] / rmsscalevalue[i];

}
}

}
}
/* lp filter data-in, if lpfon flag is set */

if (lpf on) {

reallfft(datajin, tempbuffer, inputsignal, FFT_SIZE);

multbuff(inputsignal, filter[LPFFILTER], tempbuffer);

inv.fft(tempbuffer, data in, FFTSIZE); 120

for (j=O; j<FILTER SIZE-1; j++) {

data-in[j] += overlap[LPFJFILTER][j];

overlap[LPFFILTER][j] = datain[j+CHUNKSIZE];

}
}
errors += putoutput(CHUNK_SIZE,0,data in);

}

/* ----- INTERRUPT SERVICE ROUTINES----- */ 130

void interrupt-get.data(void) {

if (index < FILTER_SIZE) {

datain[index] = get hostfloat();

index++;

put hostfloat(index);

} else {

get hostfloat();

puthostfloat(-1.0);

} 140

}

void interrupt rmscheck(void) {

/ * check rms values */

int i;

for (i=0; i<NUM_FILTERS; i++) {

put host float(rms[i]);

put _host float(rmsscaleyvalue[i]);

put host float(noiseon [i]);

} 150

puthostfloat(ratio);

}

void interrupterrorscheck(void) {

/ * check total errors */

puthostjfloat(errors);

}

void interrupttoggles(void) {

float which; 160

which=gethost float(;

if (which == SIGNAL TOGGLE) {

signal-on = !signalon;

}
else if (which == RATIO-TOGGLE) {

ratioon = !ratioon;

}
else if (which == LPF_TOGGLE) {

lpf on = !lpf on;

} 170

void interrupttogglenoise(void) {

int which;

which=(int) gethost floatO();

noise on[which] = !noise-on[which];

I

void interrupt.setvalue(void) {

int which; s180

float value;

which=(int) get hostfloat();

value=gethostfloat();

if (which == NUM FILTERS) ratio = value;

else rms_scale value[which] = value;

}

/ *----- NOISE GENERATION FUNCTIONS----- -*/

void GenerateNoiseSignal(void) { 190

int i;

for (i=0; i<CHUNK SIZE; i++) {
noise[i] = gasdevo;

}
for (i=CHUNK SIZE; i<FFT SIZE; i++) {

noise[i] = 0;

}

/* A "quick and dirty" random generator, from _NumericalRecipes in C */ 200

float ranl(void) {
myidum = 1664525L*myidum + 1013904223L;

itemp = jflone I (jflmsk & myidum);

rand = (*(float *)&itemp)-1.0;

return(rand);

1

/ * returns random deviate with normal (Gaussian) distribution using

Box-Muller transformation method, also taken from

NumericalRecipes inC, using random generator above */ 210

float gasdev(void)

{
float ranl (void);

static int iset=0;

static float gset;

float fac, rsq, v1, v2;

if (iset == 0) {

vl=2.0*ran1()-1.0;

v2=2.0*ran1()-1.0; 220

rsq=vl*v1+v2*v2;

while (rsq >= 1.0 I rsq == 0.0) {

vl=2.0*ranl()-1.0;

v2=2.0*ranl()-1.0;

rsq=v1*v1+v2*v2;

}
fac=sqrt(-2.0*log(rsq)/rsq);

gset=v1*fac;

iset=1;

return v2*fac; 230

} else {

iset=0;

return gset;

}

}

/ * ----- ADDITIONAL USEFUL FUNCTIONS------ */

/* This do-nothing "check" function is necessary to prevent the

optimizer from misrepresenting the while0 loop after compiling. */ 240

int check(void) {

if (index < FILTER-SIZE)

return(0);

else {

return(1);

}
}

/ * Performs element by element multiplication of two complex buffers */

1~t (1/ 1~ P ~ - --------- 1

voxa multountcomplex nrst

y, complex
seconag,

complex
targety)

{
int k;
for (k=0; k<FFTSIZE; k++) {

putcomplexreal(&(target[k]),

get-complex-real(&(first[k])) *

getscomplexreal(&(second[k])) -

getcomplexjimag(&(first[k])) *

getcomplexjimag(&(second[k])));

putcompleximag(&(target[k]),

getcomplexreal(&(first[k])) * 260

get complexjimag(&(second[k])) +

get complexjimag(&(first[k])) *

getcomplexreal(&(second[k])));

}
}

Bibliography

[1] Louis D. Braida, Nathaniel I. Durlach, Richard P. Lippmann, Bruce L. Hicks,

William M. Rabinowitz, and Charlotte M. Reed. Hearing aids-a review of past

research on linear amplification, amplitude compression, and frequency lowering.

American Speech-Language-Hearing Association Monographs Number 19, 1979.

[2] Ariel Corporation. User's Manual for the DSP-96 DSP96002 Floating-Point

Attached Processor Board with Dual-Channel Analog I/O, 1993.

[3] B.L. Hicks, L.D. Braida, and N.I. Durlach. Pitch invariant frequency lowering

with nonuniform spectral compression. In Proc. of IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, pages 121-124, New York,

March 1981. IEEE.

[4] R.P. Lippmann. Perception of frequency lowered consonants. J. Acoust. Soc.

Am., 67:S78, 1980.

[5] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing.

Prentice Hall, 1989.

[6] Miles P. Posen. Intelligibility of frequency-lowered speech produced by a channel

vocoder. Master's project, Massachusetts Institute of Technology, Department

of Electrical Engineering and Computer Science, February 1984.

[7] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical Recipes in C: The Art of Scientific Computing, chapter 7.1-7.2.

Cambridge University Press, 1992.

[8] Charlotte M. Reed, Kenneth I. Schultz, Louis D. Braida, and Nathaniel I.

Durlach. Discrimination and identification of frequency-lowered speech in listen-

ers with high-frequency hearing impairment. J. Acoust. Soc. Am., 78(6):2139-

2141, December 1985.

[9] C. Britton Rorabaugh. Digital Filter Designer's Handbook: Featuring C Rou-

tines. McGraw-Hill, 1993.

[10] Matthew G. Sexton. C language development on the dsp-96 dsp96002 floating-

point attached processor board, June 1995.

