
An Equality Theorem Prover Based on Grammar Rewriting

by

Serafim Batzoglou

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 28, 1996

© Massachusetts Institute of Technology 1996

Author

Certified by

Accepted by

4
Department of Electrical Engineering and Computer Science

May 28, 1996

S David McAllester

Thesis Supervisor

F.R. Morgenthaler
Chairman, Department Committee on Graduate Students

OF rECHt1 NOL Y

JUN 1 1 1996 E•n.

An Equality Theorem Prover Based on Grammar Rewriting

by

Serafim Batzoglou

Submitted to the

Department of Electrical Engineering and Computer Science

May 28, 1996

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

We present the implementation of a term rewriting procedure based on congruence

closure. The procedure can be used with arbitrary equational theories. It uses context

free grammars to represent equivalence classes of terms. This representation is moti-

vated by the need to handle equational theories where confluence cannot be achieved un-

der traditional term rewriting. Context free grammars provide concise representation of

arbitrary-sized equivalence classes of terms. In some equational theories where confluence

cannot be achieved under term rewriting, it can be achieved under grammar rewriting,
where the whole equivalence class of terms is ultimately represented with one context

free grammar. Also, grammar rewriting can be used in any equational theory, besides

the ones that have no confluent term rewriting system, to give an alternative form of

rewriting. In the implementation of the procedure, we are concerned with the practical

issue of how to build an efficient equality theorem prover using grammar rewriting. This

involves representing the system in a clear and efficient way in the language C++. Also

it involves constructing, and expreimenting with heuristics on the ordering of the queue

of logical steps, or rewrites, performed by the system, in order to speed up and shorten

the proofs without losing the desirable properties of confluence and/or termination.

Thesis Supervisor: Professor David McAllester

Artificial Intelligence Laboratory

Acknowledgments

I would like to thank my thesis advisor, David McAllester, for giving me the opportunity to work

on theorem proving, and for his advice and support.

I would like to thank my family: my aunt Chrisoula, my mother Lambrini, and my sister Evi, for

their love.

I dedicate this work to the memory of my father, Sylvestros.

Contents

1 The Algorithm 9

1.1 Introduction . 9

1.2 Congruence Grammars 10

1.3 Grammar Rewriting 14

2 Queue Ordering Heuristics 21

2.1 Definitions of W eights 24

2.2 Queue Orderings 26

2.2.1 Other types of queue orderings 28

2.3 Some Rewriting Systems 29

2.4 Benchmark Problems 32

2.4.1 Problems involving Group Theory . 32

2.4.2 Problems involving Logical Expressions . 38

2.4.3 Associativity Commutativity . 44

Introduction

A rewriting system is an equality theorem prover, that takes as an input a set of equations, the

axiom set, and two ground terms, i.e. two terms containing no free variables. Its job is to prove the

two terms equal, or state that they are not equal under the equality set. Two important desirable

properties of a rewriting system are confluence and termination. Confluence means the uniqueness of

normal forms for equivalence classes of terms. In a confluent system two equal terms have the same

normal form, so that in order to prove an equality between two terms, the rewriter just has to find

the normal form of each term. Termination means that the rewriting is guaranteed to terminate. It

follows easily that a confluent and terminating system is complete, i.e. decides all questions on the

equality of two ground terms. Such a system is called canonical.

Most equational systems are nonconfluent with respect to traditional term rewriting, such as ver-

ifications done with the Boyer-Moore prover[2]. In these nonconfluent theories, the proof of true

equations often fails. The initial motivation of Grammar Rewriting is to improve the success rate of

rewriting in such theories. The idea behind this approach is that the success rate of proof attempts

can be improved by rewriting a term to many equivalent ones in parallel. So, the canonical form of

a term is the set of all equivalent terms, or more generally, the set of all equivalent terms that are

minimal with respect to some weight function.

The problem with this idea is that equivalence classes of terms are very big in cardinality, sometimes

infinite. Congruence grammars can serve as compact representations of such big sets. For example,

under the equational theory that contains only commutativity, the equivalence class of a sum of n

constants contains 0(2 n) terms, but a congruence grammar for generating it contains only O(n)

productions. The rewriting algorithm described and implemented here is analogous to ordered

rewriting systems [3], [4], [8], [12]. Grammar Rewriting is an attempt to associate terms with

congruence grammars, and intuitively rewrite sets of terms, rather than individual terms. The hope

is to improve the success rate of rewriting.

Another reason to pursue Grammar Rewriting is that under it there arises a new class of canonical

rewrite systems, for theories that do not have canonical rewrite systems under traditional term

rewriting. One example is the theory of idempotent semigroups, that is a canonical rewriting system

under grammar rewriting, but does not have any finite canonical rewrite system under traditional

term rewriting. In the full version of the paper [9], a canonical rewriting system for idempotent

semigroups is described. It has been shown that there is no canonical term or word rewriting system

for this theory [1].

The purpose of our research is to implement an equality theorem prover whose underlying term

rewriting algorithm is based on grammar rewriting, in order to be able to do a practical study

on the performance of this algorithm on various equational theories. In Chapter 1 we present this

algorithm. Another purpose of this research is to explore ways of combining grammar rewriting with

heuristic techniques that potentially improve the performance. In Chapter 2 we present some sample

heuristics with which we experimented. We also present some rewriting systems on which we tested

our theorem prover, and we finally include benchmark problems and statistics on the performance of

the rewriter on these problems, under the heuristics that we constructed. In Appendix 1 we explain

how we implemented the equality theorem prover, including the data structures that we used and

the interface language.

The grammar rewriting procedure implemented here is somewhat similar to the rewriting technique

described in [5], which is a congruence closure based rewriting procedure for nonground rewrite rules.

That procedure, in contrast with the one implemented here, requires that the normal form of a term

be a single term rather than an equivalence class represented by a congruence grammar.

The grammar rewriting procedure described here has also been incorporated into the Ontic ver-

ification system by David McAllester, Robert Givan, and Carl Witty. A main purpose of this

paper though, is to perform isolated experimentation of the grammar rewriting procedure, including

heuristics on the order of rewrites performed, as presented in Chapter 2.

Chapter 1

The Algorithm

1.1 Introduction

In this chapter we review the basic notions involving Grammar Rewriting, as described in [9].

The basic idea underlying the Grammar Rewriting algorithm is to use congruence grammars to

represent equivalence classes of ground terms, under a finite set of ground equations. A congruence

grammar is a context free grammar, where no two nonterminals lead to the same production. For

example, the equivalence class of the constant symbol a under the equation set {a = f(a)} is

generated by the context free grammar:

X - f(X)

X -a

Thus congruence grammars represent equivalence relations on terms. The relations that can be thus

represented are the deductive closures of finite sets of ground equations.

Interning a ground term in a particular congruence grammar, involves finding the nonterminal

that generates that term. Because we are working in congruence grammars, this nonterminal is

guaranteed to be unique, if it exists. If there is no such nonterminal, then a fresh one is created.

The procedure is recursive, so that in order to intern a term, its subterms are first interned.

A rewriting system is a set of equations, E, usually containing variables. Such a rewriting system

attempts to show that two ground terms are equal, by showing that they both intern to the same

CHAPTER 1. THE ALGORITHM

nonterminal. Starting with the empty grammar (or with any grammar), interning the ground terms

s, t in order to prove s = t, results in a grammar G and two nonterminals, call them IG (s) and IG (t).

If IG (s) = IG (t) then s = t under E. If not, then G is incrementally rewritten according to the

equation set.

The rewriting is done as follows: A unification procedure is used to compute matches between

nonterminals and patterns in the equation set. A pattern is a subterm of a term appearing in E,

and a match is a triplet of a nonterminal X, a pattern p, and a substitution a such that u(p) is

a ground term and interns to X. At each point in time, all possible matches are computed. If

there is a match < X, p, s >, p = q is in E, and every free variable of q is sent to a nonterminal

by a, then X = IG(((p)) and IG(0(q)) can be united, to become a single nonterminal. In that

way, the equivalence classes of these two nonterminals collapse. At each point in time all possible

rewrites of the grammar are held in a queue. There is an elaborate efficient algorithm for computing

the new grammar G' that results from collapsing two nonterminals into one. The algorithm for

computing the new grammar is based on the congruence closure algorithm described in [10], and

runs in O(nlogn) under the assumption that hash table operations take 0(1) time.

1.2 Congruence Grammars

In this section we define the basic concepts that we use in the grammar rewriting procedure, namely

finite congruence grammars and finite ground sets. It turns out that these two concepts are inter-

changeable, meaning that one can go from a finite congruence grammar to a finite ground equality

set, and conversely. A procedure is given for incrementally building a congruence grammar that

models a ground equality set.

* A symbol is defined to be either:

A variable, denoted by xi where i ranges over the natural numbers, or

A function symbol of arity' n, where n ranges over the natural numbers. We assume an

infinite set of function symbols of each arity.

* A term t is defined recursively, to be:

(a) A variable, or

(b) A function application f(t, ..., tn) where n ranges over the natural numbers, ti for 0 < i < n

1Arity is the number of arguments

CHAPTER 1. THE ALGORITHM

is a term, and f is a function symbol of arity n. In case n = 0, t = f() is a constant.

A ground term is defined recursively, to be a function application f(tl, ..., tn) where n ranges

over the natural numbers and ti for 0 < i < n is a ground term. A subterm of a term

t = f(t 1 , ... , tn) is either t, or a subterm of some ti for 1 < i < n. A proper subterm of t is

a subterm of some ti. An immediate subterm of t is one of the terms ti.

* A production p is defined to be an object of the form X -+ f(Y 1 , ..., Yn) where X and Yi

are nonterminals (we assume an infinite collection of nonterminals), n ranges over the natural

numbers, and f is a function symbol of arity n. If n = 0, then p is a ground production.

The right hand side (r.h.s.) of p is f(Y 1 ,..., Yn,). We define from(p) to be the nonterminal

X, and To(p) to be the set {Y1 ,..., Yn} of nonterminals that appear in the r.h.s. of p.

* A congruence grammar G is finite a set of productions, where no two productions have the

same right hand side.

* A nonterminal X produces (or generates) a ground term t in a congruence grammar G, if

t = f(t,..., tn), and:

(a) n = 0 and there is a ground production p = X - f () in G, or

(b) n > 0, and there is a production p = X -+ f(Y 1 , ... , Yn) in G such that for each 1 < i < n,

Yi produces ti.

In both cases (a),(b), the production in question is said to generate t. The grammar G is said

to generate t, if some production in G generates t.

Lemma: A ground term t is generated by at most one nonterminal of a congruence grammar G.

Proof: Case 1: If t is a constant, then it is generated by at most one nonterminal, else there are

two productions in G with the same right hand side, namely t.

Case 2: If t is f(t 1 ,...,tn), n > 0, and X - f(Y 1,...,Yn), Z -+ f(W 1 ,...,Wn) are two productions

generating t, then Yi and WI both generate ti for 1 < i < n, so by inductive assumption Yi = Wi.

But this is a contradiction, because then both productions have the same right hand side. A

* We define the equivalence relation with respect to a congruence grammar G, on terms

generated in G: two terms s, and t generated in G are equivalent in G, if IG(s) = IG(t) where

IG is the function on terms generated in G that returns the nonterminal that produces them.

We extend the function IG to ground terms not generated in G. In order to do that, we will

describe a procedure that extends G to a grammar G' that generates t, and IG(t) is defined

CHAPTER 1. THE ALGORITHM 12

to be IG' (t). We will call this procedure, applied on t, "interning" t 2:

Interning t = f(si, ...,sn) in G:

1. Let Y1 ,..., Yn be the result of recursively interning si, ... , sn, if n > 0.

2. If there is a production X -+ f(Y1, ... , Yn) in G, return IG(t) = X.

3. If not, select a nonterminal X not appearing in G, and create the production X -+

f(Yi, ... , Yn), adding it to the grammar to get G'. Return IG (t) = X.

Finally we define the equivalence relation with respect to G, on any ground term, to be the

one defined by the partition function IG on ground terms.

Congruence grammars are capable to express any equivalence class defined by a finite set of ground

equations. This is expressed in the following result:

Theorem: For any finite set H of equations between ground terms there exists a finite congruence

grammar Gr(H) such that for any two ground terms s, t, we have that H 1= s = t if and only if

IGr(H) (s) = IGr(H) (t). Furthermore, assuming that hash table operations can be done in constant

time, the grammar Gr(H) can be computed from H in O(nlogn) time where n is the written length

of H.

The proof of this theorem is based on well known algorithms for congruence closure[10]. Conversely,

we define Eq(G) to be the set of equations that models the equivalence relation on terms expressed

by the congruence grammar G. For each nonterminal X appearing in the grammar G, construct a

new constant symbol cx. An extended congruence grammar G is one that, for each nonteminal

X appearing in G, contains a production X -+ cx where cx is a special constant for nonterminal

X. Then if Eq(G) is the set of equations of the form cx = f(cryl,..., cy,,) where G contains the

production X -+ f(Y 1, ..., Yn), we get the following result:

2 At this point we abuse the notation, because the procedure we are going to describe is nondeterministic in terms

of exactly which nonterminal is returned, and as a consequence IG is no longer a function. But the nondeterminism
on the interning procedure can be raised easily, and in any case the equivalence relation defined is not altered.

CHAPTER 1. THE ALGORITHM

Lemma: For any congruence grammar G, and any two ground terms s and t, IG(s) = IG(t) if and

only if Eq(G) 1- s = t.

Proof of Lemma: By induction on the size of a term s, Eq(G) k s = cIG(s). This is clear for con-

stants, because a = cIG(a) E E for every constant produced by G. Now let X - f(Y 1, ..., Y,) be a pro-

duction producing s = f(t, ... , tn). Then by inductive assumption, for 1 < i < n, Eq(G) I ti = cy1 .

Also, by definition cx = f(cy, ..., cy.) E Eq(G). So Eq(G) [- s = c,. To show the converse, extend

G by all productions of the form X --+ cx to get the extended congruence grammar G'. The intern

function IG' is a partition function that defines an equivalence relation on terms generated by G'.

This equivalence relation provides a semantic model for Eq(G'), and agrees with the equivalence

relation defined by IG on the terms generated by G, because the two functions agree on these terms.

So if IG(S) $ IG(t) then Eq(G) K s = t.A

Below is a procedure that incorporates ground equations into a congruence grammar. This procedure

is also presented in [9] and is very similar to a congruence closure procedure presented in [10]. The

procedure starts with an extended congruence grammar G, and an equation s = t where s and t

are ground terms. It computes Gr(Eq(G) U {s = t}). Before describing this procedure we need to

define a union-find structure on nonterminals, whereby there is a function find from nonterminals

to nonterminals and calling union on two nonterminals, alters the outputs of find. We further

assume that find(X) appears in the grammar, and find(find(X)) = find(X) for any nonterminal

X appearing in the grammar.

Calling union on the nonterminals X and Y, union(X, Y):

1. Call choose(X, Y), that returns either X, or Y3 .. Say Z = choose(X, Y), and W is the other

one of X, Y.

2. If find(Z) = Z, set find(Z) = W and do nothing else.

3 This function, choose, returns the nonterminal that is going to be killed. In order for the algorithm to run provably
in O(nlogn) time it is important to implement this function so as to always choose the "smallest" nonterminal, under
some particular size function. We do not get into this in detail here.

CHAPTER 1. THE ALGORITHM

3. If find(Z) = V : Z, call union(V, W), and then set find(Z) to be find(V).

* We say that a nonterminal X is dead if find(X) $ X. Else, we say that X is alive.

Computing Gr(Eq(G) U {s = t}):

1. Intern s and t, and let Z and W be the nonterminals IG(s) and IG(t).

2. Initialize Q to be a queue of ground equations, containing the single equation cz = cw.

3. While Q is not empty, do:

(a) Remove an equation cz = cw from Q.

(b) Intern cz, cw to obtain Z and W.

(c) Let X = find(Z) and Y = find(W).

(d) If X = Y do nothing, otherwise:

(e) Call union(X, Y).

(f) Let P be the set of all productions involving X 4 .

(g) Remove all productions in P from the grammar.

(h) For each production Z -+ f(W 1, ..., Wn) in P do:

i. Let Z' be find(Z) and for each Wi, 1 < i < n let W' be find(cw).

ii. If there is no production whose right hand side is f(W;, ..., W'), add the production

Z' -+ f(W , ..., W,') to the grammar.

iii. If there is already a production U -+ f(W,, ..., W') in the grammar, where U is

different from Z', then add the equation cu = cz, to the queue Q.

1.3 Grammar Rewriting

* A grammar rewriting system is a finite set of term equations E, where each element of E

is an equation between two terms (that usually contain variables).

* A ground substitution a on a congruence grammar G is a function from a subset of the set

of variable symbols, to the set of ground terms that are generated by G.

4 X is now dead.

CHAPTER 1. THE ALGORITHM

* On a grammar rewriting system E, and extended congruence grammar G such that every

ground term appearing in E is produced in G, a match is a triplet, match[Y, s, a] where Y

is a nonterminal, s is a term, and a is a substitution such that Y = IG (a(s)). Moreover, for

any variable x in the domain of a, a(x) equals the special constant cz for some nonterminal

Z appearing in G. Matches can be computed by starting with "basic" matches, and creating

new matches according to an inference rule that generates new matches from old matches.

We define the match set M(G, E) of G and E, to be the maximal set of matches constructed

as follows:

1. For each nonterminal X appearing in G and for each variable x occurring in E, we create

the basic match match[X, x, x --+ cx].-

2. For each constant a appearing in E we create the basic match match[IG (a), a, {}].

3. We apply the rule

match[Yi, si, ao]

match[Yn, so, ran)]

X -+ f(Y1,..., Yn)
match[X, f (s 1, ..., Sn), a]

where for any two substitutions ai, aj with 1 < i,j J n we require that if ai (x) and aj (x)

are both defined, they are the same constant. We also require that the term f(si,...,sn)

is a term occurring in E. Then, we define a = UF=l ai5.

We say that Y matches s under the substitution a, if match[Y, s, a] is in M(G, E).

Lemma: M(G, E) is finite.

Proof: The term in a match triplet is a subterm appearing in E. There are finitely many of them,

and we can prove that M(G, E) is finite by recursing on the structure such terms. Clearly there are

finitely many matches involving constants and variables. The rest of the matches are obtained by

the one propagation rule given above, and assuming that the set of the possible matches involving

5 We are abusing the notation, because o is a function and not a set, but it should be clear what we mean.

CHAPTER 1. THE ALGORITHM

each si in the premises of the rule is finite, it follows that the set of possible matches to the term

f(sl, ... , sn) is finite.A

* A rewrite r on G, E, and M(G, E), an extended congruence grammar, grammar rewriting

system, and the associated match set, is a triplet < X, s -+ t, a > where X matches s under

o, and either:

(a) s = t E E, and every free variable of s appears in t, or

(b) t = s E E, and every free variable of t appears in s.

A nontrivial rewrite r on G, E, and M(G, E) is a rewrite < X, s --+ t, a > such that

IG(U(t)) # X.

Notice that this definition of rewrites implicitly defines an ordering in each of the equations in E.

That is to say, we don not allow rewrites to a term containing a variable x, from a term not contain-

ing the variable x. In our implementation of rewriting we did something different: We only allowed

rewrites that satisfy condition (a). The above definition of rewrites can be translated to the one we

implemented, as follows: For every equation s = t E E, put t = s in E as well. In our treatment, we

can have a direction on the equations, so that basically we are dealing with rewrite rules. Examples

where this matters will be given in Chapter 2. In this chapter, we assume that equation sets are

treated by the rewriting system as explained above, i.e. that both directions of an equation are al-

lowed by default, except when the restriciton on the free variables prohibits one of the two directions6 .

Lemma: The set of rewrites on G, E, and M(G, E) is finite.

Proof: M(G, E) is finite, and t ranges over a finite set of terms.A

* Q(G, E), where G is a congruence grammar, E is a rewriting system, and M(G, E) is the

associated match set, is a rewrite queue that contains every nontrivial rewrite r on G, E,

and M(G, E). Q(E, G) contains a function indexQ(G,E), that assigns to each rewrite r an

integer indexQ(G,E) (r) which is the number of rewrites that were inserted before r.

* A deterministic grammar rewriter, GRR, is a module that behaves as follows:

1. It takes as input a quadruple < G,E,M(G,E),Q(G,E) > where G is a congruence

grammar, E is a rewrite system, and M(G, E), Q(G, E) the associated match set and

O60r no direction is allowed in the equation s = t, if both s and t contain variables that the other term does not.

CHAPTER 1. THE ALGORITHM

rewrite queue. It also takes as an input a special ground equation s = t, called goal, such

that s and t are generated in G.

2. It contains a function extractGRR that takes as inputs the inputs of GRR, and extracts

an element r =< X, s, t, a > from Q(G, E).

3. It contains a procedure incorporate that takes as inputs r and the inputs of GRR and

behaves as follows:

(a) It incorporates the ground equation cx = cIG (,(t)) into G, to get the new congruence

grammar G' = Gr(Eq(G) U {cx = co(sigma(t)) })-

(b) It updates M(G, E) to obtain M(G', E).

(c) It updates Q(G, E) to obtain Q(G', E), so that indexQ(G',E) (r) = indexQ(G,E) (r) for

any rewrite r =< X, s, t, a > such that the match match[X, s, a] is in the old match

set M(G, E), and consequently r is in the old queue Q(G, E) 7 .

Notation: Call the result of this one step rewriting < G', M(G', E), Q(G', E) >= GRR(<

G,E,M(G,E),Q(G,E) >,goal).

Such a grammar rewriter is very general, as to the order in which rewrites are performed. We

insist that extraction is deterministic, but virtually any other strategy can be implemented under

the definition above. For instance, treating differently each equation (different priorities) can be

incorporated, by hardwiring information on GRR.

* A grammar term is a structure < X, G, Q(G, E), E > where G is a congruence grammar,

X is a nonterminal that appears in G, E is a rewriting system, and Q(E, G) is the associated

rewrite queue.

* We define the one step rewrite relation -+GRR,goal on grammar terms so that

< X,G,Q(G,E),E >-+GRR,goal< X',G',Q(G',E),E >

provided that

< G',M(G',E),Q(G',E) >= GRR(< G,E,M(G,E),Q(G,E) >,goal)

7 Here we insist that the index of the rewrites is preserved, because in the next call of the rewriter we may need
the information of which rewrite was inserted first in the queue. This is important for strategies of extracting rewrites
from the queue, that use information on the order with which the rewrites were inserted. Example: FIFO queue.

CHAPTER 1. THE ALGORITHM

where extractGRR(X, G, Q, E, goal) is a rewrite r = < X, u, v, a >, and X' = IG, (o(u)), and

goal is a ground equation s = t such that s and t are generated by G.

* We say that a grammar term < X, G, Q(G, E), E > is in normal form if Q(E, G) is empty.

If the context makes clear what E is, we can alternatively denote such a term as < X, G >.

Lemma: Let < X, G, Q(G, E), E > be a grammar term, where Q(G, E) contains no nontrivial

rewrites. Let -+GRR,9 oal be a one step rewrite relation such that goal is a ground equation whose

ground terms are generated by G. Say Q(G, E) contains k elements. Then after < k successive

applications of -+4 GRR,goal the term < X, G, Q'(G, E), E > is reached, which is in normal form.

Proof: Observe that only nontrivial rewrites modify the grammar G, or the nonterminal X.A

As an example of rewriting, let C be the equation set consisting of the commutative law x + y = y + x

where x, y are variables. Let G be the grammar consisting of the productions X1 -+ a, + X 2, ..,

Xn-1 -+ an-1 +Xn, Xn -+ an, i.e. the grammar generated by interning the term a, + (a 2 + (... +an))

starting with the empty grammar. In the collection of all grammar rewriters, we have that the

grammar term < X1, G, Q(G, E), C > rewrites to the normal form < X 1, G', Q(G', E), C > where

G' is the grammar consisting of the productions of the form

Xi - ai + Xi+1

Xi -4 Xi+1 + ai

together with the production

Xn -+ an

and goal is any pair of terms produced by nonterminals among {X 2 where 1 < i < n}. The reason

this is a normal form, is that Q(G', E) is empty: there are no possible nontrivial rewrites.

CHAPTER 1. THE ALGORITHM

* A grammar rewriting system E is called terminating with respect to a grammar rewriter

collection S, if there are no infinite rewrite chains of the form

< X1, G1, Q(G1 , E), E >-4 GRR,goal< X 2 , G2 , Q(G 2, E), E >G-+RR,goai ...

where GRR E S, G1 is any congruence grammar, X1 appears in G1 , and goal is any goal

whose terms are produced in G1i.

Certain restrictions on S ensure that rewriting always terminates. In [9] a weight function is used

which assigns weights to all terms produced by a grammar, and assigns weights to each nonterminal

according to the minimal term produced by that nonterminal. Then, rewriting is allowed only for

certain terms that satisfy a minimality condition. Assuming that the weight function is polynomial

on the size of the term, rewriting is guaranteed to terminate. Here we are not going to get into the

details of this particular machinery.

* A grammar rewriting system E is called complete with respect to a grammar rewriter collec-

tion S, if, assuming that Eq(G) contains no ground equations unprovable by E, then for any

pair of terms s, t, and for any normal forms < X, G >, and < Y, G > with respect to E, of s

and t respectively, we have that s = t under E if and only if X = Y.

* A grammar rewriting system is called canonical with respect to a grammar rewriter collection

S if it is terminating and complete with respect to S.

A grammar rewriter belonging to a collection S, such that E is canonical with respect to S, provides

a decision procedure for the equation theory E: Let s = t be a goal. Intern s in the empty

grammar, to obtain G.. Intern t in G8 to obtain G8 ,t. Let < X, G, Q(G, E), E > be a normal

form of < IG,,t(s),Gs,t,Q(Gs,t,E),E > with respect to GRR E S and goal be (s = t). Let

< Y, G',Q(G',E),E > be a normal form of < IG(t),G,Q(G,E),E > with respect to GRR, goal.

Then, < IG', (s), G', Q(G', E), E > is a normal form of s with respect to GRR, goal. Then IG', (s) =

IG' (t) iff s = t under E.A

The above paragraph is indicative of the way we perform grammar rewriting in our system. To

prove a goal s = t, we intern s in the empty grammar, then we intern t in the resulting grammar,

and then we perform grammar rewriting, until (1) s and t intern to the same nonterminal, in which

CHAPTER 1. THE ALGORITHM

case we are done, or (2) both s and t have reached their normal forms8 , in which case the proof

attempt failed, or (3) we stop the procedure under a certain limit in the number of steps, or in the

time it takes, in which case we do not know the result.

8 We are abusing the terminology here, but it is obvious what we mean

Chapter 2

Queue Ordering Heuristics

The order in which the rewrites are performed is important in Grammar Rewriting. It affects the

performance, and even the termination/confluence properties of the rewrite system. We give an

example below, where two different ordering strategies perform very differently. In particular, one

of the strategies terminates, while the other diverges.

To keep the example simple, we choose the following theory, and its associated rewriting system:

Consider the subset of group theory that proves two terms s and t to be equal, using only the asso-

ciative law, and the compressing identity and inverse laws. By compressing, we mean that these

laws can only be performed in the "compressing" direction, i.e. *(id, x) -+ x, *(x, inv(x)) -4 id, etc.

Notational convention A rewrite rule denoted by s = t is treated as an equation, meaning that

both directions s -+ t and t -+ s are valid, always under the restriction given in the definition of a

rewrite, in Chapter 1. A rewrite rule denoted by s => t is oriented, meaning that the direction t -+ s

is not allowed.

The following is the corresponding rewrite system:

CHAPTER 2. QUEUE ORDERING HEURISTICS

Compressing part of group theory:

((?x, ?y), ?z) = *(?x, *(?y, ?z))

(id, ?x) = ?x

(?x, id) = ?x

(inv(?x), ?x) = id

(?x, inv(?x)) - id

It is easy to see that a FIFO ordering of the queue of rewrites will prove any statement in this

theory. The reason is that with a FIFO strategy any possible rewrite on the terms s, t, and their

subterms will be eventually performed. With a little care of where to stop a proof if it does not

seem to succeed, it is simple to make this into a terminating, hence complete, rewriting system.

Consider now a LIFO ordering. Say the problem instance is:

Let t = *(inv(b), *(*(*(inv(a),a),b),c))

Let S = C

Show: t = s

order for this to succeed, the following rewrites need to take place:

*(inv(a),a) -+ id

*(id, b) -+ b

*(inv(b), *(b, c)) -* *(,(inv(b), b), c)

*(inv(b),b) -+ id

* (id, c) -+ c

CHAPTER 2. QUEUE ORDERING HEURISTICS

Say (1) is performed first, and at any point later, (2) is performed before any associativity in-

volving inv(b). Then, the nonterminal X = IG[*(*(*(inv(a),a),b),c)] produces also the term

((*(inv(a),a),*(*(inv(a),a),b)),c). Since the queue is LIFO, the associativities that are go-

ing to "bring together" *(a, inv(a)) in this last term, are going to be performed before (3). Then,

*(a, inv(a)) -+ id will make id equivalent to both *(a, inv(a)) and *(inv(a), a). But then, X =

IG [*(*(id, *(id, b)), c)], and before any associativity involving inv(b) is performed, it will be shown

that X = IG[*(*(*(id, id),b),c)], and then because *(id, id) = *(,(inv(a),a), *(a, inv(a))), before

(3) is performed associativities in this last term will be performed, and will cause the term *(a, a)

to be interned. Now it is not hard to see that the LIFO rewriting of terms emerging from the

nonterminal IG [*(*(id, *(id, b)), c)] will eventually cause the interning of all the terms of the form

an , n > 0, and this is an infinite number of terms. All this is going to take place before (3) has a

chance to be performed. So, this rewriting system is not terminating with LIFO heuristics.

We define the property of fairness for a strategy of extracting rewrites from the queue, that is going

to help us analyze the termination properties of various weight heuristics. In order to do that, we

define a clear execution sequence, for a strategy:

* A clear execution sequence for a strategy, starts with interning a goal s = t in the

empty grammar, and then performing rewrites ri, r2 , ... which are extracted from the queues

Q (G1 , E), Q2 (G 2 , E), ... according to the strategy. That is, no term is interned at any point,

besides the goal and the terms interned by the algorithm.

* An extraction strategy satisfies fairness if for every clear execution sequence which does not

terminate, for every i, and every rewrite r in Qi(Gi, E), there is a j > i such that r is extracted

and performed at step j.

Informally, in the definition of a clear execution sequence, we ensure that there are never inserted in

the queue any rewrites that could possibly deteriorate the performance of the heuristics in question.

That is to say, there are no rewrites from terms that cannot be obtained by interning only the

terms in the goal, and no other term. Notice that FIFO satisfies fairness, the integer j for r in

Q(G, E) being the number of rewrites inserted before r. LIFO does not satisfy fairness, and a

counterexample is given above.

CHAPTER 2. QUEUE ORDERING HEURISTICS

2.1 Definitions of Weights

* Define the size of a term t = f(si, ..., sn), size(t), as follows:

if n = 0 then size(t) = 1;

else size(t) = 1 + E', size(si);

Notice that this is equal to the number of function symbols in t.

* Define the size of a pattern p, size(p), to be likewise the number of function symbols in p.

* Define the size, size(X), function on nonterminals as follows: it is the pointwise maximum

value that satisfies the following constraints: (to avoid confusion, s, t are always terms below,

while X, Y are always nonterminals).

Size Function on Nonterminals, pointwise max size(X) s.t.:

size(t) = m

X -+ t
size(X) < m

size(Yi) < il

size(Yn) < in
X -+ f (Y1,..., Yn)

size(X) 5 1 + Ep=i 3

We define a minimal production of a nonterminal X to be a production p = X -+ f(Yi, ..., Yn)

such that size(X) = 1 + Ejnsize(Yj). By a simple induction one can show that there is such a

production, for every X.

* Define the context size, cosz(X, R), function on nonterminals as follows (both X and R are

nonterminals): it is the pointwise maximum value satisfying the following constraints:

CHAPTER 2. QUEUE ORDERING HEURISTICS

Context Size Function on Nonterminals, pointwise max cosz(X) s.t.:

cosz(R, R) = 0

cosz(X, R) < m

size(Yi) < il

size(Y,,) 5 in
X -+ f (Yr, ..., Yk, ..-, rn)

cosz(Yk, R) 5 m + E =1 ij
j~k

Notice that cosz(X, Y) is infinity, if there is no path from Y to X, where a path from a nonterminal

Y to a nonterminal X is a sequence of productions Pi, ... ,Pn such that (1) Pl comes from Y, (2)

for each 1 < i < n pi comes from a nonterminal appearing in the right-hand side of Pi-1, and X

appears in the right-hand side of pn. Notice that cosz(X, Y) is the size of the smallest term C[R]

containing the term R such that Y = IG(R) and X = IG(C[R]), minus the size of R.

* Define the size of a substitution a, size(a) to be: (Let nvars to be the number of variables in

the grammar in question, and var(j) for 1 < j < nvars to be the jth variable of the grammar).

size(a) = M 'size(a(var(j)))

Now we are ready to define some weight functions on rewrites, that can serve to order the queue

of rewrites with the elements with smallest weight having highest priority. Let the rewrite be

r =< X, L -+ R, a >. The first such weight function involves the size of the term a(R) to which the

nonterminal X rewrites, and is therefore:

Weightaize(r) = size(o(R))

CHAPTER 2. QUEUE ORDERING HEURISTICS

The second weight function involves the context size of X with respect to the goal. Specifically, let

the goal be to show that t = s. Let Y = IG(t) and Z = IG(s). Then, we define Weightcosz (r) to be:

Weightosz(r) = min{cosz(X, Y), cosz(X, Z)}

The third weight function is more complicated. We want to express how "far" a rewrite is from

using the minimal productions of the grammar. Accordingly, let r = < X, L -+ R, a >, let the goal

be t = s, and let Y = IG(t) and Z = IG(s) we define Weightdistance(r). Again, this function can be

infinity for some nonterminals:

Weightdistance(r) = min{cosz(X, Y) - size(Y),cosz(X, Z) - size(Z) } + size(a(L))

Notice that for any rewrite r =< X, L -+ R, a > and for any Y = IG(t) where either s = t or t = s is

the goal, the quantity cosz(X, Y) - size(Y) + size(a(L)) is equal to 0, if we are using only minimal

productions to get a path to the term a(L) from the nonterminal Y. This observation justifies the

above definition of the Weightdistance function.

2.2 Queue Orderings

The following are the different queue orderings we used:

* FIFO: According to this ordering, the rewrites are extracted from the queue in the same order

in which they are inserted. This ordering satisfies fairness, as we already proved.

* LIFO: According to this ordering, the rewrites are extracted from the queue in the opposite

order in which they are inserted, last in first out. We already demonstrated that this ordering

does not satisfy fairness.

* SIZE: According to this ordering, the rewrites are extracted from the queue with priority

given to the ones that are minimal with respect to the Weightsize function. In case of a tie,

priority is given to the ones that are minimal with respect to the Weightdistance function. In

case of a further tie, priority is given to the one inserted first.

CHAPTER 2. QUEUE ORDERING HEURISTICS

Claim: The SIZE ordering satisfies fairness.

Proof: (Informal) First, for any k, notice that there is a bound on the number of steps that can

be performed without generating a nonterminal X such that size(X) > k. This is true because

the nontrivial unions that can be performed between nonterminals whose minimal representatives

are of size bounded by k, is bounded by the number of different ground equalities between terms

of size at most k. Second, notice that when interning the two sides a(L) and a(R) of a rewrite

r =< W, L -+ R, a >, only the interning of a(R) produces any new nonterminals, because the

interning of a(L) has already been performed, and returned W. Then, consider size(r). This is

equal to size(o(R)), thus any new nonterminal generated by computing Gr(Eq(G)U {a(L) = ((R})

has size bounded by size(r). Finally, for any nonterminal r in the queue, we conclude that there

can be performed only a finite number of nontrivial unions before r is small enough to be extracted

from the queue.A

* DISTANCE: According to this ordering, the rewrites are extracted from the queue with pri-

ority given to the ones that are minimal with respect to the Weightdistance function. In case

of a tie, priority is given to the ones that are minimal with respect to the Weightsize function.

In case of a further tie, priority is given to the one inserted first.

Claim: The DISTANCE ordering satisfies fairness.

Proof: (Informal) Say that s = t is the goal, and X = IG (s), Y = IG (t). Let r be the rewrite

< W, L - R, a >. Then notice that Weightdistance(r) = n is finite, because it is easy to see that

rewriting the goal always produces terms that are a finite distance from the goal. Moreover, for any

rewrite in the queue, Weightdistance(r) Ž (size(r(L)) -size(X)). Finally, notice that there are only

a finite number of terms in the language, such that size(t) < n. The number of such terms can be

computed from the language of terms alone. If all rewrites are performed starting with such terms

t = a'(L'), then DISTANCE has to choose to perform r.A

* CONTEXT: According to this ordering, the rewrites are extracted from the queue with

priority given to the ones that are minimal with respect to the Weightcosz function. In case of

a tie, priority is given to the ones that are minimal with respect to the Weightdistance function.

In case of a further tie, priority is given to the one inserted first.

CHAPTER 2. QUEUE ORDERING HEURISTICS

Steps at most: 5 10 50 100 256

FIFO 1 3 9 14 17
LIFO 0 0 2 2 2
SIZE 1 4 11 16 16
CONTEXT 0 1 3 3 5
DISTANCE 1 5 9 12 15

Table 2.1: Comparison of five heuristic strategies, in 17 benchmark problems

CONTEXT heuristics does not satisfy fairness. To obtain an example that breaks the condition,

consider a theory that has the axiom x -= x3 , and a case where t = a where a is a constant, is the

goal. Initially the large term t is interned, producing some rewrites of considerable context weight.

Then, a is interned, producing the rewrite a -+ a 3 , of small weight. Finally, if a term s has weight

n, and s -+ s3 is performed, then s3 has weight n as well.

For many rewrite systems, the FIFO, SIZE, or DISTANCE queue orderings guarantee fairness

while some other orderings do not. An easy fix in such cases, if one still wants to try the other

orderings, is to combine them with the FIFO, ordering. That is, every certain constant number of

steps, a rewrite is performed according to the FIFO, ordering. But from the experimental analysis,

we concluded that good performance, in almost all cases, assumes fairness of the strategy. This

is demonstrated in Table 2.1, that summarizes the performance of the different strategies in 17

benchmark problems. In this table, the different columns correspond to the different upper bounds

on the number of nontrivial rewrite steps, as given in the first row. In the rest of the chapter we

will elaborate on the experimentation with the rewriter on these benchmarks.

2.2.1 Other types of queue orderings

There are other types of queue orderings apart from taking into account only the order that rewrites

are inserted into the queue, and the size/context of the terms expressed. A class of orderings that is

promising is the orderings that give different priorities to different rewrite rules. Such orderings are

possible according to the definition of a grammar rewriter we gave in Chapter 1. Another possibility

is combining some priority on the rewrite rules, with the above weight functions. According to that,

each rewrite rule would have a "weighted priority" that could be additive, or multiplicative, to the

above weight functions. There are numerous possibilities, and most probably some of them would

CHAPTER 2. QUEUE ORDERING HEURISTICS

((?x, ?y), ?z)
(id, ?x)

(?x, id)

(inv(?x), ?x)

(?x, inv(?x))

?X

*(?x, *(?y, ?z))
?x

?x

id

id

((inv(?x), ?x), ?x)

Table 2.2: Group Theory

be very effective with particular rewrite systems. In the present research we did not experiment

with other possibilities, so the rest is left for future work'.

2.3 Some Rewriting Systems

In this section we present a few sample rewriting systems for testing the algorithm. The first example

is Group Theory, and the associated rewriting system that we used is shown in Table 2.2.

The second rewriting system involves groups in which all elements are of order 2, i.e. groups where

X2 = id holds for all elements. we already presented a rewriting system for this theory, but we repeat

it here in Table 2.24.

The third theory is yet another variation of Group Theory, where only the left identity and left inverse

are axiomatized, and the right identity and right inverse axioms are proven. This is displayed in

Table 2.4.

The fourth theory is AC and its associated rewriting system is given in Table 2.5.

The fifth theory is {A, V, -,} Boolean Formulas, and the rewriting system, displayed in Table 2.6, is

made so as to rewrite the formulas in Disjunctive Normal Form whenever possible.

'Please contact the othor for some preliminary results of expreimentation with rewrite systems where different
rules are given different priorities.

CHAPTER 2. QUEUE ORDERING HEURISTICS

*(?x, *(?y, ?z))
(*(?x, ?y), ?z)

(id,?x)
(?x, id)

(inv(?x), ?x)
(?x, inv(?x))

(?x, ?x)
?x

= *(,(?x, ?y), ?z)
= *(?x, *(?y, ?z))

S?x
: ?x

= id
- id

= id

* (?x, *(?x, ?x))

Table 2.3: Groups of elements of order 2

((?x, ?y), ?z)
(id, ?x)

(inv(?x), ?x)
?x

*(?x, *(?y, ?z))
?x

id

(*((inv(?x), ?x), ?x)

Table 2.4: Group Theory, compact form

+(+(x, y), z)
+(x,y)

= +(x, +(y,z))
= +(Y,)

Table 2.5: Associativity Commutativity

CHAPTER 2. QUEUE ORDERING HEURISTICS

-(x A y)
-'(x v y)

(x V y) Az(mVy)Az
xA (y V z)

(xAy) Az
(x V y) V z

xV ix

x A --'x

xAy

xVy

XA TRUE

xVTRUE

x A FALSE

x V FALSE

xVx

xAx

-,FALSE

,TRUE

x

-'X V -'y

-x A "-y

(x Az) V (y Az)

(x A y) V (x A z)

x A (yA z)

zV(yVz)
TRUE

FALSE

yAx

yVx

x

TRUE

FALSE

x

x

x

TRUE

FALSE

Table 2.6: {A, V, -} Boolean Formulas

CHAPTER 2. QUEUE ORDERING HEURISTICS

2.4 Benchmark Problems

The implementation of the grammar rewriter was done in the programming language C + +, and the

details of the implementation are given in Appendix 1. In this section we present some benchmark

problems relevant to the rewrite systems of the previous section. The results are given in tables

that display statistics on the performance, for each different ordering strategy. The performance is

evaluated using four measures. These are:

* Rewrite steps: These are the nontrivial rewrite steps that were needed, i.e. the rewrite steps

that caused two different nonterminals to merge into one.

* Rewrites produced: This is the total number of rewrites that were inserted into the rewrite

queue, at any point until the success of the proof.

* Productions: This is the total number of productions that were generated until the proof

succeeded.

* Substitution merges: This is the total number of substitutions that were merged into

one. The merging of substitutions was found to be the time bottleneck of the execution.

Merging two substitutions involves, for each variable of the grammar 2, to check whether the

two substitutions agree, or whether one is undefined. If this holds for all variables of the

grammar, the two substitutions can be merged. The reader could get some idea of how fast

the rewriter would run in his, by considering this operation performed as many times as

indicated in the statistics below.

2.4.1 Problems involving Group Theory

The first problem involves the Groups of elements of order 2 rewrite system. The problem is to

prove that x2 = id implies that the group is abelian:

Let t = *(a,b)

Let s = * (b,a)

Show: t = s

2 Usually two to four variables

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics Steps

FIFO
LIFO
SIZE
CONTEXT
DISTANCE

Rewrites

42
(*)
37
(*)
40

Productions

987
(*)

772
(*)
904

65
(*)
44
(*)
51

Subst-Merges

60171
(*)

44422
(*)

59140

Table 2.7: Group Theory, x2 = id implies abelian

The statistics for the running of the rewriter on this problem are given in Table 2.7. The first

column exhibits the number of rewrite steps it took for the proof to complete. An (*) indicates

that the program was stopped before completion, because much longer time was needed with these

particular heuristics than with other heuristics. The second column indicates the total number of

rewrites produced. The third column indicates the total number of productions produced. The

fourth column indicates the total number of substitution merge operations performed.

The second problem involves Group Theory and is the left-cancellation law, namely a * b = a * c

implies b = c:

Let t = *(a,b)

let s = *(a,c)

Show: s = t

The corresponding statistics for this problem are given in Table 2.8. This is a relatively hard problem,

in which the FIFO heuristics are slightly outperformed only by the SIZE heuristics.

The third problem involves Group Theory and is another cancellation law, namely b * a = b implies

a = id:

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics

FIFO
LIFO
SIZE
CONTEXT
DISTANCE

Steps

98
(*)
88

(*)
(*)

Rewrites

2735
(*)

2199
(*)
(*)

Productions

216
(*)
118
(*)
(*)

Subst-Merges

231220
(*)

200691
(*)
(*)

Table 2.8: Group Theory, Left Cancellation Law

Heuristics Steps Rewrites Productions Subst-Merges I
FIFO 21 244 40 5774
LIFO (*) (*) (*) (*)
SIZE 15 197 27 4808
CONTEXT (*) (*) (*) (*)
DISTANCE (*) (*) (*) (*)

Table 2.9: Group Theory, Left Cancellation Law

Let t = *(b,a)

Let

Let

Show

s = b

s -- t
a = id

a =id

The corresponding statistics for this problem are given in Table 2.9. This problem seems easier than

the previous cancellation law, but the comparative results on the different heuristics are the same.

Namely, SIZE slightly outperforms FIFO and every other strategy is much inferior.

The fourth problem involves Group Theory and is an exercise to prove that if a * (b * c) = id then

(b * c) *a= id:

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics Steps

FIFO
LIFO
SIZE
CONTEXT
DISTANCE

129
(*)
195
(*)
190

Rewrites Productions

4231
(*)

8514
(*)

7180

287
(*)

283
(*)
332

Subst-Merges

533975
(*)

1602446
(*)

1715077

Table 2.10: Group Theory, a * (b * c) = id =- (b * c) * a = id

Let s = *(a, *(b,c))

Let t = id

Let

let

u = *(*(b,c),a)

S t

Show: u = t

The corresponding statistics for this problem are given in Table 2.10. Here the FIFO heuristics are

better than any other heuristics.

The fifth problem, is to prove that the left identity and left inverse axioms alone, together with

associativity, imply the whole group theory. So we use the compact form of group theory as the

rewrite system.

Let s = a

Let t = *(a, id)

Show: s = t

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics Steps Rewrites Productions Subst-Merges I
FIFO 82 3004 176 402420
LIFO (*) (*) (*) (*)
SIZE 97 2489 116 178872
CONTEXT (*) (*) (*) (*)
DISTANCE 190 7180 332 1715077

Table 2.11: Group Theory, left identity and left inverse imply right identity

Heuristics Steps Rewrites Productions Subst-Merges I
FIFO 45 1024 106 65490
LIFO (*) (*) (*) (*)
SIZE 94 2372 113 162815
CONTEXT (*) (*) (*) (*)
DISTANCE 56 1761 106 121382

Table 2.12: Group Theory, left identity and left inverse imply right inverse

The statistics for this problem are given in Table 2.11, and again here the FIFO heuristics perform

best.

And the second part of the problem is:

Let s = id

Let t = *(a,inv(a))

Show: s = t

The statistics for this problem are given in Table 2.12, with similar results to the first part, except

that now the SIZE heuristics are worse than the DISTANCE heuristics.

A simple problem in group theory, with many constants:

Let s = *((a, b), *(*(c, *(inv(c),inv(b))),inv(a)))

Let t = id

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics Steps Rewrites Productions Subst-Merges I
FIFO 68 1286 114 68318
LIFO (*) (*) (*) (*)
SIZE 34 492 54 16900
CONTEXT (*) (*) (*) (*)
DISTANCE 8 57 22 817

Table 2.13: Group Theory, easy identity

Show: s = t

This problem is interesting because it can be proven by using only rules that contract terms, or

associativity. In other words, the rewrite rule x = *(*(inv(x), x), x) does not need to be used. The

statistics for this problem are given in Table 2.13. It is interesting to note here the superiority of

the DISTANCE heuristics. Below is the proof produced by running with these heuristics:

1. c * (inv(c) * inv(b)) -+ (c * inv(c)) * inv(b)

2. c * inv(c) -+ id

3. id * inv(b) -+ inv(b)

4. (a * b) * (inv(b) * inv(a)) -•4 ((a * b) * inv(b)) * inv(a)

5. (a * b) * inv(b) -+ a * (b * inv(b))

6. b * inv(b) •4 id

7. a * id -+ a

8. a * inv(a) -- id

The reason is that all the Rewrites needed for this proof are of zero weight according to the

Weightdistance function. It is safe to say that the DISTANCE heuristics is good for exactly

this type of problems.

A last problem about group theory, involves homomorphisms. For that reason, we add a new axiom

in the rewrite system of group theory:

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics j Steps Rewrites Productions Subst-Merges

FIFO 16 267 46 7859
LIFO (*) (*) (*) (*)
SIZE 23 303 31 9261
CONTEXT 10 120 18 2058
DISTANCE 14 158 22 3993

Table 2.14: Group Theory, a homomorphism carries identity to identity

Axiom for a homomorphism 0:

(.(?x,?y)) = *(O(?x),O(?y))

The problem is the following:

Let s = id

Let t = ¢(id)

Show s = t

Namely that a homomorphism carries identity to identity. The corresponding statistics are given in

Table 2.14. We included this example as a demonstration that the CONTEXT heuristics do in

fact outperform the other heuristics in some cases in the context of group theory, and in a problem

that is not artificially produced.

2.4.2 Problems involving Logical Expressions

In this section we present statistics from problems involving logical expressions, that we run using

our Boolean Formulas rewrite system. These problems are taken from various papers in which they

CHAPTER 2. QUEUE ORDERING HEURISTICS

I Heuristics Steps

FIFO
LIFO
SIZE
CONTEXT
DISTANCE

202
(*)
(*)
(*)

53

Rewrites Productions

2632
(*)
(*)
(*)

392

285
(*)
(*)
(*)
93

Subst-Merges

422622
(*)
(*)
(*)

19081

Table 2.15: Boolean Formulas, q -+ ((p V q) A (-p V q))

were used as benchmark problems. In this section we will drop the prefix notation on the terms.

In order to write these problems in a form readeble by our rewriting system, we used the following

transformation: a subformula of the form A -+ B is translated to the subformula -A V B.

The first problem is taken from [7].

in the rewriting system as follows:

Let

Let

It is to prove the identity q -+ ((pVq) A (-ppVq)). It is expressed

= -q V ((pV q) A (-p V q))

= TRUE

Show s = t

The statistics for this problem are displayed in Table 2.15. In this problem, DISTANCE heuristics

clearly outperform all other heuristics.

The next problem is taken from [7]. It is to prove the identity q -+ ((pVq) A (-ppVq)). The statistics

for this problem are displayed in Table 2.16. It is expressed in the rewriting system as follows:

Show ((pV q) A -q) A (-p A (-p V -q)) = FALSE

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics Steps Rewrites Productions Subst-Merges _

FIFO 188 3506 365 8581704
LIFO (*) (*) (*) (*)
SIZE 46 452 70 82445
CONTEXT (*) (*) (*) (*)
DISTANCE 102 1453 205 5619922

Table 2.16: Boolean formulas, q -+ ((pV q) A (-p V q))

Heuristics Steps Rewrites Productions Subst-Merges I
FIFO 9 34 22 314
LIFO 17 69 36 1469
SIZE 7 27 17 272
CONTEXT 17 65 34 1006
DISTANCE 6 24 16 210

Table 2.17: Boolean Formulas, (-nq -+ -,p) -+ (p -+ q)

There follow some problems taken from [11], which is a paper with benchmark problems for equality

theorem provers. In this paper, points are given to each problem for difficulty. The first problem

is to prove the identity (-q -+ -p) -+ (p -+ q). It is given 2 points of difficulty. The statistics are

found in Table 2.17, and it is expressed in the rewriter as follows:

Let s = (-pV q) V (aq V-'p)

Let t = TRUE

Shows = t

The next problem is "a biconditional verison of the most difficult theorem proved by the new logic

theorist (Newell, 1972)", found in [11]. It is to prove the identity (-,-,p -+ p) A (p -4 -'-p). It is

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics

FIFO
LIFO
SIZE
CONTEXT
DISTANCE

Steps

4
(*)

3
(*)

4

Rewrites

36
(*)
24
(*)
29

Productions Subst-Merges

707
(*)

272
(*)

387

Table 2.18: Boolean Formulas, (---p -+ p) A (p -+ --,p)

given 2 points of difficulty. The statistics for this problem are given in Table 2.18, and the SIZE

heuristics is the best for this problem. It is expressed as follows:

Let s = (-1---p V p) A (-p V -- p)

let t = TRUE

Show s = t

The next problem is "the hardest theorem proved by a breadth-first logic theorist (Siklossy et al.

1973)" [11]. It is to prove the identity -,(p -+ q) -+ (q -+ p). It is expressed as follows:

Let s = (-••- pV p) A (-p V -- p)

Let t = TRUE

Show s = t

This problem is given 1 point of difficulty. The statistics are given in Table 2.19. Notice here that

CHAPTER 2. QUEUE ORDERING HEURISTICS

I Heuristics

FIFO
LIFO
SIZE
CONTEXT
DISTANCE

Steps

62

(*)
17

145
13

Rewrites Productions

819
(*)

80
647

74

100

(*)
32

189
27

Subst-Merges

182495

(*)
1958

23111
2055

Table 2.19: Boolean Formulas, -'(p -+ q) -+ (q -+ p)

CONTEXT heuristics outperform FIFO heuristics in terms of time, although FIFO heuristics

find a shorter proof.

The next problem is given 2 points of difficulty in [11], and it is to prove the identity (-,p -+ q) -+

(-,q -+ p). It is expressed in the rewriter as follows:

let

Let

= -(-- pV q) V (--q V p)

= TRUE

Show s = t

The statistics for this problem are given in Table 2.20. We notice here that the SIZE and

DISTANCE heuristics coincide to find the same proof. The reason is that all steps in the proof

are of the same "distance" from the goal, and in the case of ties, DISTANCE heuristics is designed

to use SIZE heuristics.

The next problem is given 5 points of difficulty in [11]. It is to prove the identity ((p -+ q) -•4 p) -+ p.

It is expressed in the rewriter as follows:

let

Let

= -(-(-p V q) V p)Vp

= TRUE

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics J Steps Rewrites Productions Subst-Merges

FIFO 8 31 21 347
LIFO 19 77 39 1891
SIZE 7 28 17 280
CONTEXT 18 74 39 1702
DISTANCE 7 28 17 280

Table 2.20: Boolean Formulas, (-p -+ q) - (-q -+ p)

Heuristics Steps Rewrites Productions Subst-Merges_

FIFO 35 197 55 5620
LIFO (*) (*) (*) (*)
SIZE 23 115 38 2152
CONTEXT (*) (*) (*) (*)
DISTANCE 23 107 45 2608

Table 2.21: Boolean Formulas, ((p -+ q) -+ p) -+ p

Show s = t

The statistics for this problem are given in Table 2.21.

The next problem is to prove the identity (p -+ q) V (q -+ p). It is expressed in the rewriter as

follows:

s = (-p pVq) V (negqVp)

Let t = TRUE

Show s = t

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics

FIFO
LIFO
SIZE
CONTEXT
DISTANCE

Steps

60
(*)
10

145
10

Rewrites

847
(*)
54

636
50

Productions

98
(*)
21

179
22

Subst-Merges

222678
(*)

1445
21022

1502

Table 2.22: Boolean Formulas, (p -+ q) V (q -+ p)

The statistics for this problem are given in Table 2.22.

2.4.3 Associativity Commutativity

The last problem is from AC, where any strategy provably succeeds in a bounded number of steps.

This is true because all equivalence classes of ground terms are of bounded cardinality. The problem

is an example of an equivalence between two terms with five different constants each:

s = +(d,+(+(a,+(e,b)),c))

Let t = +(+(b,d), +(e, +(c,a)))

Show S = t

Strangely enough, the FIFO ordering outperforms all other heuristics.

CHAPTER 2. QUEUE ORDERING HEURISTICS

Heuristics Steps Rewrites Productions Subst-Merges

FIFO 46 443 78 3229
LIFO 1441 10914 1712 60918
SIZE 100 946 128 6357
CONTEXT 482 3189 655 9614
DISTANCE 102 987 130 6479

Table 2.23: Associativity Commutativity, on a term with five different constants

Conclusions

Implementing an equality theorem prover is a challenging programming task. Once the theorem

prover was implemented, we aimed at exploring its possibilities by considering various strategies

for ordering the queue of rewrites. We managed to solve several standard benchmark problems

from the literature of term rewriting, by using only general heuristics, that are not hardwired for

high performance in any particular equation theory. We ran a total of 17 benchmark problems.

Table 2.1 summarizes the results of this testing. It shows how many problems each heuristics solved,

depending on the number of steps that was put as an upper bound. Notice that LIFO solved an

additional problem in 1441 steps, and CONTEXT solved the same problem in 482 steps. But in

general we stopped the program in much fewer steps, because the time it takes to complete step n

increases with n, rendering testing cumbersome.

A few remarks on the statistics: The three heuristics that perform best, are the FIFO, DISTANCE,

and SIZE heuristics. In many problems, especially the "easy" problems, DISTANCE or SIZE

are best. Depending on the problem, they outperform FIFO by a considerable factor, and find

nearly "shortest" proofs to the equation theorem. But FIFO seems to be the most robust choice

for harder problems.

One first thing to point out, is that the heuristics that performed best, were those that satisfied

fairness. Although there are problems for which CONTEXT, which is not fair, performs better

than any other heuristics, it is safe to say that in general all fair strategies outperformed all the

non-fair strategies.

Intuitively, one might expect that the best heuristics would be DISTANCE. This heuristics em-

ploys a notion of "distance" of a rewrite from the goal, depending on the context and size of the

lhs of the rewrite. However, the results show that FIFO is more robust. A closer look on the par-

ticular examples where DISTANCE performs best, or worst, gives an explanation: DISTANCE

performed best in the easy identity of group theory, namely to prove that a b c c- 1 * b- 1 * a- 1

equals identity. This is an obvious equality for humans, but CONTEXT and LIFO failed, whereas

FIFO required 68 nontrivial union operations. DISTANCE on the other hand, found a nearly

shortest proof. The reason is that distance performs first all the rewrites of subterms of the goal,

and of terms that are proven to be equal to subterms of the goal, and no bigger than these subterms.

Thus it is good in performing manipulations of the terms that are easy for us to see automatically.

DISTANCE is closer than other heuristics to our notion of an obvious identity. On the other

hand, DISTANCE failed in the left cancellation identities. The reason is that these proofs require

"seeing" some auxiliary terms. Specifically, let's have a look at my proof of a * b = a * c = b = c:

a * b = a * c =

a- 1 * (a * b)= a- 1 * (a * c)

(a - 1 * a) * b -= (a - 1 * a) * c =

id* b = id* c=

b = c

This proof requires to "see" (i.e. intern) the term a- 1 * (a * b). DISTANCE will give the lowest

priority to such an interning. Specifically, the interning requires to see that id = a * a- 1 (or,

translated in the group theory rewrite system, that a = a * (a * a- 1)). But a is not a subterm of the

goal, and so this will never take place because the corresponding rewrites will always have lowest

priority. So, in this proof, and all similar proofs that require the introduction of auxiliary terms

that are not subterms of the goal, DISTANCE diverges. Future work would involve modification

of the notion of goal, and of the notion of fairness for a grammar rewriting weight heuristics, to

-accommodate for this deficiency. Still, as such DISTANCE works very well for problems where all

the relevant terms are subterms of the terms in the goal, and it had the best performance in 7/17

of the benchmark problems. SIZE had the best performance in 5/17 of the problems (one tie with

DISTANCE), FIFO in 4/17, and CONTEXT in 1/17.

Concluding, we would like to point out that it is still an open problem to determine the power

of Grammar Rewriting when used with other heuristic strategies besides the ones we defined, and

when used in the more general context of induction theorem proving. Also, it is an open problem

to determine the performance of Grammar Rewriting based special purpose theorem provers, for

example for logical expressions. Future work in this area could go to either of these directions.

Appendix 1: The implementation

For the implementation of the rewriter we used the programming language C + +, Classes in C + +

were used to represent the objects of our system. In particular, we defined the following classes, for

the corresponding mathematical objects. These structures will be described in more detail in the

next sections:

* Typed List denoted by (Objl, ..., Obj,) where for 1 < i < n Obji is an object of the type of

the list. If n = 0, then the list is denoted by either () or NIL.

* Symbol denoted by its name, which is a character string. If it is a variable, then '?' is added

before its name.

* Term denoted by f (subterml, ... , subtermn) where f is a function symbol and for 1 < i < n

subtermi is a term. The parentheses can be omitted, if n = 0.

* Nonterminal denoted by X, where X is a capital letter.

* Production denoted by X -+ f(Y 1, ..., Yn) where X and Yi for 1 < i < n are nonterminals,

and f is a function symbol.

* Pattern denoted by f(subpatternl, ... , subpatternn) where f is a symbol, and if f is a variable

then n = 0, else n > 0 and for 1 < i < n subpatterni is a pattern.

* Match denoted by < X . p. slist > where X is a nonterminal, p is a pattern, and slist is a

list of substitutions.

* Substitution denoted by {[X 1] ... [Xn]} where n is the number of variables used in the

problem instance, and Xi for 1 < i < n is either a nonterminal, or *, so that the variable i is

carried to nonterminal Xi, or nowhere in the case of *.

* Rewrite denoted by t -+ s where s, t are terms. Alternatively, it is denoted as rewrite(X, L -+

R, o) where X is a nonterminal, L, R are patterns, L -+ R is a rewrite rule, a is a substitution,

and X matches L under a.

* Heap

* Grammar

Symbols, Terms, and Patterns

A Symbol is a tagged character string. It consists of a name, which is a character string, and a

tag, which can be one of { VARIABLE, FUNCTION SYMBOL }. Symbols are stored in a hash

table, so that every symbol exists in only one copy in the memory. The hash table of symbols is

an array of linked lists of symbols, so that its size can be assumed to be unbounded, and its access

time can be assumed to be constant on average.

A Term is either:

* A leaf term that consists of a symbol of tag FUNCTION SYMBOL and a NIL list of

subterms. This is the way a constant is represented.

* A function application that consists of a symbol of tag FUNCTION SYMBOL and a

non-empty list of subterms.

A term is represented as follows: it contains pointer to a symbol the prefix, an array of pointers

to subterms, and an integer size denoting the size of the subterm array. It also contains a pointer

to a Pattern, which is NULL if the term does not match any pattern, and points to the pattern

that the term matches, it there is one. In that way, tha pattern that a particular term matches

to, can be accessed in constant time. A restriction for terms is that there is exactly one term that

points to a particular function symbol. Hence, the arity (number of sybterms) of every symbol is

uniquely defined. Terms are stored in a hash table of terms, that is an array of linked lists of terms,

with unbounded size and constant average access time. Every term exists in only one copy in the

memory.

A Pattern is either:

* A leaf pattern that consists of a symbol of arbitrary tag, and a NIL list of subterms. So,

this is either a constant pattern, or a variable pattern.

* A function application pattern that consists of a symbol of tag FUNCTION SYMBOL

and a non-empty list of subpatterns.

A pattern is represented as follows: it contains a pointer to a symbol, an array of pointers to

subpatterns, and an integer size denoting the size of the subpattern array. it also contains a pointer

to a list of terms, that contains the terms that match this particular pattern. A restriction for

patterns is that there is at most one pattern that points to a particular variable or function symbol.

The arity of the function symbol for all patterns except variables, is required to be the same as the

arity of the corresponding term that points to the same function symbol. Patterns are stored in a

hash table of patterns, that is an array of linked lists of patterns, with unbounded size and constant

average access time. Every pattern exists in only one copy in the memory.

A term t = f(subterml, ..., subterm,) matches a pattern p = g(subpatternl, ... , subpatternn) if

the following hold:

* n = 0, and either f = g or g is a symbol of tag VARIABLE, or

* n > 0, and f = g, and for 1 < i < n subtermimatchessubpatterni

We say that a variable ?x appears in a pattern p = f(qi, ..., qn), if:

* f =?x, or

* for some i s.t. 1 < i < n, ?x appears in qi

Now we are ready to define the language that we use to write a problem statement in a form readable

by our system.

Expressing a Problem Statement

A simple language for expressing a problem statement is defined. The code written in this language

should be contained in a file devoted to the definition of this problem. The language consists of terms,

that are constructed using the following special symbols: NEW - GRAMMAR, CALL - UNION,

INTERN, REWRITE - RULES, EQUAL, PROVE - EQUAL, CONTEXT- HEURISTICS,

SIZE - HEURISTICS.

A problem statement is written by means of the following grammar:

< problem - statement > ::= < new - grammar > < listof - commands > < problem >

< new - grammar > ::= NEW-GRAMMAR(< grammar - name >, < listof - equalities >, <

heuristics >)

< listof - commands > ::= NIL |

< assumption > < listof - commands> I

< binding > < listov - commands >

< assumption> ::= CALL-UNION(< term >1, < term >2)

< binding > ::= INTERN(< grammar - name >, < term >1, < term >2) where < grammar -

name > appears in a previous < problem - statement > and < term >2 is a constant.

< listof - equalities > ::= NIL I < equality >, < listof - equalities >

< equality > ::= EQUAL(< patterni >, < pattern2 >) where every variable that appears in

< pattern2 > appears also in < patterni >

< heuristics > ::= CONTEXT-HEURISTICS I SIZE-HEURISTICS

< problem > ::= PROVE-EQUAL(< term >1, < term >2) where < term >1 and < term >2 are

constants

where < grammar - name > is a symbol, < term >j is a term for any i, and < pattern >j is a

pattern for any i. Under these definitions, it is clear that < problem - statement > produces a

sequence of terms, where each of < new - grammar >, assumption, < equality >, < heuristics >,

and < problem > produce terms. in the < problem > production, < term >j for i = 1, 2 is assumed

to be "bound" to a term, by a previous INTERN command.

We give an example below, to illustrate the use of the above language:

Say we want to express a problem in group theory, and in particular to prove that for a group G, if

for all x E G x 2 = identity, then G is abelian.

The axioms of group theory together with x2 = x are the following, written in the form of equalities:

(here * denotes group composition, id denotes the identity element, and inv denotes the inverse

function).

x*(y*z) = (x*y)*z

id*x = x

x*id = x

x * inv(x) = x

inv(x) * x = x

x*x = id

The above axiom set can be expressed by a rewrite system using our language, as follows:

*(?x, *(?y, ?z))
(,(?x, ?y), ?z)

(id, ?x)

(?x, id)
(inv(?x), ?x)

(?x, inv(?x))
(?x,?x)

?x

NEW-GRAMMAR(

((?x, ?y), ?z)
*(?x, *(?y, ?z))
?X

?X

id

id

id

*(?x, *(?x, ?x))

Table 2.24: Groups of elements of order 2

groups - of - elts - of - order - 2,

EQUAL(,(?x, *(?y, ?z)), *(*(?x, ?y), ?z)),

EQUAL(*((?x, ?y), ?z), *(?x, *(?y, ?z))),

EQUAL(*(?x, id), ?x),

EQUAL(*(id, ?x), ?x),

EQUAL(*(?x, inv(?x)), id),

EQUAL(*(inv(?x), ?x), id),

EQUAL(* (?x, ?x), id),

EQUAL(?x, *(?x, *(?x, ?x))),

CONTEXT-HEURISTICS)

Some notational conventions are useful. From now on, instead of expressing a rewrite system in the

above machine-readable form, we will express it as a sequence of ordered equalities, where the left-

hand side rewrites to the right-hand side. According to this convention, the above rewrite system

will be expressed as in Table 2.24:

Resuming to our demonstration of how to express the problem statement:

Our goal is to prove that the above axioms imply that the commutative law holds in the group. If

we show that the commutative law holds for two generic (i.e. arbitrary) constants in the group,

then we are done. We express that with the three commands below:

INTERN(groups-of-elts-of-order-2, *(a, b), t)

INTERN(groups-of-elts-of-order-2, *(b, a), s)

PROVE-EQUAL(groups-of-elts-of-order-2, t, s)

Nonterminals, Productions, Substitutions, and Matches

A Nonterminal is identified with an integer, which is its identity number. It is represented as

follows: It contains its identity number, a list of pointers to all the productions that come from

it, a list of pointers to all the productions in whose right-hand side it appears, and a hash table

of all the matches that apply to it. For the purposes of the Heap heuristics, it also contains a set

of integer weights, in particular two integer weights in our implementation. Those are the size,

and the context - size of it. For the purpose of expressing a grammar and the associated rewrites

in a convenient readable way, a nonterminal also contains a pointer to the minimal production

coming from it. The quantities size, context - size and minimal production of a nonterminal will

be defined in the following chapter, on the rewrite queue ordering heuristics. A nonterminal also

contains a pointer to a nonterminal, the FIND pointer. Denote the FIND pointer nonterminal

of a nonterminal X by X -+ FIND. When two nonterminals are merged into one by a rewriting

that takes place, then one of the two nonterminals "dies", and its FIND pointer points to the

nonterminal that "survives". Thus, a nonterminal is alive when its FIND pointer is NULL, and

dead otherwise. Because a nonterminal contains a hash table of all the matches that apply to it, we

can find in constant time all the matches of a nonterminal to a specific pattern.

We say that a nonterminal X produces a term t = f(sx, ..., sn) iff:

* n = 0 and X -+ f () is a production of the grammar, or

* n > 0 and 3 a production X -+ f(Y 1,..., Yn) s.t. Vi : 1 < i < n, Yi produces si.

A Production X ~ f(Y 1, ..., Yn) is represented as follows: It contains a pointer to the nonterminal

X, a pointer to the function symbol f, an array of pointers to the nonterminals Yi for 1 < i < n,

and an integer size that equals n. Productions are kept in a hash table that is an array of lists

of productions, so that a particular production can be accessed in average in constant time. A

production also contains a tag LIFE that is TRUE if the production is alive, and FALSE if the

production is dead. A production is dead if X is dead, or for some 1 < i < n Yj is dead.

A Substitution o is an ordered set of nonterminal values, where a nonterminal value is either a

nonterminal, or NIL. Thus a = {[X]...[Xn]}. The length of a substitution is the integer n. In a

particular grammar, all the substitutions have the same length, that equals the number of variables

that appear in the0 < problem - statement >. A substitution is represented as follows: it contains

its length, plus an array of pointers to nonterminals, the bindings array. The substitutions are held

in a hash table of substitutions. This hash table is represented as an array of lists of substitutions,

so that we can assume that it has unbounded size and average constant access time.

A substitution a = {[X 1]...[Xn]} is valid, if for all 1 < i < n Xi is alive. Two substitutions

a = {[XI]...[Xn]} and T = {[Y1]...[Yn]} are equal a = r, iff for all 1 < i < n, Xi -4 FIND = NULL

and Xi = Yi, or Xi -+ FIND = Yi -+ FIND $ NULL. A substitution a = {[X 1]...[Xn]} is smaller

than a substitution r = {[Y1)...[Yn]}, denoted by a < tau iff for all 1 < i < n, the nonterminal

value [Xi] is < the nonterminal value [Y - i), meaning that either [Xi] = NULL, or Xi -4 FIND

= NULL and X, = Y,, or X, -+ FIND = Y - FIND j NULL.

A Match p = < X . p . (a, ..., an) > is represented as follows: it contains a pointer to the

nonterminal X, a pointer to the pattern p, and a list of pointers to the substitutions ai for 1 < i < n.

Thus, a match object in the implementation, contains arbitrarily many matches as defined in the

previous chapter, one for each substitution ai that is different on some relevant variable. The

matches of a nonterminal X are kept in a hash table specific to the nonterminal X. This hash

table is implemented as an array of lists of pointers to matches, so that it can be assumed to have

unbounded size and on average constant access time.

Monitoring the rewriter

We defined a simple language for interactively monitoring the rewriting process after a problem

has been specified. In this section we will briefly describe this language. The special symbols of

this language are: MATCHES- OF, NONTERMINALS, PRODUCTIONS, VARIABLES,

PATTERNS, REWRITES, STOP, CLEANUP.

The program is run as follows: an argument file that contains the problem statement is given to

the executable. After reading the problem statement, the program stops and waits for a command.

The special command STOP, followed by an integer n, runs the rewriter till success, or till the

rewrite queue is empty, or till n proper nonterminal merges have occurred. Then it resumes to the

interactive mode. The remaining of the commands are explained below:

. The command VARIABLES prints all the variables of the problem statement.

* The command PATTERNS prints all the patterns of the problem statement.

* The command NONTERMINALS prints all the alive nonterminals of the grammar so far,

each together with the minimal term that is produced by the grammar, starting at this non-

terminal.

* The command PRODUCTIONS prints all the alive productions of the grammar so far.

* The command MATCHES - OF(X) where X is a nonterminal in the grammar, prints all

the matches of this nonterminal.

* The command REWRITES prints the rewrite queue, as it is ordered at this moment.

* The command CLEANUP exists for optimization purposes, and cleans up the grammar by

removing all dead substitutions, nonterminals, and matches. Such a cleanup is performed by

default periodically at a prespecified rate.

prompt> rewriter groups-of-elts-of-order-2

reading problem statement ... done

> STOP

>5

1. a = *(a, *(a,a))

2. b = *(b, *(b,b))

3. * (b, a) 4 ,(,(b, a), (,(b, a), (b, a)))

4. *(a, b) = ,(,(a, b), ,(,(a, b), ,(a, b)))
5. *(a, a) id

:> NONTERMINALS

A4 -+ a

B -+ b

C -- *(a,b)

D -+ *(b,a)

E -+ id

G -+ *(b,b)

I -+ *(*(b,a),(b,a))

K -- *(,(a, b), *(a, b))

> PRODUCTIONS

A - ao()
A -+ *(A,E)

B - bO()
B -+ *(B,G)

C - *(A,B)

C -+ *(C,K)

D -+ *(B,A)

D - *(D,I)

E - *(A,A)

E * id

G * *(B,B)

I ~ *(D,D)

K - *(C,C)

> MATCHES-OF(A)

<A * (?x,*(?y,?z)) ({[A][A][A]}) >

<A ?x . ({[][][A]}) >

<A . *(?y, ?z) ({[E][A][]}) >

<A ?y . ({[*][A][*]}) >

<A . *(?x,*(?x,?x)) .({[,][,][A]})>

<A . *(?x,id) .({[,][,][A]})>

<A . ?z . ({[A][*][*]}) >

<A . * (*(?x,?y),?z) .({[E][E][A]})>

<A . *(?x,?y) ({[*][E][A]}) >

> CLEANUP

done cleaning up

> STOP

And so forth. The above proof succeeds within 44 rewrite steps.

Rewrites, the Heap, and the Grammar

A Rewrite r = rewrite(X, L -+ R, a) is represented as follows: It contains a pointer to the non-

terminal X, a pointer to the pattern L and one to th pattern R, and a pointer to the substitution

a. It contains an integer idno which is its "ID number", indicating how many rewrites were con-

structed before r. It also contains the integers Keydistance, Keycontext, and Keysize, that are used

in heuristics that we are going to explain later. Rewrites are held in a heap. A heap for rewrites is

an array of pointers to rewrites. It contains an integer length that indicates the number of rewrites

in the heap, and has a maximum size LMAX 3. It also contains a tag HEURISTIC that indicates

the heuristics chosen. It is a binary heap, whereby each node has a parent and two children. This

data structure is described in detail in [6], and we are basing our implementation in the description

given there. Below we explain exactly how this data structure works.

The array of rewrites, call it A, is arranged as follows: The largest element is in position A[1], and

for each 1 < i < length, the children of A[i] are A[2i] and A[2i + 1]. The following invariant holds

in a binary heap: the two children of a node have smaller key than their parent.

* Insert taking one argument, namely the rewrite r to be inserted.

* Extract-Max that extracts the element with the maximum key.

The invariant holds in the beginning and in the end of each of the two interface functions. There are

also some internal functions, that are used as The heap supports the following interface functions:

building blocks for the implementation of the external functions. These internal functions are:

* parent, taking one argument, an integer i, and returning floor(i/2).

* left, right, taking one argument, i, and returning 2i and 2i + 1 respectively.

* key, taking one argument, i, and returning the key of A[i] according to the current heuristics.

* larger-key, taking i, j as arguments, and returning TRUE if key(i) <_ key(j) and FALSE

otherwise.

* exchange, taking i, j as arguments, and exchanging the positions of A[i] and A[j].

* heapify, taking one argument, i, and ensuring the heap invariant for the subtree that starts

at position A[i].

3 Large enough for our purposes.

* tide-up, taking the grammar class object as an argument, and recomputing all the keys of

the rewrites, to be updated according to the grammar. This is called once after a rewrite is

performed, to keep the keys always updated.

Below are the algorithms for performing the nontrivial of the above functions, namely Insert, Extract-

Max, and heapify:

* Insert(r)

1. Increase the length by 1

2. Put r in the end of the heap

3. Say r is A[i]. While i > 1 and key(parent(i)) > key(i), do

(a) exchange(parent(i), i)

(b) i = parent(i)

* Extract-Max

1. exchange(1, length)

2. Decrease the length by 1

3. heapify(1)

4. Return the old A[1]

* heapify(i)

1. Let Ki be the key of A[i], K1 be the key of A[left(i)], and Kr be the key of A[right(i)].

2. Let Klargest = maxKi, K1 , Kr, and largest be the corresponding index.

3. If Klargest i Ks then do

(a) exchange(i, largest)

(b) heapi fy(largest)

The running time of heapify is O(log(n)), where n is the size of the array A.

For a more detailed discussion on the heap data structure, we refer to [6], from which book we got

the algorithm. Below is the algorithm for larger-key, which determines which of the two keys key(i)

and key(j) is larger. This is done according to the current heuristics. A tag HEURISTICS is held

in the heap, which determines the current heuristics. Then, larger-key operates as follows:

* larger-key(i, j)

- Switch according to HEURISTICS:

1. Case HEURISTICS = FIFO

(a) If index(A[iI) < index(A[j]) return TRUE

(b) else return FALSE

2. Case HEURISTICS = LIFO

(a) If index(A[i]) > index(A[j]) return TRUE

(b) else return FALSE

3. Case HEURISTICS = SIZE

(a) If Keysize(A[i]) < Keysize(A[j]) return TRUE

(b) else if Keysize(A[j]) < Keystize(A[i]) return FALSE

(c) else use FIFO heuristics

4. Case HEURISTICS = DISTANCE

(a) If Keydistance(A[i]) < Keydistance(A[j]) return TRUE

(b) else if Keydistance(AUj]) < Keydistance(A[i]) return FALSE

(c) else use SIZE heuristics

5. Case HEURISTICS = CONTEXT

(a) If Keycontext(A[i]) < Keycontext(A[j]) return TRUE

(b) else if Keycontext(A[j]) < Keycontext(A[i]) return FALSE

(c) else use DISTANCE heuristics

The Grammar class, is a storage class, that contains in hash tables all the nonterminals, produc-

tions, and matches of a particular grammar 4 . Then, on these objects, the algorithm given in Chapter

1 is performed, using the queue heuristics described in Chapter 3, and implemented as explained

above.

4As we said before, the matches are contained in hash tables inside their nonterminals, and not actually in the
grammar class.

Bibliography

[1] Franz Baader. Rewrite systems for varieties of semigroups. CADE, 10:381-395, 1990.

[2] Robert S. Boyer and Struther Moore. A computational logic. ACM Monograph Series, Academic

Press, 1979.

[3] L. Bachmair N. Dershowitz and D. Plaisted. Completion without failure. Proc. Col on Resolu-

tion of Equations in Algegraic Structures, 1987.

[4] J. Hsaing and M. Rusinowitch. On word problems in equational theories. ICALP-87, LCNS

267, pages 54-71, 1987.

[5] Leslie P. JChew. An improved algorithm for computing with equations. FOCS80, IEEE Com-

puter Society Press, pages 108-117, 1980.

[6] Thomas H. Cormen Charles E. Leiserson and Ronald L. Rivest. Introduction to Algorithms.

MIT Press, Cambridge MA, 1990.

[7] Giancarlo Aanna Maria Paola Bonacina. Kblab: an equational theorem prover for the macin-

tosh. CADE, pages 548-550, 1989.

[8] Ursula Martin and Tobias Nipkow. Ordered rewriting and confluence. CADE, 10:365-380, 1990.

[9] David McAllester. Grammar rewriting. CADE, 11:124-137, 1992.

[10] Greg Nelson and Derec Oppen. Fast decision procedures based on congruence closure. JACM,

27(2):356-395, 1980.

[11] Francis Jeffry Pelletier. Seventy-five problems for testing automatic theorem provers. JACM,

2:191-216, 1986.

[12] Gerald E. Peterson. Complete sets of reductions with constraints. CADE, 10:381-395, 1990.

