Floating Point Multiply/Add Unit For the
M-Machine Node Processor

by
Daniel K. Hartman

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering
and
Bachelor of Science in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1996
(© Massachusetts Institute of Technology 1996. All rights reserved.

/\ -1 \.4’ . /

Author . s c..... L e e e e e
Department of Electrical Engineering and Computer Science

. ) I/, - May 18, 1996

Certified Dy . : .. ittt
/ // 7 William J. Dally

Associate Professor

“\ n ‘ A TR Thesis Supervisor

Accepted by.... ..... LN Q .............................
F. R. Morgenthaler

Chalfifian, Departmenta} Committee on Graduate Theses

MASSACHUSETTS INSTITUTY
CF TE0h anm may

JUN 11 199g  BaricerEng



Floating Point Multiply/Add Unit For the M-Machine
Node Processor
by

Daniel K. Hartman

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 1996, in partial fulfillment of the
requirements for the degrees of
Master of Engineering
and
Bachelor of Science in Computer Science and Engineering

Abstract

This thesis covers the design of a floating-point multiplier/adder unit for the M-
Machine node processor. The design includes the overall architecture, the algorithms
used for multiplication/addition, complete schematics and general layout guidelines
for the datapath, and the logic equations to control rounding.

Thesis Supervisor: William J. Dally
Title: Associate Professor



Acknowledgments

Without a doubt, the experience of being part of the M-Machine project has been
the most valuable of my educational experience by far. The opportunity to do design
work for a project such as this seems to be very rare; certainly I would have never
had the opportunity to build an entire floating point unit in industry without years
of experience. If anyone has doubts as to whether cutting processors can come out of
academia, 1 believe this project will demonstrate it is possible.

A big thank you goes to Professor Bill Dally for giving me the opportunity to tackle
such a big project, as well as giving lots of circuit advice and being an incredibly large
bank of knowledge.

Special thanks goes to Steve Keckler for giving design advice, and generally looking
over my shoulder.

I would also like to express my appreciation to the rest of the M-Machine hardware

team, including:

Jeff Bowers UROP Student (Responsible for Bidirectional Pads and Floating Point
Divide/Square-root Unit)

Andrew Chang Research Scientist (General Manager and many other things)
Nick Carter Phd. Student (Memory Subsystem Guru)
Parag Gupta MEng Student (Circuit Designer for many units)

Whay Lee Phd. Student (Network Interface Guru)

Working with a group of highly competent people is a reward of its own.



Contents

The M-Machine and its Floating Point Requirements

The Instruction Set

2.1 FMUL: Double Precision Multiply . . . . . ... ... ... ...
2.2 FADD: Double Precision Addition . . . .. .. ... ... ....
2.3 FMULA: Double Precision Multiply and Add . .. .... ...
2.4 FTOI: Double Precision to Integer Conversion . . . . ... ...

2.5 ITOF: Integer to Double Precision Conversion . . . .. ... ..

Hardware Needed to Support Operations

3.1 Double Precision Multiplication . . . . . ... ... .......
3.1.1 Multiplication Techniques . . . .. .. .. ... .....
3.1.2 Alternative Rounding Techniques . . . ... ... ....

3.2 Double Precision Addition . . . ... ... .. ... ... ..

3.2.1 Alternate rounding techniques . . . . . ... .. ... ..

Possible Architectures for Multiply/Add

4.1 Separate Pipelines for Multiply and Add . . . ... .. .. ...
4.2 Shared resources between Multiply and Add units . . . .. ...
4.3 Multiply followed by Add . . . ... ... ... .. .......
4.4 Maultiply with no rounding followed by Add . . . ... ... ..

4.5 Chosen Architecture for Implementation . . .. ... ... ...

Schematic Implementation

10

13
14
15
16
17
17

19
19
20
22
24
25

28
28
29
29
32
33

34



5.1 Pipeline Design . . . . .. ... .. ... L L o 34

5.2 Multiplier Design . . . . . . .. .. ... L 35
5.2.1 Booth Encoding . . . .. ... ... ... ... ......... 35
5.2.2 Multiplication Arrays . . . . . . ... ... L. L. 36
5.2.3 Timing Considerations . . . .. .. ... .. .. ........ 39
5.2.4 Array Combination . . . .. ... ... ... .. ........ 42
5.2.5 Multiplier Rounding . . . .. ... ... ............ 42

53 Addition . . . . .. .. 43
5.3.1 Alignment Shifter . . . . .. ... .. ... o L. 43
5.3.2 Addition and Rounding . . . . . ... .. ... ... ..., 44
5.3.3 Post-normalization . . ... .. .. ... ... ... ... 45

5.4 Support for other operations . . . . .. ... ... .. ... ...... 45
5.4.1 Immediate Support . . . . . .. .. ... ... ... ..., 45
5.4.2 Send Operations . . .. .. ... ... ... ..., 45
54.3 Err-vals . . ... e 46
5.4.4 Conversion Operations . . . . ... ... ... ......... 46

Circuit Design for the Multiplier Array 47

6.1 Evaluation . . . . . .. .. ... .. 53

Results 55

Conclusion 60

8.1 Lessons Learned . . . . . . ... .. .. ... ... . 60

IEEE Double Precision Format 62

An Alternative Multiplication Scheme for Eliminating Sign Exten-

sion 64
Draft HDCVSL Logic Paper for JSSC 67
C.1 Differential Logic Families . . . . . ... ... ... .. ... .... 68
C.2 Analysis . . . . . . . . e e e e e e 69



.3 XORFolding . . v v oo oo e e 70

C4 Conclusion . . . . . .. . o 71
Schematics 74
D.1 Immediate Path and Front End . . . . .. ... ... ... ... ... 75
D.2 Stage 0. . . . . . . e 77
D.2.1 Booth Encoding Cells . . . ... ... ... ... ....... 78
D3 Stage 2. . . . . L 83
D.3.1 Multiplier Array and Subcells . . . . . ... ... o oL 84
D.3.2 Array Combination and Subcells . . . . ... ... ... ... 104
D.4 Stage 3. . . . . e 112
D5 Staged . . . .. 113
D.5.1 Shift Sticky (Mask Generator and subcells) . . . . . . ... .. 114
D.6 Stage 6. . . . . . . e 124
D.6.1 Stage 6 Subcells . . . . . . ... ... Lo oo 126
D.7 Stage 7. . . . o o v i e 129
D.8 Send Unit . . . . . . . .. 130
D.9 Drivers and Misc Cells . . . . . ... ... .. ... ... 131
D.10 Shared Library Cells Used . . . .. .. .. ... .. ... ... .... 134
D.10.1 Latches . . . . . . . o 134
D102 Muxes . . . . ..o e 139
D.10.3 Leading Zero Detector . . . . . . . .. .. ... ... ... .. 141
D.10.4 Shifters . . . . . .. 146
D.10.5 I bit Adders . . . . . .. ..o o 157
D.10.6 Zero Detector . . . . . . . . ... 158
D.10.7 Adders . . . . .o 162



List of Figures

1-1

4-1
4-2
4-3
4-4
4-5

5-1
5-2
3-3
5-4
5-9
5-6
3-7

6-1
6-2
6-3
6-4
6-5
6-6

7-1

Floating Point Pipeline . . . . . . . .. .. . ... ... ... ..... 11
Separate Multiplier and Adder Units. . . . . . . ... ... .. .... 29
Shared Add/Round Logic . . . . . ... .. ... ... ......... 30
Shared Add/Round and Shifter Logic . . . . ... ... ........ 31
Fused Multiply/Add Units sharing the shifter . . . . .. .. .. .. .. 32

Fused Multiply/Add Units with no separate Multiplier rounding . . . . 33

Booth Encoder Cell - Top Level . . . . .. .. ... .. ........ 37
Booth Encoder Cell - XOR Inputs . . . . . .. ... .. .. ...... 37
Booth Encoder Cell - Select 1,3 . . . . .. ... ... .. ....... 38
Booth Encoder Cell - Select 0,2,4 . . ... .. ... ... .. ..... 38
Timing for Evaluate Signals for Domino Logic . . . . . .. ... ... 40
Interface Latch for static logic from domino signals . . . . .. .. .. 41
Array Combination using 3 stages of Full Adders . . . .. .. .. .. 42
Static CMOS Full Adder (Output Buffers not shown) . .. . ... .. 48
Pass Transistor Full Adder (Output Buffers not shown) . . . . .. .. 49
Differential Cascode Voltage Switch Logic Full Adder . . . . ... .. 49
Hybrid DCVSL Full Adder . . . . . . . .. ... ... ... . .... 50
Differential Domino Full Adder . . . . .. ... ... .. ....... 51
Ezample of a circuit where charge sharing can occur . . . . . . . . .. 52
Current Floorplan for the Multiple ALU Processor . . . . . ... ... 59



C-1 2 Input XOR gates for DCMOS, DCVSL, and HDCVSL families. . . 72
C-2 Folded 2 Input XOR gates for DCMOS, DCVSL, and HDCVSL families 73



List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

5.1

6.1

7.1

Al

B.1
B.2
B.3

C.1
C.2

3-2 Adder . . . . .. e 21
Radiz 4 Booth Encoding Example . . . . . ... ... ... ...... 22
Multiplication Rounding Detection . . . . . . . . ... ... ...... 23
Possible Rounding Results . . . . . .. .. .. ... ... ... .... 25
Post-rounding Shift Detection . . . .. .. .. ... ... ... .... 26
Effect of rounding to the right of Sbit. . . . . ... ... ... .... 27
Booth Encoding Outputs . . . . . . . ... .. ..., 36
Test Vectors for Static Logic . . . . .. .. .. ... .. ... ..... 54
Critical Path Timing . . . . . . . . . . . . i it i it 56
IEEFE Double Precision Examples . . . . . .. .. .. ... ...... 63
Typical Full Adder . . . . .. . .. . . . . . ... 65
First Recoded Adder. . . . . . . .. . .. .. .. .. .. .. .. .... 65
Second Recoded Adder . . . . . .. . ... ... ... .. ... .... 66
Results for 2 Input XOR Comparison . . . . . . .. .. ... ..... 69
Results for Folded 2 Input XOR Comparison . . . . . . ... ... .. 70



Chapter 1

The M-Machine and its Floating

Point Requirements

The M-Machine project [3] is an attempt to explore various ways of utilizing paral-
lelism at different granularities, using custom processors hooked up in a 3-D mesh
network. Each node of the network contains 8 megabytes of local memory and a
Multiple ALU Processor (designated the MAP chip).

The MAP chip is designed to exploit finer grain parallelism while still providing
performance at a level roughly equivalent to today’s microprocessors. Each map chip
contains 4 clusters, each of which is roughly analogous to a RISC uP core. The
clusters each contain an instruction cache, a register file, an integer unit, a memory

unit !, and a floating-point unit. Other features include:
e 100mhz target clock frequency
e 128Kbyte on-chip L1 cache
e Support for multi-threaded operation with zero-time switching penalty

e Network router and communication ports on-chip

!The memory unit can execute many of the operations that the integer unit can, along with load
and store instructions

10



Register
File

Synchronization

Writeback

Stage
y
Multiplier/ Divide/Square
Adder Unit —root Unit
| [ J

Figure 1-1: Floating Point Pipeline

The floating point unit consists of a 15 word by 64 bit register file, a multi-
plier/adder unit, and a divide/square-root unit. The pipeline model for the floating
point unit is shown in figure 1-1. The first stage of the pipeline consists of a register
read from the register file. Next, the synchronization stage ensures all operands are
valid 2. Then the operands are dispatched to either the multiplier/adder unit or the
divide/square-root unit. Finally, output values from the two units are written back
to the register file.

My work concentrated on the datapath portion of the multiplier/adder unit (des-
ignated the FPU-MULA unit), along with the rounding equations for the control
logic. Because of its position in the global design, there were many design constraints

on the multiplier/adder:

e Support for IEEE double-precision multiplication, addition, multiply-and-add,

comparison, and conversion operations.
o Target clock period of 10ns

e Fully pipelined with target latency of 4 clock cycles

2This is accomplished using a scoreboard in the control logic

11



e Fixed Bit width of 25.2 microns (total 2mm width) and approximate total height

of 3.8mm

e Ability to stall pipeline and bypass stages.

12



Chapter 2

The Instruction Set

The MAP Instruction set is outlined in detail in M-Machine Instruction Set Reference

v1.4 [4]. Only a small subset of these instructions is executed through the FMULA

unit; these instructions are

FADD Floating Point Addition

FSUB Floating Point Subtraction

FMUL Floating Point Multiply

FMULA Floating Point Multiply and Add
IMUL Integer Multiply (low word)

HMUL Integer Multiply (high word)

MOV Move Register

ITOF Signed Integer to Floating Point Conversion
FTOI Floating Point to Signed Integer Conversion
FTOIU Floating Point to Unsigned Integer Conversion
FLT Floating Point Less Than

FLE Floating Point Less Than or Equal

13



FEQ Floating Point Equal

FNE Floating Point Not Equal

FIMM Create 16 Bit Immediate

FSHORU Shift & OR Unsigned 16 Bit Immediate

FSNDO Send Priority 0 Message, user level

FSNDOO Send Priority 0 Message, ordered, user level
FSNDOP Send Priority 0 Message, physical

FSNDOPO Send Priority 0 Message, physical, ordered
FSNDOPNT Send Priority 0 Message, physical, no throttling
FSNDOPNTO Send Priority 0 Message, physical, no throttling, ordered
FSND1PNT Send Priority 1 Message, physical, no throttling

FSND1PNTO Send Priority 1 Message, physical, no throttling, ordered

Many of these instructions are simply variants of each other, with simple control-
side changes. Therefore, the datapath has been designed to accommodate the 12
untque instructions: FADD, FMUL, FMULA, IMUL, HMUL, MOV, ITOF, FTOI,
FTOIU, FIMM, SHORU .

2.1 FMUL: Double Precision Multiply

This operation performs an IEEE compliant double precision ? multiplication on two

input arguments, A and B. The pseudo-code for the operation looks like:

1. res.exp = a.exp + b.exp;

1The Send instructions are implemented using a send unit directly copied from the Integer unit.
See [5] for details
2See Appendix A for a short discussion of the IEEE double precision floating point format

14



2. res.mant = a.mant * b.mant;

3. if (res.mant >= 2) res.mant=res.mant >> 1, res.exp++;
4. if (res.mant[-1] == 1) res.mant+= Isb;

5. if (res.mant[-2:-n] == 0) res.mant[0] = 0;

6. if (res.mant >= 2) res .mant=res.mant >> 1, res.exp++;

To summarize: Add the exponents, multiply the mantissa’s. If the mantissa
overflows, right-shift mantissa by 1 to normalize, and increment exponent. If the bit
1 to the right of the LSB of the mantissa is 1, increment mantissa (fractional portion
>=.5). If all the bits more than 1 to the right of the LSB of the mantissa are 0, force
LSB of mantissa to be 0 (when fractional part == .5, round to nearest even). Finally,
check mantissa for overflow, if so right-shift mantissa and increment exponent.

Checks can be easily done in parallel for invalid input arguments and overflow
conditions. Gradual underflow conditions are a bit more complicated; the calculation
is done on the underflowed input value as normal 3, and the final result is normalized
as necessary. This ends up being an additional two steps: right-shift if result exponent
is too small, and left-shift if mantissa underflows but exponent is larger than minimum

value 4.
1. while (res.exp < minval) res.exp++, res.mant >> 1,

2. while ((res.exp > minval) && (res.mant < 1)) res.exp—, res.mant << 1;

2.2 FADD: Double Precision Addition

This operation performs an IEEE-compliant double precision addition on two input

arguments, A and B. The pseudo-code for the operation looks like:

1. if (a.exp > b.exp) less=b,more=a else less=a,more=b;

3Some implementations, such as the SPARC, normalize the input values before calculation
4The minimum exponent is -1022

15



2. res.exp = more.exp;
3. while (less.exp < more.exp) less.exp++,less.mant=less.mant >> 1;
4. res.mant = less.mant + more.mant;

5. while ((res.mant < 1) && (res.exp > minexp)) res.mant=res.mant << 1, res.exp-
6. if (res.mant >= 2) res.mant=res.mant >> 1, res.exp++;

7. if (res.mant[-1] == 1) res.mant++;

8. if (res.mant[-2:n] == 0) res.mant[0] = 0;

9. if (res.mant >= 2) res.mant=res.mant >> 1, res.exp++;

The pseudo-code here first determines which of the arguments has the larger and
smaller exponents; the result will have the larger exponent. The smaller number is
then right shifted until the binary points are aligned. When this is achieved, the
mantissas are added together. Then the result is normalized, and overflow is checked.
Rounding is done as in the multiplication operation, and overflow is again checked
after rounding.

Overflow and illegal numbers are again handled by the control logic. Gradual
underflow is also dealt with correctly - underflowed inputs will work correctly, and

the post-normalization stage will not normalize past the underflow mark.

2.3 FMULA: Double Precision Multiply and Add

This operation performs an I[EEE-compliant double precision multiplication on two
input arguments, A and B, than an IEEE-compliant double precision addition on
the result of the multiplication and a third input argument C. This result of this
operation should be indistinguishable from a separate FMUL and FADD instruction

pair.

16



2.4 FTOI: Double Precision to Integer Conver-
sion

This operation converts from the double-precision floating point format to a 2’s com-

plement integer result. The pseudo-code for the operation looks like:
1. res.exp = a.exp - 52;
2. res.mant = a.mant;
3. while (res.exp < 0) res.exp++,res.mant=res.mant >> 1;
4. while (res.exp > 0) res.exp—,res.mant=res.mant << 1;

The exponents is first corrected for the shift in the binary point, and the mantissa
is copied. If the resultant exponent is negative, right-shift mantissa and increment ex-
ponent until 0. If the exponent is positive, left-shift mantissa and decrement exponent
until 0. If one desires the conversion to be rounded as well, the following steps can
be added (which are equivalent to the rounding in the addition and multiplication,

except with no overflow correct).

1. if (res.mant[-1] == 1) res.mant++;

2. if (res.mant[-2:n] == 0) res.mant[0] = 0;

2.5 ITOF: Integer to Double Precision Conver-
sion

This operation converts from a 2’s complement integer to a double-precision floating

point result. This pseudo-code for the operation looks like:
1. res.exp = 52;

2. res.mant = a.mant;

17



3. while (res.mant[63:53] > 0) res.exp++, res.mant=res.mant >> 1;
4. while (res.mant < 1) res.exp—, res.mant=res.mant << 1;

The exponent is first set to 52, on the assumption that the mantissa is correctly
normalized from the given integer argument. If the high bits of the mantissa are
non-zero (the bits beyond bit 52), the mantissa is right-shifted and the exponent is
incremented. If the mantissa is not normalized, the mantissa is left-shifted and the

exponent decremented.

18



Chapter 3

Hardware Needed to Support

Operations

3.1 Double Precision Multiplication

The pseudo-code, and what’s needed to implement it:

res.exp = a.exp + b.exp; Exponent calculation will be handled in the control

logic.

res.mant = a.mant * b.mant; Mantissa multiplication will require a multiplica-

tion array of some sort; this is discussed below.

if (res.mant >= 2) res.mant=res.mant >> 1, res.exp+-; This requires a sin-

gle mux to select between the mantissa and the mantissa right-shifted by 1 place.

if (res.mant<-1> == 1) res.mant+= Isb; This requires an incrementer and a

mux to select between the mantissa and the incremented mantissa.

if (res.mant<-2:-n> == 0) res.mant[0 = 0;] A single bit mux is needed to select

between bit 0 and 0.

if (res.mant >= 2) res.mant=res.mant >> 1, res.exp-+-; This requires a sin-

gle mux to select between the mantissa and the mantissa right-shifted by 1 place.

19



3.1.1 Multiplication Techniques

The most obvious algorithm for doing multiplication is that of the long-multiplication
(similar to multiplying in decimal). Here, one adds a weighted version of the multipli-
cand whenever a bit in the multiplier is one. A simple example of a 4x4 bit multiply

1s shown below.

0110 = 6
x 0111 =7
00000110 = 6

00001100 = 12
00011000 = 24
00000000 = 0O

00101010 = 42

To handle 2’s complement signed arithmetic, things become a bit rough. Both
the multiplicand and the multiplier need to be sign extended out to the full number

of bits. Two examples are shown below.

1101 = -3 0010 = 2
x 0110 =6 x 1101 = -3
00000000 = 0 00000010 = 2
11111010 = -6 00000000 = 0
11110100 = -12 00001000 = 8
00000000 = 0O 00010000 = 16
00000000 = 0O 00100000 = 16
00000000 = 0O 01000000 = 16
00000000 = 0O 10000000 = 16
00000000 = 0O 00000000 = 16

20



In0

[l
=
p—

In2 || Carry | Sum

i s et sl == I == N <= B«
——_0 O OO

—_—O = O~ O O
—h - O = O OO
_—0 O = O = = O

Table 3.1: 3-2 Adder

11101110 = -18 11111010 = -6

For a 64x64 bit multiply, this results in 128 partial products of 128 bits each.
128 adders, each 128 bits wide would take a considerable amount of silicon area to
implement, as well as have a very long latency, both of which are unacceptable in this
application.

One way around this is to not calculate the complete sum at every stage, but
instead to calculate a redundant carry/sum form. Basically, at each bit, 3 bits will
be summed together, forming two output bits, the carry and the sum (a 2 bit result)
— see table 3.1

These outputs will be fed into the next stage (the sum bits being shifted right by
1), which will add another bit into the running sum and continue on. After all partial
products have been added together, a 128 bit adder will be used to add the final two
carry/sum numbers together.

This still leaves 128 stages of logic to pass through, giving quite a significant area
and delay. One solution is to go to a higher radix at each stage. For radix n, each
stage will add a precomputed multiple between 0 and n-1 of the multiplier, depending
on log2n bits of the multiplicand. For example, radix-4 will select between 0, 1x, 2x,
and 3x the multiplicand, using 2 bits of the multiplier, and reducing the number of
stages to 64.

Another technique is to again use redundant encoding, this time encoding the

multiplier bits. Booth encoding uses log2n bits of the multiplier at each stage, and

21



Bit 1 | Bit 0 | Last MSB | Total | Next Stage | Last Stage | Final
0 0 0 0 0 0 0
0 0 1 1 0 -1 0
0 1 0 1 0 0 +1
0 1 1 2 0 -1 +1
1 0 0 -2 +4 0 +2
1 0 1 -1 +4 -1 +2
1 1 0 -1 +4 0 +3
1 1 1 0 +4 -1 +3

Table 3.2: Radiz 4 Booth Encoding Example

selects a multiple of the multiplicand between -n+1 and n-1. Negative multiplicands
are easy to form from their positive counterpart!, so only half the number of multi-
plicands need to be kept around. In addition, the sign extension bits of the multiplier
can be tossed away, halving the number of partial products.

Booth encoding allows an error of up to 1/2 * log2n that can be tolerated, provided
it is corrected for in the next stage. This is accomplished by examining the MSB of
the previous stage, and planing on the next stage using the current MSB. By assuming
the next stage will add log2n * the multiplicand is the MSB is 1, we can subtract
this from the current expected multiplicand. An example table for radix 4 is shown
in table 3.2.

The first two columns represent the bits that are being used. Column 3 is the
MSB from the last stage, which will need to be corrected for. Column 4 shows what
multiple to add in for this stage. Columns 5 and 6 show what the next and previous
stage will be adding in. Column 7 shows the final answer with all correction factors,

indicating the correct expected value from just columns 1 and 2.

3.1.2 Alternative Rounding Techniques

The pseudo-code for multiplication has two adds occuring. The first add occurs
after the multiplier array in order to produce the 128 bit result from the redundant

carry/sum result. The second add occurs in the rounding stage to increment the

nvert and add 1 at the LSB

22



Rs | Rc | Rin [ Ov | Rnd || Result | Pre-Incr || Final
0] 0 0 0 1 1 0 1
0 0 0 1 1 2 0 2
0| 0 1 0 1 2 0 2
0| 0 1 1 1 3 0 3
0 1 0 0 1 2 1 0
0] 1 0 1 1 3 1 1
0] 1 1 0 1 3 1 1
0 1 1 1 1 4 1 2
1] 0 0 0 1 2 1 0
1 0 0 1 1 3 1 1
1 0 1 0 1 3 1 1
1 0 1 1 1 4 1 2
1 1 0 0 1 3 1 1
1 1 0 1 1 4 1 2
1 1 1 0 1 4 1 2
1 1 1 1 1 5) 1 3

Table 3.3: Multiplication Rounding Detection
mantissa.

By using a somewhat different strategy [8], the two adds can be combined. As
noted above, rounding can be accomplished by adding 1 to the bit to the right of
the LSB of the result mantissa, henceforth called the R bit. The other factors in
calculating this bit are the carry/sum inputs (Rs and Rc), and the carry-in bit (Rin).
Finally, if the mantissa overflows, the correct place to add the rounding 1 is the LSB;
this can be accomplished by adding an additional 1 to the R position. Table 3.3
illustrates the possible inputs to the R position, and the resultant R bit.

The result bit shows that the possible values of the R bit will be in the range of
1-5. This will result of overflows into the LSB bit of 0, 1, or 2. By calculating mant,
mant+1, and mant+2 in parallel, one can do select the proper result at the end,
and avoid having two adds sequentially. However, calculating three possible results
is computationally expensive.

With a simple technique, one can reduce the range of possible answers by observing
that Rs and Rc will be calculated early. By taking the logical ‘or’ of this value,
and adding it to the LSB position, the final range is reduced to 0-3, as shown in

the last two columns. Now, the possible final results are mant and mant+1; by a

23



simple modification of the 64 bit adder, one can calculate mant and mant+41 with
considerably less than the area of two 64 bit adders.

This strategy only implements IEEE round-to-nearest; if the fractional part is less
than .5, round down, if greater than or equal to .5, round up. The prefered rounding
style is IEEE round-to-nearest-even; here rounding when the fractional part is .5 will
occur in the direction of the closest even number 2.

To implement round-to-nearest-even, the only change necessary is the ability to
force the LSB to 0. The reason this is sufficient is that the two rounding schemes
differ ONLY when the fractional part is .5 and the integer part has an LSB of 0.
Round-to-nearest will round up, resulting in a integer part with LSB of 1 (but no
carry into the next significant bit), round to nearest will result in a integer part with
LSB of 0.

To detect when the forcing of the LSB is necessary, the value of the bits beyond
the the 1/2 bit must be considered. By performing a logical OR of all these bits
(resulting in the sticky bit), one can determine if the fractional part is exactly .5

(sticky bit is 0), or >.5 (sticky bit is 1).

3.2 Double Precision Addition

The pseudo-code, and what’s needed to implement it:

if (a.exp > b.exp) less=b,more=a else less—=a,more=b; Two 2 input muxes

to select between mantissa.
res.eXxp = more.exp;

while (less.exp < more.exp) less.exp++,less.mant=less.mant >> 1; Right shifter

to shift mantissa

res.mant = less.mant + more.mant; 64 bit adder to add mantissa’s together

2This is an arbitrary decision, the main incentive is to split which way rounding occurs more
evenly. Whether this strategy is at all valid is beyond the scope of this thesis

24



Subtract | Negative | Non-Rounded Rounded
Operation Result Result Result
0 - A+B A+B+1

1 0 A+B+1 A+B+1+41 = A+B+2

1 1 (A+B+1) | (A+B+1)+1 = (A+B)

Table 3.4: Possible Rounding Results

while ((res.mant < 1) && (res.exp > minexp)) res.mant=res.mant << 1, res.exp—

Leading zero detector and left shifter to normalize mantissa.

if (res.mant >= 2) res.mant=res.mant >> 1, res.exp++; Mux to select be-

tween mantissa and right shifted mantissa

if (res.mant<-1> == 1) res.mant++; 64 bit incrementer to generate rounded

version and 2 input mux to select incremented and non-incremented version.

if (res.mant<-2:n> == 0) res.mant[0 = 0;] 1 bit 2 input mux for forcing LSB
to 0.

if (res.mant >= 2) res.mant=res.mant >> 1, res.exp+-+; Mux to select be-

tween mantissa and right shifted mantissa

3.2.1 Alternate rounding techniques

As in the multiplication algorithm, the add and round can be combined into one
step. This technique consists of two separate parts; the first determines what the
possible values from the addition are, the second selects between the non-rounded
and rounded result.

The adder inputs will always be two positive mantissa values 3. If the signs of the
two input arguments vary, the operation to be done becomes a subtract. Subtraction
is accomplished by inverting one of the arguments and adding 1. Finally, if a sub-
traction operation occurs, and the result is negative, the 2’s complement of the result

must be taken. Table 3.4 illustrates the possible operations.

3IEEE double precision format is sign-magnitude rather than 2’s complement

25



Bit 53 | Bit 52 | Bit 51 Post-normalization | Effective R position | Round Vector
1 - - || Right shift by 1 position Bit 0 = L bit 1000
0 1 - No Shift Bit -1 = R bit 0100
0 0 1 Shift Left by 1 Bit -2 = G bit 0010
0 0 0 {f Shift Left by 2 or more Bit -3 = S bit 0001

Table 3.5: Post-rounding Shift Detection

Not counting logical inverses, there are three distinct possible values: A+B,
A+B+1, and A+B+2. By generating these three values, and selecting the correct two
for the non-rounded and rounded cases, the rounding logic simply needs to determine
which of the two remaining values to choose.

The problem remains of whether the final value needs to be incremented or not.
Normally, three bits to the right of the LSB of the mantissa are kept track of. These
bits, the R bit (mant[-1]), the G bit (mant[-2]) and the S bit (—mant[-3:-inf])* keep
additional precision. Because only one of the input arguments is shifted, the R, G,
and S bits will come only from the shift °.

To determine rounding, one normally adds 1 to the R bit position and checks
for overflow occuring. However rounding normally occurs after post-normalization,
the R position may actually be a different position than where it is before post-
normalization. To fold the rounding stage in with the addition, one needs to determine
where the R position will be.

To do this, a 3 bit leading zero detect is done on the resultant mantissa. This will
specify how much the result will be normalized; the possible cases are listed in the
table 3.5.

The key point to note is that a shift of more than 2 to the right is equivalent to
a shift of 2. This is because the S bit is copied when left shifting. When adding a
rounding bit to any location right of the S bit, the exact same result will happen as if
it were added to the S position, due to the copying of the S bit when shift occurs (see
table 3.6). The only difference will be in the value of the bit at the rounded position,

“The S bit is actually the logical ‘OR’ of all the bits that are shifted beyond the G position
5The R,G, and S bits of the other input will always be 0, since IEEE double precision format
does not contain these values

26



S bit

Round at S
RGS

000

111

Rounded LRGS
001
000+

Round right of S
RGS...

000...00

111...11

Rounded RGS
000...01
000...00+

Table 3.6: Effect of rounding to the right of S bit

which will not be truncated for the final result.

The other feature’ of this form of rounding is that all bits right of the S bit,
and including the s-bit, are guaranteed to be zero after rounding. Therefore, the

normalization shifter can safely shift in 0’s after the R and G positions, eliminating

the high fanout from the S bit.

To accomplish rounding, first a 4-bit vector is formed from the R-G-S bits - this
isequal to4* R+2+x G+ S,or R*x( R)+2x( G)+ S+1 in the case of a negative
mantissa result when the two’s complement. needs to be computed. To this vector
is added the rounding vector, and the MSB of this 4 bit result is checked. A 1 here
indicates an overflow into the LSB of the mantissa, and the rounded result should be

selected.

bitvec = negative ¢ {*( R) + 2*( G) + S+ 1: {*R + 2*G + S;

bitvec += rndvec;

result = bitvec[3] ¢ rnded : nonrnded;

To accomplish round-to-nearest-even, forcing is done on the bit to the left of the

rounding bit if the rounding bit position is 1, and all bits to the right are 0. This

gives 4 different bit positions that could be forced, L1, L0, R, and G.

27




Chapter 4

Possible Architectures for

Multiply /Add

Given the techniques discussed for implementing multiplication and addition, there
are several possibilities for implementing a combined Multiply/Add instruction that

calculates A*B + C.

4.1 Separate Pipelines for Multiply and Add

Figure 4-1 shows two independent pipelines compute the multiply and add separately.
This has the advantage of giving minimal latency for the multiply instruction and the
add instruction, but has a large latency for the multiply-add instruction, no better
than that of a multiply followed by an add.

Given a super-scalar processor which can issue multiple instructions, this would
have the advantage of being able to schedule multiply and add instructions simul-
taneously. Unfortunately, the M-Machine can only issue 1 floating point instruction
per cycle.

Furthermore, there can be no sharing of resources needed for the multiply and

add; this implementation uses the maximal amount of silicon area.

28



,— l
L . = c . 2
2 25 Toj S5 T£o ESy
o 2l ST = Ex 62 @ 2=2
= =5 ToE cc o598 £WE
S S50 Q'gw 2n 20—' ; 325
= =0 (DD < o Iﬂ.m
1
Multiply Unit Add Unit

Figure 4-1: Separate Multiplier and Adder Units
4.2 Shared resources between Multiply and Add

units

In the previous architecture, there is no resource sharing between the Multiply and
Add units. However, one could easily share the adder and rounding logic between the
multiplier and adder pipelines. The resultant pipeline is shown in figure 4-2.

By performing the gradual underflow shift before the multiply, the alignment
shifter and gradual underflow shifter could be shared, as shown in figure 4-3.

Both of these approaches have the side effect of increasing the latency of the
instructions do to the pipeline stages that don’t quite overlap. Given a somewhat
clever scheduling algorithm and the ability to feed-through stages, this effect could
be reduced. However, the bigger problem is that the fused multiply-add is no longer a
fully pipelined operation; two passes through the pipeline are necessary, and therefore

multiply-add instructions can not be retired every cycle.

4.3 Multiply followed by Add

Figure 4-4 shows an architecture with a single multiply/add pipeline. Here, the
gradual underflow shifter and the alignment shifter have been merged into one unit,

otherwise the architecture is similar to the separate units placed end-to-end.

29



Multiply Unit

Cdeyus | seyus
mojpepun uonezije
lenpei | | —wioujsod
v_mod w:%::c&
TIdym/1ppy
u Jeyys
Jandiynpy Juswiubi|y

Add Unit

Figure 4-2: Shared Add/Round Logic

30



Multiply Unit

r

oyuys
uonezije
IELOC“—wO&

L

umwcA w:%—mramm |
IABMA/IPPY

Add Unit

o) dmnin
IS MopjIapu()
[enpeis) 10 JudWUSY

Figure 4-3: Shared Add/Round and Shifter Logic

31



I 5 gai‘*.go =éch
& 82 E£ &2 228
S 53 55 =233 BNE
= S < < £w=°

L'_";f_“._lf_*; —— e ——— 7 |

Multiply/Add Unit

Figure 4-4: Fused Multiply/Add Units sharing the shifter

Fusing the two pipelines gives a smaller latency for the fused multiply-add opera-
tion, as well as some sharing of resources. However, the latency of both the multiply
and the add operations has been increased to that of the full multiply-add. Some
recovery of this time could be accomplished by allowing operations to drop-through
the pipeline, though the scheduler must be careful to avoid two instructions retiring
on the same cycle. In addition, the scheduler must be careful to avoid overlapping

usage of the shared shifter.

4.4 Multiply with no rounding followed by Add

By removing the rounding stage from the multiplication operation and passing the
UN-rounded sum and carry portions to the adder, the latency of the multiply-add
operation can be further reduced (see figure 4-5). The main disadvantage of this over
using the intermediate rounding stage is that the fused multiply/add instruction can
give different results than the non-fused operations. Another disadvantage is that
twice the number of wires need to be sent to the adder stage from the multiplier

stage.

32



]
‘v o
5 Sy w2, Ecg,
5 el 5L o580
= cE 8o cExe
=) 20 T o 82(%
= < < a©

L

Multiply/Add Unit

Figure 4-5: Fused Multiply/Add Units with no separate Multiplier rounding
4.5 Chosen Architecture for Implementation

The fused pipeline with intermediate rounding was chosen as the architecture for the

floating point unit in the M-Machine.

The major reasons include:

e Ability to dispatch a fused multiply-add operation every clock cycle
o Relatively Low latency for the fused multiply-add operation

e Equivalent results from fused and non-fused multiply-add operations

Although other architectures have lower latencies for the fused multiply-add, they
do don’t give the same results as the non-fused operation, and therefore are unsatis-

factory for this implementation.

33



Chapter 5

Schematic Implementation

5.1 Pipeline Design

The actual schematic implementation of the floating point multiplier-adder unit re-
quires a 4 cycle pipeline divided into 8 stages each one-half cycle in length. These

stages are:
1. Booth Encoding
2. Multiplication Arrays - First half
3. Multiplication Arrays - Second half
4. Multiplication Rounding
5. Addition Alignment - First half
6. Addition Alignment - Second half

7. Addition and Rounding

8. Post-normalization

Because of the use of transparent latches, stages can borrow time from their
neighbors. The actual times for each stage, and the direction of time borrowing is

shown below.

34



5.2 Multiplier Design

The multiplier is required to support both floating point and integer operations. To
accomplish this, the entire 64x64->128 multiplication is computed, and appropriate
rounding or selection of the output bits is done.

To make rounding easier, floating point inputs are aligned such that the binary
point of the result will occur between bit positions 116 and 115, and the least signif-
icant bit will occur at position 64. To accomplish this, the B argument is shifted up

by 12 places, putting its binary point between bits 64 and 63.

5.2.1 Booth Encoding

As mentioned earlier, a radix-8 booth encoding scheme is used to do the multiplica-
tion. Radix 8 encoding requires the partial products -4A, -3A, -2A, -1A, 0A, 1A, 2A,
3A, 4A. Generating all but the 3A and -3A partial product can be done with simple
shifts and inversions; calculation of 3A requires a full adder, which occurs during this
stage.

Also, the B argument will be booth-encoded into the select and invert signals for
the partial product muxes. Table 5.1 shows the desired outputs for the different input
vectors.

The equations used to implement this are:
t2 = Bit2 XOR Bitl
t1 = Bit2 XOR Bit0
t0 = Bit2 XOR Bit-1
Sellnv = Bit2
Sel4 = t2 AND t1 AND t0
Sel3 = t2 AND (t1 XOR t0)

Sel2 = t2 XOR (t1 AND t0)
Sell = t2 AND (t1 XOR t0)
Sel0 = t2 AND t1 AND t0

35



Bit | Bit | Bit | Bit || Partial || Select | Sel | Sel | Sel | Sel | Sel
2 1 0| -1 ]| Product || Invert 4 3 2 1 0
0 0 0 0 0 - 0 0 0 0 1
0 0 0 1 A 0 0 0 0 1 0
0 0 1 0 A 0 0 0 0 1 0
0 0 1 1 2*A 0 o} 0 1 0| O
0 1 0 0 2*A 0 0 0 1 0| O
0 1 0 1 3*A 0 0 1 0 0| O
0 1 1 0 3*A 0 0 1 0 0| O
0 1 1 1 4*A 0 1 0 0of 0] O
1 0 0 0 -4*A 1 1 0 0| 0] O
1 0 0 1 -3*A 1 0 1 0| 0| O
1 0 1 0 -3*A 1 0 1 0f 0] O
1 0 1 1 -2*A 1 0] 0 1 0] 0
1 1 0 0 -2*A 1 0| O 1 0] O
1 1 0 1 -A 1 0} 0 0 1 0
1 1 1 0 -A 1 0 0 0 1 0
1 1 1 1 0 - 0 0 0 0 1

Table 5.1: Booth Encoding Outputs

Schematics implementing these functions are shown in 5-1. Figure 5-2 shows the
circuitry for calculating t2, t1, and t0 by performing an XOR of each of the low
bits with the high bit. Figure 5-4 and Figure 5-3 show the circuitry to calculate
Sel0/Sel2/Sel4 and Sell/Sel3 respectively !.

5.2.2 Multiplication Arrays

In order to sum up the 22 partial products, two arrays are used to each add 11 partial
products each. The results from these arrays are then combined and passed to the
rounding stage.

As mentioned early, a 3 input 1 bit binary adder is used to produce 2 output bits;
this way another partial product can be added for every stage of adders. Because the
first stage can take in 3 products, this leads to a total of 8 stages to compute the sum
of 11 partial products.

Another strategy is to use a 7 input 1 bit adder that produces 3 bits of output;

1The ability to factor common transistors resulted in the somewhat strange grouping circuit
topologies, instead of having 5 independent circuits

36



bt<2:@>
btb<2:2>

bit<2:8>
ibit<2:@>

St

h
booth13 s3

bits<3> A
bits<3 m'—A
2 ———
te<3:2> bits<2> 8 btb<2> P
————a—B BBOUT s
ibits<2> T bi<2> P24
Bita<T> BB pixors SOV BE<T>
Bis<T> csout (35
Bis<B> SB Dggtﬂ Blo<0> s3 52
B> T s>
e o8 oouTf—a— 2> n
T4N2s
biez:0> bit<2:0> s8 r—-————‘z
ibits<3> L N M
PINV ———————&— bit<2:@> booth@24 S2 P
4w
P27
sS4
n
5

Figure 5-1: Booth FEncoder Cell - Top Level

DBOUT

Figure 5-2: Booth Encoder Cell - XOR Inputs

37



bit<@>

ibit<@>
1 p—
ibit<2:2> p
bit<2:0> P
iit<2> Py bit<1> ibit< 1> bit<2>
1 1P
St @ P

bit<2>

bit< 1>

ibit<@>

Figure 5-3: Booth Encoder Cell - Select 1,3

blt<2:8>
hir<2.9>

Figure 5-4: Booth Encoder Cell - Select 0,2,4

38



the potential is then that 4 partial products can be added at each stage, and only two
stages would be necessary - or the whole 22 partial products could be added up in
5 stages. However, the circuit complexity is greatly increased for the 7-4 adder over
the 3-2 adder; in addition, many more wiring tracks are needed, and using the 3-2
adder all the available wiring tracks are already taken.

Rather than compute a 128 bit sum every stage, only the 66 bits affected by the
current partial product are summed. This allows the A and 3A wires (the inputs to
the partial product muxes) to pass straight down the multiplication array, as well as
reduces the area and power since redundant calculation is eliminated. However, the
outputs of each stage must be sign extended since negative results are possible. This
means that the load on the MSB of each addition stage has a load 3x normal ?; in
the case of the 7-4 adder this would be 12x normal, another reason not to use it.

A differential domino full-adder was selected as the base cell of the array - see
figure 6-5 (the next chapter has a comparison of different circuit designs). Because of
this choice, timing of the inputs to the array and the precharge/evaluate signals to
the pieces becomes critical. In addition, a domino-style mux is used for the input to

the full-adders.

5.2.3 Timing Considerations

Figure 5-5 shows the timing methodology for the domino portion of the arrays. A
delayed-precharge timing style, similar to that used in the Intel Pentium Pro ([7]),
is used. Because the isolation inverters in the domino logic are resized to provide a
faster rising edge than falling edge, more than half the cycle is allocated for precharge.
This is accomplished by starting the precharge of the first stage when the clock rises,
halfway into the evaluation cycle, and continuing through part-way of the next cycle.
The muxes will precharge right after the clock’s falling edge for a short pulse, then
start evaluating.

Because the first stage will not start evaluating until shortly after the clock falls,

2See Appendix B for a technique to alleviate this extra loading

39



Start Precharging * Evaluate starting

P;echarge

at Adder Stage 0 g . at Muxes
; = ‘
Mux Inputs 1 x ‘ ; X
: ) )
: \ —r ‘ L

7 W\ 7 —\

EVAL_MUX / \_/ / \
[ / ‘

EVAL<O> W

\!
EVAL<I> ‘ \ K \_/_
| )
( -
EVAL<2> ‘ \_[
‘ )
EVAL<3> : ‘ \_/-
‘ N
‘ \ \ | |
I N S .
EVAL<8> _\_/ —= 5; — 7/ |

Figure 5-5: Timing for Fvaluate Signals for Domino Logic



m
<
>.
(N
I >
1
N
i 7;"[:

P8

—_

Figure 5-6: Interface Latch for static logic from domino signals

two of the three inputs into the next stage will not reach an assertion state (where
either the signal or the complementary version goes high) until the first stage muxes
evaluate. This will prevent all the rest of the next stage from evaluating, and likewise
none of the latter stages will evaluate.

As a result of the staggered precharge strategy, the some of the output bits (those
generated by the bits shifted off in the early stages) will not remain valid until the
end of the evaluation cycle. Therefore an interface circuit needs to be added to allow
seem-less integration with static cmos. For this purpose, we use a version of an RS
latch (see figure 5-6) that sets on valid signal and resets on clock-low. This allows
the rising edge of the output to Trigger the latch, while the falling edge caused by

the precharging of the array will be ignored until the next cycle.

41



invs

low.c L _I_
_low.s _out_s
highe

highs -

Figure 5-7: Array Combination using 3 stages of Full Adders

5.2.4 Array Combination

Before rounding can occur, the four 96 bit outputs from the two arrays must be
combined into two 128 bit outputs. A fifth input vector consisting of the inversion
selects 3 needs to be summed into the final output. This is accomplished using three
stages of 1 bit adders as shown in figure 5-7. In order to simplify timing, these adders

will be static hdcvsl adders rather than the domino adders inside the arrays.

5.2.5 Multiplier Rounding

The last stage of the multiplication involves combining the two 128 bit vectors from
the array combination stage, adding them together, and rounding the result. Round-
ing is performed as discussed in Section 3.1.2 to prevent the need for two separate
sequential adds.

The schematic implementation uses the shared library 64 bit adder to compute
the low 64 bits of the multiplication, and a zero detector  on the result to calculate
the sticky bit for rounding. The high 64 bits of the input vectors are first routed
to a set of full-adders that add in the pre-rounding bit, then the result is fed to a
specialized adder ® that computes a+b and a+b+1. The two outputs are then muxed

3By simply doing adding in an inverted version of the partial product rather than a 2’s comple-
ment negative version, the time to generate these partial products is greatly reduced. However, the
extra 1 still needs to be added into the final result, and hence occurs here.

“The zero detector is a shared-library element designed by Parag Gupta [5] for the Integer Unit

This is the same as the normal 64 bit adder, except with 2 global carry chain; one calculates
the sum with carry in of 0, one calculates the sum with carry in of 1.

42



by the control and the LSB is again muxed to allow forcing of it to 0 for support of
round-to-nearest-even.

For integer multiplication, the pre-rounding bit is forced to 0, and the the overflow
of the low 64 bit add is used to do the selection between the possible high-word

outputs; the results in a simple 128 bit add, rather than a round.

5.3 Addition

The second half of the pipeline performs the IEEE double-precision add and subtract.
This requires an alignment shifter, an adder and round unit, and a post-normalization

stage.

5.3.1 Alignment Shifter

The alignment shifter performs the alignment shift on the argument with the lower
exponent. A 2 input mux selects between the inputs to be shifted, and a 64 bit right
shifter © to perform the actual shift.

To support rounding, the sticky bit needs to be calculated as well. This accom-
plished using a generator detector circuit that passes bits that are shifted off and
forces the rest of the bits to zero. The output of the mask generator is then fed to a
zero-detector, and the output becomes the inverted version of the sticky bit.

The mask generator itself uses a radix 4 scheme and 4 customized cells. Each cell
has two datapath inputs (inx and iny), two datapath outputs (outx and outy), and
four control (sel<3:0>). The control inputs represent a shift amount as a one-hot
encoding.

Each cell is effectively a comparator against a fixed constant. When the the com-
parison results in equally, inx and iny pass out to outx and outy without modification.
In the case of the shift amount being greater than the constant, both outx and outy

are set to inx. In the case of the shift amount being less than the constant, both outx

6The shifter used is a shared library shifted designed by UROP Jeff Bowers for the Floating Point
Divide/Square Root unit [1]

43



and outy are set to iny. By cascading cells, an arbitrary length comparison can be
made placing the cells for the MSB’s first and feeding the outputs to successively less
significant cells.

The entire generator is built by tiling a 2 dimensional array of these cells where
each column has a comparator with a constant equal to its column number. By
feeding in the value to be shifted in the x inputs, and ground into the y inputs, the
y outputs at the bottom of the comparator will be equal to the inputs only for those
values shifted off 7.

The non-shifted input is then muxed between itself and an inverted version; this
is done to support addition in the case of the inputs having different signs (or sub-

tractions with the same sign).

5.3.2 Addition and Rounding

The addition and rounding are a combined operation using the technique described
in section 3.2.1. Three sums are computed: A+B and A+B+1 (using the dual carry
chain adder) and A+B+2 (using a stage of 1 bit full-adders and the normal 64 bit
adder). The results of these operations are fed into two 4 input muxes that select the
two possibilities for the result (depending on if the result needs to round up or not);
in addition, these muxes will invert the output in the case of negative results.
Actual rounding calculation is done inside the control logic using the two LSB’s of
the shift output and the sticky bit calculated. A 3 bit leading zero detector determines
the rounding position . A two input mux is then used to select between the rounded
and non-rounded cases. Finally, another two-input mux is used to implement round-

to-nearest even for forcing the LSB to be 0.

"In this case, the function implemented is greater-than. By altering the values places in the top
inputs, less-than, less-or-equal, and greater-or-equal functions can easily be created

8This leading zero detector is implemented in datapath logic for speed reasons; given a slightly
more relaxed cycle time, it would be preferable to implement in standard cells

44



5.3.3 Post-normalization

To complete the addition operation, the result needs to be normalized. A 64 bit
leading zero detector is used to determine how much shifting is necessary. This result
is passed to the control logic ® and then fed to another shifter to perform the actual
normalization.

The leading zero detector uses a structure similar to the 64 bit adders. 8 local
chains each look at 8 bit of the input vector, and perform a leading zero detect. The
results are then passed to a global chain, which determines which local chain detects
the first 1. The global chain asserts one of the drive signals to a local carry chain,

and that chain drives the correct bit pattern onto the output lines.

5.4 Support for other operations

The pipeline discussed supports many of the required operations. Some addition
hardware is needed to support immediate instructions, send instructions, and con-
version instructions. In addition, a bank of registers are used in the generation of

error-vals which are generated in place of exceptions !°.

5.4.1 Immediate Support

A separate set of 4 registers is used to support immediate and move operations. These
registers are wired back-to-back with muxes to allow feed-through when the pipeline

is empty. A 2 input mux on the input is used to support the SHORU instruction .

5.4.2 Send Operations

Send operations are supported by a separate send unit, which is a duplicate of the

send unit used in the integer unit [5].

9In the case of gradual underflow, the result should not be normalized so much that it results in

an exponent j -1023.
10Gee M-Machine Exception Document...
USHORU A, B, C implements C = (A << 16) + (B&0z3F)

45



5.4.3 Err-vals

Like the immediate registers, a set of 4 registers is used to support err-val generation.
When an errval is detected as one of the inputs to an operation, that value is placed
in the err-val path.Otherwise, the instruction pointer along with some status bits
are written into the err-val path. When the operation completes, if an err-val was
detected, or a condition occurs generation an err-val (such as a 0 * infinity operation),

the err-val is written back instead of the result.

5.4.4 Conversion Operations

FTOI and FTOUI conversion operations are fairly straightforward, and only require
a change in the control logic to correctly post-normalize the number. ITOF, on the
other hand, requires a 11 bit leading zero detect on the input integer to determine
if any right-shifting is necessary. Originally, this was intended to be done in the
datapath logic, but for now is being implemented in standard cells ion the control

logic.

46



Chapter 6

Circuit Design for the Multiplier
Array

Because of the large number of stages of addition in the multiplication array, consid-
erable effort was placed on making the 3-2 adder circuit as fast as possible. 5 different
designs were produced and considered, all optimized for two late arriving inputs and

one early input, since the partial product is available at the start of the cycle.

Static CMOS

The first is a standard static CMOS full-adder circuit, taken from Principles Of
CMOS VLSI Design [6] ! - see figure n. The main disadvantage to this design is
that three stages of logic separate the sum output from the inputs; one to calculate
carry, one to calculate sum, and the last to invert sum. This could be reduced to
2 by using alternating between inverted-input adders and non-inverted-input adders

to eliminate the final inverter 2

Pass Transistor CMOS

The second style has the same carry calculation circuitry, but uses a 4 transistor XOR

to calculate A XOR B and a final pass-transistor XOR to calculate (A XOR B) XOR

1The second edition circuit has a few errors
2actually, the inverted-input/output and noninverted-input/output adders are equivalent circuits

47



p
P46

P P, p p
P26 [ HP35 [ P3¢ P45

P19 %zé 1
P, P
? P25 [T P44
* ) SoutBAR
n']z H'L
'ﬁ” HIN43
3 < n 1 ' n 1 < n nr2
N16 N24 N31 N32 bLN41
h a h nl,
a < —
N42
ab
a @
~

Figure 6-1: Static CMOS Full Adder (Output Buffers not shown)

C. See figure n

One quirk is that this version requires both true and complemented versions of
input A, and produces true and complemented versions of the sum bit. This allows
the number of stages to calculate the sum bit to be reduced to effectively 1, speeding

up the circuit greatly.

Differential CVSL

The third style uses different CVSL circuitry to calculate both the sum and carry
bits. Because it is differential, both normal and complemented forms of the inputs
are available for computation, making the sum bit computation much easier. Also,
the CVSL requires only pulldown circuitry, hence the input loading is much less than
normal logic.

Due to the cross-coupled PFETs on the DCVSL circuit, there is an inherent
difference in edge times. Because the pulldown circuit must always pull below Vdd-
Vt before the pullup circuitry on the other side engages. Therefore, the falling edge

will always be faster than the rising edge.

48



BBAR

P

P1@2

h
N121

n

Figure 6-2: Pass Transistor Full Adder (Output Buffers not shown)

Pag Pl
+ e P163
P b g P19 plo
SoutBAR @ b—— sout s> —Lpia1
om_ e N7BL [n), N7 e
Fe N125_ 3 187 7Th CoutBan @ | cout
n n n
A ABAR 33
e n N169 n N172 o N191 IN192
N126 n IN168 n n n nks "
° N1TER 192 UN18g[ UN18s
n N173
8 BBAR
N127 < "
i3 3§

Figure 6-3: Differential Cascode Voltage Switch Logic Full Adder

49



Figure 6-4: Hybrid DCVSL Full Adder

Given a number of consecutive stages of DCVSL circuitry, though, the problem
does not become as bad. This is due to the fact that after the first stage, the falling
edge will be occuring before the rising edge, and therefore the pulldown tree on one
side will turn off before the pullup tree on the other side engages. Therefore, the
effective worst-case delay on stages after the first will be less than the worst-case
rising edge delay.

One potential concern is the sizing of the pullup pfet’s versus the pulldown nfets.
Given process variation with weaker nfets and stronger pfets, its possible the nfets

might not be able to overcome the pfets, and cause the circuit to fail.

Hybrid Differential CVSL

The forth style is a modification of the CVSL circuitry to pull up as well as down,
except using nfets exclusively. The main incentive for this is to eliminate the fight
between the nfets and pfets, while still retaining reduced input loading from that of
static cmos. Because of the pullup tree consisting of nfets, the two cross-coupled pfets
still need to exist to bring the node voltage all the way to Vdd. However, the nfets
on the pullup side can be much smaller than the pfets in static cmos.

Because of the structure of the XOR tree in the sum bit calculation, adding the

circuitry to pullup consists of only two additional transistors; this greatly increases

50



[ &1
N S 1)
1
| e [P ci2
n n
gm
- e3t 32
s
.I [ T s W s O e
@ ®
i EH

Figure 6-5: Differential Domino Full Adder

the speed of the sum bit calculation while only minimally impacting the input loading.
Unfortunately, a full tree must exist for pulling up when calculating the carry bit,

but the sizes are smaller than that of the pulldown tree.

Differential Domino

The final style analyzed is that of differential domino - a precharge/evaluate logic
style that uses nfet pulldown trees and an ratio-ed inverter to isolate the precharged
node. Before calculation starts, the node is charged via a single pfet. Then, the pfet
is turned off, and the evaluation begins.

Again, the use of nfets only allows much reduced input capacitance. By appropri-
ately ratioing the nfet and pfet in the isolation inverter, one can change the threshold
point of the inverter, and cause it to trip earlier, and decrease the total delay through
the circuit.

Unfortunately, precharge-evaluate logic families logic domino introduce a whole
new set of concerns. The first is a restriction on when the inputs are valid; once eval-
uation starts, the signals may only be monotonically increasing. If a signal undergoes
a high-to-low transition, the output signal will not necessary De-assert itself.

The second concern is that one must build a timing circuit to generate the
precharge and evaluate signals at the appropriate time.

The rest of the concerns deal with the fact that the evaluate node is not necessarily

driven; it is possible that once the node is left floating high, it will incorrectly be

51



EVAL —d[ 20 p| —d4o
P

NODE E —> @— ® o—eo—Jpour

Ap—e ___[m
n

<- NODE N n

B p— 1@ ~
n
EVAL p— 19
n

v

Figure 6-6: Ezample of a circuit where charge sharing can occur

discharged enough to trip the isolation inverter.

This can occur simply by charge leaking off the evaluation node. A simple way
to handle this is to put a very weak P device on the evaluation node, driven by the
output of the isolation inverter. This will tend to restore any high voltages on the
evaluation node if its starts leaking away, but not enough to significantly slow down
a proper evaluation.

Another way the node can be discharged is by charge sharing. Consider the circuit
in figure 6-6. On the first cycle, signals A and B will be high during evaluate; besides
discharging the evaluate node (E), this will also discharge the parasitic capacitance
at node N. During the second cyle, A will be high, but B will be low. This will cause
node N and E to share their charger, equalizing the voltages at these nodes. Because
node N was discharge the cycle, the voltage on node E will tend to drop, possibly
enough to incorrectly trip the isolation inverter; after this happens, the weak P pullup
device does not help.

Finally, crosstalk capacitance between the evaluation node and some other control

signals can cause premature discharge. Given a sharp pulse on the control wires, the

52



voltage on the evaluate node might be driven higher or lower; in the case of it being
driven lower, the isolation inverter might incorrectly trip.

In order to deal with this problem, the XOR tree for the sum bit calculation was
made to pull both directions, as in the Hybrid CVSL version. This ensures that the
evaluate node is always driven during evaluation, and eliminates the charge sharing
problems from all the intermediate nodes.

Adding the pullup circuitry on the carry bit circuit would be quite costly, however.
Fortunately, charge sharing is less of an issue, since there are only 2 stacked nfets.
In addition, the crosstalk capacitance needed to cause failure was determined, and
shown to be much greater than the actual amount of crosstalk capacitance that will

be present in the physical layout.

6.1 Evaluation

To evaluate the worst case edges for each static logic family, twenty-four test vectors
were generated, as given in table 6.1. These vectors represent every possible transition
of the late arriving inputs (A and B) that can occur.

Worst case delays for these families show a wide range when driving a 4x Load.
Differential Domino has the best performance, approximately 550ps. HDCVSL has
the best time for a static family, at 730ps. DCVSL does considerably worse with
delays over 1ns, and the rest of the families are even worse.

For most families, the best and worst case edges have very little seperation; when-
ever possible, sacrifices on the best edge were made to speed up the worst edge. For
DCVSL, the rising edges are always slower, and these edges were optimized as much

as possible.

53



Vector || A Input | B Input | P Input
1 || Rise 0 0
2 || Fall 0 0
310 Rise 0
4 || Rise 1 0
541 Fall 0
61 Rise 0
7 || Fall Fall 0
8 || Rise Rise 0
9 || Fall 1 0

10 || Rise Fall 0
11 || Fall Rise 0
12140 Fall 0
13 || Rise 0 1
14 || Fall 0 1
1510 Rise 1
16 || Rise 1 1
1711 Fall 1
18 |1 Rise 1
19 || Fall Fall 1
20 || Rise Rise 1
21 || Fall 1 1
22 || Rise Fall 1
23 || Fall Rise 1
24 {1 0 Fall 1

Table 6.1: Test Vectors for Static Logic

54



Chapter 7

Results

Verification of the design was done for both timing and functional issues. Timing
verification was accomplished using the HSPICE circuit simulator to test individual
pieces and obtain worst case delays for the individual units. Table 7.1 shows the
worst case time-path ! for the entire multiply add, run with a vdd of 3.0 2 and
Typical models for the transistors.

Functional verification was done by extracting the entire design to a Verilog netlist
and simulating with Verilog-XL. A set of inputs designed to do path-complete testing
were run through the design, along with a large number of random vectors. The
results were compared against the results from the C library routines running on a
Sparc system. All vectors matched exactly, except for multiplications with gradual
underflow inputs, for reasons discussed earlier.

The physical layout has been completed only recently; unfortunately, the area

used is H0estimated areas are shown below.

Width = 66 datapath cells, 1995.84 microns

Booth Encoding Height Cumulative
Adder 270 micron 270

1Because of the use of transparent latches, the stages are allowed to borrow time from each other,
and need not be less than 5ns.
2The voltage was reduced to give some margin in case of unaccounted for delays, such as local

wiring capacitance

39



Unit Subunit Latency (TTL)
Select inputs 1 ns
Stage 0 4.7 ns
CLA Adder 3.7 ns
Latch D ns
Latch .5 ns
Stage 2 7.44 ns
Domino Mux 1 ns
Domino Full Adder 46 ns * 9
HDCVSL Full Adder | .6 ns * 3
Latch D ns
Stage 3 7.8 ns
AddBoth 4 ns
Zero Detector 1.3ns
Control Logic 2 ns
Latch .D ns
Stage 4 3.3 ns
Mask Generator 1.5 ns
Latch D ns
Zero Detector 1.3 ns
Latch .5 ns
Stage 6 7.5 ns
AddBoth 4 ns
Control Logic 3 ns
Latch .D ns
Stage 7 6.3 ns
LZDetect 2.7 ns
Control Logic 2 ns
Shift Left 1.5 ns
Latch D ns
WB mux and driver 1 ns
Total 39.5 ns

Table 7.1: Critical Path Timing

56




Booth Encoding Cells 25 micron 295

Multiplier Array

2x Latch Cell 10 micron 315
16x Domino fadders w/ muxs 50 micron 1115
3x CVSL fadders 30 micron 1205
Latch 10 micron 1215
Routing Tracks 230 micron 1446

Multiplier Rounding

Adder 270 micron 1715
AdderBoth 400 micron 2115
CVSL fadders 30 micron 2145
3x mux?2 5 micron 2160
Alignment
4x mux?2 5 micron 2180
uni-dir shifter 150 micron 2330
6x Latch 10 micron 2390
mask gen 75 micron 2465
zero detect 27 micron 2492
Add and Round
2x CVSL fadder 30 micron 2552
2x addboth 400 micron 3352
2x mux4i 10 micron 3372
Post-Normalization
uni-dir shifter 150 micron 3522
LZ Detect 125 micron 3647

37



Other Stuff

LZ Detect 125 micron 3772
WB driver 50 micron 3822

Area bloats were divided between the multiplier array (were the desired density
was hard to achieve due to local wiring constraints) and the adder cells. Because of
the large scale use of shared-library datapath cells, optimal density was not achieved;
unfortunately, time and monetary constraints restricted a more custom approach.

Figure 7-1 shows the current floorplan of the Multiple ALU Processor®. Three
FPU-MULA units are shown; due to area constraints, one of the clusters (along with
its FPU-MULA unit) were eliminated. These three units are located at the right side
of the die, with the data bits flowing left-to-right.

3The FPU-MULA unit has the dubious distinction of being the largest single block on the MAP
chip

58



 McTAG

130x170

MCTAG

130x170

BOCK BUPPERS (3) + SELECTOR

)+ SELECTOR.
¥A2i08 ¥00TW

" NowouEs + (8

BLOCK BUFFERS (8]

WOROFTAH + (9) SUALIOT WO

TAG/CSW/XBUB
REGS

, , FRF FRR - fpsa FMULA
PAD’s| |PAD’s Fsz
@ - . - —
3 =z
PAD’s : L J - )
B - T e _ __ JFopBUF
¢ = i o
) N o) FRR 0 IRR w < i
i' FSZ g Isz e saxod
* i
i ICDRAM
. s 256x256
| |
L 1 ‘
i _ ,
130X430 A 1 -
[+]
2 L | |
nelve - — ——— e -
. FRF FRi} : FDSQ FMULA
! fs:
!
¥ | :
3
1
- i ) o
@ F
LTLB 3 ] == 1
IF_OPBUF
8 M rAR WF ¥ IRR g - -
1 g rsz. 1Sz | S8 crae
g% L 5 sxsd
- w
. : ICORAM
130%430 ] 256x256
welve GTLB
o RQ’s NIQ’s B _
i |
‘1 I i ] ICDRAM
i 256x256
MU . rRR IHF IRR 4 ;
g £sz 1Sz u 5 e
- ; a | s4xse
— &‘ H
| ‘ : T roeBUF
— . = — 1 JE T I
’ , ©
PAD's s £ C u|
S N E———
| rrr FRR £DSQ FMULA
PAD’s| | PAD’s i

Figure 7-1: Current Floorplan for the Multiple ALU Processor

59




Chapter 8

Conclusion

Other than the original estimated area, all constraints were met. The FPU-MULA
has a fairly decent 4 cycle latency, compared to the IBM PowerPC 601 ! which has a
latency of 7 cycles at a similar clock speed.

The multiply operation itself has been implemented in faster circuits than the
20ns latency used here. Many such implementations use a tree-style multiplier rather
than array multiplier; however, tree-style multipliers require a bigger area because of
the large number of long wires.

Another impact on timing was the use of static circuits in all areas except the
actual array. Given free usage of precharge/evaluate logic style, and some of the
techniques discussed in appendix B, A latency of 10ns could probably be accomplished
on the given process without resorting to a tree-style multiplier.

The Multiplier/Adder unit should be instantiated in silicon when the Multiple

ALU Processor enters fabrication in early 1997.

8.1 Lessons Learned

Finally, here’s a brief list of lessons I've learned from the project.

1a RISC processor done on the same fabrication process

60



. Drain capacitances can have a large impact; large, single stage muxes will be

slow.

. There is a significant more-than-linear growth of transistor strengths when in-

creasing from minimal size.

. Being aware of the layout constraints is key, both at a large floorplan level and

a small circuit level. A good number of circuit designers seem unaware of this.

. Precharge/evaluate style logic is very fast, though the engineering effort required

to engineer it correctly and validate operation is large.

. If one is attempting a completely new project, the estimated schedule will be

WAY off.

. A little algorithm hacking can go a long way - see alternate rounding techniques

in Chapter 3, as well as Appendix C

. As Tom Knight likes to frequently state, the wires are a very big problem indeed!

61



Appendix A

IEEE Double Precision Format

The Double Precision floating point format [2] fits in a 64bit word. The MSB, bit
63, represents the sign of the number; a 1 here signifies a negative number. The next
11 bits, bits 62-52, contain the exponent + 1023. Finally, the last 52 bits contain
the mantissa without the leading one. The table A.1 shows some examples, plus the

representations for some special types.

62



Bit 63 | Bits 62:52 Bits 51:0
Sign | Exponent Mantissa | Represented Value

0 0x3FF | 0x0000000000000 { 1.0 x2° = 1.0
1 0x3FF | 0x8000000000000 | —1.5%2% = —1.5
0 0x400 | 0x4000000000000 | 1.25 x 2! = 2.5
0 0x000 { 0x0000000000000 | 0.0
1 0x000 | 0x0000000000000 | —0.0
0 0x000 | 0x8000000000000 | 0.5 x 271022
1 0x000 | 0x4000000000000 | 0.25 % 271022
0 0x7FF | 0x0000000000000 | +infinity
1 0x7FF | 0x0000000000000 | -infinity
0 0x7FF | Ox8nnnnnnnnnnnn | NAN = not a number

Table A.1: IEEE Double Precision Examples

63




Appendix B

An Alternative Multiplication
Scheme for Eliminating Sign

Extension

As mentioned earlier, the critical path through the multiplier array is through the
most significant bit of the sub-arrays; this is due to the extra loading on the outputs
of the cell. Since the output words are shifted right by 3 bits for the sum and 2
bits for the carry, a sign extension of 4x and 3x respectively is required. This 4x
loading greatly increases the delay. After implementation of the FPU-MULA unit
was completed, an alternative technique was discovered that reduces this critical
path delay.

The technique relies on a recoding of the output and input bits into the most
significant bit, and uses the fact that the inputs of an adder are interchangeable.

For a given adder, there are 3 inputs, one which come from the partial product
generated, two which come from the previous stage. These inputs and the results
they generate are listed in table B.1 below.

The key observation is that Bits 65, 64, 63, and 62 will all receive the same Sout
bit, and that Bits 65, 64, and 63 will all receive the same Cout bit; furthermore,
because the inputs to Bits 65, 64, and 63 all come from the MSB cell, the order of

the Sin and Cin inputs can be permuted. Therefore, a recoded Sout and Cout shown

64



PP | Cin | Sin || Cout | Sout
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
Table B.1: Typical Full Adder
PP | Cin | Sin || CoutR | SoutR
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table B.2: First Recoded Adder

in table B.2 will give valid results when added in to the next stage .

As shown, the truth table is now much simpler and can be implemented with
a simple 3 input AND and a 3 input OR gate. These gates will run considerably
faster than the 3 input XOR and 3 input majority gate in the normal adder, and can
be scaled up to drive the excessive load much faster than the normal adder, though
probably slower than the unloaded normal adder, and thus still in the critical path.

However, the recoding can be applied yet again for additional gain! Here, the
observation is that for stages after the first, the MSB adder will be given two of the
inputs as recoded inputs. Table B.3 shows the truth table for this new recoded adder.

This new table can now be implemented with a 2 input OR and a 2 input AND,
both of which use the partial product input and one of the sum/carry inputs. This
circuit can run MUCH faster than the normal adder, probably in comparable time to

the unloaded normal adder when driving a 4x load.

1 Bit 62, however, takes Sout and Cout from different adders, and therefore needs to compute the
real Cout from the MSB.

65



PP | Cin | Sin || CoutR | SoutR

—_—— - OO O
-0 o - OO
L anli == N en i e I e i« ]
= = e O

N == T T S S

Table B.3: Second Recoded Adder

One thing to note is that the Bit 62 full adder takes as inputs Sout from the MSB
and Cout from the MSB-1 adder. Therefore, the normal Sout must still be generated
from the MSB adder.

This technique can also be easily applied to higher radix multiplication where even
more sign extension is required, such as Radix 8 (where a 8x load occurs).

Another possible area for improvement is recoding the partial product input?,
allowing the use of adders bigger than the 3-2 adder used here. Using a 7-3, 6-3,
or even 5-3 adder would allow additions of 4, 3, or 2 partial products each stage
respectively. Unfortunately, not enough time was available to do substantial analysis,

though a 5-3 adder with recoded partial product

2This input will arrive simultaneously at all stages, and therefore for latter stages of the multiplier,
will arrive much earlier than the other inputs. Therefore, even a very complex encoding could be
done on the latter stages

66



Appendix C

Draft HDCVSL Logic Paper for
JSSC

Below is a preliminary draft of a paper intended for eventual submission to the IEEE
Journal of Solid-State Circuits. Although Digital Equipment Corporation patented
a circuit family of this type 2 years ago, the results were never published, and I
'rediscovered’ the circuit family before becoming aware of this.

Unfortunately, power numbers were not available, and thus the discussion section
on power is blank.

The most commonly used logic family among processes having both NFET’s and
PFET’s is, of course, that of static CMOS. Its main advantage over other possibilities
is shear simpleness of desgin. Static CMOS gates dissipate no static power, have rail-
to-rail output voltages, and will function across all process corners without careful
attention to device sizings. However, power, area, and delay considerations may
warrant using a different logic style.

Differential Logic families can provide increased performance while still maintain-
ing untimed operation !. Three different differential logic families are presented and

compared.

1Generally, precharge-evaluate type circuits will outperform any untimed circuit, but the extra
engineering effort required to engineering the timing circuitry and validate the circuits operation is
enough to discourage use

67



C.1 Differential Logic Families

Differential CMOS (DCMOS) can be used to reduce remove inverter stages that would
correct the polarity of the output. Being a differential logic style, complementary
inputs are required to generate the complementary outputs. Compared to static
CMOS, the total input apacitance will be about double, due to the extra set of
transistors for computing the complementary output.

Differential Cascode Voltage Switch Logic % is one such family. By only using
the pulldown chain from differerntial CMOS, the input loading is reduced by roughly
a third. Pullup is accomplished by a solitary PFET that has its gate connected to
the the output of the other pulldown chain. Switching occurs when one pullup tree
turns on; when this ocurs, the pulldown chain overpowers the PFET and begins to
reduc the voltage on this node. As this occurs, the other pulldown chain turns off,
and the PFET associated with it has its gate start to turn on as the node from the
first pulldown chain reduces in voltage. This action turns off the other PFET, and
eventually both nodes switch.

DCVSL inherently has a slower rise time than fall time, due to the gates of the
pulldown logic directly being connected to the inputs, while gates of the pullup logic
is indirectly connected through pulldown logic of the other side 3. Another problem
is that incorrect ratioing of the PFET’s and NFET’s can cause failure of the ciruit; if
the pulldown chain can not overcome the pullup PFET, the outputs will not switch.
Finally, the short circuit current is much higher than that in static CMOS.

A hybrid of DCVSL, HDCVSL?, overcomes most of these problems by adding a
pullup chain to each output. The pullup chains are constructed out of NFET’s rather
than PFET’s of differential CMOS; this provides a pullup to Vdd-Vt which is enough
to seriously weaken the PFET on the side being pulled down. As the one output is
pulled to ground, the PFET on the other side will complete the pullup to Vdd.

2Patented by International Business Machines, Inc.

3This effect is lessened when one DCVSL stage drives another, as the early arriving falling edge
turns off the pulldown chain before the rising edges activate the pullup chain

4Patented by Digital Equipment Corporation

68



HDCVSL alleviates most of the problems inherent in CVSL. Rise and fall times
can be made approximately equal, since both actions are now directly coupled to the
inputs. Incorrect ratioing can no longer cause a functional malfunctioning; pulling
down no longer consists of a NFET chain overcoming a PFET pullup - instead, the
PFET pullup will be shut off by the NFET pullup chain on the other output. Finally,
less short circuit current will flow, due to the pullup PFET being turned off early.

C.2 Analysis

Differential logic families work best when building symmetric gates — where the num-
ber of transistors and circuit topology is approximately the same between the active-
high and active-low output. This gives approximately equal propagation delays for
both outputs.

Two common circuits that are symmetric are the majority gate and the parity
gate, both used in 1-bit adders. The two input parity (or XOR gate) has been chosen
as a test circuit for comparison.

The schematic implementations of the XOR gate are shown in figure C-1. The test
circuit measures the delay from input crossover to output crossover driving a fanout of
3x. Input Loading is in terms of microns of gate width. Power measurements are for

only for the middle XOR (accounting for short-circuit current and output loading).

Logic Tpd A | Tpd B Input Input Power Power || Gate
Family Input | Input || Load A | Load A || A Trans | B Trans || Area
DCMOS 364ps | 492ps 60u 60u 240u
DCVSL 456ps | 579ps 20u 20u 100u
HDCVSL || 410ps | 456ps 40u 40u 190u

Table C.1: Results for 2 Input XOR Comparison

As table C.1 shows, DCMOS and HDCVSL have approximately the similar delays
(DCMOS being slightly faster for the A input, HDCVSL faster for the B input), but
both are considerably faster than DCVSL. DCMOS does surprisingly well — even with
its high input loading — because less short circuit current is dissipated than HDCVSL

69



and DCVSL. With lighter loads, the performance of DCMOS relative to the other
two is even better.

**Insert discussion about power**

In terms of gate area 3, DCVSL uses considerably less, asymptotically approaching
1/3 of DCMOS. HDCVSL is in the middle, with asymptotically 2/3rd the gate area
of DCMOS.

C.3 XOR Folding

The XOR network used can be arranged in a slightly different topology, giving the
circuits shown in figure C-2. This can be generalized, allowing one to implement a
n-input pulldown tree (or pullup tree) using 4n-2 devices by building a crossover stage
for every input.

HDCVSL allows one more degree of folding, resulting in a pullup AND pulldown
tree in only 4n devices (versus 8n-4 devices for the DCMOS pullup and pulldown
tree). In fact, any boolean expression of the form A xor F(A,B,C,...) can be folded
to use the same pulldown tree as HDCVSL plus two additional devices.

Logic Tpd A | Tpd B Input Input Power Power || Gate
Family Input | Input || Load A | Load A || A Trans | B Trans || Area
DCMOS 318ps | 364ps 60u 60u 180u
DCVSL 364ps | 466ps 20u 20u 80u
HDCVSL || 230ps | 27Tps 40u 40u 110u

Table C.2: Results for Folded 2 Input XOR Comparison

As shown in table C.2, the HDCVSL XOR is the clear winner in terms of delay;
this should give similar advantages for any such foldable circuits. The DCMOS and
HDCVSL have slightly less delays than the non-folded version, but are still approxi-

mately proportionate.

SThis is at best a rather crude estimate of the area required to implement the circuit. However,
both HDCVSL and DCVSL will have a clear with only needing two PFETS, and thus a very small
well region for NWELL processes. DCVSL has the additional advantage of only having 1 complicated
network, and could very easily have half the area of DCMOQOS

70



*¥% Say something about power ***
In terms of gate area ® HDCVSL is now very close the DCVSL, and both have an

area asymptotically approaching 1/3 DCMOS.

C.4 Conclusion

DCMOS remains a very good basic assembly circuit for general useage. When area
is extremely critical, DCVSL can save up to 1/3 the area, but at a considerable delay
penalty. HDCVSL provides a compromise between these two families.

For circuits with an XOR component, HDCVSL is the clear winner in all areas
except size, where DCVSL is only marginally better. When building XOR trees, the
folded HDCVSL XOR should be the circuit of choice.

6 Again, this is a rather questionable benchmark. However, in terms of wiring complexity, HD-
CVSL now is very close to DCVSL, and both are much better than DCMOS. DCVSL still has a
slight advantage in that VDD only connects to PFETS, which might simplify layout a bit

71



DCMOS XOR

Figure C-1: 2 Input XOR gates for DCMOS, DCVSL, and HDCVSL families

72



DCMOS XOR

<

X A 3
A 2 10[]——. A
n
]
n

B 10 0]} q@8
n
HDCVSL XOR

Figure C-2: Folded 2 Input XOR gates for DCMOS, DCVSL, and HDCVSL families

73



Appendix D

Schematics

1 0OF 1

"A.1.00.00

F[B&J_ MULA
e

=

B

£y

(]
[S] pr ey
= a
5] H
= i
; H
<<
H [}
— | O
] =D
OlE
3 2|
Ve = >
P MR
=
i‘ g CHIO TR @ oL
Ik | i
£ ] erionem @ e
3 R e
A § comers i
—fg B > AN o i
e o Preiots
e v
Huow  aom PN
ot - .
x o[ —e—2
e ol o sy Dlady $

T Crger
oacas
S50

e —_— owfue
pam ey ” - 3
P T I ey Trresser '
e ] H
— 2 Twouy Twedias
a pam peon ——e d
3 —jwm =# v
g ] Twon ¥ T e
b — oo oara-s Tian
.
3 ooy sovean Rt o
3 — Tow e o
3 — o P -zon|
R I IS o VL e e Yoo =2
o ] Sy 3 85, e
e e Tt i 13387l
w38 om letiosh 3 3 -
— { % H
2] o § i W
9
H g
3 ua
g d
3
3|
o
= n
M o we>ras
H
H ] T
i o
3| = <> 1ueny
— e
T
5 . ] <trry
e owe ] <tmra
A e 33 e e [ Doty o
5 Tome  $Y T R — vy g "
3 ks R - ] <e>1vorm w7
— e — e o b I
P e e I ] ] T 1! T @ T
= 1 — »e - —] (prow: = wme
+HE]: el et e w0 s | o DN priesety e
< NMW e <EOWN 3 >N | BT BP0 b Rl 4 ™| e
e sy, stoms |— ®om = 18] RIS S [ brgeuky ™ =
¥ - o] vcoems Yoo
e ¥ | ooy soues—=
i o TN - v zvaws [—e
on — =] ooy 238 teamaspluend
by = uee 3338 meerhey
on N ) ggs l
e Sl SREL SR
g L3 Ll
FEIYYE
i
s344 i
veLY
&
HY

74



Immediate Path and Front End

[ 1[RX 100.00

£y

TS %o,

bescRETON

cacsres

<@

N T R

<Es>TI

big-dehre

ez

M—Machine

fpu_mula
imm_path

1 OF 1

i J};:ﬁu.@@.m

ERELC]

T

==
Gl Eryiraer
Treer

[CrecKto
By

75




1 40 1 [
GTO0TY v
K “ON_9M0 ‘ON WS4 3zis Q3¥0IHI
Ualuold e
433u1bu3 1y
- ssxzm
D ~ N N Q % P
ubisaq poISAYY
SUIYDDIN — I
[
19913p0s02
0170 @—| ;02 X
&
s
[ I
R f
>
o Svle . <pzoEipb
<0'59>6108 @¢——a—1n0 3 jPUB<ZL.>'<@:1 6> 8 wioug"ipub -
] —@ <e59>
m <@:£9>8'<EI>BZe> eee>a
HE ¢  wiovg
z
1333p0Iaz
A3 ciorv @— oz I
3|8 3
s
v
ger
)
" & <B:TY>Y'ipub
<o : ™
0:69>6.0v @——-— 10 3 % <S>V widuy ipub<iie> P
& <€V e
= $ o wouy
Z3
3|6
dody
do)NI
030U 3va NOLLAI¥OS3a A3 [3Noz
SNOISIATY
Peoo Ty T o

76



D.2 Stage O

<1P9>EY

x_.u_u._ n.”|w_uw_Hm.

—. 30 _. E\:MA [ - —
ﬁ ® @ @ _\ K ,mE_ “ON :um.%wm 4399340
® # m i 133uibul N/
O_ N uJ - N Q Lv swma
SUIYODIN—IN . E—
THION
Sr ———@ T
Pl = = Lo, »Mﬁ it a e

"E9IPKBIEI>S

+—4
yney %
A ]
o .g .Hun%+
A ] I

HoA0

<@Ca>CY

[ sy g>ov
e %
K@ic9>82)

<@GI>LY

<B:T>¥S

prea>duy'<cas>dun<co>duly
. =

Sfiira>duny <ca>duy

<ggo>duy

<BLT>ES

<B1Z>2S

<BIZ2S

ZzZopoduaq

<9:59>8

—o—@ <o:cu>dug

A1 2>
21 2>481 1
w_nm Lo <@1T>Es
l“ﬂtl <0:1Z>25
P mg ! <@LZLS
A<:12>091 24 Prattigad
<BLZ>ANI
—¢ e wﬁ o
m Ag1z>Ep B

<@1Z>15

<RiIZ>8S

1
3107 %
& —84

<P1Z>es

<o zo1cory —4
1o 1 ¥
A<e12>671

SNWHL
a1oH

4o ._»w_u
<@'1Z> A<p:12>68
BIT>AN <@LZ>ANId o
Q3AOHUdY 3va NOILSI%0S30 A3 [3Noz

SNOISIA3Y

PR T ool o]

(s



Booth Encoding Cells

D.2.1

P30 L s

_ ELL

00001y

Q3Insst

Vi

‘ON_SMJ 3218

“ON_WOS3,

QA3%I3HI

@UOQC@Q 62/
O|NWwi T Nd|

—

se/mz/m

499ubu3 5:

sa9uibu3 N

SUIYODIN — =

ubisag (0:8ug

£s
Is

LEN

y

ced
d i

<gz>ve
<@Z>Ve

SIvVAQHddY
9 ZAM
Y
u
"
/224!
[
s $28400Q <EZ>NA) — e AN
¢ os <@z>yaf—a<BZ>NT <g>sigr
o - <>
GZN 2¢N
5 g
— 88— 1N | mam
u u <8>19 W;an mm o <0253
zs — <0y, 5
<>
—<ia |
<i>aa Wﬂwmo sioxgq
—<i>am ]
vZd 2¢d T R e ol w<Ezsua
<z>aq <z>sua -
[ a<z>sua
d d m« coona <@:E>suq
<g>8q
u

<0:Z>m9
<@iz>9

03A0YddY 3o NOILdI¥IS3T A3 [3NOZ
SNOISIA3Y
Vo090 <_ l _ ]
Ady| vs) ON 94 ON A9SS

78



[ECH i s gres
AN L .
ZZ292p0ouaq st
DN Ndy - =
SUIYODIN — A ]

LERG f i ! ' Gk
A n_nsnsw SEEunm .nﬁnmlw .nﬁnssw

Treet
oy
e
o

<es9>0
‘x

2

i

¥

79

eposes oz onacue e spasimq sronma wonma oo oremsn wwowma

@

e g

ST 1
T
e
g

KT




R _

® ® . ﬁ ® . ﬁ . K ‘ON 940 “ON_MOS4 Mm BMMEM
m\_ OXMQ uibu3 11y

981/

DN Nd}

ubisag joaishug

_MW C _ £ Q D 2 - _\/_ ava SVAQUddY

’__

vies a
incaa 1noa 1n0ogd
d L
Q3A0YddY va NOILJIHOS 30 A34 |3INoZ
SNOISIAIM

80

&& —& ﬁ Kx— ‘-Zm— cx% gBuwu




1 40 L 13308 4 Ee

aansst

®®®® ﬁ .K ‘ON_OMQ, ‘ON WOS3| 3715

QINI3HI

Y CQUI00Q -

seouibu3 Ty

seouibu3 1nD

DjNw —Nnd} =

ubisaq 100sAud

SUIYODIN—IN

SIVAD¥dIY

y <g>1ar
i <@

s <su

u

SY <T>ua
u 4

<z>way

L

<>

s @ ﬂ,
[

iy <@

i <i>na
d ]

i g <eue

“ <@:Z>hat

i<
4 <t

[AETESE
PR

QIA0UdIY 3Uva NOL80S30 A3y |INOZ

SNOISIATY

<z>m

3 T

81



ﬁ ‘LO _E_’ _ dvos ainss!
® @ @ @ _\ K .ogk" “ON_NOS4| Mm Q3%IIHD
m ﬁ £ M O O Q i idoubuy Ty

ojnwTNd, ) E

ubisag 1oa1sAug

SUIYODN — 30 | s

<@>uq;

<i>uar
u e

<Z>
y e

1 <uue oy < i <o
g <>ue g < f

@ <e:z>g
4 <ez>na

<@>1q

<e>uq) iy <e>ha <g>ia
a>ua 4 <e> 4@

Q3A0NddY iva NOLLdIMOS 30 A3y [3INOZ

SNQISIAZY

Lo v E L.EE_

82



D.3

Stage 2

.

e w2
s g

£ H

- S—

e

s s [
S g L S
v& -
S| |f o Q.
o Sis
e<| [T o e
] 15 cl® 2_
s | - e €| 2
f = O] EN
13d gtﬁm—c —“+—
o o Gromdf—e O [Rs)
L] =
3937 S5l
§E B i s
>3
s § e
k| 3
d
; et
L E: AN H f §
i

of s
i,
il
[}
HE
4 i
W
e
G
g 3 i
g § K v

H [ oA
H P N/ 4 ¢
H H

r_%

83



D.3.1 Multiplier Array and Subcells

= S
s P
S| SIS
ol SIS
Ea ol o
— clo o™
5 -Ej_qc)éﬁ
L. OlE »
j 5 |§J
E .
3 p#
o ck |
=15
A S | =
3 0
£_| H Eg_g
s é a A,‘;
E L 1 ; ;c:
='3_ O S
J 8
s i1y
i3 éwg%a
EEEzH

T
TS a>
s
o

84



240 ¢

@@.@&.N.{F on onc) ‘oo posal | ool L 2
Z@@1eays/AbiinT W sl e i _ L«..ﬁ..r*
pDjnw ~nd} = sta g l 1l
SUIUODN - o mwmmm Mmmm

85




| 40 | 133HS *

31¥05

® & ‘ ® ® B _\ ‘ K o on - ..WE WW:M' SHMM
. m X o J20ubu3 11y

DINw nd} oo

@ C * £ U O E — —\/_ v m#\,o“”“”a 10215AU g

ldd

Q3A0¥ddY 3va NOLIdI¥OS3a

A3

&

3NOZ

SNOISIAZY

AL | - ,

86



@ 40 ¢

SUIUDDIN —IN

poer Ty o —
y ‘ON OMa ‘on wosd| 3zs JSERRELE)
OC.EOU\L@UUO% i jouu3 1
o Nul N d J s T
uBisaq 10a1sAug

31va SIVAO¥ddY

Q3A0YddY

ava

Noldiyds30

A

ez

SNOISIATY

fs A A | - .

87



PPOIVAY

— . h_o ﬁ. wmu!m _ a3nss)
® ® ® ® N K ‘ON 9Ma mr A3NIIHD
STWIOp o|Nul e
D ﬁ NuUU N Q L, s smoubu3 wrog
SUIYDDN — T T
¢ ¢
3333

o
g

g
2

E

A3

Yvad

d

o
9
s

ounsopsapph)®E

wvaus = yvay
us B—+—iy

A3A0UdSY

1vo

NOLLJI42S 30

SNOISIAZY

88

R
2
b
®—— UVEANId
*—— ANId
»—9S

€S
—7s
—is
s

"

Ldd

ydd
Sdd
Zdd

N& @& N >/W\t— —‘tm_ ON. uMD OZ)M

vdd
Zad

Ldd




|

2 40 Z

el
000 C Y L.l

lwmrm

STLIMo0|q W
pinw nd}

SUIGODN—IA

o 1131 e 1337 = 11T
o ol =
= . e v T
—— R E e en
< o
m FLER - m 131 ™ “ w JREE] 13
1

e

amaargy
¥

=

| |

e | —

ee ooy ]

P
aned

= P!

» prten a

89



[" 21220000
|
7

oescAPTON

r FSCU WG, |o-c .

% cemsams
1 el 2
¥ g —— RIS —
E
a
EITEYZT 4
s PP S0 S
e }«-nm——-—ﬂﬂ——.,
P — T2 S e
£ | 2w St
S 2 asazz
: {} +
s pre. EECEEE )
—mmria [ UTH
< w500 3 oSt — e
— T comoareat—e— BT
e e) } <ol 25
8 } crmagnes SO —
ﬂ:j<_ e g T TEares
— LS.
B
= E>vS N
e e
s o 3 proTy
—mmen L e 2
S M b R e
s i—a— o 3 ¢ gl —e— S —
= ol
“TErsiod B >ided 2LN23
e e EEEEET N
— byt L
SIS e yaiov0 B s T w—
<yl <80 a0 g m s  <hryodwes
__nn:m_._.——% bty ; § “weove P
P— a0 PRt <niverenvs
= i
sy wsrns & anaus
. P CEETF)
E profie 5
S B 3 <wabres =
——smew TSN < seves| e
e vraman ] } e
7w R B L e ——
= e
<a¥59>10d oA l
H

[A.2.00.00
2 OF @

n
[} i
c|2 ol L
c|DOE"E
o [8)

I o
2353'
Lo
=

e H
¢
BQ
E
5
JRHE

Bt aely

[Creat Tognasr

[F e

G

WSS

90




_ ELAL

a3Nss1

37199

‘N wos| 3z JERRETS)

sexve

J29uibu3 11y i
LY 2T ‘ﬁ i

9auibu3 n2u

ubisag 1oaisAug

@ C _ L O O E - E 3va SIVAQUAdY

U3A0UddY Jwva NO[LIS3Q AY |3NOZ

SNOISIA3Y

AL . ]

91



L 30 1 ] [

onsy|

LA S A

[aa

J91N0J W e

ojnw ndj v

sty

SUIYODA — A ]

<wTeres

wr>amesn P
<ED>rosa. <€>ve3n
<EsDanos pratatiey
“am>pe <w9>10

] s s e

@or>iad <wwmus ey

oy <SP

<}

Swwves L oo )

ey

92




L 40 1 imf
oo LY, o I
| obDys W .
DiInWw ™ nd} anb o
SUIUDDN—IN - e nt

T
ul

]

:

25933 i
3F 3

<)
<wseares

ooy

el

| | [

o | i | e [=m=

&&és.f/,\!_FfL EL_ s __

93



SNOISIAZY

®®— .mO ﬁ. _\ JE=1T: ‘ 5 E,mom aanss!
ol S
K _ ‘ON oKa ‘oNyesd| s \ 0399340
usb as|nd o
— SexzAL
D _ nud N QL. se3ubu3 oy
ubisaq 10315Aug
@ C 7 L O O E — 2 310 SIVAOYddY
o
8N
k u
eNl
A u u3 E)
oid
LER
Q3A0¥ddY 3ivo NOILI¥IS30 AN |3NOZ

Poee Tl T

“ON_OMg| “ON 084

94



1 40 1

J3S

ulynua

ON_9MC

ADjopWOp

@ M 3
‘oN mosa| 3z

Q3Insst

Q3¥33HD

s6/rL/0

Jeeubu3 Yy

SNOISIAZY

_ serzml
DN~ Ndy
ubisaq 015hug
@ C _ £ O O E — E 3va SIVAQYDEY
b
w4 OA_

z

Q3A0¥ddY 3va NOUJIHIS3a _ A3¥ |3INOZ

pe ey

95



[RECIT| i 03] sl
@& —@ — <§.\_ a..uL .e;Ou: s x|
sAojop~ebioydaid e vt
o|Inwnd) i =SSP
SUIYODN— N o T
! ! !
v v v
£ ¢ : t
BO—e—up MmpTuw p AT oy oo ey Ammwer
{ o« P w P w P
I I |
i i i
oy r!.w! urp| ~» E..Mi e -y r..-us.- w
P i . 7
[ | 1
| | I
oomr | _am | oA [ [

LN el o |

96



| 40 1 133HS _ WIS

0 e a3nssi|
® & ® & ﬁ K ‘ON_OMQ ON :wumu ,W.HN_M m. Q3IXOIHD
OuUItUOD ™ GxNud e

sa/cz/el

o|Nw Nd} s oy

ubisaq (0215hug|

@ C _ L U O E - —\/_ 3iva STYAOYdaY

WA3

YVBANId

HVEANId
¥dd
£dd

S
£S

Zdd
s
Lad

97

a3A0¥ddY NOLJR3S30 A3¥ |3NOZ
SNOISIAZY
gl K “ON_OMg| ON 1S3




— h_o _- 133HS

_ ERisl

U N N 35 o]
Wwop  o[nw

DN —nd} e
SUIYODIN—IN T

nes
¥vaInod
oy

neg

yvainos 4 uvainos

ivginod
103

SNOISIATY

z
nssosu.uuu«mm
poo1vAl I—2— a3 H ﬂ H H
X >
£ 2
TR > FREEEEE]
T £ 233
3 an

a3 WA
Lo 5 V1¥E6Y J¥HD
B—{NYBANId  ¥VEANId
299 & ANId ANId
M e ——vs ¥
x €S ouWOPTGXNW ¢S
7S zs
—is is
*— s as

PR

2482

i
3333
2a82
G3A0HdAY ivo NOILdI¥0S30 A3 [NOZ

xnwTvA3

vooa e K_ fm_

‘O O] ‘on nosy

93



L

CECH| |
o0 00T Y] e Jort )
L1201 W i —
pjnwndy = e
SUIUOON—I | e

99

EwgEE i
(R EEE - d
i
Tt uMuu
o
| !
’ | AW . °
— w wm FREE] Hm o ww ERE w ”_JE 1 wd N 1111 ”J B L | —
Il l@ M I M i
# _ ﬂ.m . + ii_ . Iim Q m A u Jy m : .“
0 g g i 3 s
a — P
| |
e I == T._!“
ss.ss.m.«u—_ J | z




[ lRoeeed

rrscn L lm 3

g [
[
¢ |s
- S
Qo
H Ol _ Ol
[S{RSRYel S
R C g <
)
ol5 9
g S| 4 O
bla
E s+ €
8 —]
. 3
JIRARAN BY
3 LEP LR F 3
g i
- Ee » = canbves
<9080 % o SEMWOS
] Easen f':é f Rvivios] S I H i H [ss
> e <Em2PO)
— v b el T <wasenes 5
i wone 2
M
B TTE T . % 3
e priien z gi s: ¥
Sy <s1>u = et B %l
s e e §rmoms CITEYE -i k2 E
upes o - 5
R R e R
<HAT I S é 2 ad
: +{
—mmm e 13908 g
—SHIOWE o
ari Swow. & POt E—
e e e i o] —BEEE
p— R d “Comoioo| —e— LIS
R d o —
el wane E3
a
T . SrEy>ug <ER>uS
T ixrss e | Ses %
PR T I el =
e e e
T e i
<ol i-sa 3 v
[
Errr ool § R PT Y
: {
T ITSo <EH IS 9
T TS bl
B e B
v <o >evDd i
p—r7 - S
p— - U ) ¢
e —wens 32 asa
T i | emus i a 3
—Em e |
p— T - " B e —
_:mm_._ st 1 Pyl S P S—
_<m_._f':: ¥ 3 crmoepl—e——SEIRETS
e G 3] oo —e— SIS
e RO 11 wask¥
ﬁ
§isads
3 ¥ § 2RaB3E3
it 55 i

100




| 4O |

1338

— VIS

o0 eoly

ainssi

971499

‘ON_OMg ‘N wosd|_3zis

G3IXIIHI

'S-ou

Lo

DN Nd} -

D usppo) |

smau16u3 Yuf

99uiu3 ynony

SUIYODIN—I -

ubisaq D2isAug

SIVAONdDY

o
15

&
3
]

>

m © vds_ WA3

yr.v .
8

u Y]

o
v

ua

:.

L9

03A0¥ddY 3iva

NOLLI¥ISIa A3Y | INOZ

SNOISIAY

Tl ;

101



" 1[%.1.00.90

T

[=— I

1
-:1:1;!!!'__ '"z“)!!—. ;
== e T [ = ]
E =S ERN e adalt =
H ‘0
,:lnli!!“ ':i
% s =l=|=alhi= ;’ :
- : -:nn;lﬂ__ : - i
,zaz-‘«-;ia?“ 1]
H—ms ":-:- :ti!ﬁ: e, ‘d“
s i R T
1 P l e " =
iR TN T soatlt
B
() "i!!" ; = l‘p!m
e | B o lemml |, o
e ::na:fh!: .%:.:D ;Ihl:'
t;:iq;!!m: ; * ’fi!!_:
= = 2
e R T canatily =
B
] PUEHE L
RS A TR cazatlly
li:!xt;!!.‘: f“i!!*
pa——— = ™ e |
s 1S EEE, Ly E
Iiliiipsn ' '“"q!!"
H—as = = n s Z
EEEE L s Ly &
"'"ip!"‘; h "";’qﬂm
H o™~ o - [4 o =
[ = H = 1 P
s Ly R [T
. :
LELEL 1 T BEAIpAY
bt | 2 e |3 it
i T s, Ly = 1
| Eﬂ
h e A
§§ W g T gs e
o [ © f © !

102

[A.1.02.00

fpu_mula
m_mux66/sheet@@1
r‘” 1 0F ¢t

M=Machine




El T
] sn
8 { Ssk
| T ol oS
o c|o o 7|
i | b 1 =5 <l <f |
"'"’i“-- 8 £ Q
= ©
£ 1, = 3“‘2‘
e 2zazabifd 2‘2 3‘_
s €
L EE] ;!iu.—
A e €
d e, ity @ T
L} . ' H
| | » H - I;Bilisl!“
T ‘.:." xl;!il:
H
Iilll;t!!'—
EEE ), E
asuza
R Ih!"'
lilllli!lm
-1 [t
3
:::;anm
e, Ly =
i
T LEX] i‘
=
2=, e =
.
-;nql"_
H . P
s :a:n ;lh!.‘:
'
LEE] ’li!!"'
T ml:l xlh!lz
H
l:l{l;l!!m g
v R, Ly i
i
i =
E{ » ::x;p
o I O [ m {

103




D.3.2 Array Combination and Subcells

L0 L i

@@.@@.:L | | L o
qQWiod ™ ADUJD v
pjnw—nd} s o g
9UIUDDN— A T

oo | | o [ [t

ERRIERRIRRE

ssvss.ﬁﬁ__ a_

104



40 1 133Hs M TIv2s q3nssi

|
®® ®® _\ K ‘ON_OMO “ON Wos4| 3zis Q3%03HO

¢4eulguiood
DjNwi—Nd] e

UBis3g 031sAug

@ C _ £ Q O E - E 3v0 SIVACHddY

Tdino

Q3A0NdaY 3vad NOILI¥IS3Q A3y |3INOZ

SNOISIARY

105

A - _




l .mO _.. JER: _ T1vos qanss)
® & ® ® *\ K ‘ON_OMO ON M0S3 mm 03%93H))
| Joulguuood - i

98914

o|Nw Nd} P

ubisaq 1038hug

@ C _ —\_ O O 2 - } avae SIWAOHddY

QIACHSIY 31v0 NOILHYIS3IA A3¥ [3INOZ

SNOISIAZY

LA N ]

106




I 40 |

13318

_ 3vos!

® ® . ® @ . N . K ‘ON 9Ma N :QL Nm SMHH“
Jouiquiood - o0t

DN Nd]

ssmA

423uibu3 YnoNg

ubisag oiskug

SUIYODN— N

SIVAONdAY

<@z>1dino

<pz>din0

Q3A0¥ddY

Jva

NOLLI¥IS 30 A

INoZ

SNOISIAJY

<L

Z13ugwoad

<p>l
duy
ssouawood M

T

@ S@ N.Wm“ F!m_ ON_ M: .m mumu

107



| 40 |

A133HS

HGM__

- — < a3nssi

® ® @ ® —s K "ON_SMQ "ON WOSJ4| 3215 Q3INIIHD
SEAZ/M

AJDpUNO(Q s v
— SexZ/A

D _ Nud N Q uﬁ Jasubu oy

uBtsaQ (oISAUY

QUIYDODN — I s | o
WZ VA3
u
wn g
Q3A0YHIdY va NOLLdI¥OSIa A3y |3INOZ

SNOISIA3Y

TOCTY] L] T .

108



L 40 L s | vos

T . i

‘ON_ADS 4!

CADIID 01D
DINW Nd}

SUIYODN— N

Qinsst
Q3%D3HD
stz
9ubul 11y
sexzl
s39u1bu3 N2
ubisag (0aisAug
3wva SIVAO¥ddY

<EFILZI>NINOS

<ELULZI>NING)

<EEULTL>dIN0Y

<ELiLZI>dinog .IIT.A -A
<ESRI>El <SEL2IeT)

WA3
2
E
yoy  fopunoa nsl o . @ <epizivinos
g
<geLzi>n S
2
s
yoy  Aopunoa sl o @ <crizi>ino
<ccuzise 3

Q3A0HdY awva NOILdIMDS3Q

A3

&

3N0Z

SNOISIA3Y

H,

2 B I

109



L 40 | L34S _ ERLA a3nsst

® ® ‘ ® @ . —\ . K ‘ON 5Ma “ON_AOS4) Mq_m 43%03H3
ADJJD ™ J214D o stz
DN N d ] o moupu3 o2
SUIYODIN — I |

<@'96>Ninog

<@:96>diINos

<@:36>Nin0)

<@:96>dIN0)

VAl

VA3

oy Awopunog

2
<@:96>11 $

bis

WA

vy Mopunoq

A3

<B:36>21 2

bis

@ <2:36>1n0)

[

QIACHIIY

31va

NOLLdINDSIa

A

noz

SNOISIAZY

A el o

110



b .U_O l 1331 _ 5 ﬁmuw
® ® @ @ _\ K “ON 9MQ “ON_NOS4| u.~_M W_, LELBELF]
doX

Lv - \(.v ez
o|Nw Nd} .

savubu3 11y <6L:8Z>In0]
<RI>1N0) °

a3nsst

ubisag oishug

@ C A L Q O _\/_ - —\/_ ava STVAONGDY

ST ®
<91:>I00)

- &
<G} >0y e

<v:05>1ro0 @ e ®

<ELip1>IN00

<@E>1M0) 2 <zi>ne) )

® ®
<Qzi6Z>IN00 - <@l 1L >inoy

<£Z>ne) 2 <6>1n0) °

<SZi9Z>1n0) <£:g>IN0)

<pz>1M0) ? <9>1n0) 2

e ® e ®
<ZTET>INe) <£1§>In0)

<1z>ineg ) <@:z>\n0) ?

Q3A0YddY va NOILdI¥DS 30 A3

&

aNoz

SNOISIAIY

N . e

111



D.4 Stage 3

ECH [ s omss
oo, I ..ld e
1S s =t
DinwNdy s e
SUIODN— I o

s ]

|

@ <eczious

mmmmmm

AR

112



1 30 1 o] ] s anss
AR N L p—
1S - e
O_DCC\DOC bt ooty wromy
SUIUDDN— I N

viom
e

-

=

<
Tz
™

ETTVLEI75)
<oxs>em

ey

sooRy
<sxa>ous D

| <wcr>my

=

L -

i s (o=

113

D.5 Stage 4

eoee iyl ]

o] o |




D.5.1 Shift Sticky (Mask Generator and subcells)

¥

AL

1

= T~

REVISIONS

APPROVED

DATE

DESCRIPTION

ZONE| REV

sticky

17

©
% .
L]
<ogo>u §
g
8=
Ly3
tE]
v
X
=0
129 a10H
od SNvaL

out<§3:@>

T
B <pre>ARs £
B <pie>quas

—<oEsiaen E

d_in<63:2> P — inwra<63:8>

<@g>aups
B coc>quae
<ge>1aes

<EE>Myes
<FE>quis
<PE>NEE

M—Machine

fpu_mula
shift_sticky

A.1.00.01

|SHEET

EGTJ.

1 0F 1

s
20
u-ﬂ
NG
¥ g
SR
gl |
s
:
a O

114




L ! |
.n_O S22 ERLES ainssi
LU Y 9ZI9Yq
£l "ON 9MQ ON NOs4|  3zis Q3X23HT|
JuobTw e
1 s ]
— 588 Z/M
DN Nd}
ubisaq 10o1sAug
QUIYODN — N w0 | swiar
.
1S
&
i
2
g
$
8 3
-4 Ea
= A A
W [
1 ¢ g
¢ ¢
1 i
x N o
g 4
<EEINN0 T <BiE>K PR ERrO <@GI>XIN0 | _ CRGL>X oo dum
A A o> A B A A ¥ A -}
<@ g>Lino ,m 9 <P > <@ c9>k-zdwar <P:G| > _:n_m I <PG|> Aaunmv»JaEu«
Y '
03A0¥ddY 3va NOLLJINOS 30 A3y |3NOZ
SNOISIAZY

<@iE9>x1n0

Y
v

2
3

nsTw

<oie>s |—ulll <oc>mups

<@e9>x
<@igg>L

<@:E9>Pima

LA L S —

115



QIA0NddY

ava

NOUJIHISIa

AJY

3NOZ

SNOISIAZY

_..uO —. s _ Twos aanss)
00001y, oZIqg
A3Y ‘ON_9MQ ‘ON NDs4| 32 Q3%93HY)
m - E sexzm
seoubu3 uf
— GeTZM
DINW™ N d I Jasuby o
ubisaq 10a18Aug
SUIYODIN — N
<@g >kn0 4§
<oig>xno @
A |a A A A |a A (A
s |8 22 &R oo
v oV v o|v Vo vl
P s o ) )
2 2 2 2 2 2 g 2
< % < % < 5% < %
- 7 o [T [ .
<gie>ps <198 <pip>ias <BE>9E <pip>ies <PE>1S <@ig>Ps <L | e <GPS
euaTw ueTw ZaTw gnatw
& 7 Z 3 3 3 2 i
A |a A A S A a
s |8 ORI Y [ & |G
v v v v v v v v
Al <ok
A <oic>x

Nl

Mx— —‘ xm—

ON_OMO| “ON NOS3

116



<grsi AN

2

A
Asnv
Asumv_mn <05>
AW
2

ubisaq 1025Aug Y

SIVAOUdEY

117



L 30 L s |

0 — Ju0s aansst
0T oTTY SAC)
A "ON_OMG 'ON NOS4{ 3218 dINIIHI

cis u -
DjNWw —Nd} o

SUIYODN—IN T

<@g9>fino
<gig9>xn0 @
A A
A A A A & e
A i 2 |a &
g2 N g R ¢ |¢
] 8 3 & v
Vo ¢ |° voR
e o s g e ¢ ]
2 ¢ g ¢ 2 g 2
L 1 I :
<o:51 > § <e:g1> " <gisL> " <ol
——BIEL <peis LT <oe>es WUNL <pipis P A SO | M R 7 N
e w TaTw (A" ueTw
3 5 E) 5 3 5 3 El
3 3 3 3z 3 3 3 3
A A A A 2 2 A A
g g g |2 303 g |8
g 12 2 PP FO IS
VoV v vOR ¢ ¢
@ <o:59>k
@ <09
QINQUdY EN NOlLGI¥DS30 AJ¥ {INOZ
SNOISIATH

118

AN ] ol




| 40 | 133HS _ VS q3nss;

o000y SHAC i

‘ON_5%a ‘oN woss| 3z KENRET]

_ E s

secue

oNuTnd}

ubieaq j0oshug

@ C _ F\_ Q O E - —\/_ Jva STVAOYHddY

° o
£ £
< z
° S
£ <
1 .
= ¢ €Ps cles cps =
#—zes  yxnwop ZI8S Zos  gxowop ZPS £
o5 Lies L1es L8 5
— s oS 2is 298 P <@e>es
2R3 a338
Y
a

a3A0YddY 3iva NOUJINIS3Q A3d {3NOZ

SNOISIATY

119

&& && ﬂ Km ﬁxm— DMO»S ON I4BEE)



O | o
0oLy OrISd
‘ON OMQ "ON WOS4|  3ZIS Q3%IIHI|
’ SexT/e
U 19u6u3 11y
J— sexz/eL
D _ N N Q uﬁ soeuibu3 nanp) .
ubisag (0915Aud
oul £ o0 } — z wva SVAO¥dY
g 4
& %
o o
g 4
1 ]
s gies cios clos =
B—zi2s  pxnwp 2R Z19s  gpxowp  CI9S <52
— s oS Ias 1as <>
-— as as
oi%s o s 1 o
2833 L33
a
4
a
4
Q3A0¥dIY wa NOILdINOS3G A |3INOZ

SNOISIAZY

<@:e>18

xuy

TOTY] L]

120



121

0 e. A _ ;o8 cansst
00001y, o7i%g
Ay ‘ON 9MQ ON WOs4| 3zIs Q3INDIHO
| - ssxwe
cHg W ot
— sexzmL
ollg Nnd ] Jamsivs i
ubisag (031sAug
e C i r_ 2 O E - 2 31v0 SIVAONY
o 2
2 2
< %
H g
3] o
—qies gies gios flos <
@238 gxnwTp LS 7S pxnwp 2198 <
(s Liss ties ies <
e o gas s oI9S o195 <05 <gg>ies
EEEE PREES
| ‘o
-
QIN0HdaY avae NOLLJI¥OS3Q A3 |INOZ
SNOISIAZY
A - .




F Inm O ﬁ L3Hs _ ERLA] Q3nss1

2000y o719q

‘ON oM oN wosa| 3z JeENeE Te)

cig W e

V2

O _ _J E - 3 Q uﬁ Jaoubu3 ynaJn

uBiseq 10318Aug

@ C i —1\_ Q O E - z 3uva SIVAQHddY

2 2
2 2
< z
e Q
g -
u [
— s [ e ges &
»tzos  puowp S Zis  pxnwp TI9S P
] a8 i1es 1es L1es =
— oS 195 <gg>ias
oo ars o <05 (2%
FIED) FEEE)
| o
a

Q3A0¥IdY 3va NOUdHIS3a A3y {3NOZ

SNOISIAZY

122

E& &S P Kx FXm Gu uwc ON Dumu



_ 31¥0S ainsst
EYAE 13|
‘ON 9MQ ON noss| _3zis 934340
LXOW p s
199ubu3 11y
—— S6AZ/0
O _ 3 3 Q uﬁ 199uibu3 ynong.
o
uBisaq 10018Aug £
o Ul C 20 _\4 — _\4 wva SIVAONdAV L]
z z
~» O »
el =3
=~
Zf o
u
mzqu o s
u
—Zq.;_ @ ves
u
2N o
u
[ ] a [
z 2 EA 3
Q3A0¥cdY ava NOLJIS30 F A [anoz
SNOISIAZY
Be 0071 <_ l _ ; o
A3y HS ON OMG| 'ON NS4

123




D.6 Stage 6

3OS |

=) Mr < a3nsst

L @@122US/91S o oo
O _ 3 E - j Q Lv 499uibu3 N0

@ C _ L O O —\4 - —\4 iva w.,<>o“”““a S

N g2 ® o »
£ 2. hpr<aizg>mnos krasuinos = =
g y g §] |
v £ v v
17s2. bau - Wr
2
4 a uvauD
Q (] v u
5 & avanos avea
a o & 7 N ISAD"JapPO
& _n 3 A nog 1 oo, a
Y & z & avainod yvay
8 . S g W b M
4 g §l<oTmnes o
v 8
13 J
R
5
4
2., v
Pz
-3
3 <z9>
S
3
2
R
a Tiropes 81 gns g roor
v s Tq0s @ 1opomu
TRTE R 4
z Bauun
8% z Jmgjes 10108 <@:¢9>zd5a0 10appo
% <@Eo>euma 3 <BiE9>1d20 <@:9>is <e:£9>q A
no 3 :E9> 3 <@ir9>290 <059 <p:£9>1doq0 <gic9>as <@gg>0 ¢
w % <@ic9>u8 H 2:£9>39 D saan 05 2to ¢
3
¥ g o
v
[ g |z
- s
Bau—a3.04 ® m
:
o
a1 no Nt
Aup-abir <p>pusu a a
@ >
A R
I
A0V v NOUdI¥OS 3 A |2Noz a @
N ¢
SNOISIATY

LA I

“ON 9N0 N WS4

124



240 T e _

3OS

0000y

03nss|

EYAE

ON 9Ma ‘on nosd|_3z1s

Q3NO3HD]

4UAEETEVASNS e st
DINW  Nd}
oUul L oD } — E E mi\,o“”“a S

ss0d4kg
q-ssockg

lH
g3
1

. . L193004
<@y >Pa32i0)'<Z:gg>Papus
91 >P210/'<ZiEY 1000 B
8%3
2
® <L2PAIOY 110 3 M <i>popus
£ A £
2 g By
S - by © 5
1) v 4 <@:g9>papus
A
&
o
g 80104
v 7@190.04
898
5
<B200004 {1no 3 M <>popu
£
Do
5§
Q3A0¥ddY 1va NOLLMOS3a A3 [3n0z
SNOISIATY
A A

125



Stage 6 Subcells

126

L 4O | 1330S _ IS, aanssi
0001y S¥IYY
i) ‘ON 9MQ ON_NIS3f 3ZIS Q3INIIHI
Joyobauun o
sesubuz 1y
—_ 984IA "
DINWw—Nd} :
g
g
A
ubisag 10(skug 3
Ul rk_ 20 } — _\/_ 3wva SIVAONdAY v
R
geege
[afad et
FeRE
s§208
veuy
8
a N
g 5
i
i
& RREg
v ¢y -
' £9>PUING
ocaeu @ gcssponm
)
a3
Hb
Ll
Qi
55
il
“la
wl§
Bl
’ 2la
- gl g e
y2932p~ys m_m ..m
AA ~
6011 <@:z>ha ae a
&8 £y
X v v
[
4
4 S
A W =
& ) g 2.
& poow Y H ,sm
v gdut P C
<o:£9>10 te— jnobys 29
: <Pi£9>14 <orsbenl 1du
v adur
"
A = 3
&
é i §
8 8
7 &
I = 3 2
w\ Ts 2
e @ v
P V¢ ¥ [T 7]
q3A0HddY 3va NOLLJI¥OS3a A3y |IN0Z <gig9>zdane gee
<@:£9>|dogo §°°
SNOISIAZY <@g9>ou -

D.6.1




I _ svos

- — a3nssi
000y OZIYY
]
¥ “ON_9MQ “ON WOS4| 3715 GINIIHI
2212D US e
sasubuy 1]
— ssrzm
DINWI— Nady
ubisag oaisAug
QUIYODIN— I
B 1-inopes <g>1TIne ozl
170Rs <z>71TIne sposap~z|
1TLes <>77ne <@:Z>17duy - <@Z>na
1728 <@>1TIno <@:Z>du; <@Z>17I9P1
9p0230727 bups0j—uoN
<PpE>L81
Q3A0¥ddY 3iva NOLLEIMOS IO Ay (3INOZ
SNOISIA3Y
»M— _x..m_ “ON ﬁ B mmm N

127



_‘u_O ,,. E2la ) _ o) ﬁ*um ainssi
I
® ® & & _\ K ‘ON OKa “oN wosa| 3zs < QINOIHD,
opP0OspP Z| e sssutus 11y
— SexZ/AL
D _ N U N Au_ uw Jasuibu3 ynauy
ubisaq j091sAug
o Ul C_ 2D E - —\4 3tva SIVAONddY
wwzw
v
8N <z>17du
<1>37m0
<1>717du;
<@>dul
vid Zid
Td d
smzﬁ
Z2ZN <z>717du
[y 9IN L
= <z>17duy
6 Wulw <t>7-dur co>rme
<@>171n0 4 * Y <@>17du! J <i>du
9ld Lid 8id
3 d 3 a1d Gid
d d
€l <o >y
<€>17in0 ——— @ <o:z>du
3ROy 3ve NOLLJINIS30 A3 |3NoZ
SNOISIAZY

A

o] o

128



D.7 Stage 7

L3Ot e _ oS aanss!
K oN Q;L ‘on mosy| 3z 033933
SecTe
e5u6u3 1y
JE— secven
oNu T~ Nd) soauu yaug
uBisag 1031sAug
@ C w £ Q D E } 3wva SIVAQHddY
a
H
;
;
u
A
s
g
wa
v S 33 0.7 @ —
238 61t
AAA
Loh
°ee <01

: <gr>sua
<Bi5>1P <0:z2120

<£iG>13p

<EL>MOUE
<BE>ENMILE
1> 184S

1non B——
son B

<Bi£9>N07p

9910470u™ 13l "4s

ol

<@ie>up

<O DOt e
<@ >s)ac)

o
39932077

<gig>si <@y >sh50
ge9>aa PUB<G.> <g:} >5a0] <BZG5990 A <oi>wsel

03A08ddY

alva

NOILGIDS =0

AR |3INOZ

SNOISIAZM

1m0

L(i;)’no
A
&
3
23
v
3
2
3

e

<1:£9>790°<£3>360

T inoy
snoy

&& @& f Kx— me— “ON OMQ _ON NS4

129



D.8 Send Unit

Q_

R 10001

1

El

FSCH NO.

REVISIONS

APPROVED

DATE

DESCRIPTION

ZONE| REV

195125105 Oy |

A
®
"
©
M
H
2
°
e
H
&

- idipub

TTesTnd
7jps~doy
sty

psdoy
josyous
jes—nd

3
3
13
s
c <&E>1TIeS k]
<@gg>T 1o PuB<y9e>

<@ps>do1 <pa:£9>1 Ndpus

<@{9>9l
Yo

2107

7198 Tdo)' TS e ippa

@ <p9:c9>1"Adpus

@ <@59>171os

ouT —a—{in

horord 3 ool i SNWiL
0
paai e ; ™
: e 4

— ggzxnw  8S 198" ppuas
v vs joszos

Ba

2e9>0l

122<03:0>

3rc2_L<63:0>

—
D —
[T
S
O Q|
- A
= ‘|5
_CG)—Oxg
Ol =
OC
Qlc o
Em(/)g
| H
z
e
=
7
W
gtz
ot
3 g
g
2le s
&l 12 s
R E
I

=

130




| 40 1 133HS _ H<o.m= Q3nss!

®® ®®.—\.% . o < Q3INTIHD
Ny — ON_OMa ON_N3S4| 3718

PEYNPIol=1e3]o] e

O V 3 E o 3 Q % 299uibu3 ynaxg

ubisag DsAud

@ C ‘ L U D } - 2 3wva SIWAONdY

131

1no 4@
03A0¥ddY uva NOLidI¥25 30 AN |3NOZ
SNOISIAZY
POO0TE] L]

D.9 Drivers and Misc Cells



1 40 1

133HS

3Iv0S

00001y

"ON 9Md

Q3nss]

v

3z1s

“ON_WOS4)

Q3I%J3HD

s90ubuz ua|

saubug oy

ubiseq (IsAUY

L@\/_LU SN
oJDYsS o
QUIYDDIN — N o

SIVAONGLY

1nobis 4I—4

[EINET

Jva

NOLLaIOS 30

ATy

3No2Z

SNCISIA3Y

anup

PTAT Y] L

A

132



L 40 | e _ Tvos aanss|

& & ® ® _\ K "ON_9M3 “ON AOS | Mm Q3INIIHD
JOALIPTDIg e s
O[NNI Nd}y -
SUIYODIN— | e

QIAOYAdY

vad

NOLLdI¥OS 3

A3y

3NOZ

SNOISIAIY

o 0D’ <m _xm—

133



I 40 1 L33HS ﬁ EGL a3nsst
@&@@ 0 _\ M\ < 9661 \.—Hﬁn”v‘_, [ Jdy ung = uOI}2041XJ01}0WBYISISO|
" oN SMa ‘oN wosd| 3zis apowmo| 9661 91/ vivl £ 4dy ung = pabubydispissoudisu
1y01D|” dWOD 9jdulls | ==
° : se/szren
34D £ S seaubu3 ynay

ubiseq IpoisAug

SUIYODIN— N T

—477poo

i N
: <poo|

>
[ ]
-
~N
z
jc
Hi
L 62d
oN Td

u
—

03A0YddY aiva NOLLHIS3IC A3¥ [INOZ

Latches

D.10 Shared Library Cells Used

D.10.1

SNOISIA3Y

boot E “ON_2Ag| N MO8 A

134




_. LO 7\ 133HS _ IW3s a3nsst
@@ B ®® . ﬁ % < 966l ZZ:/¥:¥l £ 4dy UNS = UOIIODJIXIDI}DWAYDSISD|
oN MG ‘N posd| 3zs apowmo| 9661 12/ ¥yl / 4dy ung = pabubypisoissoupisu

1y2107] o s

' SeAT/0
@\_ O _.\_ m s99uBu3 YNoaD]
ubiseQ 10915AUgd
@ C _ L o O 2 - —\4 Jvo STvAQ¥ddY

Q3IAO¥ddY va NOLLJI¥IS30 A [3INOZ

SNOISIATY

LA S NS )

135




: ° 21 : .Eu:m M 398 aanssi
@@ ®® _\ K _ON OMQ “ON OS] ﬁm 039310
1YO10hT] e i

) se/cT/BL
5IDYS
oul £ oD _\4 _ _\4 3w m4<>o““.““a e

1o @@

pioy

poo|

T3A0¥ddV

va NOUGIIS3q

A3 | 3NOZ

SNOISIAZY

L B E
a

&& &S F E cMu)n deMK_

136



L 0! 1334s _ VoS oansst
udy UNg = UONODIIXTDN}OWBUISISD|

3zs

“ON AOS4)

. o 9661 YZBYYL L
UGN LU Vv
SEAL/8:

avown| 9661 £T:6%wL L 4dy ung = pabupbydisoisaoudisul
Yyo10 ] osus )

SEAL/BL
2Joys
uBlseQ 10218Aud

@ C _ L U O E - § 3U¥G SIVAD¥dIY

epjoy

poo;
Tpool

>
[ ]
A
3
o
e
ca
1420
°
]
O

€7 ploy

Q3A08ddY 3va NOlLQIIS3a A3y [3NOZ

SNOISIATY

137

&@ @@ —« Ka— —qum “ON_OMQ, .OZFL“




1 40 1

133HS

3Iv0S

Qanss!

GO0y

‘ON_OMQ

‘ON WOS4{ 3215

EYAE Y

966l 8@°1GvL L
ool 9661 L@LGYL L

seauibu3 11y

123ubu3 YD

ubysaq ooishug

LQUWOI_ sexz/e
@.\:U_(_m sexz/e

SUIUODA— I

SIVAOHddY

Ql10H
SNYaL

udy ung = U01IDDJIXJOIJOWBYDIS)SO|
idy ung = pabubynisoisadsuoysut

4pIoy

R
r
\A a« A no w a U
st z
g
o
3 —
47 ploy
QIAOHIIV Jiva NOILJ¥ISIT AJ¥ [3INOZ
SNOISIAZY

& ®® F w— —‘xm— "ON_DMO, “ON NS4

138



1 40 1 |
® ® - ® @ - _\ L3S u«wm a3nsst
K ‘ON_9MQ ON oS 3zs ERSELE]
XU e
N J92uibu3 RIt'] |

szl
9JDYS

uBisag 0oIsAug

@ C i L Hv O —\/_ —_ —\/_ 3va SIVAONdAY

Q3IA0¥ddY ava NOLLJI¥OS 38 A3

&

3nNez

SNOISIATY

139

LA N "

D.10.2 Muxes



Il 4O 1

133Hs _ 308

ooy

a3nssi

Vi

3zs

‘ON_9Ma “ON_W3S4

a3%03IH

ATVAD E se/cz/el

seaubuy Yy

21DUS

ss/sz/BL

s80uibu3 yinouy

ubisag |po1sAug

QUIYODIN — N e

SIVACHdIY
£>1108 ) ©
T
» di
> @ dv
o
3
F>Tes -]
Rl
W & 7
"
=z 4 9
N
5
<I>77Ies °
LTI S
o
Q
—
Fﬂg
3
<g>7713s o
o
N —
@dur
z
[
3
<pg>170s — L——d <os>es
Q3A0YddY e NOILJINIS30 A3¥ |3INOZ
SNOISIATY

®®®®ﬁ<_ __

, ,

140




D.10.3 Leading Zero Detector

>l <pic9>5

G000 CY | 3% -
K “ON_9Ma ON Wasy| 3zis 9339313
ool e
R |
s
2D L S Jeaubul sy
ubiseq 13sAug
Ul £ o0 _\/_ — —\/_ avo STVAQHdAY
A
&
3
v
su0 \
ST urs [r—
<i>osz 420 <gL>a <9Gico>sIg
2uo. 01379
. T u woy2030] =
A
s oo e <8Y:5>51a
v 8iGG>E)
yygsuo u1DYd90| 01829
<Suvgoon o <>
<s>eo0l <g:z>eual Sl <gis>va prrepee
o
R svaeuo , 1079
2 T e woya10o0; s
v <@i> 5316 <¥>1030] :Z >SN -, 1q1
" oL >uvE o<1/ >4yBI00) <o ML <TEB6E>SUY
<@:zZ>snau uroy210a06 <@:£>s196 20 1>1000)
8:£>10304 yvaouo uioyaie30) 01879
<s>HyBioa0| auo g <5>
<g>1000) Z> e <BLOV
7 <@z>snal €1 <@ L>NY <yzissaa
F uvEsuo 01879
2 P uve uioyopos0| pres
v <z>ioaat <ge>ena ZorTen
auo ! 013,
<i2uvano| n_uw vienteaol 29 <€>
<1100t <@:z>sval 1 <@>ha P
auo , o9,
<g>uyansol wu.m uI0Y|20] 29 >
<8>10%0) <gz>sua Bl <giL>ha YR
QA3A0ddV iva 01LdI¥0S30 A | INOZ
SNOISIAZY

@ S@ N Mx— f:m— JON BMn “ON @u

141



[ECHE| | 10} @anssi

goiolv, .1 . Jd .

uioyo[ogoib i oty
34DYsS st

wag pastug

SUIUDDN— I T

a
— @ <o
<onet
a 1z
Ei e e
) Nv;ﬁmﬂl‘ ©
il vl LENS O
Y g
e nv_j. o
7 i 7N
g £
EE) Zrt Eoil
ey E
— o T . T p—
= o NG S
e =
g %_z.um | o
5
LTy 6ING 3
2 L: 3
<i>epab hﬁwvﬂ ‘ ©
2
T EY SING N
. LE <>
s i
S ! .
Z vad | B
&

142




130 L el

| |

mar | aw ]

000 Y. . 4 ]
UIoUD|D20] - s
2J0ys i g vy
SUIYODN — N T ]
AN.NVﬂNwW
<@:Z>86l v

P

&s.&s.r.m_ L .n_

143



1 40 L

133HS

VIS

UL

‘ON_9Ma "ON WS

v

ns

Q3NSSH)

A3%I3HD|

Jopooap
2JDYS

sexz/m

szauibul 11y

sexz/eL

se9u1bU3 ynou

QUILODN—N

uBisag joaiskug|

uvo SIVAONdAY

<g>ua

T<i>ue

4

<z>¥a

@ <oz

@

<g>anp

4

<@>7173Aup

®

e

<i>3M0p

4

<1>77oMup

P

<z>eAip

| a—
a—

g

<Z>TemIp

T

<g>anip

PG

<g>ToAsp

@

<y>anp

i

<p>TeMIp

Q@

<g>omin

<G>717aAup

<9>2MD

(4

Ll

LI

<9>71 3AIp

P

<(>ansp

G3A0HddY

3va

NOLLJIOSIO

A¥ {3NOZ

SNOISIAZY

|
I

<L>773Ap

@ <e:>anp
@ <e:>173nip

®®®®_<_ __

, ol

144



| 40 1

133HS _

ﬁsm_

@ ® . & ® . —‘ . K ‘ON_OMQ “ON_NOS4| Nw EHHM
10219p sexon ot

9JDYS e

@ C _ ﬁ\_ U O _\/_ — E vo mi\,o““.““a —

QIA0YddY

Ava

NOLLJI¥ISIa

A3y

3NOZ

SNOISIATY

e

yvge.az

B 2a7 <_ r.m=

0! “ON IS4

145



D.10.4 Shifters

These cells were designed by Jeff Bowers, for use in the Floating Point Divide/Square-

root unit.

[ on | s

rot66
[*A.2.00.00
1 0F 1

I==‘|=s« =
11A.2.00.29
e

_no_

left

M—Machine
share

oW No.

sh_
| l

BT

T
|
i
§
i

APPROVS
Prres Gmigr

e T
AT caghaser

ek
S0

2 oMimcsse>

<E>Bu

Be<63®>

<o p0u

146



| | s

COCOL V| | el S -
99N Joou BT Us [

0.DYs e
SUIUODN—IN o

i ]
1 i
; : :
4 9
S e BEE e BEE e HEE e AT SR
PSS aTiL Izxd [ 4 2132 [ 313
tH il ! i {t 1
.
1 I P
ks

ss,&s._;ﬁ_e ﬁ_

N

147




L 40} L33HS % ERLH)

o0 LY Vi

‘ON_9Ma JON WOS3| 321S Q3XI3HD

99qgiu_10J OU }}o| ys |== i

2JDYS
ou! L oD } — —\/_ Jva ﬂ;o““_“o e

| >ino7o}

—B <oco>uusp

o —a——————JP <
<oe>
<PiL>
<>
<zLE9>
4 <Te>eNyS

148

g2 g g 4
o5 os = os os o5 s s os S o5 o5 =
IS pugus 18 NS Vo puqrus VS I puqrus MS 12 pugrus MF < >aNS Woopetys S <>
zs zs 7 zs zs zs zs zs zs zs
s o <Z>BNUMS s o s s e b <z>anus ce o <z>
<g>ENIS <E>aNS <c>
5555 5555 3555 5555
EECE ERLY EES s3Il
<@g>g <ot <oe>t <0ig
a
3l 3 Rl
Al R R
_ : 2 = A Alala
2 & s NERE EEEE
& AR MERE a81%
= i kot NEES
s v KM AV|VY Mgk
vl v
a
= L <oc9>p
 <e>o
Q3A0YddY auvg NOILIHOS3Q A |3Inoz
SNOISA3Y
&& @@ —v Mx— *zm— “ON_OMa. “ON oS4




—‘ M*O F 2 _ s a3Nsst

@ @ oL K o oG o mossd s oom
ggmbjouTouT o] ys
5J4DYS s

@ C _ L Mv O 2 —_— E — mi%uw”n IDarshyy

ne a——— <g1>irool
4 <oL>MouNS
<oS1>
<apile>
b <oico>ysTe
<zgiv>
<8¥:{9>

s
EA
B
E3
%
o
g
¢
g 2 2 g y
" 05 25 o> - 2s o5 25 as s 28 e* as o>
w1 |S  pugmys IS s =I5 pugmys IS (ST 15 pugmus 1S L I e
-—] s zs e [a— 25 zs zs zs zs zs z8 <
by 13 <> £ £ € € Iy iy £ B o £ PSS
A FEESA 333 A 33’3%
<@l <@:G1>¢! <G> <G4 >| <9:G1 >
A A A e
- R AN SARR a4l
2 Vig R bEEN e
2 nla ez R 2
5 bk EbE ENEN BEH
K 3 3
Vi Vi v
2 H 2
- A <o59>p
& <>
Q3A0¥ddY va NOlLdI¥2S3a A3 [3NOZ
SNOISIAZY

Vo 0oL E o o

149




L0 L e 1 s
0000y, .. _opm o]
SURRTIVS i I
2J0YS = et o)
SUIYODN— I o ]

. g — (@ <R
—q
m i
% :
oo @ ] ey g S— : [P : < O p—
m 4 i 2
& e »
¢ 4 1
i H ; ;
9 5 g i
H
¢ £ y
T_EE T ] o o [t
-
v

2200 Y1 a_

an]

150



I [

sere/m

2JDYS

I
ubisaq [0a1sAug |

@ C 4 L O O E — —\/_ ava SIYACNddY

® @ . @ ® . _\ , K "ON OMQ ‘ON ‘wmu ,u_”N_m Mu— Q3%I3HI !
MDT10J OU™ 1 Us e vt ] |

*—B <pcoouns

<8¥E9>
<giLy>
<QLiLE>
<BGL>

S 2 2 g
g g g £ !
=—os s o5 s [ os os os s
&8 pgTys 1S L5 yiqus E 15 piqTys LS [ 2T YC R <> :
e 25 25 s zs zs zs zs L
s g5 s ¢ £s = s cs me <@E>MOLIS
EES PERY 2333 2I% i
<B5L>El <@ > 7! <o <@L |
k * |
. 4 |
A Ala N Alalaa
4 g Bk REE
> [ pY ol s B S
@ s Rt MERED
v ViV Mivid Myt
@ <e59>P i
|
03ACHAY uvo NOLLGINOS30 A3 |3NOZ i
SNOISIAZY i
A I ™ i

151



| .uO ﬁ. 1334 _ o) Smum Q3nsst
® ® ® ®‘ _\ K L onowal “ON oS uN_.mr m Q3X03HD
Y1104 0OU 1 ys e s

sexzm

S.4Dys eoes s
@ C M C_ Q O —\4 —_— _\4 v m4<>o“””“n 102184y

a
Vs
3
R
@
]
)
v
A
A A
2 @ & g
& g 2 S
v \2 v q
o o o o
s = £ s
3 e ]gs os s 5 o5 os
su _ H an _ is Wu - wu <@>1@us s _ Is <@>
yHaTus b hHaTys 1q7us PTNTI pHQTUS <>
e - “ a a a <Z>18uu8 - e <z>
s £s s s s - s s <BiE>181ME
B R £ . F £ o F <£>18u1us o <>
EECY 332 LR iR
* 2 ' <2:99>0)
a =
AlalAlA
: 4 gais gage
vV Nk SHEN e
4 <oco>p

Q3A0¥ddY Awva NOUdINOS3Q A [3NOZ

SNOISIAIY

152

poeel gl b ovose] oupes,




1 40 1 133HS _ ELAN a3nss!
@ ® @ ® ﬁ K “ON 9Ma ON vwmu W.M Mu— LELRE L)
qiu 304" OU 1 ys oy )

saxzm

2J40yYsS et 75

ubieaq [0915Ayg

@ C 7 L Q O 2 - —\4 Ava $IVAQNddY

— <oco>uusTR

) & & 5
o 8 ol a
& & & g
g 8 4
\2 Vv v v
s o o c
£ £ | £
25 o os os es es <E>ENILS o8 os <
1S pugtys 1S 1S pugrus LE 1 ppamys AS Aevm ..ﬂ - 15 pugmus 1S 2
zs zs zs zs zs zs L >ANHIY zs zs <i>
<Z>ENUIUS <Z>
s €5 s cs §s s 8 s s <2-£>BNyuS
B £ R N R = BN
5535 5555 5535 3535
23Ra 222 EEL 23R %
<@e>et * <@ <oie>l <gi1§
a
A AlA AlAIA A
AlalA
& a8 geg aaas
Y Bl Gl il & TeE
s 2/ ¥els VIV
4 <eca>p
03A0UddY _ 3wva NOLLGI0S30 A3Y | 3NOZ
SNOISIAZY
@ A3 —. HS, .UM MO, N Mumu

153




Q3A0uadY iva

NOLLINOS 30

Ad;

&

3Noz

SNOISIAZY

L 40 1 _
® @ . @ ® . ﬁ Lans u«ww a3nssi
K ‘ON u;L azs Q3NIIHY
- m secz/m
‘T L s23uibu3 1M
sexze
2D _l_ S sa9ubu3 ynoan
ubisaQ_|poisAug
@ _(\_ i L O O E — z 3iva SWAOUY
z
e au!
3 =
o L
o ——9 o] N
e Zu
5 =
o £ut
F B
a4 H
Py P v "
& &) % &

Bo ol <_ | _

154



I |

— u«m Q3nsst
® ® ® ® _\ K ‘ON 9MQ ON WOS3| 37'S EXRELR]
~ Jodeo i
Q 1 Jodooy s g
ssrzm
oD L g s9aubu3 noug
ubisag (oo1sAyg
Ul L o0 _\/_ — —\/_ auva SIVAONAAY
Q3A0NdAY va NOLLAINOS 30 A3y |3NOZ

SNQISIATY

S @& —« <®M= _«rm— o8 &M m MQmu

155



L 40 | LSS _ Iv08 ansst
® ® @ @ . _\ . K “ON o#a “ON WIS %m Q3%3IHD
0¢ QL Jedesy e

ST/
2D £ S saaubu pnaag

ubisag parsAug

@ C _ L U O E - —\4 3va STWAONdQY

Q3A0¥ddY 3iva NOLIdINOS 30 A3

&

aNoz

SNOISIAZY

A
156

PUoTT gl T ]




1 bit Adders

4 .h_o w. .Euxm \_! @ uﬁum Q3nss)|
@@ @@ _\ K oN oMa ‘ON WIS u.N_M v 920312

ISAD JappO0] .
S40US
SUIYDDIN — N T

Hvaud

Q3ACuddY 31vg NOLdIS3a A3y TZQN

SNOISIAZY

157

nog,

AL | — o]

This cell was designed by myself, but modified by Jeff Bowers for use in the shared

D.10.5
library.




D.10.6 Zero Detector

These cells were designed by Parag Gupta [5] for the Integer Unit.

L 40 |

L73HS —
@@.@@.NMW i

10218p0.J37Z

94Dys

g3nssl

SUIYODIN—

Q3INI3IHD|
A
ssaubuy 1y
sean
a0euibul ynaig
ubisaq 1018Aug
ave STVAOUd QY

<EE>EI

<@:GL>T!

GIAOHddY

ava

NOLLNIS3a

A3y

3oz

SNOISIAZS

<@:ga>u!

Oy ]

158



30S

“ON WIS

EVYAE

3zs

QUIYODN — N

m. a3nsst
Q3%93H3

26/6L/%
sopuibu3 1. Eﬁ

/BN
s93ubu3 Wnaay
ubisag j0aisAug

3uva SIVAONd Y

|

Q3ACUddY _ 3iva NOLLGI4OSI0

A3

3No7

SNQISIAZY

&.&&—‘KE ﬁ-.m— cx% Mmonn

159



ECT |

31v05

o001y

EYAE 18|

‘on nos| _3zis

dp Zpuo
oJDys

ainsst
Q3I%IIHD
96/BI
s29wbu3 T
98BI
soautbu3 wnany
ubisaq baisAug
avg SIWAONADY

SUIYDDN — A

£IN
9
e
Zld
[
Q3A0NddY ava NOL1d1¥9530 A | 3NOZ
SNOISIAZY

<@ig>ur

[

Poor Ty T -

160



| 40 L 33k,

. . * a5 e
00 00 mmf RN 25
U #\ U C O BB J29uibul it |

@L O L m Py J99uiBu3 YnaND
ST e

Q3IN0UdaY

3iva

NOILAIMDS I

A3

aNoz

SNOISIAZY

0T L] B

161



—.n._O r. muu:m _ J1vos aInssi
PoVDCY oFIyV
.
A -on oHa e En QaN03HY
JoppDo i
_U U ssawbu3 N
WAVT
@L O _:\_ m Jeeuibuy yinaa
ubieug j038huy
SQUIYODN—IN e [ vowa
> g ko
u .
_ <BL>® ans q
<eL> -—"® seoyma Tane
] <B:L>q —8— "
<B> 86 L@ L>0 <>
<> - <2i>
<p:L>8 S qme 2
851> = o ugeamYq 17gns
< "
,. a8 <@L>q
<@irad>s ¢TEY I pripity [<a'si >
<i> 3 SEGL>]
. 91 <g>
<gL>s ans X
<piicz> b ugsaysuq  Y"qns v
<>, 6 <@L>q -
<2z> 66 <@iL>0 fFo1 €27
<z> E] 91
_ <@iL>E S8l gne <>
ziE> o vgeoysyq 1ans
<>, %6 <@:L>q -
238 <@g >d > <£> o —— -l 9
P, (e M&rva_.nu <BL>s 1] a”. < —@ <es9>a
presey <g,56 g2 o6 ugeasya 17ane
ukuoa | g | <@L <>, T8 T 75
851 <> 6 <@ >0 freees
<> E 8
- <@ie>e 4 qne @ oo
py:cy> o6 gaomyg  Tane
<G>, b <@L>q
<G> = 86 <8£>0 vl
o5 |2
_ P ] ane <9>
5S> = db gemg  T7ans
T8 <@:L>q 2
<9> 4 o |65 <B:L>D Briss3
<9> <OL>E 5 oy
79 vel n”. <>
TEu [l R
5 o <ei>q =
& o - Z
= uaJ_ priviey kes:co>
<9GC9>
<>
A [Inoz

162

These cells were designed by Parag Gupta [5] for the Integer Unit, with the exception

D.10.7 Adders
of the adder_both cell.




L 40 ¢

e

i

PO 0T T,

|

yi1ogppo
240ys

HEH N

SUIUDDIN —IN 2ol mwoes

7E o
C— Erpgit—
ety P
[ " @i s
a o o b
2 T 1 upmopn S
- 21§ <5y . e T
s A <E>e >
<i> <FLN ¥
-y > -
e T | " [
E2 e wsn| 1
- = = - el 52
a1 <o |—et g w B
e 1 -} =
> Y 3y L o ) [
” hd 4
tA
8 <> >
- wmrs aory <
e
> <canal « o
" P
B
. w50
iy -
bad
tA

>
<sne>

[
[=bw

tz.
oy T moe wnms |

163



[IECH| | s,
IR [ oty == -
A ‘o oWa; o rosd| | ozl
20D htieid oty 1 391
o
2.4DYSs st o)
Whiweg joormduy,
SQUIYSDN—N o sronay
3
162w 1 aczNl
@ z6zd © sz =
b
Z5INGEyIN 5 . i3
ERETE & 7 S 3
ot «
LBANGLYINT 5 ° =
w5
J—
wa
EZ T =
< <wie
1oed! afld! & GiNl s
p >
o ]
=
@
k78] —
&
o | ] oo =

164



L 40 | | i
LR R = A5 A = $
M) o on poui| s opowo, =]
ybddnoib - o - T ° -
asn Zr 1
240ys b wre ¥ ;Zﬂw. -
wbmeg ormhug) >
SUILODIN— W e T ooneer | A
Fn el
g 3
o12N 602 #y <>
o @
ﬂa =
882, N
9 d @ Tl g5
]
< £
g N
S
u 0
g3
- S o
s
N 8 -
e
3
& N e . Lt
> )
% x
T 63Ny & | <
IBINEELN 3 ©
<
SN D
8 ?
> )
3 a
s &
o
5]
3 & i
B 4
avinl  oziN, 8! awzv—,
- e
ED [
8 R
] ey nm.ﬂ.ﬂ
91, oY
d
€6
| | [ ‘
v | w0 | [ [ o [z

165




T30 1 el [ e ovssi
®®A®®.MA<§_ .2§_ s,W Hv P
20| htid —

910YsS st o)

Baeg w3k
SUIYDDN—I o |

a
Aﬂ kﬁ
arzMt
<> i 53
> >
3 @
K -
S <>
o o
= 3
& &
2 =
= o]
& a5
& >
> &5
= &
- ER
] )
& &
£ =
12iNG ZETN 3 [- [ 224NN 2 > il B
z o <E9>d z = H - -
BN & QN S = [ 8
691 mnK, P Ty oo ozzdy b1z goseN = “
<WOTP. a <> WOTW @— i 4 w1
<> <FEDI <> -
S9ING SEIN > © ©
Z. 2 ~
<« yaidlfycld @ * e I
|

166




| 40 |

133HS _

’ | [s) ﬁmum a3nssi

® ® ® @ —« K N9 ON 1S3 u.um. v JUEREE Ih)
[|20|0Ul] o —

0JDYS -

@ C _ £ O O } — E R m4<>c“N”“o S

4 1

g

4

Q3A0¥ddY

Jiva

NOLLdINOS3a

Ay

3NoZ

SNOISIAZY

voe L-V.EP 3 : ‘ON Mg 0

167



3OS

1 40 1 s 1
@@.@@._.mf o
uglieo|buty

2J4DYs

]

“"ON WIS

1

y
345

a3anss)

A3INIIHI

se0uibu3 1y

757

433uBu3 ynony

SUIYODN— N

ubieag 103mAyy

ava

STIVAQUddY

<B:e>t @—9

ne3puy  d

1R

0>

&

<B>

)

e3puy  d

TR

<1>

Eihe

<1>

iv

T

830Uy d

TR

z>

<z>

&9
3

<g>

le3jouy d

T

<£>

>

o'y

<€£>

g

—@ <gL>d

nevpuy  d
7T

<p>

e
T3

A <i:o1u

<¥>

—@ <1

nesjouy  d
G

vm yy

]

weopuy 4
TR

<9>

A3A04ddY Aiva NOLLJINOS3a

A3y |3NOZ

SNOISIAZY

wel
oy

3%

naspuy  d

R

733

<¢>

"3

—d@ 6

(0L0°0 I I |

168



| 40 1

133HS _

—@ 1ans

325, aanssi
00001y 571
i “ON 9Ma ON WOs4| 3218 Q3XI3H
AHO01GY bd - s
2J0 Y ~ s J—
ubisaq 0315hug|
o Ul L 20 E - 2 3lva SIVAOYHdAY
’ 9N
* L3 o
69d
[

a
| o

LON
99d
9 4

G3AO¥S IV v NOILJ¥OS30 A3N | 3NOZ
SNOISIAZY
pe 0oL Kx_ me ‘0N OM0 ‘N 984 /

169



. . Lams _ Fvas qinsst
o000y CIAG
] ON ON Mosd|  3z1S Q3%23u9
20 d i
s90uibu3 114
Az
SJDYSs spes s
ubisag (0318AYg
SUIYODA—IN | swover
Tane
™ s | —m—y
S 7 szl o .
<o> g Worptd o <8>
<8> T <8>
a5 I ¥zl n:... =g
<> o wombd <>
<i> T=gne <i>
ns
35 uJ. (XK . —
<z> ¢ Womed <z>
<z> o <z>
ns
- uJ_ zmq . —a-q
<g> ¢ Wwoebd <£>
<> T <>
™ izane | e d
<> s Q
<¥> ¢ voedd <r>|
<> Tane <p>
2 ne
o T ena .
<G> o |4 Womsd <5>
<G> Tane <g>
ns
o> MJ s a .
<9> g Wombd <>
<9> T <9> _
T ™ aans ———
[ F'.
<> 4 oorwd ” <>, ane
<t> <> L @ <e:9
n-ﬁvj‘L
—_—————— <t
<o:2>6 @
<g:>d @————
Q3A0YddY ava NOLLJINISIQ A3¥ |3N0Z
SNQISIAZY
DoTY T - T

170




16 <@L
e 56 <o >6
66
Q3nONdeY va NOILAI¥OS 30 A3 |INoz
SNOISIA3Y

qmans
ans
<@:£>q

L 40 s 1908 aansst
0000y o7ty
] ‘ON MO ‘ON MOs3| 3715 Q3NI3IHD
UQaOls i
S ERITY
96/5L/T
2J4DUS [P
ubisag joosAud
SUIYODN—WN T
>d
<Au>Te AMN_VJJ <gi95d
<1 9 E - |.Ae..lFmo o
22 <2:9>]
vEl
ugiEoeuy  <gi>d |l
<@iL>s -m— <@L>S <L
2RL>Twl
26 Tare
bd
P gnaeiax e
<04 <@L>T o1 <g:>q
ab < h‘vamm <@:1>6 <@:/>0
¢ L e ldbwbddnoss <p>d | —a— <o

<@iL>0

vove gl bl I

171



| 40 |

1334 ~

Goo0TY

‘ON OMa

gleo1ouly

sJous

SUIYODIN—IN

uvo

<oit>s gf—4

11934ouy d
17191

—.m‘ua
3

Iwoouy  d
R

b

<>

i

<>

neajouy  d
791

b

<z>

3

£>

woeuy  d
hGd

&

)<€>

3B

A4 A

]

#

@ <e:>d

>

@vpuy &
T

[<r>

Vi

A <>

e
T3

d <:oTe

L

(@210uy d
7
&

<G>

Y.
i

38

9>

f1e3jouly d
TR

b

._|uw

<9>

<9>

2

S

s
<L>

heajpuy d
T3l

&%
+3

<>

Q3A0NddY

awva

NOLLdOS3G

AN

3NoZ

SNOISIAZY

<L>

2

3

4 %

A N R |

172



| 40 1

2000y

133 _ 5 mamum_

b

‘ON OMQ oN nosy|_3zs

BIEEE]

S}9

94DUS

SUIYODN —

ainss)
< 03%J3IHD
98/TL/T
J22uibu3 ¥
EL%%
speuibul Wnda
ubisag 10915Aug
3ava SIVAOHddY

e
<8959
3 <0:9>717]
o
e @ <0i9>]
17e9uoi
b - <£>7172y4
giedpuy  <gi>d
<oiL>s - >77191 i
>774dt 4
<iL>]7ay _ -
- grompa | s %4 Tan
e <Bi>d ans ans
<0g< | <p:1>1n o <@:£>q <@iL>q
<@:>6 <g:>0f—m o <BL>0

B>y
db wBddnob  <gi/>d = <@ >8

176 1716 <@:L>A
86 pE<gL>6
6
Q3AOHddY wva NOWLJROSIC A3y |3NOZ
SNOISIAZY

70T Y] L] —T

173



<@iL>S

IECHY _ s
®®.®®m. @ ﬂ < Q3nssi
S
K "ON om0 “ON KOS4|  3ZIS Q3INJIHD
221|S e
2D ys e T
ubrsag jooishug
@ C * £ Q O —\4 — —\/_ 31va SIVAQYddY
<> - <0:9>0
<>TE A - TTTSE
29} ; <8:9>]
£

uadouy  <giy>d

<BL>S <L>1TPRI

HIL>THI
26

o
d6 #6ddnosb <@ >d
TG —————————— —————a—{ 1% <@iL>I™
66 ZeK@>6
[

03A0YddY ava

NOLLI¥OS3a

A [INOZ

&

SNOISIAZY

Tmans

ans
<o:2>q

Tans
<a>a PO g
<@ 317 ol <g:1>q
<8:£>5 <@i£>0

<@:>0

LA |

“ON W0 “ON NS4

174



EC |

305

®®.®®.m M\ ‘ON OMQ

EVAE

‘on wosy| 3z

410G ugsolsiig
2JDUS

SUIYODIN — N

aansst
Q3%33HD|

984T
19aubu3 Uy

96XL/T
seaubu3 ynaug
ubisag joaishud

va SIVAOHAY

uguadiouy  <@ig>d

<@ >is

<@>s <>

>
EY

ugieapuy  <@ir>¢
<@L>s <>l

<@L>es

FRLL>TTW

26

a5
- b
ara TR T
_ <@gl 1 pr>rn o <g:0>3 |—u—d@ <0:2>q
<OL>Tg <@:(>6 <gi1>0 | —a—@ <o:>0
46 ¥6ddnoib  <giz>d IL <056
6 <@>170 —
66 251 >6

Q3A0Y¥ddY 3iva NOULdOS3a

_ A3y {3NOZ

SNOISIATY

LA I -

175



L 30 1 43315 _ I1va5 I~

® ® . ® ® . m . K ON 9Ma ‘ON ‘wh uﬁ_wr < Q3%03HD,
r_ uﬁ O Q |;w @ U ‘_ m # “ D B Jasuibuy ._Ef
®L o L m 96£1/2

subu3 Yoy

@C_C_QO_\/_|§ v STIVAOHdAY

<g5>1
<wa>p
lou)  <@iz>d
<518
s@1:L>1y
%6
gIed0uy  <giL>d _’ g
<@iL>0s “ @ 256
Tans
<ag>a BPOED oo

13 -
| < ,Mv._m.w <B/>1™ ol <a:r>q <@7>q
db — <@:L>6 <B:L>0 :,
@1 . e oo < (>0 |L <@:L>6 L
16 <@L>17H

IRy I e
66 Z5KeiL>6
56 ‘!‘_IT

&

N0z

NOILJINOS 30 A3

GIAOHdAY Vo

SNOISIAZY

176

& &S 3 \ME ,anus “ON NS4 V




Bibliography

[1] Jeff Bowers. The Floorplan and Layout of the Floating Point Divide/Square-Root
Unit. Technical report, Concurrent VLSI Architecture Group, 1988.

[2] Jerome Coonen. An Implementation Guide to a Proposed Standard for Floating-

Point Arithmetic. In IEEE Computer. IEEE Computer Society Press, 1980.

[3] William Dally, Stephen Keckler, Nick Carter, Andrew Changand Marco Fillo, and
Whay Lee. M-machine architecture v1.0. MIT Concurrent VLSI Architecture
Memo 58, Massachusetts Institute of Technology, MIT/AI Lab, August 1994.

[4] William J. Dally, Stephen W. Keckler, Nick Carter, Andrew Chang, Marco Fillo,
and Whay S. Lee. The MAP Instruction Set Reference Manual v1.4. Concurrent
VLSI Architecture, MIT A.I. Laboratory, 1996.

[5] Parag Gupta. Design and Implementation of the Integer Unit Datapath of the
MAP Cluster of the M-Machine. Master’s thesis, Massachussets Institute of Tech-

nology, 1996.

[6] Kamran Eshraghian Neil H. E. Weste. Principles of CMOS VLSI Design, Second
Edition, chapter 8.2. Addison-Wesley, 1993.

[7] Randy L. Steck Robert P. Colwell. A 0.6um BiCMOS Processor with Dynamic
Execution. In ISSCC Proceedings, February 1995. Academic Press, 1995.

[8] M. P. Santoro, G. Bewick, and M. A. Horowitz. Rounding algorithms for IEEE
multipliers. In Proceedings of 9th Symposium on Computer Arithmetic. IEEE
Computer Society Press, 1989.

177



