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ABSTRACT

Chapter 1
The synthesis and reactivity of [N3N]Ta=E complexes is presented where E is a la, l or

la, 21t donor and [N3N] 3- = [(Me3SiNCH 2CH2)3N]3-. [N3N]Ta=PPh reacts with excess lithium
metal in tetrahydrofuran to give "[N3N]Ta=PLi" which reacts with RX at -35 'C to afford the
phosphinidene complexes, [N3N]Ta=PR (R = Me, n-Bu, SiMe3 , SiMe2Ph). [N3N]TaCl 2 reacts
with two equivalents of LiN(H)R (R = H, CMe3, Ph) to produce imido complexes, [N3N]Ta=NR,
and with two equivalents of benzylmagnesium chloride or trimethylsilylmethyllithium to afford the
alkylidene complexes, [N3N]Ta=CHR. The ethylene complex, [N3N]Ta(rI 2-C2H4), is formed
quantitatively upon adding two equivalents of ethylmagnesium chloride to [N3N]TaCl2. An X-ray
structure of [N3N]Ta(Me)Et, a precursor to [N3N]Ta(Tl 2 -C2H4) in a first order reaction, shows it
to be a six coordinate species with two alkyl ligands in crowded apical coordination sites.
[N3N]Ta(Tl 2-C2H4) decomposes in a first order manner to afford a complex in which a C-N bond
in the tren backbone has been cleaved. Alkylation of [N3N]TaCl 2 with two equivalents of
RCH2CH 2MgX (R = CH 3 , CH2 CH3, CH(CH 3)2 , C(CH 3)3; X = Cl or Br) produces a mixture of
alkylidene and decomposition products. [N3N]TaCl 2 reacts with two equivalents of
vinylmagnesium bromide to afford [N3N]Ta(Tj2-C2H2), which has been characterized by an X-ray
study. An analogous benzyne complex can be prepared by refluxing [N3N]TaCI 2 with two
equivalents of phenyllithium in toluene for 1 day. [N3N]Ta(Me)Ph can be s nthesized and shown
to convert into [N3N]Ta(1T2-C6 H4) in a first order reaction. [N3N]Ta(1R -C2H4 ) reacts with a
catalytic amount of phenylphosphine to afford [N3N]Ta=CHMe, while reactions with ammonia,
aniline, or pentafluoroaniline yield [N3N]Ta=NR complexes. In contrast, addition of an excess of
Me3 SiAsH2 to [N3N]Ta(Tl 2-C2H4) affords [N3N]Ta=CHMe immediately, and then over a period
of days, what is proposed to be [N3N]Ta=AsSiMe 3 . [N3N]Ta(lT2-C6H4) reacts with ArNH2 (Ar
= Ph, C6F5) to give [N3N]Ta=NAr complexes and PhAsH2 to afford [N3N]Ta=AsPh.

Chapter 2
The synthesis and reactivity of [N3N*]Ta=E complexes is described where E is a la, 1It or

la, 2r donor and [N3N*] 3- = [(Et3SiNCH 2CH 2 )3N]3-. Tris(2-aminoethyl)amine (tren) reacts
successively with three equivalents of n-butyllithium and three equivalents of triethylchlorosilane in
tetrahydrofuran to form H3[N 3N*] quantitatively. Deprotonation of H3[N 3N*] with three
equivalents of n-butyllithium generates Li3 [N3N*] in situ, which is then treated with TaCI5 to
afford [N3N*]TaCl 2. [N3 N*]TaMe2 is formed quantitatively upon adding two equivalents of
mnethylmagnesium chloride to [N3N*]TaCl 2 . Alkylation of [N3N*]TaCl 2 with two equivalents of
ethylmagnesium chloride yields [N3N*]Ta(12-C2H4) along with -10% [N3N*]Ta=CHMe, while
addition of two equivalents of alkyllithium or Grignard reagent RCH2 M (R = CH 2CH 3 ,
CH 2 CH 2 CH 3, CH 2 CH(CH 3 )2 , Ph, SiMe3; M = Li, MgCl or MgBr) yields the alkylidene
complexes, [N3N*]Ta=CHR. [N3N*]TaMe 2 decomposes upon thermolysis to afford
MeTa[N(SiEt 3)(CH=CH 2)][N(CH 2CH 2NSiEt3 )2], while [N3N*]Ta(l12-C 2H4) decomposes in a



first order manner (k = 4.23 (4) x 10- 5 s- 1 at 70 'C) to produce
EtTa[N(SiEt 3)(CH=CH2 )][N(CH 2CH2NSiEt3)2]. An X-ray structure of the latter demonstrates it
to be a distorted trigonal bipyramid in which a C-N bond in the original tren backbone has been
cleaved. An equimolar mixture of [N3N*]Ta(l2-C 2H2) and { [N3N*]Ta=CHCH 2 12 is formed
upon treating [N3N*]TaCl 2 with two equivalents of vinylmagnesium bromide in refluxing toluene.
An X-ray structure of { [N3N*]Ta=CHCH 2 12 shows it to contain two distorted trigonal
bipyramidal [N3N*]Ta units bridged by a four carbon "dialkylidene" unit in which the alkylidenes
are severely "distorted" (average Z Ta=C-C = 1730 ). These results are compared and contrasted
with those obtained in analogous [N(CH 2CH2NSiMe3)3]3- tantalum chemistry.

Chapter 3
The synthesis and reactivity of [N3N]NbX complexes is presented where X is a nitrogen-

or oxygen-based donor and [N3N] 3- = [(Me 3SiNCH 2 CH 2 )3N] 3-. The reactions of NbCl5 ,
NbCl 4 (THF)2 , and NbCl 3(dme) with Li3 [N3N] in a variety of solvents do not produce an
identifiable [N3N]NbCln (n = 0, 1, 2) species. NbOCl 3 (THF)2 and Nb(NSiMe 3)C13 (py)2 react
with one equivalent of Li 3 [N 3N]*THF 2 to afford [N3N]Nb=O and [N3N]Nb=NSiMe 3 ,
respectively, in good yields. [N3N]Nb=O reacts with triethylaluminum to form the base adduct
[N3N]Nb=O*A1Et 3 as judged by 1H, 13C, and 27A1 NMR. The oxo species reacts quantitatively
with Me 3 SiX (X = OTf, I) to prepare [N3 N]NbOSiMe 3 +X - and MeOTf to afford
[N3N]NbOMe+OTf -. These du salts are reduced in high yield by sodium amalgam to provide d1

[N 3N]NbOR (R = SiMe 3 , Me). The reaction of [N3 N]NbOSiMe 3 with SiCl 4 provides
[N3N]NbOSiCl 3 in moderate yield.

Thesis Supervisor: Dr. Richard R. Schrock
Title: Frederick G. Keyes Professor of Chemistry
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CHAPTER 1

Synthetic and Mechanistic Investigations of Trimethylsilyl-Substituted

Triamidoamine Complexes of Tantalum

Much of the material covered in this chapter has appeared in print:

Freundlich, J. S., Schrock, R. R., Cummins, C. C., Davis, W. M. J. Am. Chem. Soc.

1994, 116, 6476.

Freundlich, J. S., Schrock, R. R., Davis, W. M. J. Am. Chem. Soc. 1996, 118, 3643.



Introduction

The use of tris(2-aminoethyl)amine (tren) as a tetradentate trianionic ligand was first

realized by Verkade and co-workers for group 14 elements. 1 Workers in our laboratories and

Verkade's anticipated that tren-based complexes of the early transition metals would be feasible

synthetic targets because the ligands offer three amide nitrogen donors in addition to a tertiary

amine to bind to the Lewis acidic metal center. Additionally, we believed the introduction of bulky

amide nitrogen substituents such as silyl groups (usually SiMe3 or Si(t-Bu)Me 2) would confer

kinetic stability to these species by producing a sterically-protected apical coordination site. With

these design criteria in mind, we initiated a study of tren-based triamidoamine metal complexes

utilizing the following ligands: [N3N] 3- = [(Me 3 SiNCH 2 CH 2 )3N] 3- and [N 3N'] 3 - = [(t-

BuMe2SiNCH 2CH 2)3N]3-.

Our initial efforts resulted in the preparation of some rarely observed types of complexes

and encouraged us that these tren-based ligands conferred considerable stability to their early and

middle transition metal centers. 2-4 The first early transition metal trigonal monopyramidal

complexes [N3N']M were synthesized 3 in addition to a Ti(IV) hydride2 and a vanadium parent

imide.4 The key features of these complexes included the sterically protected "pocket" formed by

the bulky silyl groups and the presence of one a-type and two orthogonal 7 metal orbitals directed

toward the apical coordination site. This orbital arrangement is ideally suited for forming do

transition metal complexes that contain a triple bond, or pseudo-triple bond, between the metal and

the ligand in the apical coordination site, a double and a single bond, or (sterically least feasibly)

three single bonds. In view of tantalum's ability to form double and triple bonds with main group

elements, 5 we chose to explore the chemistry of [N3N]Ta complexes associated with multiple Ta-

ligand bonds. We found that [N3N]TaCl 2 reacts with two equivalents of a lithium phosphide

LiP(H)R (R = Ph, Cy, t-Bu) to afford one equivalent of RPH2 and the first do terminal linear

phosphinidenes [N3N]Ta=PR, in moderate to high yields.6 An X-ray crystal structure of

[N3N]Ta=PCy revealed a Ta-P linkage of 2.145 A, which is short in comparison to the sum of the

atomic radii of Ta and P (2.44 A).7 Given the successful preparation of complexes featuring a



pseudo-triple bond between Ta and P, we have since directed efforts to synthesize a wide variety

of organometallic Ta complexes containing a- and it-bonded ligands in the apical coordination site.

Results

Synthesis of Tantalum Phosphinidene Complexes.

The successful syntheses of [N3N]M=P (M = Mo, W)8 piqued our interest in preparing a

compound containing an unsubstituted tantalum-phosphorus triple bond, namely { [N3N]Ta-EP }-.

[N3N]Ta=PPh reacts with excess lithium metal in tetrahydrofuran to give a species whose room

temperature 3 1P NMR spectrum reveals a resonance at 575 ppm (AV1/2 = 600 Hz) and the 1H and
13C NMR spectra are consistent with a pseudo-C3 symmetric ligand-containing complex. The

lithium-induced cleavage of a P-Ph bond in organophosphorus systems is well-precedented to

afford P-Li species.9-11 Since these lithium phosphides are reported to react with electrophiles to

form P-C bonds, we were interested in exploring the reactivity of our proposed anionic phosphide.

{ [N3N]Ta-P }- reacts at -35 'C with alkyl and silyl halides to yield the phosphinidene complexes,

[N3N]Ta=PR (R = Me, n-Bu, SiMe3, SiMe2Ph), la - d, according to 31P NMR data (eq 1). The

yields of the phosphinidene complexes, as determined by proton NMR integration versus an

internal standard, are listed in Table 1.1. The yields are modest, and isolated yields are poor (10 -

20%), as a consequence of the extreme solubility of the phosphinidene complexes in common

organic solvents. The formulations of la - d are confirmed by reactions with pivaldehyde to yield

[N3N]Ta=O and the corresponding trans-phosphaalkenes, which were identified by 1H and 3 1p

NMR. This Wittig-like reaction is known for several isolated tantalum phosphinidene complexes. 6

We have also prepared complex lb as shown in eq 2, although the isolated yield is again low

(10%) due to its high solubility in common organic solvents.



[N3N]Ta=PPh
1.5 equiv Li, THF

2. 3 equiv RX, THF, -35 'C
[N3N]Ta=PR + PhR + 2 LiX

R = Me (la), n-Bu (lb),
SiMe 3 (lc), SiMe2Ph (ld)

Table 1.1. 31p NMR Data and Yields for Phosphinidene Complexes.

RX

MelI

n-BuBr

Me3SiC1l

PhMe 2SiCIl

Product

la

lb

1c

ld

31p

157

186

212b

203c

Yielda (%)

33

68

58

77

a Determined via 1H NMR integration versus a (Me3Si)20 internal standard. b AVl/2 = 3600 Hz

(23 'C), 400 Hz (-30 'C), 300 Hz (-60 'C). c Av1/ 2 
= 3600 Hz (23 'C), 800 Hz (-30 'C), 400 Hz

(-60 oC).

[N3N]TaC12  2 LiP(H)n-Bu [N3N]Ta=P-n-Bu + n-BuPH 2
Et20,-35 oC lb

(2)

It is puzzling that the phosphorus resonances for the tantalum phosphinidenes are broad,

especially those in 1c and ld. Alkyl- and arylphosphinidenes exhibit a 3 1P resonance with a half-

height width of 100 - 200 Hz at 25 oC, while the analogous resonances in ic and d have widths of

300 - 400 Hz at -60 oC. We currently attribute the broadened phosphinidene resonances to 3 1p-

18 1Ta coupling, but why coupling is more significant in the silyl-substituted phosphinidene

complexes is unclear.

We propose that the intermediate whose 3 1P NMR spectrum contains a resonance at 575

(1)



ppm (AV1/2= 600 Hz, T = 25 'C) is "[N3N]Ta=PLi" rather than {I [N3N]Ta-P} I -. The primary

reason is that the chemical shifts of the terminal phosphido ligands in related neutral dO complexes,

[N3N]Mo=P,8 [N3N]W=P, 8 and [(t-Bu)NAr] 3Mo=-P1 2 (Ar = 3,5-Me2 C6H3), range from 1080 to

1346 ppm. Therefore, a chemical shift of 575 ppm, even though it is -400 ppm larger than that in

a typical Ta=PR species (-200 ppm), is believed to be too small to ascribe to a "{ [N3N]Ta-P}-"

species, i.e., one in which lithium is not bound to the phosphorus. Since bent phosphinidenes are

characterized by a more downfield resonance (335 ppm in (t-Bu 3SiO)3Ta=PPh1 3 and 600 - 800

ppm in Cp2M=PAr complexes (M = Mo, W, Zr)14-16), a chemical shift of 575 ppm might be more

consistent with a "[N3N]Ta=PLi" species in which the Ta-P-Li bond angle is considerably less

than 1800. Unfortunately, "[N3N]Ta=PLi" could not be separated from phenyllithium, the other

product of the cleavage reaction, and, thus, could not be isolated and structurally characterized.

All attempts to prepare [N3N]Ta=PH so far have failed. For example, the reaction of

[N3N]TaCl 2 with two equivalents of LiPH2 in 1,2-dimethoxyethane at -78 'C affords intractable

products, while quenching "[N3N]Ta=PLi" with proton sources such as [HNMe 3]Cl or 2,6-

lutidinium triflate leads to mixtures of unidentifiable species.

Synthesis of Tantalum Imide Complexes.

[N3N]TaCl 2 reacts with two equivalents of LiN(H)R (R = H, CMe3, Ph) to produce one

equivalent of RNH 2 and imido complexes 2a - c in 62 - 95% isolated yield (eq 3). Mixing

[N3N]TaCl 2 with only one equivalent of lithium amide results in an equimolar mixture of

dichloride and imide. The synthesis of 2a is noteworthy, as parent imido complexes are relatively

rare.4 ,17 20 NMR and IR spectra of 2a are similar to those for [N3N]V=NH, which has been

structurally characterized. 4 A notable difference is that the imido proton resonance is observed as a

broad 1:1:1 triplet (1J14NH = 50 Hz) in 2a whereas it is not seen in the 1H NMR spectrum of

[N3N]V=NH, presumably as a consequence of additional coupling to 5 1V (I = 7/2, 99.75%).

Resolved coupling to 14N has also been observed in Cp*MMe3(NH) (M = Mo, W) complexes 18,19

and was attributed to a low electric field gradient about the imide nitrogen. 21 The white crystalline



imide complexes are stable when heated as ~0.1 M solutions in toluene-d8 in sealed NMR tubes to

110 'C for several days. 2a - c do not react with benzaldehyde in benzene-d6 (-0.1 M in Ta, 2

days) at -25 'C.

2 LiN(H)R
[N3N]TaC12  2 LiN(H)R [N3N]Ta=NR + RNH2Et20 (R = CMe3, Ph)

THF (R = H) R = H (2a), CMe3 (2b), Ph (2c)
-35 oC

(3)

Synthesis and Reactivity of Tantalum Alkylidene Complexes.

[N 3 N]TaCl 2 reacts with two equivalents of trimethylsilylmethyllithium or

benzylmagnesium chloride to afford the alkylidene complexes, 3a and 3b (eq 4) in >90% isolated

yield. We propose that dialkyl complexes are intermediates in these reactions for several reasons.

First, if only one equivalent of alkylating agent is employed, [N3 N]Ta(CH 2Ph)Cl and

[N3N]Ta(CH2SiMe3)Cl can be isolated by fractional crystallization, and each is converted into the

expected alkylidene upon reaction with an additional equivalent of the appropriate metal alkyl.

Second, reaction of Li 3[N3N] with Ta(CH 2R)2C13 (R= Ph,22 CMe3
23) gives 3b and 3c in yields

of 86% and 56%, respectively (eq 5).

2 RCH 2 M
[N3N]TaCl2  2  35 [N3N]Ta=CHR + RCH 3

Et20, -35 oC
R = SiMe3 (3a; M = Li)
R = Ph (3b; M = MgC1)

(4)

Li 3 [N3N]

Ta(CH2R)2C13  tO350 [N3N]Ta=CHR + RCH 3Et20, -35 oC

R = Ph (3b), CMe3 (3c)

(5)



Complexes 3a - c all have 1H and 13C NMR spectra consistent with three-fold

symmetry on the NMR time scale. Ha resonances are found near 0 ppm in 1H NMR spectra, a

region characteristic of alkylidenes that are highly "distorted" through an ax-agostic 24 C-H

interaction, 5,25 and 13C NMR spectra show an alkylidene carbon resonance in the range 200 - 215

ppm. We were surprised by the unusually low values for 1JCHa (-72 Hz), the lowest known for

do alkylidene complexes. 5 The alkylidene ligands are effectively pseudo-triply-bound to tantalum

as a, 2t ligands. In spite of the fact that the ir interactions in the apical position are of two distinct

types, all alkylidene complexes show three-fold symmetry on the NMR time scale down to -90 'C.

Apparently only steric constraints would lead to a breaking of the dxz/dyz degeneracy and slowing

of "rotation" of the alkylidene about the Ta-C bond. Such steric constraints would seem to be

minimal, as the Ta=Ca-Cp angle is likely to be relatively large. Although crystals of 3a - c

suitable for X-ray studies have not yet been obtained, an X-ray study of a related alkylidene

complex of tantalum {[(Et3SiNCH 2CH 2 )3N]Ta=CHCH 2}2 has been conducted and will be

discussed in detail in Chapter 2. The structure of this "dialkylidene" confirms that the Ta=Ca-Cp

angle is indeed large (ca. 1730) and, therefore, that large Ta=Ca-Cp angles can be expected in

alkylidene complexes with a tantalum triamidoamine core.

Alkylidenes 3a - c show no signs of decomposition in toluene-d8 (-0.1 M) after

being heated for days in sealed tubes at 110 'C. They react rapidly with aldehydes, such as

benzaldehyde and pivaldehyde, in a Wittig-like fashion 26 to afford a mixture of cis- and trans-

isomers of the expected olefin and [N3N]Ta=O. A variety of reported tantalum alkylidenes are

known to react readily with aldehydes in this manner. 5 Alkylidenes 3a - c (-0.05 M in diethyl

ether) react with 1 atm of ethylene to produce complex mixtures containing unreacted alkylidene

and products proposedly formed via the decomposition (vide infra) of tantalum olefin species. All

attempts to isolate and fully characterize these decomposition products were unsuccessful. The

reaction of tantalum alkylidenes with ethylene to produce olefin complexes via r3-H elimination in

the intermediate tantallacyclobutane is well-precedented. 5



Synthesis and Decomposition of a Tantalum Ethylene Complex.

An r 2-ethylene complex (4) is produced quantitatively upon adding two equivalents of

ethylmagnesium chloride to [N3N]TaCl2 (eq 6). An alternate route to 4 consists of alkylation of

[N3N]Ta(Me)OTf 27 with one equivalent of ethylmagnesium chloride. Proton and carbon NMR

spectra of 4 are consistent with it being a three-fold symmetric complex on the NMR time scale,

even at -90 'C. The ethylene ligand is observed as a singlet at 2.15 ppm in the proton NMR

spectrum and a triplet (1JCH = 144 Hz) at 62.6 ppm in the gated 13C NMR spectrum. We propose

that 4 has a structure similar to that of [N3N]Ta(Tj 2-C2H 2) (vide infra) in the solid state, i.e., one

in which the C-C axis of the unsaturated organic moiety is lined up with one of the Ta-N bonds.

2 EtMgCl

[N3N]TaCl 2  EtO 0 [N3N]Ta(T 2E-C2H4) + EtH
Et20,-35 oC

4

(6)

Reaction of [N3N]TaCl2 with only one equivalent of ethyl Grignard yields the yellow

crystalline monoethyl derivative 5 in 72% isolated yield (eq 7). 5 reacts immediately with one

equivalent of ethylmagnesium chloride to yield 4, and with one equivalent of CD3CD2MgBr to

afford a 5.7:1 mixture of [N3 N]Ta(1 2 -C2H4 ) and [N3N]Ta(fl 2 -C2D4 ). The labeling study

suggests that the intramolecular isotope effect for 03 abstraction is 5.7.

EtMgC1
[N3N]TaC 2  EtMgClN]Ta(Et)C

Et20, -35 oC5
5

(7)

Although 4 is formed upon treating [N3 N]Ta(Me)OTf with one equivalent of

ethylmagnesium chloride, [N3N]Ta(Me)Cl reacts with one equivalent of ethyl Grignard over the

same time period (ca. 1 day) to afford a 2:1 mixture of 4 and [N3N]Ta(Me)Et (6, eq 8).

[N3N]Ta(Me)Et can be isolated as a yellow crystalline solid via fractional recrystallization. It



shows three-fold symmetry on the NMR time scale from 25 to -80 °C. Over a period of one day at

-25 'C, 6 decomposes to yield 4 and methane. At 52 'C in toluene-d8, the decomposition of 6

was followed by 1H NMR and shown to obey first order kinetics with k = 2.4 (1) x 10-4 s-1

[N3N]Ta(Me)Et is also formed in the reaction between 5 and one equivalent of methylmagnesium

chloride.

[N3N]Ta(Me)CI EtMgCl [N3N]Ta(9 -C2 H4) + [N3N]Ta(Me)Et
Et20,-35 oC 4 6

(8)

An X-ray structure of 6 (Table 1.2; Figure 1.1) shows it to be a six coordinate species with

methyl and ethyl ligands in apical coordination sites that lie approximately in the N(2)-Ta-N(4)

plane. (Relevant bond lengths and angles are listed in Table 1.3.) The smaller methyl group is

pointed toward N(2). Consequently, the Ta-N(2)-Si(2) angle (1360) is somewhat larger than the

other two Ta-N-Si angles (129' and 1320), but all are larger than the usual values of 125 - 1260 in

crystallographically characterized [N3N]M species. 2-4,6,8, 28 The ethyl ligand points away from the

methyl group. Consequently the N(1)-Ta-N(3) angle opens to 1330, compared to 1040 and 1000

for the other two N-Ta-N angles. The distance between Cp of the ethyl group and Ta is 3.14 A,

too far for any [3-agostic interaction, and in any case there is no readily available orbital with which

the 03 C-H bond can interact when the ethyl group is oriented in the observed fashion. Therefore

we propose that n-abstraction first involves rotation of the ethyl group past one SiMe3 group,

possibly with concomitant "dissociation" of the amine nitrogen donor from the metal, followed by

activation of Hp through an agostic interaction with the remaining t orbital that lies in a plane

approximately 900 to that containing Ta, C(9), and C(7). The Ta-N(4) distance (2.444 A) is

comparable to that found in [N3N]Ta=Te (2.487 A),29 but is somewhat longer than found in

[N3N]Ta(Tl 2-C2H2) (2.30 A; vide infra).



Table 1.2. Crystallographic Data, Collection Parameters, and Refinement Parameters for

[N3N]Ta(Me)Et (6).

C18H47N4Si3Ta

584.80

yellow, plate

0.150 x 0.150 x 0.05

monoclinic

Empirical Formula

Formula Weight

Crystal Color, Habit

Crystal Dimensions (mm)

Crystal System

No. Reflections Used for Unit Cell

Determination (20 range)

a

b

c

V

Space Group

Z
Dcalc
F0 00

g(MoKa)

Scan Type

Temperature

Total No. Unique Reflections

No. Observations with I > 3.00c(I)

No. Variables

R

Rw

GoF

25 (14.0 - 22.00)

10.0504 (8) A
15.010 (1) A
17.937 (1) A

95.79 (1)0

2692.1 (6) A3

P21/n

4

1.443 g/cm 3

1192
41.75 cm - 1

o-20

187 K

3679

2270

235

0.041

0.035

1.25



Figure 1.1. X-ray Crystal Structure of [N3N]Ta(Me)Et (6).

C(9) C(7)

C(8)

Si(2)



Table 1.3. Selected Intramolecular Distances (A) and Angles (deg) for the Non-Hydrogen

Atoms of [N3N]Ta(Me)Et (6).

Bond Lengths

Ta-N(1) 2.00(1)

Ta-N(2) 2.071 (9)

Ta-N(3) 1.956 (9)

Ta-N(4) 2.444 (8)

Ta-C(7) 2.21 (1)

Ta-C(9) 2.21 (1)

C(7)-C(8) 1.55 (2)

Bond Angles

Ta-N(1)-Si(1) 131.6 (5)

Ta-N(2)-Si(2) 136.1(5)

Ta-N(3)-Si(3) 128.8 (5)

N(1)-Ta-N(2) 99.6 (4)

N(1)-Ta-N(3) 133.1 (4)

N(2)-Ta-N(3) 103.7 (4)

Ta-C(7)-C(8) 112.0 (9)

[N3N]Ta(Et)C1 reacts with one equivalent of benzylmagnesium chloride to yield 4. If only

0.5 equivalent of Grignard is used, the proton NMR spectrum shows no evidence for

[N3N]Ta(CH2Ph)Cl formed by alkyl exchange. [N3N]Ta(CH 2Ph)C1 similarly reacts with one

equivalent of ethylmagnesium chloride to afford 4. We propose that [N3N]Ta(Et)(CH 2Ph) is the

intermediate in each of these reactions. The benzylidene complex (3b) is not formed in either



reaction.

[N3N]Ta(T1 2-C2H4) is not stable in solution. After a period of days at -25 'C, solutions of

4 show signs of decomposition; the red color lightens and NMR spectra are consistent with

formation of the yellow ethyl complex 7b (eq 9). The decomposition of a toluene solution of 4

([4] = 0.0059, 0.0089, 0.010, 0.012 M) was followed at ,max = 494 nm and shown to be first

order in tantalum with k = 1.37 (1) x 10-4 s-1 at 70 'C. Most prominent in the 1H NMR spectrum

of 7b are the vinyl resonances, a doublet of doublets at 6.49 ppm and a doublet at 4.25 ppm (the

latter obscured by the 4.07 ppm resonance for the diastereotopic ligand methylene protons). The

triplet and quartet resonances for the ethyl ligand are found at 1.93 and 1.46 ppm, respectively.

Proton and carbon NMR spectral data are similar to those for the product resulting from the

thermolysis of [(Et3SiNCH2CH 2)3N]Ta(rj 2 -C2H4), whose structure has been determined in an X-

ray study and will be discussed in Chapter 2. Heating a toluene-d8 solution of [N3N]Ta(112-C2D4)

at 110 'C in a sealed tube yields a product analogous to 7b that contains a TaCD2 CD 2H group.

The decomposition of [N3N]Ta(il2-C2D4 ) was determined to be a first order process with k = 1.53

(2) x 10-4 s-1 at 70 oC. This measurement allowed the calculation of an inverse a-secondary

kinetic isotope effect of 0.89 (2) at 70 oC, significant of a change in hybridization of the ethylene

carbons from sp2 to sp 3 in the rate-limiting step.30 Thermolysis of [N3N]Ta(T12-C2D4) (0.03 M in

toluene-d8) in the presence of I atm of ethylene only produces a TaCD 2CD2H species. All of these

data are consistent with decomposition of 4 by irreversible intramolecular 0 abstraction of a proton

from the side chain of the amido ligand. The tren backbone must turn and flex to a considerable

degree, possibly after dissociation of the apical nitrogen donor atom, in order to present the 0 C-H

bond to the metal for proton removal and transfer to the ethylene ligand. Formation of 7b' would

constitute removal of a y-proton if the apical donor nitrogen is not coordinated at the time.

Evidently this process is less facile.



Me3Si Et

toluene-ds Me3Si N/ I /SiMe3
[N3N]Ta(iO9-C2 H4) 3CTa-

4 110 0C INV"

7b

(9)

Me3Si Et

Me 3Si N
""ft=NSi M e3

7b'

[N3N]TaMe 2
27 decomposes when heated above 60 'C to produce 7a, according to 1H and

13C NMR spectra (eq 10). Thermolysis of [N3N]Ta(CD 3)2 produces CD3H and 7a that contains a

CD3 ligand as evidenced by 1H and 2H NMR spectra. Therefore, we can rule out [N3N]Ta(CD2)

Me3Si Me
[N3N]TaMe2  toluene-d 8 -. Me3Si N. 

SiM e3

110 oC, - MeH a-N

INVP

7a

(10)

as an intermediate. ([N3N]Ta(CH2 ) is still an unknown compound.) It is interesting to note that

this decomposition, like that of 4, takes place in a complex in which only two of the three orbitals

in the apical position are used for bonding to apical ligands. Other [N3N]Ta-based species in

which all three orbitals are involved in binding to a ligand in the apical position do not decompose

upon heating for days at 100 'C.



Alkylation of [N3N]TaCI2 with RCH2CH2MgX where R#H: Competitive a- and

13-H Abstraction Pathways.

Reactions between [N3N]TaCl 2 and two equivalents of RCH 2CH 2MgX (X = Cl or Br) in

which R is not a proton do not yield olefin complexes analogous to 4, but alkylidene complexes in

yields that correlate with the bulk of the R group, and products whose NMR spectra are analogous

to those of 7a. We propose that these latter products arise via facile decomposition of intermediate

olefin complexes. For example, the reaction with n-propylmagnesium chloride affords a mixture

of a propylidene complex (3e) in 32% yield and a decomposition product (7c) in 66% yield, as

determined by 1H NMR integration versus an internal standard (eq 11). The spectra of 3e are

analogous to those of other alkylidenes described here; in this case Ha is a triplet at -0.28 ppm in

the proton NMR spectrum. Most notable in the proton NMR spectrum of 7c is a doublet of

doublets at 6.61 ppm that can be assigned to a vinyl CH proton (CH=CH2). We propose that 3e

and 7c arise via competitive a and 13 abstraction in a dialkyl intermediate.

Me3Si n-Pr SiMe3
~Me 3Si \ SiMe3

[N3N]TaC 2  2 n-PrMgC1 [N3N]Ta=CHEt + Ta-
Et20, -35 oC 3N

3e N

7c

(11)

Increasing the size of the alkyl group in the alkylation reaction leads to formation of more

of the expected alkylidene complex as a consequence of a-abstraction and less of the

decomposition product that is proposed to arise from decomposition of an intermediate olefin

complex formed by a 3-abstraction process (eq 12). As shown in Table 1.4, the percent yield of

alkylidene (by 1H NMR) increases from 32% (for R = CH 3) to 84% (for R = CHMe2) while the



amount of decomposition product falls from 66% to 15%, respectively. The reaction between

[N3N]TaCl 2 and two equivalents of Me3CCH2CH 2MgC1, affords an 83% yield of 3h and no

observable decomposition product 7e (< 1% via 1H NMR). This last reaction contrasts markedly

with that where R = H in which no alkylidene is formed and 4 is isolated in 96% yield.

R/
CH 2

Me3Si CH
2______ _I / SiMe32 RCH 2CH 2MgX Me3Si , 3

[N3N]TaCl2  0[N 3N]Ta=CHCH 2R + 3Si N . Ta-
Et20, -35 oC INV 1  )

R = CH 2CH 3 (3f), CH(CH 3)2 (3g), N
CMe3 (3h).

(7d, 7e, and 7f, respectively)

(12)

Table 1.4. Percent Yields of Alkylidene and Decomposition Products Resulting from the

Reaction Between [N3N]TaCl2 and 2 RCH2CH 2MgX.

% Alkylidene

0

32

42

84 (76b)

83(7 7b)

% Olefin or Decomp

9 6b

66

54

15

<1

a Determined by 1H NMR integration versus an internal standard of (Me3Si)2 0, unless otherwise

noted.

b Isolated yield.

R

H

Me

CH2Me

CHMe2

CMe3



Synthesis of Tantalum Alkyne Complexes.

[N3N]TaCl2 reacts with two equivalents of vinylmagnesium bromide to afford white

crystalline 8 in 80% yield (eq 13). 8 also can be prepared in 61% yield by treating

[N3N]Ta(Me)OTf with one equivalent of vinyl Grignard. The acetylene protons are observed as a

singlet at 12.22 ppm and the acetylenic carbon atoms as a doublet (1JCH = 169 Hz) at 219.9 ppm,

(cf. 8 Cacet at 217 ppm with 1JCH = 169 Hz in (t-Bu 3 SiO)3Ta(jTI2 -C2H2) 31). 1H NMR spectra

show that 8 is C3 symmetric on the NMR time scale from 25 to -90 'C, consistent with rapid

"rotation" of the acetylene about the pseudo-C3 axis of the complex. The IR spectrum of 8 shows

an acetylenic C-C stretch at 1725 cm-1. [N3N]Ta(l 2 -C2H2) can be heated to 100 'C for weeks as

a 0.01 M toluene-d8 solution in a sealed NMR tube with no sign of decomposition.

[N3N]TaC12  2 H2C=CHMgBr [N3N]Ta(E12-C2H2) + H2C=CH2
Et20, -35 oC 8

(13)

An X-ray crystal study of 8 revealed two independent molecules in the unit cell. (See

Table 1.5 for crystallographic details and Table 1.6 for selected intramolecular distances and

angles.) A drawing of one of them is shown in Figure 1.2. In the other molecule, the acetylene

ligand is disordered - a site disorder not imposed by any space group symmetry. Bond distances

and angles in the two molecules are not statistically different. 8 is best described as a distorted

trigonal bipyramid in which the two axial sites are occupied by the acetylene and the amine nitrogen

donor. The tantalum-Neq distances of 2.02 - 2.07 A and the Ta-Nax bond length of 2.30 A are

similar to those found in [N3N]Ta=PCy6 and [N3N]Ta=Se (2.349 A).29 The C-C bond length in

the acetylene ligand (1.26 A) is consistent with a bond order of -2.5. The acetylene C-C bond axis

lines up with the Ta(1)-N(1) bond, therefore opening the N(2)-Ta-N(3) angle to 123' for steric

reasons. The remaining two N-Ta-N angles are 1110. However, all three Ta-N-Si bond angles are

126 o and we can say, therefore, that 8 is relatively uncrowded compared to 6.



Table 1.5. Crystallographic Data, Collection Parameters, and Refinement Parameters for

[N3N]Ta(rl 2-C2H2) (8).

Empirical Formula

Formula Weight

Crystal Color, Habit

Crystal Dimensions (mm)

Crystal System

No. Reflections Used for Unit Cell

Determination (20 range)

C17H4 1N4Si 3Ta

566.74

colorless, needle

0.280 x 0.120 x 0.120

orthorhombic

25 (15.0 - 25.00)
17.154 (1) A

16.756 (1) A
34.365 (3) A

90.00

9878 (2) A3
Pbca

V

Space Group

Dcalc

FoooF0o00
p(MoKa)

Scan Type

Temperature

Total No. Unique Reflections

No. Observations with I > 3.00(I)

No. Variables

R

Rw

GoF

1.525 g/cm 3

4528
45.47 cm - 1

03-20

201 K

9483

5137

439

0.048

0.053

3.42



Figure 1.2. X-ray Crystal Structure of [N3N]Ta(il 2 -C2H2) (8).

SC(7)

Ta(1)



Table 1.6. Selected Intramolecular Distances (A) and Angles (deg) for the Non-Hydrogen

Atoms of [N3N]Ta(r12-C2H2) (8).

Bond Lengths

Ta-N(1) 2.07 (1)

Ta-N(2) 2.02 (1)

Ta-N(3) 2.04 (1)

Ta-N(4) 2.30(1)

Ta-C(7) 2.09 (1)

Ta-C(8) 2.10 (1)

C(7)-C(8) 1.26 (2)

Bond Angles

Ta-N(1)-Si(1) 126.1 (6)

Ta-N(2)-Si(2) 125.7 (6)

Ta-N(3)-Si(3) 126.4 (6)

N(1)-Ta-N(2) 110.5 (5)

N(1)-Ta-N(3) 110.6 (4)

N(2)-Ta-N(3) 122.5 (5)

A white crystalline 112-benzyne complex (9) can be prepared in 70% yield by refluxing

[N3N]TaCl 2 with two equivalents of phenyllithium in toluene for 1 day (eq 14). [N3N]Ta(Ph)Cl

can be observed as an intermediate in the reaction, and can be generated by treating 9 with a

stoichiometric amount of ethereal hydrogen chloride. The proton NMR spectrum of 9 exhibits the

expected downfield resonances for the benzyne ligand at 7.52 and 8.45 ppm and the ipso carbon

resonances are found in the 13C NMR spectrum at 215.1 ppm. Cooling a toluene-d8 solution of



the benzyne complex in the NMR probe to -90 'C does not significantly broaden the aromatic

proton or carbon resonances, and the compound maintains its C3 symmetry on the NMR time

scale. Similar to 4 and 8, benzyne complex 9 contains an unsaturated organic moiety that is

proposed to be rotating rapidly about the molecule's pseudo-C3 axis.

[N3N]TaC2 2 PhLi [N3N]Ta(Tj2_C 6H4) + C6H6
toluene, 80 'C, 1 d 9

(14)

Addition of one equivalent of phenylmagnesium bromide in toluene to [N3N]Ta(Me)CI

followed by heating the mixture to 55 'C also affords 9 in 77% yield. In this case

[N3N]Ta(Me)Ph (10) can be observed as an intermediate. If the reaction is conducted at room

temperature for -8 hours mixtures containing primarily (-80%) 10 can be obtained. Following the

disappearance of 10 in such mixtures in toluene-d8 in a sealed tube (ferrocene standard) via 1H

NMR demonstrates that conversion of 10 to 9 is first order in 10 through several half-lives. Data

were collected between 31 °C and 74 'C (Figure 1.3). The resulting activation parameters (AH$ =

21.3 (5) kcal mol-1 and ASt = -11 (1) cal mol-1 K-1) are comparable to those for thermolysis of

Cp*2Ti(Me)Ph to produce transient Cp*2 Ti(rl2-C 6H4 ) (AHt = 23.0 kcal mol- 1, ASt = -9.8 cal

mol-1 K-1 32). The negative activation entropy demonstrates an increased amount of order as one

moves along the reaction coordinate from 10 to the transition state, most likely due to restricted

rotation about the Ta-Me and Ta-Ph bonds. Labelling experiments conducted at 74 'C (see

Experimental Section) suggest that the primary isotope effect is 3.6 (6). This value is significantly

smaller than that measured for the decomposition of Cp*2Ti(Me)[C 6R5] (R = H or D; kH/kD = 5.1

at 80 'C in benzene-d632) but is still demonstrative of C-H(D) bond cleavage in the transition state.



Figure 1.3. Plot of ln(k/T) vs. 1/T for the Formation of [N3N]Ta(1 2-C6H4) (9) from

[N3N]Ta(Me)Ph (10). (See Experimental Section for a list of individual values.)
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Reactions of Ethylene, Acetylene, and Benzyne Complexes.

[N3N]Ta(Tl 2-C2H4 ) has proven to be relatively reactive, probably largely because one

empty orbital is available to which nucleophiles can bind. Fortunately, decomposition of 4 to 7b

(eq 9) is rarely a competitive reaction, although it sometimes is a complication.

One unusual reaction is that between 4 and a catalytic amount of phenylphosphine (0.3

equivalents) to afford the ethylidene complex (3d) in 88% yield (eq 15). Less acidic phosphines

RPH2 (R = H, n-Bu, Cy) require longer reaction times. NMR studies suggest that 3d is entirely

analogous to 3a - c; the alkylidene Ha resonance is a quartet at -0.41 ppm and the Ca resonance

is a doublet at 191.2 ppm with 1JCH = 69 Hz. Alkylidene complexes of Ta(V) that contain 03-

protons are rare5,33 because they usually rearrange to the olefin complex readily. We speculate that



the lower energy of 3d relative to 4 in this case is achieved via the strong interaction between the

ethylidene's C-He bond and the metal. Like other alkylidene complexes in this class, 3d reacts

with benzaldehyde to afford [N3N]Ta=O and (in this case) a mixture of the cis- and trans- isomers

of 3-methylstyrene.

[N3N]Ta( 2_C 2H4) RPH2 [N3N]Ta=CHMe
4 Et20 3d

R = H, n-Bu, Ph, Cy

(15)

Two equivalents of a 9:1 mixture of PhPD2 and PhPHD in diethyl ether at -25 'C convert 4

(0.04 M) to 3d over a period of two days. In this sample of 3d the percent deuterium at the

alkylidene methyl and Ha positions is equal. Similarly, [N3N]Ta(Tl 2-C2D4) (0.02 M) reacts with

one equivalent of PhPH2 in diethyl ether for 1 day at -25 'C to provide 3d with the H-label

washed into both alkylidene positions equally. Monitoring the same reaction in benzene-d6 via 1H

NMR immediately after PhPH2 addition shows the initial build-up of a singlet resonance at 2.15

ppm, consistent with the presence of 4 with protons in the ethylene ligand. Finally, addition of

one equivalent of the 9:1 PhPD2/PhPHD mixture to [N3N]Ta=CHMe (0.04 M) in diethyl ether for

2 days at -25 'C leads to incorporation of the deuterium label into the alkylidene He and methyl

locations in roughly the same percentage. These results are consistent with a mechanism in which

all steps are reversible. We propose the essential features to be those shown in eq 16. The key

intermediate is postulated to be [N3N]Ta(Et)(PHPh), in which an a-hydrogen migrates from the

ethyl group back to the phosphide. In theory, ethane could be lost to yield the known

phenylphosphinidene complex. However, 3d (0.02 M) does not react with 10 equivalents of

phenylphosphine in toluene-d8 at 85 'C over 24 hours. (Both 3d and [N3N]Ta=PPh are stable

when heated to 100 'C in sealed NMR tubes in toluene-d8.) Loss of ethane from

[N3N]Ta(Et)(PHPh) simply must be slow, if we make the reasonable assumption that it would be

irreversible.



Me

[N3N]Ta - II
PhPH2+

PhPH2

/CH2CH 3  [N3N]Ta /

[N3N]TaPHPh PhPH2- +PHPh PhPH2

(16)

[N3N]Ta(rl12-C2H4 ) reacts differently with amines. Upon mixing 4 with ammonia, aniline,

or pentafluoroaniline, the imido complexes 2a, c, and d are formed in yields of 62 - 78% (eq 17).

4 does not react with t-butylamine under similar conditions. It is interesting to note that 2a is also

formed in 70% isolated yield by mixing 4 with one equivalent of hydrazine in tetrahydrofuran.

3d is not observed by 1H NMR during the reaction of 4 with ArNH2 (Ar = C6H 5, C6F5). The

reaction of 3d (0.05 M) with one equivalent of aniline in toluene-d8 at -25 'C is quite slow, being

only 23% complete after 8 days, as determined via 1H NMR integration versus an internal

standard. These two observations argue against the formation of imido complexes via 3d as an

intermediate. Instead we propose that ethane is lost rapidly and irreversibly from

[N3N]Ta(CH2CH3)(NHR) intermediates.

(17)

[N3N]Ta(T-2_C 2H4) RNH 2  [N3N]Ta=NR
4 Et20

R = H (2a), Ph (2c), C6F5 (2d)

Addition of 10 equivalents of Me3SiAsH2 to an NMR tube containing a toluene-d8 solution

of 4 (0.03 M) affords 3d immediately, according to proton NMR. However, over a period of

days at ~25 'C, 3d is converted into what we propose to be the arsinidene complex,

[N3N]Ta=AsSiMe 3, according to 1H and 13C NMR and its reaction with pivaldehyde to form

[N3N]Ta=O and the unstable arsaalkene, Me3SiAs=C(H)CMe 3 . The reaction of 4 (0.02 M in

toluene-d8) with 5 equivalents of PhAsH 2 at -25 'C affords 3d immediately. Over the period of a

week, the product mixture is observed to contain H3[N3N], [N3N]Ta=AsPh (vide infra), and other

unidentifiable ligand-containing species. If the mechanism of reaction of arsines with 4 is the same



in principle as the reactions of 4 with amines and phosphines (Scheme 1.1), then we must

conclude that only when E = P is path a unobservable, only when E = N is path b slow relative to

a, and when E = As both paths can be observed with the rate of path b greater than that of path a.

Scheme 1.1. Proposed Mechanism for Ethylene Complex 4 Reacting with EH2R.

4 + EH2R [N3N]'

CH2CH3

[N3N]aO [N3N]Ta=ER[N3N]Ta\ 
_ C2H6

EHR
AI

E = N, P, As b
Me

EH 2R + [N3N]Ta=/

Three reactions in which ethylene is protonated to give an ethyl complex are shown in

Scheme 1.2. [N3N]Ta(112-C2H4) reacts with 0.5 atm of hydrogen gas to afford [N3N]Ta(Et)H.

Exposure of a solution of the hydride complex to a dynamic vacuum results in loss of hydrogen

gas and reformation (over a period of hours) of 4. [N3N]Ta(Et)H is stable to loss of hydrogen gas

in the solid state (- 0.1 mm Hg dynamic vacuum at 25 'C for 8 hours). The reversibility of this

protonation reaction is demonstrated via monitoring by 1H or 2H NMR the reactions of 4 with

0.25 atm D2 and [N3N]Ta(lr 2-C2D4) with 0.25 atm H2 in toluene-d8 (ca. 0.02 M in Ta). In all

cases, the H and D labels are scrambled between the hydride and ethyl (on both Ca and CO)

ligands. [N3N]Ta(Et)H can be obtained as a white crystalline solid in 93% yield via fractional

recrystallization from a diethyl ether solution of it and the ethylene complex. 1H NMR shows the

hydride as a singlet at 24.77 ppm that remains relatively sharp down to -80 'C. The Ta-H stretch is

found in the IR at 1816 cm -1 (v Ta-D = 1301 cm-1). A 0.40 M solution of [N3N]Ta(Et)H in

toluene-d8 decomposes at 100 'C over a period of hours to provide Me3SiH and a colorless oil that

is proposed to EtTa[N(CH 2CH 2NSiMe3)2(CH 2CH 2N)] on the basis of 1H and 13C NMR data.

Unfortunately, we have been unable to obtain crystals of this decomposition product to further

support this formulation. 4 is cleanly protonated by 2,6-lutidinium triflate (LutHOTf) to afford



[N3N]Ta(CH 2CH 3)(OTf) in 91% yield. When [N3N]Ta(Tl 2-C2D4) is employed the product is

[N3N]Ta(CD 2CD2 H)(OTf), as judged by 1H and 2H NMR. Metathesis of the triflate ligand for a

chloride or bromide is achieved in high yield by mixing [N3N]Ta(Et)OTf with [NEt4]X (X = Cl or

Br) in dichloromethane. 4 is also protonated cleanly by phenylacetylene to afford yellow

crystalline [N3N]Ta(CH2CH 3)(11-C-CPh) in 87% yield. When [N3N]Ta(Tl 2-C2D4 ) is employed

in this reaction the product is [N3N]Ta(CD 2CD 2H)(riJ1-C=CPh), according to proton and 2H

NMR. In contrast, acetylene itself adds to 4 to form the metallacyclopentene complex 11 in 91%

yield. We assume that phenylacetylene is sterically prohibited from adding to the ethylene complex

to form a similar tantallacyclopentene complex. Similar reactivity towards acetylenes has been

reported for Cp*2Ti(112-C 2H4).34,35 Upon heating a 0.03 M benzene-d6 solution of 11 to 70 oC in

a sealed tube for 1 day, ethylene is extruded to yield [N3N]Ta(l12-C2H2) (8) quantitatively (eq 18).

Scheme 1.2. Some reactions of [N3N]Ta(i12 -C2H4) (4).

[N3N]Ta(Et)OTf

LutHOTf\
CH 2Cl 2, -35 1

[N3N]Ta(Et)( 1 -C=-CPh)

Ph H
ether

H2[N3N]TaEt(H)
Et 20

C5H5NO
THF

[N3N]Ta=O

[N3N]Ta(712_C 2H4) C2H2

4 Et20

Me3SiCHN 2
pentane, -35 'C

[N3N]Ta=N-N=CHSiMe 3

[N3N]Ta0

11

Me3SiN3
toluene-d 8

[N3N]Ta=NSiMe 3

[N3N]Ta
700 C70 -- [N3N]Ta(q 2-C2H2)benzene-d6

+ C2H4

(18)



Several reactions of 4 resulted in displacement of ethylene (Scheme 1.2). Mixing two

equivalents of pyridine-N-oxide with a 0.02 M toluene-d8 solution of 4 at room temperature in a

sealed tube for 2 days afforded [N3 N]Ta=O in 90% yield plus ethylene and pyridine.

[N3N]Ta(T12-C2H4) reacts with trimethylsilyldiazomethane instantly to form yellow crystalline

[N3N]Ta=N-N=CHSiMe 3 in 91% yield. The doublet at 166.1 ppm (1JCH = 138 Hz) in the 13C

NMR spectrum is characteristic of diazoalkane adducts, 4,36 38 most closely [N3N]V=N-

N=CHSiMe 3.4 Heating a 0.02 M toluene-d8 solution of [N3N]Ta=N-N=CHSiMe 3 in a sealed

tube at 110 'C for weeks fails to induce loss of dinitrogen and formation of [N3N]Ta=CHSiMe 3.

In contrast, 4 (0.07 M in toluene-d8) reacts with one equivalent of trimethylsilylazide over a period

of three weeks in a sealed NMR tube at -25 'C to afford [N3N]Ta=NSiMe 3 (2d) quantitatively as

determined via 1H NMR integration versus an internal standard. A reaction intermediate has been

observed by 1H NMR which we presume to be the azide adduct [N3N]Ta=N-N=NSiMe 3.39 Two

azide adducts have been crystallographically characterized and shown to decompose, albeit via

different pathways, to the corresponding arylimido species.40,4 1 The ethylene ligand in 4 does not

exchange readily with free ethylene as determined by monitoring via 1H NMR a toluene-d8

solution of [N3N]Ta(T12-C2D4) (0.03 M) under 1 atm of ethylene in a sealed tube at -25 'C.

In contrast, 8 and 9 are relatively unreactive. For example, 8 does not react with ethylene,

pyridine-N-oxide, phenylphosphine, or with ArNH 2 (Ar = Ph or C6F5) at 100 'C for weeks, while

9 does not react with PH3 (1 atm) after one week in diethyl ether at -25 'C or with 10 equivalents

of phenylphosphine in toluene-d8 at 110 0 C for weeks. Solutions of 9 in toluene-d8 (0.01 M) also

do not react with 1 atm of ethylene or acetylene at 100 'C for 3 days in sealed NMR tubes.

However, solutions of 9 in toluene-d8 (0.02 - 0.03 M) do react with one equivalent of ArNH2 (Ar

= Ph, C6F 5) in sealed NMR tubes over a period of days at 110 'C to give 2c and 2d, respectively

in quantitative yields (eq 19). A toluene solution of [N3N]Ta(1 2-C6H4) also reacts with an excess

of phenylarsine in the absence of light to afford [N3N]Ta=AsPh (12) in 53% yield (eq 20). The

arsinidene is isolated as yellow crystals via recrystallization of the crude reaction product which is



contaminated with by-products formed via protonation of the ligand to yield H 3[N 3N] and

decomposition of phenylarsine, presumedly to cyclic oligomers. 42 The 1H NMR spectrum of 12

shows three distinct resonances in the 7.12 - 7.55 ppm window for the phenyl group and the

corresponding 13C NMR spectrum shows the phenyl ipso carbon as a singlet at 165.8 ppm. A

0.01 M toluene-d8 solution of 12 shows no sign of decomposition by 1H NMR after heating at

110 'C for 5 days. Adding two equivalents of pivaldehyde to a 0.02 M solution of 12 in CD2 Cl2

affords within minutes, as judged by 1H NMR, [N3N]Ta=O and unidentifiable resonances which

may be due to the decomposition of PhAs=C(H)CMe 3. A 0.01 M solution of 12 in toluene-d8

does not, however, react with one atm of ethylene upon heating in a sealed tube at 80 'C for five

days. The preliminary results of an X-ray study of 12 show a linear Ta=As-C linkage, thus,

demonstrating [N3N]Ta=AsPh to be the first linear mononuclear transition metal arsinidene

complex. The first bent mononuclear transition metal arsinidene complex (t-Bu 3SiO)3Ta=AsPh

was prepared by Wolczanski and co-workers and was shown to have a Ta=As-C bond angle of

1070.13 Efforts in this laboratory have recently resulted in the synthesis and structural

characterization of [N3N]W=AsMe+OTf - - a complex featuring a W-C-As bond angle of 1730.43

[N3N]Ta(12_-C6H4) RNH 2  [N3N]Ta=NR
toluene-dy

9 toluene-d8  R = Ph (2c), C6F5 (2d)

(19)

[N3N]Ta(r 2_-C6H4) PhAsH 2  [N3N]Ta=AsPh
9 toluene 12

(20)

Discussion

One of the themes that runs through the chemistry reported here is the stability and



relatively low reactivity of [N3N]Ta=E complexes that contain pseudo-triply bound E ligands

(where E = CHR, O, NR, PR, or alkyne). For example, we are able to prepare phosphinidenes

la and b which feature small P-substituents (Me and n-Bu) whereas all other reported

mononuclear phosphinidenes utilize large substituents such as Ph, 13 2,4,6-Me 3C6H 2,14 ,15 and

2,4,6-t-Bu3C6H 2
14,15,44 to prohibit P-bridging interactions.44,45 [N3N]Ta=E species where E is

a a, 21r donor attain an 18-electron count as long as the apical nitrogen remains bound to the metal,

and are sterically protected against intermolecular decomposition reactions by the bulky SiMe 3

groups. (Only two it bonds can form between the three nitrogen p orbital combinations and the

metal.) Intramolecular reactions such as C-H activation of a methyl group in a SiMe3 substituent2

are also slow in such species. Conversely, 16-electron [N3N]Ta(olefin) complexes decompose

relatively easily by abstraction of a f proton in the tren backbone to give species in which the cage

structure of the tren ligand is disrupted and a vinyl amido ligand is formed. Attempts to reduce

[N3N]TaCl2 to [N3N]Ta, or to prepare species such as [N3N]TaH2 so far have been unsuccessful,

most likely for the same reason.

Another characteristic of the chemistry reported here is the "steric pressure" that the three

SiMe 3 substituents exert on ligands bound in the apical position. The degree of steric hindrance in

the apical "pocket" is evident from the structure of 6, and also from the tendency to form

alkylidene complexes by a-abstraction instead of olefin complexes by 3-abstraction as the size of

the alkyl group increases in the hypothetical intermediate [N3N]TaR2 species formed by alkylation

of [N3N]TaCl 2 . However, the question is still open as to whether ligands (alkylidene and

phosphinidene species, in particular) are linear, instead of bent, solely for electronic reasons, or

whether steric factors also play a major role in stabilizing the linear form. At this stage we feel that

the metal 7t orbitals involved in formation of a pseudo-triple bond to a ligand in the apical position

are extraordinarily electrophilic, and therefore are likely to be the primary driving force in, for

example, the formation of alkylidenes in which the C-Ha electron pair is strongly donated to the

metal. Steric repulsion between the substituent on a "bent" apical ligand and the bulky SiMe3

groups is almost certainly not an insignificant factor, although we have not been able to prepare a



species in which we could test this supposition. A desirable species in this regard is

[N3N]Ta=CH 2 . We suspect that should [N3N]Ta=CH 2 be prepared, it will have a "T-shaped"

methylene ligand in which the two protons are dramatically different, as observed in unstable

Cp*Me 3W=CH 2 ,46 a result that would confirm that electronic factors alone can account for

formation of a pseudo-triple bond between the metal and the apical ligand. It will be interesting in

this regard ultimately to compare the chemistry of [N3N]Ta complexes with that of (silox)3Ta

complexes.

The demonstration that a-elimination or abstraction processes are preferred over analogous

D-processes in a sterically crowded environment provides evidence that alkylidene ligands could be

formed in classical olefin metathesis systems4 7 from ethyl (or longer) alkyl ligands. An

equilibrium between Ta(CHCMe 3)(Et)C12(PMe3)2 and Ta(CH2CMe3)(C2H4)C12(PMe3)2 has been

demonstrated via magnetization transfer experiments. 48 The two tautomers interconvert by a- and

P-H elimination processes of roughly equal rates. The decomposition of Cp*2 (H)Ta=C=CH 2

occurs through the intermediacy of Cp*(rj 5-CsMe4CH 2 CH 2CH 2)Ta to afford an equilibrium

mixture (Keq = 5.8(2) at 100 °C) of the kinetic product, Cp*(H)Ta=CHCH 2CH 2(Ti5 -C5Me 4), and

the thermodynamic product, Cp*(%5-C5Me4CH2CH=CH2)TaH. 49 There are other examples in

the literature where a-H processes occur preferentially. 50 -53  For example,

Ta(CHCMe 3)(H)(PMe 3 )312 reacts with n equivalents of ethylene to afford the a-H elimination

product Ta[CH(CH2CH2)nCMe 3](H)(PMe 3)312 .50,5 1 More recently, 28 a-elimination in

[N3N]W(cyclopentyl) to give [N3N]W(cyclopentylidene)(H) has been shown by deuterium-

labeling experiments to proceed more rapidly than P-elimination; the slowest step is loss of

cyclopentene to give [N3N]W(H).

Conclusions

The synthesis and reactivity of a variety of complexes featuring the [N3N]Ta core have

been examined with regard to preparing Ta-ligand multiple bonds. The [N3N]3- ligand facilitates

the formation of these multiple bonds by presenting three orbitals (a, dxz, dyz) in the apical



coordination site and offering a steric "pocket" to protect the reactive linkage. The bulky

trimethylsilyl groups encircling the apical site, most interestingly, effect a preference for oX- over 3-

H abstraction pathways in sterically crowded environments while not being directly involved in the

decomposition of the dimethyl and ethylene complexes. A logical and interesting extension of the

[N3N]Ta-based chemistry would be to study how these abstraction and decomposition reactions

are affected by an increase in size of the amide nitrogen silyl substituent. The synthesis and

reactivity of [N3N*]Ta complexes ( [N3N*] = [(Et3SiNCH 2 CH 2 )3N]3- ) will be discussed in

Chapter 2.

Experimental Section

General Procedures. All experiments were carried out under a nitrogen atmosphere in a

Vacuum Atmospheres drybox or by standard Schlenk techniques, unless otherwise mentioned.

Reagent grade solvents were purified by standard methods. Li3 [N3N], 2,4 [N3N]TaCl 2 ,6

Ta(CH 2CMe3)2C13
23 and Ta(CH2Ph)2C1322 were prepared according to literature methods.

1H and 13C NMR data are listed in parts per million downfield from TMS while 3 1P NMR

data are listed in parts per million downfield from triphenylphosphine (6 -4.51), and 19F NMR

data are listed in parts per million downfield from trifluoroacetic acid (8 -76.53). Routine coupling

constants are usually not reported; those listed are in units of Hz. IR spectra were recorded on a

Perkin-Elmer 1600 FT-IR spectrometer. Elemental analyses (C, H, N) were performed by Oneida

Research Services, Whitesboro, New York or on-site using a Perkin-Elmer 2400 CHN analyzer.

X-ray data were collected on an Enraf-Nonius CAD-4 diffractometer. NMR tube reactions were

carried out in a Wilmad 512-7" or 512-9" NMR tube sealed to a 14/20 outer joint. This joint was

connected to a gas adapter outfitted with a 28/15 ball joint and a Teflon stopcock. The contents of

the tube were degassed on a high-vacuum line using three freeze(-196 'C)-pump-thaw cycles

before flame sealing under a static vacuum.

Kinetic Studies via 1H NMR Spectroscopy. An NMR tube sealed to a 14/20 outer

joint was charged with a solution of the reactant and ferrocene (internal standard) in 1 mL toluene-



d8 and then fitted with a gas adapter. The tube was sealed according to the above procedure and

placed in the preshimmed NMR probe for monitoring. Probe temperature was calibrated prior to

the run utilizing neat ethylene glycol and was maintained to within ±0.1 'C of the set point.

Sample Procedure for Synthesis of [N3 N]Ta=PR via P-Ph Cleavage:

Preparation of [N3N]Ta=PSiMe3 (lc). A yellow solution of [N3N]Ta=PPh (0.500 g,

0.771 mmol) in 50 mL tetrahydrofuran was transfered via cannula to a 100 mL Schlenk flask

containing clean Li ribbon (27 mg, 3.89 mmol) under an atmosphere of Ar. The reaction mixture

was stirred at room temperature for 19 h and was then decanted from the remaining Li ribbon.

Trimethylsilylchloride (0.250 g, 2.31 mmol) was added to the red-brown liquid at -35 'C and the

mixture was allowed to warm to 25 'C. After 45 min, the reaction mixture was taken to dryness in

vacuo and the residue was extracted with 30 mL pentane. The extract was filtered through a bed of

Celite to remove LiC1 and the filtrate was concentrated in vacuo to yield a red-brown solid. The

solid was recrystallized from pentane at -35 'C to yield 37 mg (0.060 mmol, 8%) of a gold

powder: 1H NMR (C6D 6) 8 3.51 (t, 6, CH 2), 2.05 (t, 6, CH2), 0.63 (s, 27, NSiMe3 ), 0.55 (d,

3JPH = 5, 9, PSiMe 3); 13C{ 1H} NMR (C6D6) 8 53.7 (s, CH 2), 51.7 (d, 3JpC = 6, CH 2 ), 6.0 (d,
4Jpc = 4, NSiMe 3), 5.3 (d, 2Jpc = 6, PSiMe3); 3 1p{ 1H} NMR (toluene-d8, -60 0 C) 8 212 (AV1/2

= 300).

"[N 3N]Ta=PLi" can be observed as an intermediate in reactions of this general type: 1H

NMR (C6D6 ) 8 3.75 (t, 6, CH 2 ), 3.60 (br t, 4, THF), 2.13 (t, 6, CH 2), 1.42 (br t, 4, THF), 0.91

(s, 27, SiMe 3); 13C{ 1H} NMR (C6 D6 ) 8 68.5 (THF), 54.4 (CH 2), 51.3 (CH 2), 25.8 (THF), 6.5

(SiMe3); 3 1p{ 1H} NMR (C6D6 ) 8 575 (Avl/2= 600).

[N3N]Ta=PMe (la). 1H NMR (C6D 6 ) 8 3.49 (t, 6, CH 2), 2.56 (d, 2JPH = 20, 3,

CH 3), 2.18 (t, 6, CH2 ), 0.56 (s, 27, SiMe3 ); 13C{ 1H} NMR (C6D 6) 5 54.1 (s, CH 2), 51.0 (d,

3JpC = 9, CH2 ), 30.8 (d, 1Jpc = 33, CH 3), 5.8 (s, SiMe3 ); 3 1P{ 1H} NMR (C6 D6) 8 157.

[N3N]Ta=Pn-Bu (lb). [N3N]TaCl 2 (1.500 g, 2.45 mmol) was added to a suspension

of LiP(H)n-Bu (0.500 g, 5.15 mmol) in 100 mL diethyl ether at -35 'C. The reaction mixture

turned dark red immediately. After 19 h the mixture was filtered through a bed of Celite and the



filtrate was taken to dryness in vacuo. The red solid was recrystallized from pentane at -35 'C to

yield 150 mg (0.239 mmol, 10%) of a gold powder: 1H NMR (C6D6 ) 8 3.51 (t, 6, CH 2), 3.20

(m, 2, PCH 2 CH 2 CH 2CH 3), 2.14 (t, 6, CH 2), 1.86 (m, 2, PCH 2CH 2CH 2CH 3), 1.42 (m, 2,

PCH 2CH 2CH 2 CH 3 ), 0.88 (t, 3, PCH2CH 2 CH 2 CH 3 ), 0.61 (s, 27, SiMe 3); 13 C{ 1H} NMR

(C6 D6) 8 53.8 (s, CH 2 ), 51.1 (s, CH 2 ), 48.0 (d, 1Jpc = 29, PCH 2), 33.4 (s, PCH 2 CH2 ), 24.1

(s, PCH2 CH 2 CH 2), 13.8 (s, PCH2CH 2 CH 2 CH 3), 6.1 (s, SiMe3); 3 1p{ 1H} NMR (C6 D6 ) 6

186.

[N3N]Ta=PSiMe2Ph (ld). 1H NMR (CD 2 Cl 2 ) 8 7.65 (m, 2, Ph), 7.33 (m, 3, Ph),

3.80 (t, 6, CH2), 2.76 (t, 6, CH2 ), 0.66 (d, 3 JPH = 4, SiMe 2Ph), 0.27 (s, 27, SiMe3); 13 C{ 1H}

NMR (CD 2C12 ) 8 140.3 (d, 2JpC = 12, Ph), 134.5 (s, Ph), 129.0 (s, Ph), 127.9 (s, Ph), 54.9 (s,

CH 2 ), 51.8 (s, CH 2), 5.25 (s, SiMe3 ), 3.76 (d, 2Jpc = 7, SiMe2Ph); 3 1p{ 1H} NMR (CD 2CI2 ,

-60 C) 8 203 (Av1/ 2 = 400).

Sample Procedure for Reaction of a Phosphinidene [N3N]Ta=PR with

Me3CCHO. Observation of trans-Me3C(H)C=PMe by NMR. Pivaldehyde (21 gL,

0.194 mmol) was added via syringe to an NMR tube containing [N3N]Ta=PMe (57 mg, 0.0971

mmol) in 700 gL C6D 6 . Within minutes the red-brown solution turned colorless: 1H NMR

(C6D 6 ) 8 8.56 (dq, 2JPH = 25, 1, P=CHCMe 3), 1.34 (min, 3, MeP=C), 1.12 (d, 4JPH = 2, 9,

P=CHCMe3); 3 1p{ 1H} (C6D6) 8 229.

Trans-Me3C(H)C=P(n-Bu). 1H NMR (C 6 D 6 ) 8 8.65 (m, 2 JPH = 25, 1,

P=CHCMe 3), 1.85 (m, 2, PCH 2 CH 2CH2CH 3), 1.59 (m, 2, PCH2 CH 2 CH 2 CH 3), 1.30 (m, 2,

PCH 2CH 2 CH 2 CH 3), 1.16 (d, 3 JPH = 2, 9, P=CHCMe3 ), 0.81 (t, 3, PCH2 CH 2CH 2CH 3 );
3 1p{ 1H} (C6D 6) 8 243.

Trans-Me3C(H)C=PSiMe 3 . 1H NMR (C6D 6) 8 9.52 (d, 2JPH = 24, 1, P=CHCMe 3),

1.18 (d, 9, P=CHCMe3 ), 0.21 (d, 9, PSiMe 3); 3 1p{ 1H} (C6D6 ) 5 244.

Trans-Me3C(H)C=PSiMe 2Ph. IH NMR (CD 2 C12 ) 6 9.44 (d, 2JPH = 24, 1,

P=CHCMe 3), 7.56 (m. 2, Ph), 7.37 (m, 3, Ph), 1.16 (d, 4 JPH = 2, 9, P=CHCMe3), 0.56 (d,
4JPH = 3, 6, PSiMe2Ph); 31p{ IH} (CD2CI2) 8 238.



[N 3N]Ta=NH (2a). [N3N]TaCl2 (200 mg, 0.327 mmol) was added to a -35 'C slurry

of lithium amide (16 mg, 0.687 mmol) in 12 mL of tetrahydrofuran. After 23 h, the solvents were

removed from the reaction in vacuo and the residue was extracted with 50 mL pentane. The extract

was filtered through Celite and the pale yellow filtrate was taken to dryness in vacuo to yield a pale

yellow solid. Recrystallization of the solid from pentane at -35 'C gave 112 mg (0.201 mmol,

62%) of white crystalline product: 1H NMR (C6D6) 8 5.59 (br t (1:1:1), 1J14NH = 50, NH), 3.39

(t, 6, CH 2), 2.22 (t, 6, CH 2 ), 0.40 (s, 27, SiMe3); 13 C NMR (C6 D6) 8 53.9 (t, CH2 ), 49.2 (t,

CH 2), 3.3 (q, SiMe3); IR (diethyl ether solution, KBr cells, background subtracted) 3436 cm-1 (s,

v NH). Anal. Calcd for TaSi 3N 5C15H4 0 : C, 32.42; H, 7.25; N, 12.60. Found: C, 32.35; H,

7.36; N, 12.37.

[N 3N]Ta=NCMe 3 (2b). [N 3N]TaCl 2 (1.00 g, 1.64 mmol) was added to a -35 'C

solution of LiN(H)CMe 3 (271 mg, 3.43 mmol) in 60 mL of diethyl ether. After 15 h, the pale

yellow-orange mixture was filtered through Celite. The pale yellow filtrate was taken to dryness in

vacuo to yield a pale yellow solid. Recrystallization of the yellow solid from pentane at -35 0C

gave 727 mg (1.19 mmol, 73%) of off-white crystalline product: 1H NMR (C6D6) 8 3.22 (t, 6,

CH 2 ), 2.18 (t, 6, CH 2), 1.66 (s, 9, CMe3), 0.37 (s, 27, SiMe3); 13C NMR (C6D6 ) 8 64.8 (s,

CMe 3 ), 60.1 (t, CH 2 ), 47.6 (t, CH 2 ), 35.4 (q, CMe 3), 2.9 (q, SiMe 3). Anal. Calcd for

TaSi 3N5C 19H4 8 : C, 37.30; H, 7.91; N, 11.45. Found: C, 37.55; H, 7.87; N, 11.37.

[N 3 N]Ta=NPh (2c). [N 3N]TaCl 2 (250 mg, 0.409 mmol) was added to a -35 'C

solution of LiN(H)Ph (85 mg, 0.858 mmol) in 12 mL diethyl ether. After 22 h, the cloudy white

mixture was passed through Celite. The solvents were removed from the filtrate in vacuo to

provide an off-white solid. Recrystallization of this solid from diethyl ether at -35 'C gave 246 mg

(0.389 mmol, 95%) of white crystalline product: 1H NMR (C6D6) 8 7.42 (m, 2, Ph), 7.34 (m, 3,

Ph), 3.42 (t, 6, CH 2), 2.23 (t, 6, CH 2), 0.40 (s, 27, SiMe 3); 13C NMR (CD 2Cl 2) 85 159.5 (s,

Ph), 128.7 (dt, Ph), 127.6 (dd, Ph), 56.0 (t, CH2 ), 49.8 (t, CH 2 ), 3.2 (q, SiMe 3). Anal. Calcd

for TaSi3 N5C2 1H44 : C, 39.92; H, 7.02; N, 11.08. Found: C, 39.91; H, 7.03; N, 10.95.

[N3N]TaMe2 . Methyllithium (2.34 mL, 1.4 M in diethyl ether, 3.28 mmol) was added



via syringe to a -35 °C solution of [N3N]TaCl2 (910 mg, 1.49 mmol) in 50 mL diethyl ether. A

white LiCl precipitate was observed in a few minutes. After 3 h, the reaction mixture was taken to

dryness in vacuo. The off-white solid was extracted with 40 mL pentane, the extract was filtered

through Celite, and the pentane was removed from the filtrate in vacuo to provide 840 mg (1.47

mmol, 99%) of a waxy, beige solid. The complex may be isolated as colorless crystals by

recrystallization from pentane at -35 'C: 1H NMR (C6D6 ) 8 3.34 (t, 6, CH 2), 2.09 (t, 6, CH 2),

1.27 (s, 6, TaMe2), 0.29 (s, 27, SiMe3); 13C NMR (C6D6) 8 64.6 (q, 1JCH = 117, TaMe2), 60.3

(t, IJCH = 138, CH 2), 50.3 (t, 1JCH = 136, CH 2), 2.3 (q, 1JCH = 118, SiMe3 ). Anal. Calcd for

TaSi 3N 4C17H45 : C, 35.77; H, 7.95; N, 9.82. Found: C, 35.40; H, 8.40; N, 9.68.

[N 3N]Ta(Me)OTf. [FeCp2][O 3SCF 3] (373 mg, 1.11 mmol) was added to a -35 'C

solution of [N3N]TaMe2 (607 mg, 1.11 mmol) in 50 mL tetrahydrofuran. The color of the stirred

reaction mixture changed to gold as the blue [FeCp2][O 3 SCF3] dissolved. After 1 h, the reaction

mixture was concentrated in vacuo. The residue was washed with 40 mL pentane, collected on a

frit, and dried to afford 585 mg (0.83 mmol, 75%) of a tan powder. The complex may be isolated

as colorless crystals by recrystallization from diethyl ether at -35 oC: 1H NMR (C6D6 ) 8 3.53 (t, 6,

CH 2 ), 2.04 (t, 6, CH 2 ), 1.42 (s, 3, Me), 0.27 (s, 27, SiMe3); 13C NMR (C6 D6 ) 5 67.0 (q,

TaMe), 60.4 (t, CH2), 53.0 (t, CH 2), 1.8 (q, SiMe3). Anal. Calcd for TaSi 3N40 3SF 3C 17H42 : C,

28.97; H, 6.01; N, 7.95. Found: C, 28.93; H, 6.14; N, 7.67.

[N3N]Ta(Me)C1. To a -35 oC solution of [N3N]Ta(Me)OTf (300 mg, 0.426 mmol) in 8

mL methylene chloride, tetraethylammonium chloride (71 mg, 0.426 mmol) was added. After 23

h, the yellow solution was concentrated in vacuo, extracted with 30 mL diethyl ether, and filtered

through Celite. The yellow filtrate was concentrated in vacuo to provide 175 mg (0.296 mmol,

69%) of yellow powder. The complex may be isolated as yellow crystals by recrystallization from

diethyl ether at -35 'C. 1H NMR (C6 D6) 8 3.56 (t, 6, CH 2), 2.04 (t, 6, CH 2 ), 1.49 (s, 3, Me),

0.35 (s, 27, SiMe 3); 13C NMR (C6D6 ) 8 64.4 (q, 1JCH = 118, TaMe), 61.7 (t, 1JCH = 136,

CH 2 ), 53.6 (t, 1 JCH = 136, CH 2 ), 2.0 (q, 1JCH = 119, SiMe 3 ). Anal. Calcd for

TaSi 3N4CIC 16H42 : C, 32.51; H, 7.16; N, 9.48. Found: C, 32.55; H, 7.21; N, 9.54.



[N3N]Ta(Me)Cl may also be prepared by the adaptation of a synthetic route used to make

Cp 2Zr(Me)Cl from the corresponding dichloride and dimethyl complexes.54,55 A solution of

[N3N]TaMe2 (13 mg, 0.0213 mmol) and [N3N]TaCl2 (12 mg, 0.213 mmol) in 1 mL benzene-d6

was heated in a sealed tube in an oil bath at 65 'C for four days. 1H NMR spectroscopy

demonstrated the product mixture to contain [N3N]Ta(Me)Cl contaminated by ca. 20%

MeTa[N(SiMe 3 )(CH=CH2)][N(CH 2CH 2NSiMe3)2] due to the decomposition of [N3N]TaMe2 .

[N3 N]Ta(Et)CI (5). Ethylmagnesium chloride (164 gL, 2.27 M in diethyl ether, 0.373

mmol) was added via syringe to a solution of [N3N]TaCl 2 (228 mg, 0.373 mmol) in 30 mL of

diethyl ether at -35 'C. After 45 h, the light orange reaction mixture was taken to dryness in vacuo

and the residue was extracted with 30 mL pentane. The extract was filtered through Celite and the

filtrate was concentrated in vacuo to give a yellow-orange solid that was recrystallized from

pentane at -35 'C to afford 163 mg (0.269 mmol, 72%) of yellow-orange crystals: 1H NMR

(C6 D6 ) 85 3.58 (t, 6, CH2), 2.60 (t, 3, CH 3), 2.07 (t, 6, CH 2), 1.86 (q, 2, CH 2), 0.37 (s, 27,

SiMe3); 13 C NMR (C6D6) 8 76.8 (t, 1JCH = 114, CH2CH 3), 61.8 (t, 1JCH = 136, CH 2 ), 53.6 (t,

1JCH = 136, CH 2), 21.2 (q, 1JCH = 125, CH 2CH 3), 2.1 (q, 1JCH = 119, SiMe3). Anal. Calcd

for TaSi3N 4ClC 17H4 4: C, 33.74; H, 7.33; N, 9.26. Found: C, 33.51 ; H, 7.49 ; N, 8.82.

[N3N]Ta=CHSiMe 3 (3a). Trimethylsilylmethyllithium (96 mg, 1.02 mmol) was

added to a solution of [N3N]TaC12 (250 mg, 0.409 mmol) in 8 mL of diethyl ether at -35 *C. After

24 h, the cloudy yellow solution was filtered through Celite and the yellow filtrate concentrated in

vacuo to provide a yellow solid. The solid was recrystallized from diethyl ether at -35 'C to afford

234 mg (0.373 mmol, 91%) of yellow crystalline product: 1H NMR (C6D 6) 8 3.29 (t, 6, CH 2),

2.55 (s, 1, CHSiMe3 ), 2.03 (t, 6, CH 2), 0.47 (s, 9, CHSiMe3), 0.41 (s, 27, NSiMe3); 13C NMR

(C6D 6) 8 206.5 (d, 1JCH = 72, CHSiMe 3), 57.9 (t, 1JCH = 135, CH2 ), 49.6 (t, 1JCH = 136,

CH 2 ), 5.2 (q, 1 JCH = 118, CHSiMe3 ), 3.4 (q, 1 JCH = 118, NSiMe 3 ). Anal. Calcd for

TaSi 3N 4C22 H45 : C, 36.40; H, 7.88; N, 8.94. Found: C, 36.18; H, 7.53; N, 8.92.

If only one equivalent of trimethylsilylmethyllithium is added then

[N3N]Ta(CH 2SiMe3 )CI can be isolated by fractional crystallization: 1H NMR (C6 D6) 8 3.63



(t, 6, CH 2), 2.12 (t, 6, CH 2 ), 1.29 (s, 2, CH 2 SiMe 3 ), 0.50 (s, 9, CH2 SiMe3 ), 0.36 (s, 27,

NSiMe 3); 13C NMR (C6 D6) 8 76.8 (t, CH2 SiMe3), 62.1 (t, 1JCH = 136, CH 2), 53.7 (t, 1JCH =

136, CH 2), 4.7 (q, 1JCH = 119, CH2 SiMe3 ), 2.5 (q, 1JCH = 118, NSiMe3).

[N 3 N]Ta=CHPh (3b). (a) From [N3 N]TaCI 2 . PhCH2MgCl (642 gL, 1.0 M in

diethyl ether, 0.642 mmol) was added via syringe to a -35 'C solution of [N3N]TaCl 2 (187 mg,

0.306 mmol) in 8 mL of diethyl ether. After 17 h, the cloudy orange mixture was filtered through

Celite and the orange filtrate concentrated in vacuo to yield an orange solid. The solid was

recrystallized from diethyl ether at -35 'C and two crops of orange needles were collected to yield

175 mg (0.277 mmol, 91%) of product: 1H NMR (C6D6 ) 6 7.34 (m, 3, Ph), 6.80 (m, 2, Ph),

3.39 (t, 6, CH2), 2.16 (t, 6, CH 2), 2.01 (s, 1, CHPh), 0.39 (s, 27, SiMe 3); 13C NMR (C6 D6) 6

201.4 (d, 1JCH = 72, CHPh), 152.6 (s, Ph), 129.5 (d, Ph), 127.4 (d, Ph), 122.4 (m, Ph), 56.4

(t, CH 2), 49.8 (t, CH 2), 3.7 (q, SiMe3). Anal. Calcd for TaSi 3N4C22H45 : C, 41.89; H, 7.19; N,

8.88. Found: C, 41.68; H, 7.09; N, 8.81.

If only one equivalent of PhCH 2MgCl is added then [N3 N]Ta(CH 2 Ph)CI can be

isolated by fractional crystallization: 1H NMR (C6D6) 8 7.21 (t, 2, Ph), 6.98 (d, 2, Ph), 6.74 (t,

1, Ph), 3.45 (t, 6, CH2 ), 3.13 (s, 2, CH 2Ph), 2.10 (t, 6, CH 2 ), 0.42 (s, 27, SiMe 3); 13C NMR

(C6D 6 ) 8 149.0 (s, Ph), 131.9 (dd, 1JCH = 156, Ph), 127.0 (dd, Ph), 121.7 (dt, 1JCH = 157,

Ph), 91.4 (t, 1JCH = 129, CH2Ph), 57.5 (t, 1JCH = 138, CH 2), 52.4 (t, 1JCH = 136, CH2), 3.3

(q, 1JCH = 119, SiMe 3).

(b) From Ta(CH 2Ph)2CI3 . Ta(CH 2Ph) 2 C13 (250 mg, 0.532 mmol) was added to a

-35 'C solution of Li3 [N3N] (203 mg, 0.532 mmol) in 10 mL of diethyl ether. After 20 h, the

reaction mixture was filtered through Celite and the solvents were removed from the red-orange

filtrate in vacuo to afford a red-brown solid. Recrystallization of the red-brown solid from diethyl

ether at -35 'C gave several crops of orange needles; yield 288 mg (0.456 mmol, 86%).

[N3N]Ta=CHCMe 3 (3c). A solution of Ta(CH 2CMe 3)2C13 (2.41 g, 5.61 mmol) in 40

mL diethyl ether was prepared as was a solution of Li3 [N3N] (2.14 g, 5.61 mmol) in 40 mL

diethyl ether. Both solutions were chilled to -35 'C and then combined. After 2.5 h, the yellow



reaction mixture was filtered through a bed of Celite and the filtrate was concentrated in vacuo to

yield an orange solid. Recrystallization of the orange solid from pentane at -35 'C yielded several

crops of crystals; yield 1.92 g (3.14 mmol, 56%): 1H NMR (C6D6) 8 3.25 (t, 6, CH 2), 2.12 (t,

6, CH 2), 1.54 (s, 9, CHCMe3), 0.93 (s, 1, CHCMe3), 0.39 (s, 27, SiMe3 ); 13C NMR (C6D6) 5

213.3 (d, 1JCH = 72, CHCMe3), 59.4 (t, CH 2 ), 48.7 (t, CH 2 ), 47.7 (s, CMe 3 ), 35.7 (q,

CHMe 3), 3.0 (q, SiMe3). Anal. Calcd for TaSi 3N4 C20H49 : C, 39.33; H, 8.09; N, 9.17. Found:

C, 39.05; H, 7.95; N, 9.02.

Observation of [N3N]Ta=CHCH 2 CH 3 (3e). n-Propylmagnesium chloride (700

gL, 2.5 M in diethyl ether, 1.75 mmol) was added via syringe to a -35 'C solution of [N3N]TaCI2

(510 mg, 0.834 mmol) in 10 mL diethyl ether. After 23 h, the mixture was taken to dryness in

vacuo and the residue was extracted with 40 mL of pentane. The extract was filtered through

Celite and the solvent was removed from the yellow filtrate in vacuo to afford a yellow solid. Via

1H NMR integration versus a (Me3Si)2 0 internal standard, the solid was determined to contain

[N3N]Ta=CHCH 2CH 3 (3e) and (n-Pr)Ta[N(CH 2CH 2NSiMe 3)2][N(SiMe 3 )(CH=CH2)] (7c) in

32% and 66% yields, respectively. [N3N]Ta=CHCH 2CH 3 (3e): 1H NMR (C6D 6 ) 8 3.43 (t, 6,

CH 2), 3.29 (m, 2, TaCHCH 2 ), 2.21 (t, 6, CH 2 ), 1.19 (t, 3, TaCHCH2 CH 3 ), 0.38 (s, 27,

SiMe3), -0.28 (t, 1, TaCH); 13C NMR (C6 D6) 8 201.5 (d, 1JCH = 68, TaCH), 54.2 (t, 1JCH =

136, CH 2 ), 50.3 (t, 1JCH = 135, CH 2), 38.5 (t, 1 JCH = 125, TaCHCH 2), 18.1 (q, 1 JCH = 121,

T a C H C H 2 C H 3 ), 4.5 (q, 1 J CH = 117, SiMe 3 ).

(n-Pr)Ta[N(CH2CH2NSiMe 3 )2][N(SiMe 3)(CH=CH 2)] (7c): 1H NMR (C6D6 ) 85 6.61 (dd, 1,

CH=CH 2), 4.20 (d, 1, CH=CH 2 ), 4.06 (m, 3, CH 2 and CH=CH 2), 3.87 (m, 4, CH 2), 3.65 (m,

2, CH 2 ), 2.21 (m, 2, TaCH 2 CH 2 CH 3 ), 1.45 (t, 2, TaCH 2 CH 2 CH 3 ), 1.04 (t, 3,

TaCH 2CH 2CH 3), 0.22 (s, 18, NSiMe3), 0.20 (s, 9, NSiMe3); 13C NMR (toluene-d 8) 5 137.9

(d, 1JCH = 159, CH=CH 2 ), 92.8 (t, 1JCH = 157, CH=CH 2 ), 73.1 (t, 1JCH = 116,

TaCH2 CH 2 CH 3), 66.7 (t, 1JCH = 133, CH 2 ), 55.7 (t, 1JCH = 133, CH 2 ), 26.7 (t, 1JCH = 127,

TaCH 2 CH2 CH 3), 21.3 (q, 1JCH = 125, TaCH 2CH 2 CH 3 ), 1.8 (q, 1JCH = 118, NSiMe 3), 0.06

(q, 1JCH = 119, NSiMe3).



Observation of [N3 N]Ta=CHCH 2 CH 2 CH3 (3f). n-Butylmagnesium chloride

(692 gL, 2.5 M in diethyl ether, 1.73 mmol) was added via syringe to a -35 'C solution of

[N3N]TaC12 (504 mg, 0.834 mmol) in 10 mL diethyl ether. After 23 h, the mixture was taken to

dryness in vacuo and the residue was extracted with 40 mL of pentane. The extract was filtered

through Celite, the solvents were removed from the yellow filtrate in vacuo to afford a yellow

solid. Via 1H NMR integration versus a (Me3Si) 20 internal standard, the solid was determined to

contain [N 3 N ] Ta = C H C H 2 CH 2 CH 3 (3 f) and (n -

Bu)Ta[N(CH 2CH2NSiMe 3)2][N(SiMe 3)(CH=CH 2)] (7d) in 42% and 54% yields, respectively.

[N3N]Ta=CHCH 2 CH 2 CH 3 (3f): 1H NMR (C6 D6) 8 3.42 (t, 6, CH 2), 3.26 (m, 2, TaCHCH 2 ),

2.20 (t, 6, CH2 ), 1.71 (m, 2, TaCHCH 2CH 2), 0.95 (t, 3, TaCHCH 2 CH 2 CH 3), 0.41 (s, 27,

SiMe3), -0.20 (t, 1, TaCH); 13C NMR (C6 D6) 5 199.7 (d, 1JCH = 70, TaCH), 53.5 (t, 1JCH =

136, CH2 ), 50.3 (t, 1JCH = 135, CH 2 ), 48.4 (t, 1JCH = 126, TaCHCH2 ), 27.1 (t, 1JCH = 126,

TaCHCH 2 CH2 ), 14.8 (q, 1JCH = 125, TaCHCH 2CH 2CH 3), 4.4 (q, 1JCH = 117, SiMe3 ). (n-

Bu)Ta[N(CH 2CH 2NSiMe 3)2][N(SiMe 3)(CH=CH 2 )] (7d): 1H NMR (C6D 6 ) 8 6.64 (dd, 1,

CH=CH2 ), 4.21 (d, 1, CH=CH2), 4.07 (m, 3, CH2 and CH=CH2 ), 3.87 (m, 4, CH2), 3.66 (m,

2, CH2 ), 2.21 (m, 2, TaCH2 CH 2 CH 2 CH 3), 1.47 (t, 2, TaCH 2CH 2CH 2 CH 3), 1.36 (m, 2,

TaCH 2 CH 2 CH 2 CH 3), 0.94 (t, 3, TaCH 2 CH 2 CH 2 CH 3 ), 0.23 (s, 18, NSiMe 3 ), 0.20 (s, 9,

NSiMe 3); 13 C NMR (toluene-d 8 ) 8 137.8 (d, 1JCH = 160, CH=CH 2 ), 92.8 (t, 1JCH = 156,

CH=CH2), 69.9 (t, 1JCH = 117, TaCH2 CH 2CH 2CH 3), 66.7 (t, 1JCH = 134, CH 2 ), 55.7 (t, 1JCH

= 134, CH 2 ), 35.7 (t, 1JCH = 125, TaCH 2 CH 2 CH 2 CH 3 ), 29.6 (t, 1JCH = 124,

TaCH 2CH 2 CH 2CH 3), 14.1 (q, 'JCH = 124, TaCH2 CH 2 CH 2 CH 3 ), 1.8 (q, 1JCH = 118,

NSiMe 3), 0.05 (q, 1JCH = 119, NSiMe3).

[N3N]Ta=CHCH 2 CHMe 2 (3g). A -35 'C solution of [N3N]TaCl 2 (318 mg, 0.520

mmol) in 10 mL diethyl ether was subjected to the addition of i-pentylmagnesium bromide (642

gL, 1.7 M in diethyl ether, 1.09 mmol) via syringe. After 23 h, the cloudy yellow mixture was

concentrated in vacuo, extracted with 30 mL pentane, and filtered through Celite. The filtrate was

concentrated in vacuo to afford a yellow solid that was determined via 1H NMR integration versus



a (Me 3 Si) 2 0 internal standard to contain [N3 N]Ta=CHCH 2 CH(CH 3 )2 (3g) and

(Me2CHCH 2CH2 )Ta[N(CH 2CH2NSiMe 3)2][N(SiMe 3)(CH=CH 2)] (7e) in 84% and 15% yields,

respectively. The crude reaction product was recrystallized to obtain [N3N]Ta=CHCH 2CHMe2

(3g) free of the decomposition product. Yellow crystals of the alkylidene were collected to afford

242 mg (0.396 mmol, 76%) of product: 1H NMR (C6D 6) 8 3.41 (t, 6, CH2), 3.37 (dd, 2,

TaCHCH 2CHMe 2 ), 2.15 (t, 6, CH 2 ), 2.03 (m, 1, CHMe 2), 1.14 (d, 6, CHMe2), 0.46 (s, 27,

NSiMe3), 0.10 (t, 1, TaCHCH 2 CHMe 2); 13 C NMR (C6 D 6 ) 8 199.7 (d, 1JCH = 71,

TaCHCH 2 CHMe 2), 54.9 (t, 1JCH = 122, TaCHCH2CHMe 2 ), 54.8 (t, 1JCH = 136, CH 2 ), 50.1

(t, 1JCH = 135, CH 2 ), 31.3 (d, 1JCH = 129, CHMe 2), 23.7 (q, 1JCH = 125, CHMe2 ), 4.3 (q,

1JCH = 118, NSiMe3). Anal. Calcd for TaSi 3N4C20H49 : C, 39.33; H, 8.09; N, 9.17. Found: C,

39.18; H, 8.25; N, 9.03.

[N 3N]Ta=CHCH 2CMe 3 (3h). A -35 'C solution of [N3N]TaCl 2 (500 mg, 0.818

mmol) in 8 mL diethyl ether was subjected to the addition of neohexylmagnesium chloride (818

gL, 2.1 M in diethyl ether, 1.72 mmol) via syringe. After 23 h, the cloudy yellow-orange mixture

was concentrated in vacuo, extracted with 30 mL pentane, and filtered through Celite. The filtrate

was concentrated in vacuo to afford orange solid that was determined to be

[N 3N]Ta=CHCH 2 CMe 3 (3h) contaminated by a trace (< 1%) amount of

(Me 3 CCH 2 CH 2 )Ta[N(SiMe 3 )(CH=CH 2 )][N(CH2CH 2 NSiMe 3 )2] (7f) via 1H NMR

spectroscopy. The crude reaction product was recrystallized to obtain 3h free of the

decomposition product. Orange crystals of the alkylidene were collected to afford 393 mg (0.629

mmol, 77%) of product: 1H NMR (C6D6) 8 3.71 (d, 2, TaCHCH 2CMe3), 3.34 (t, 6, CH 2), 2.13

(t, 6, CH 2), 1.21 (s, 9, CMe3), 0.75 (t, 1, TaCHCH 2CMe 3), 0.41 (s, 27, NSiMe 3); 13C NMR

(C6D 6) 8 200.6 (d, 1JCH = 75, TaCHCH 2 CMe3), 58.6 (t, 1JCH = 124, TaCHCH 2CMe3), 57.5 (t,

1JCH = 135, CH 2 ), 49.3 (t, 1JCH = 135, CH 2), 34.3 (s, CMe 3 ), 30.5 (q, 1JCH = 124, CMe3),

3.9 (q, 1JCH = 118, NSiMe 3). Anal. Calcd for TaSi3N4 C2 1H5 1: C, 40.37; H, 8.23; N, 8.97.

Found: C, 40.43; H, 8.25; N, 8.62.

[N3N]Ta(7l 2 -C2H4) (4). Ethylmagnesium chloride (1.17 mL, 2.2 M in diethyl ether,



2.58 mmol) was added via syringe to a -35 'C solution of [N3N]TaCl 2 (750mg, 1.23 mmol) in 30

mL diethyl ether. After 1 h, the mixture was taken to dryness in vacuo and the residue was

extracted with 60 mL of pentane. The extract was filtered through Celite, the solvents were

removed from the red filtrate in vacuo, and the red solid was recrystallized from pentane at -35 'C

to provide 673 mg (1.18 mmol, 96%) of magenta crystals: 1H NMR (C6D6) 8 3.38 (t, 6, CH2),

2.29 (t, 6, CH 2), 2.15 (s, 4, H2C=CH2 ), 0.20 (s, 27, SiMe3); 13C NMR (C6D 6) 8 62.6 (t, 1JCH

= 144, H2 C=CH2), 59.7 (t, 1JCH = 135, CH 2), 49.7 (t, 1JCH = 135, CH 2), 3.2 (q, 1JCH = 118,

SiMe 3). Anal. Calcd for TaSi 3N 4C 17H 43 : C, 35.90; H, 7.62; N, 9.85. Found: C, 35.94; H,

7.41; N, 9.61.

[N3N]Ta(Me)Et (6). A -35 'C solution of [N3N]Ta(Et)CI (166 mg, 0.274 mmol) in 5

mL diethyl ether was subjected to the addition of methylmagnesium chloride (100 gL, 0.302

mmol, 3.0 M in tetrahydrofuran) via syringe. The orange mixture was stirred for 3.5 h and was

then taken to dryness in vacuo. The resulting orange solid was extracted with 5 mL diethyl ether

and filtered through Celite to afford an orange solution. The filtrate was concentrated in vacuo to

afford 151 mg of an orange solid that was shown to be an 8:1 mixture of [N3N]Ta(Me)Et (6) and

[N3N]Ta(112-C2H4 ) (4) by 1H NMR. Four recrystallizations from pentane at -35 'C afforded X-

ray quality yellow plates of 6: 1H NMR (C6D6 ) 8 3.42 (t, 6, CH 2), 2.16 (t, 6, CH 2 ), 1.89 (t, 3,

CH 2CH 3 ), 1.69 (q, 2, CH 2 CH 3), 1.35 (s, 3, CH3 ), 0.28 (s, 27, SiMe3); 13 C NMR (C6D 6) 6

78.7 (t, 1JCH = 117, CH 2 CH 3), 65.6 (q, 1JCH = 117, CH 3), 59.7 (t, 1 JCH = 136, CH 2), 51.1 (t,

1JCH = 135, CH2), 17.0 (q, 1JCH = 123, CH2 CH3), 2.6 (q, 1JCH = 118, SiMe3).

EtTa[N(SiMe 3 )(CH=CH 2 )][N(CH 2 CH 2 NSiMe 3 )2 ] (7b). A solution of

[N3N]Ta(112-C2H4) (82 mg, 0.144 mmol) in - 1 mL toluene-d8 was added to an NMR tube which

was then sealed. The tube was then heated to 50 'C in an oil bath for 24 h. 1H NMR

demonstrated the sole reaction product to be 7b: 1H NMR (toluene-d8) 8 6.59 (dd, 1, CH=CH2),

4.25 (d, 1, CH=CH 2), 4.07 (m, 3, CH 2 and CH=CH 2), 3.87 (m, 4, CH 2), 3.67 (m, 2, CH 2 ),

1.99 (t, 3, CH2 CH 3), 1.46 (q, 2, CH 2 CH 3), 0.23 (s, 18, NSiMe3 ), 0.21 (s, 9, NSiMe3 ); 13 C

NMR (toluene-d 8) 8 137.1 (d, 1JCH = 160, CH=CH2 ), 92.9 (t, 1JCH = 158, CH=CH 2), 66.7 (t,



1JCH = 133, CH 2), 60.4 (t, 1JCH = 118, CH 2CH 3), 55.7 (t, 1JCH = 135, CH 2 ), 18.0 (q, 1JCH =

125, CH 2 CH3), 1.7 (q, 1JCH = 118, NSiMe3), 0.08 (q, 1JCH = 118, NSiMe3).

MeTa[N(SiMe 3 )(CH=CH2)][N(CH2CH2NSiMe3)2] (7a). A solution of

[N3N]TaMe 2 (277 mg, 0.485 mmol) in -1 mL toluene-d8 was added to an NMR tube which was

then sealed. The tube was then heated to 110 0 C in an oil bath for 24 h. 1H NMR demonstrated the

sole reaction products to be methane (8 0.17) and 7a: 1H NMR (toluene-d8) 8 6.55 (dd, 1,

CH=CH 2), 4.27 (d, 1, CH=CH2 ), 4.10 (d, 1, CH=CH2), 3.97 (m, 2, CH 2 ), 3.83 (m, 4, CH 2),

3.68 (m, 2, CH 2), 0.75 (s, 3, CH 3), 0.19 (s, 9, NSiMe3 ), 0.16 (s, 18, NSiMe 3); 13C NMR

(toluene-d8) 8 135.2 (d, 1JCH = 160, CH=CH2), 93.7 (t, 1JCH = 157, CH=CH2 ), 67.0 (t, 1JCH =

132, CH 2), 55.4 (t, 1JCH = 136, CH 2 ), 40.5 (q, 1JCH = 120, CH 3), 1.6 (q, 1JCH = 119,

NSiMe3), -0.1 (q, 1JCH = 120, NSiMe3 ). Anal. Calcd for TaSi 3N4 C16H4 1: C, 34.64; H, 7.45;

N, 10.10. Found: C, 34.38; H, 6.90; N, 9.94.

[N 3 N]Ta(T) 2 -C 2 H 2 ) (8). Vinylmagnesium bromide (1.37 mL, 1.0 M in

tetrahydrofuran, 1.37 mmol) was added to a -35 'C solution of [N3N]TaCl 2 (400 mg, 0.654

mmol) in 25 mL diethyl ether. After 17 h, the pale gold mixture was concentracted in vacuo and

the residue was extracted with 50 mL pentane. The extract was filtered through Celite and the pale

gold filtrate was taken to dryness in vacuo to yield an off-white solid that was recrystallized from

pentane at -35 'C to afford 298 mg (0.526 mmol, 80%) of colorless needles. X-ray quality

crystals were obtained by recrystallization of the product from pentane at -35 oC. 1H NMR (C6D6)

8 12.22 (s, 2, HCCH), 3.51 (t, 6, CH 2 ), 2.42 (t, 6, CH 2), 0.20 (s, 27, SiMe 3); 13 C NMR

(C 6D 6 ) 8 219.9 (dd, 1JCH = 169, HCCH), 54.2 (t, 1JCH = 136, CH 2 ), 51.0 (t, 1JCH = 134,

CH 2), 4.3 (q, 1JCH = 118, SiMe3); IR (Nujol, background subtracted) 1725 cm -1 (s, VC=C).

Anal. Calcd for TaSi 3N 4C1 7 H4 1: C, 36.03; H, 7.29; N, 9.89. Found: C, 35.97; H, 7.19; N,

10.01.

[N3N]Ta(T1 2 -C 6 H 4) (9). (a) From [N3 N]TaCI2 . A mixture of [N3N]TaCl 2 (257

mg, 0.420 mmol) and phenyllithium (81 mg, 92 mol% solid, 0.882 mmol) in 10 mL of toluene

was heated at - 80 'C for 24 h. The reaction mixture was taken to dryness in vacuo and the residue



was extracted with 10 mL of pentane. The extract was filtered through Celite and the solvents

were removed in vacuo from the yellow-orange filtrate to give a solid. Recrystallization of this

solid from pentane at -35 'C provided 166 mg (0.269 mmol, 64%) of white crystals: 1H NMR

(C6 D6) 8 8.45 (m, 2, Ph), 7.52 (m, 2, Ph), 3.59 (t, 6, CH 2 ), 2.49 (t, 6, CH 2 ), 0.06 (s, 27,

SiMe 3); 13C NMR (C6D6 ) 8 215.1 (d, 2JCH = 6, C6H4 ), 136.5 (d, 1JCH = 158, C6H4 ), 132.6 (d,

1JCH = 156, C6 H4), 55.7 (t, 1JCH = 136, CH2 ), 51.2 (t, 1JCH = 136, CH2 ), 3.2 (q, 1JCH = 118,

SiMe 3 ). Anal. Calcd for TaSi 3N4 C2 1H4 3 : C, 40.89; H, 7.03; N, 9.08. Found: C, 40.89; H,

7.02; N, 8.84.

[N3N]Ta(Ph)CI can be observed as an intermediate in the reaction to form 9. It can be

generated by treating 9 in toluene or benzene with a stoichiometric amount of ethereal hydrogen

chloride: 1H NMR (C6D6 ) 8 7.37 (t, 3, Ph), 7.15 (m, 2, Ph), 3.68 (t, 6, CH 2), 2.32 (t, 6, CH 2),

0.21 (s, 27, SiMe 3).

(b) From [N 3 N]Ta(Me)C1. Phenylmagnesium bromide (209 4L, 3.5 M in

tetrahydrofuran, 0.731 mmol) was added to a solution of [N3N]Ta(Me)Cl (393 mg, 0.665 mmol)

in 10 mL of toluene. The mixture was heated at 55 'C for 2 days. The cloudy yellow-orange

solution was subsequently concentrated in vacuo and the residue was extracted with 20 mL of

diethyl ether. The orange extract was filtered through Celite and the filtrate was concentrated in

vacuo to yield a light orange solid that was recrystallized from pentane at -35 'C to produce 316 mg

(0.512 mmol, 77%) of product as white crystals.

[N3 N]Ta(Me)Ph (10) can be observed as an intermediate in this reaction. If the reaction

is conducted at room temperature for -8 h mixtures containing -80% 10 can be obtained: 1H

NMR (C6D 6 ) 8 8.11 (dd, 2, Ph), 7.44 (t, 2, Ph), 7.24 (t, 1, Ph), 3.43 (t, 6, CH 2 ), 2.24 (t, 6,

CH2), 1.81 (s, 3, CH 3), 0.11 (s, 27, SiMe3).

Kinetics of decomposition of [N3N]Ta(CH 3)(C6H5 ). Decomposition reactions

were followed by 1H NMR (see earlier description). The individual values for runs at a given

temperature (K) are (k x 106 s-1) 304 (9.58, 9.84), 315 (36.8, 36.8), 325 (110, 119), 335 (250,

337), 347 (858, 937).



The rate of decomposition of [N3N]Ta(CH 3)(C6H5) was found to be 1.4 times faster than

[N3N]Ta(CD 3)(C6H5) for a secondary isotope effect (per D) of ( 1.4 (2) )1/3 or 1.1 (1), while the

primary isotope effect observed via decomposition of [N3N]Ta(CH 3 )(C 6 H 5 ) and

[N3N]Ta(CH 3)(C6D5) was found to be 3.6 (6).

To calculate the uncertainties in the reported rate constants, kinetic isotope effects, and

activation parameters, similar methods were applied as previously described by Xue and co-

workers. 56 We assumed a systematic uncertainty of 5% which was averaged with the calculated

random uncertainty in root-mean-square fashion to determine the total uncertainty in k. This value

was utilized in error propagation formulas derived by Girolami and co-workers to calculate the

uncertainties in AHt and ASt. 57

Reactions of [N3N]Ta(r 2 - C 2 H 4). (a) With PPhH 2 to give

[N3N]Ta=CHCH 3 (3d). Phenylphosphine (17 gL, 0.158 mmol) was added via syringe to a

solution of [N3N]Tai(112 -C2H4) (300 mg, 0.527 mmol) in 2 mL of diethyl ether. After 24 h, the

gold solution was filtered through Celite and the gold filtrate was concentrated in vacuo to yield an

oily yellow solid. The oily solid was recrystallized from pentane at -35 'C to afford 264 mg (0.464

mmol, 88%) of product as yellow crystals: 1H NMR (C6D6) 8 3.42 (t, 6, CH2 ), 2.84 (d, 3, CH 3),

2.16 (t, 6, CH 2), 0.44 (s, 27, SiMe3), -0.41 (q, 1, CHCH 3); 13C NMR (C6D6 ) 8 191.2 (d, 1JCH

= 69, CHCH 3 ), 53.9 (t, CH2 ), 50.1 (t, CH 2), 30.5 (dq, 1JCH = 126, CH 3 ), 4.1 (q, SiMe 3).

Anal. Calcd for TaSi 3N 4 C17H4 3 : C, 35.90; H, 7.62; N, 9.85. Found: C, 36.08; H, 7.75; N,

9.73.

(b) With AsSiMe 3 H 2 to give [N3N]Ta=AsSiMe 3 . 1H NMR (C6D 6) 8 3.52 (t, 6,

CH2), 2.05 (t, 6, CH2), 0.65 (s, 27, NSiMe3), 0.63 (s, 9, AsSiMe3); 13C NMR (C6D6 ) 8 53.6 (t,

1JCH = 136, CH2), 51.3 (t, 1JCH = 136, CH2), 6.4 (q, 1JCH = 118, NSiMe3), 6.3 (q, JCH

118, AsSiMe 3).

Addition of pivaldehyde to [N3N]Ta=AsSiMe 3 at -350 C yields Me3SiAs=C(H)CMe 3: 1H

NMR (C6D6 ) 8 11.46 (s, 1, CHCMe 3), 1.20 (s, 9, CHCMe3), 0.29 (s, 9, AsSiMe 3).

(c) With ammonia to give [N3 N]Ta=NH. A 100 mL glass bomb fitted with a



Teflon stopcock was charged with a solution of [N3N]Ta(T12-C2 H4 ) (42 mg, 0.0738 mmol) in 5

mL of diethyl ether. The mixture was subjected to three freeze(-196 °C)-pump-thaw cycles.

Ammonia (0.148 mmol) was condensed into the bomb at -196 'C. The reaction mixture was

allowed to warm to room temperature and stirred for 19h. The resulting light orange solution was

filtered through Celite and concentrated in vacuo to afford a light yellow solid. The reaction

product was determined by 1H NMR spectroscopy to contain a 78% yield of [N3N]Ta=NH by use

of (Me3Si)20 as an internal standard.

(d) With hydrazine to give [N3 N]Ta=NH. A -35 'C solution of [N3N]Ta(T1 2 -

C2H 4) (100 mg, 0.176 mmol) in 3 mL tetrahydrofuran was subjected to addition of hydrazine (5.5

gL, 0.176 mmol) via syringe. The red solution immediately turned orange and was stirred for 24

h. The yellow solution was then concentrated in vacuo to afford a yellow solid that was extracted

with 5 mL pentane and filtered through Celite. The yellow filtrate was concentrated in vacuo to

provide a light yellow solid that was recrystallized from pentane at -35 'C. White crystals were

collected to afford 69 mg (0.124 mmol, 70%) of product.

(e) With pentafluoroaniline to give [N 3N]Ta=NC 6F5 (2d). Pentafluoroaniline

(66 mg, 0.362 mmol) was added to a -35 'C solution of [N3N]Ta(l 2-C2H 4) (206 mg, 0.362

mmol) in 5 mL of diethyl ether. Over a period of 3 days the red solution turned light yellow. The

solvents were removed in vacuo and the resulting solid was extracted with 5 mL pentane. The

extract was filtered through Celite and the solvents removed from the filtrate to provide a light

yellow solid. The solid was recrystallized from pentane at -35 'C to afford 191 mg (0.264 mmol,

73%) of product: 1H NMR (C6D6 ) 8 3.36 (t, 6, CH2), 2.25 (t, 6, CH 2), 0.22 (s, 27, SiMe 3); 13C

NMR (C6 D 6) 8 56.9 (t, 1JCH = 136, CH 2 ), 49.3 (t, 1JCH = 136, CH2), 2.3 (q, 1JCH = 119,

SiMe3); 19F NMR (C6 D6) 8 -146.6 (d, 3JFF = 24, C6F5), -165.2 (dt, 3JFF = 24, C6F5 ), -168.2

(dt, 3JFF = 23, C6F5). Anal. Calcd for TaSi 3F5N5 C2 1H39 : C, 34.95; H, 5.45; N, 9.70. Found:

C, 35.15; H, 5.62; N, 9.64.

(f) With aniline to give [N3 N]Ta=NPh. [N 3 N]Ta(112 -C 2 H 4 ) (15 mg, 0.0264

mmol) and ferrocene (5 mg, 0.0269 mmol) were dissolved in -1 mL toluene-d8 in an NMR tube.



Aniline (2.4 pL, 0.0264 mmol) was then added via syringe and the tube was sealed. After 24 h at

-25 'C, the mixture was found by 1H NMR to contain a 62% yield of [N3 N]Ta=NPh (vs.

ferrocene internal standard).

(g) With hydrogen gas to give [N3N]Ta(Et)H. A 100 mL glass bomb fitted with

a teflon stopcock was charged with a solution of [N3N]Ta(1l2-C2H4) (319 mg, 0.561 mmol) in 10

mL diethyl ether. The mixture was subjected to three freeze(-196 °C)-pump-thaw cycles and then

0.5 atm hydrogen gas was added. The magenta color of the solution bleached over a period of one

hour to provide a colorless solution. After 2 h, the colorless solution was filtered through Celite

and the filtrate was concentrated in vacuo to provide a white solid containing small amounts of red

solid. Examination of the product mixture via 1H NMR demonstrated the presence of

[N3N]Ta(Et)H along with a small amount (ca. 5%) of [N3N]Ta(Tl 2-C2H4). Recrystallization of

the mixture from diethyl ether at -35 'C afforded [N3N]Ta(Et)H in the amount of 298 mg (0.522

mmol, 93%) as a white crystalline solid: 1H NMR (C6D6) 8 24.77 (s, 1, TaH), 3.44 (t, 6, CH 2),

2.26 (t, 8, CH2 and CH 2CH 3), 1.50 (t, 3, CH 2CH 3), 0.25 (s, 27, SiMe3); 13 C NMR (C6D 6) 8

62.4 (t, 1JCH = 124 Hz, TaCH 2 CH 3), 56.3 (t, 1JCH = 137 Hz, CH 2 ), 51.1 (t, 1JCH = 134 Hz,

CH 2 ), 11.2 (q, 1JCH = 123 Hz, TaCH2 CH 3 ), 2.3 (q, 1JCH = 119 Hz, SiMe3). IR (nujol,

background subtracted): 1816 cm - 1 (s, v Ta-H). Anal. Calcd for TaSi 3N4C 17H45 : C, 35.77; H,

7.95; N, 9.82. Found: C, 36.13; H, 7.95; N, 9.86.

A 0.40 M toluene-d8 solution of [N3N]Ta(Et)H in a sealed NMR tube decomposed upon

heating in an oil bath at 100 'C for 5 h. The reaction mixture was determined by 1H NMR to

contain EtTa[N(CH 2 CH 2NSiMe 3)2 (CH 2CH 2N)] and Me3SiH [ 5 4.12 (m, 1, Me3 SiH), 0.02 (d,

3 JHH = 4, 9, Me 3 SiH) ], contaminated by a small amount (< 5%) of

EtTa[N(SiMe 3)(CH=CH 2)][N(CH 2CH 2NSiMe 3)2] resulting from initial dihydrogen loss from the

hydride starting material followed by decomposition of the product ethylene complex. The light

yellow reaction mixture was concentrated in vacuo to provide a yellow oil. Recrystallization of the

yellow oil from diethyl ether at -35 'C afforded EtTa[N(SiMe3)(CH=CH 2)][N(CH2CH 2NSiMe3)2]

as yellow crystals. The mother liquor was concentrated in vacuo to afford the imido



decomposition product as a colorless oil: 1H NMR (C6 D6 ) 8 4.40 (br m, 2, CH2 ), 3.74 (br m, 2,

CH 2 ), 3.58 (br m, 2, CH 2), 3.37 (br m, 2, CH2 ), 2.58 (br s, 4, CH 2), 2.07 (t, 3, CH 2CH 3 ),

1.08 (q, 2, CH 2CH 3 ), 0.46 (s, 18, NSiMe3); 13C NMR (C6D6) 6 54.6 (t, 1JCH = 141, =NCH2 ),

52.6 (t, 1JCH = 134, CH 2 ), 51.7 (t, 1JCH = 135, CH 2), 49.5 (t, 1JCH = 135, CH2 ), 46.2 (t, 1JCH

= 115, CH2 CH3 ), 18.3 (q, 1JCH = 124, CH 2CH 3), 3.4 (q, 1JCH = 115, SiMe3).

(h) With 2,6-lutidinium triflate to give [N3N]Ta(Et)OTf. 2,6-lutidinium triflate

(226 mg, 0.879 mmol) was added to a -35 'C solution of [N3N]Ta(T12-C2H4) (500 mg, 0.879

mmol) in 20 mL of dichloromethane. The red solution immediately turned orange. After 8 h the

solvents were removed in vacuo and the resulting solid was extracted with 40 mL of diethyl ether.

The extract was filtered through Celite and the filtrate was taken to dryness in vacuo to yield a

yellow solid. Recrystallization of the yellow solid from diethyl ether at -35 'C gave 578 mg (0.804

mmol, 91%) of yellow crystalline product: 1H NMR (C6D6) 5 3.62 (t, 6, CH2 ), 2.26 (t, 6, CH2),

2.11 (t, 3, CH 3), 1.78 (q, 2, CH2 ), 0.30 (s, 27, SiMe3); 13C NMR (C6D6) 8 80.0 (t, 1JCH = 112,

CH 2CH 3), 60.8 (t, 1JCH = 137, CH 2 ), 54.1 (t, 1JCH = 137, CH2 ), 17.5 (q, 1JCH = 126,

CH 2 CH3), 2.0 (q, 1JCH = 119, SiMe3 ). Anal. Calcd for TaSi 3N40 3SF 3 C18H 4 4 : C, 30.08; H,

6.17; N, 7.79. Found: C, 29.77; H, 6.50; N, 7.75.

[N3N]Ta(Et)CI may be prepared via addition of tetraethylammonium chloride (94 mg,

0.566 mmol) to a -35 'C solution of [N3N]Ta(Et)OTf (407 mg, 0.566 mmol) in 8 mL methylene

chloride. After 23 h, the yellow solution was concentrated in vacuo, extracted with 10 mL diethyl

ether, and filtered through Celite. The yellow filtrate was concentrated in vacuo to provide a

yellow solid that was recrystallized from diethyl ether at -35 'C. Yellow crystals were collected to

afford 273 mg (0.451 mmol, 80%) of product.

[N3N]Ta(Et)Br may be prepared via addition of tetraethylammonium bromide (88 mg,

0.417 mmol) to a -35 'C solution of [N3N]Ta(Et)OTf (300 mg, 0.417 mmol) in 8 mL methylene

chloride. After 24 h, the yellow solution was concentrated in vacuo, extracted with 50 mL diethyl

ether, and filtered through Celite. The yellow filtrate was concentrated in vacuo to provide a

yellow solid that was recrystallized from diethyl ether at -35 'C. Yellow crystals were collected to



afford 227 mg (0.349 mmol, 84%) of product: 1H NMR (C6D6) 85 3.66 (t, 6, CH 2), 2.60 (t, 3,

CH 2CH 3 ), 2.16 (t, 6, CH2), 1.76 (q, 2, CH 2 CH 3), 0.39 (s, 27, SiMe3 ); 13 C NMR (C6D6 ) 8

80.5 (t, 1JCH = 112, CH 2CH 3), 61.7 (t, UJCH = 137, CH 2), 54.5 (t, 1JCH = 136, CH 2), 22.7 (q,

1JCH = 127, CH2CH 3 ), 2.3 (q, 1JCH = 118, SiMe3). Anal. Calcd for TaSi 3N4BrCl 7H4 4: C,

31.43; H, 6.83; N, 8.62. Found: C, 31.46; H, 6.75; N, 8.76.

(i) With phenylacetylene to give [N3 N]Ta(CH 2 CH 3 )(il1 -C= CPh).

Phenylacetylene (24.3 gL, 0.211 mmol) was added via syringe to a solution of [N3N]Ta(T1 2-

C2H4) (100 mg, 0.176 mmol) in 4 mL of diethyl ether. After 45 h, the gold solution was filtered

through Celite and the filtrate was stripped to yield a yellow oily solid. Recrystallization of the

solid from pentane at -35 'C afforded 103 mg (0.153 mmol, 87%) of yellow crystalline product:

1H NMR (CD 2Cl 2 ) 8 7.38 (m, 2, Ph), 7.27 (m, 2, Ph), 7.20 (m, 1, Ph), 3.86 (t, 6, CH 2), 2.95

(t, 6, CH2 ), 1.85 (q, 2, CH 2 CH 3 ), 1.66 (t, 3, CH 2 CH 3 ), 0.24 (s, 27, SiMe3); 13C NMR

(CD 2Cl 2) 8 172.0 (s, CCPh), 132.1 (s, Ph), 129.4 (m, Ph), 128.5 (m, Ph), 128.1 (s, CCPh),

126.1 (m, Ph), 79.5 (t, 1JCH = 124, CH2 CH 3), 59.1 (t, 1JCH = 136, CH 2 ), 52.0 (t, 1JCH = 136,

CH 2), 16.1 (q, 1JCH = 122, CH 2 CH3), 3.0 (q, 1JCH = 118, SiMe3); IR (diethyl ether solution,

KBr cells, background subtracted) 1963 cm- 1 (s, vc-=c). Anal. Calcd for TaSi 3N 4C2 5H49 : C,

44.76; H, 7.36; N, 8.35. Found: C, 44.26; H, 7.26; N, 8.35.

(j) With pyridine-N-oxide to give [N3N]Ta=O. Pyridine-N-oxide (12 mg, 0.127

mmol) was added to a solution of [N3N]Ta(rl 2 -C2 H 4 ) (36 mg, 0.0633 mmol) in 3 mL

tetrahydrofuran. After 2 d, the gold reaction mixture was stripped to afford a light yellow solid

that by 1H NMR using (Me3Si)20 as an internal standard was determined to contain a 90% yield of

[N3N]Ta=O. The 1H and 13C NMR spectra for [N3N]Ta=O have been previously reported.6

(k) With trimethylsilyldiazomethane to give [N3N]Ta=N-N= CHSiMe3.

Trimethylsilyldiazomethane (500 gL, 2.0 M in hexanes, 1.00 mmol) was added via syringe to a

-35 'C solution of [N3N]Ta(T12 -C2H4) (400 mg, 0.703 mmol) in 5 mL pentane. The red solution

immediately turned bright yellow and was stirred for 45 min. The yellow solution was filtered

through Celite and the filtrate was concentrated in vacuo to provide a yellow solid that was



recrystallized from pentane at -35 'C. Yellow crystals were collected to afford 422 mg (0.644

mmol, 91%) of product: 1H NMR (C6 D6) 8 8.39 (s, 1, CHSiMe3), 3.44 (t, 6, CH 2), 2.27 (t, 6,

CH 2 ), 0.43 (s, 27, NSiMe 3), 0.32 (s, 9, CHSiMe 3); 13C NMR (C6D 6) 8 166.1 (d, 1JCH = 138,

CHSiMe 3 ), 54.2 (t, 1JCH = 135, CH2 ), 49.7 (t, 1 JCH = 135, CH 2 ), 3.5 (q, 1 JCH = 118,

NSiMe 3), -1.8 (q, 1JCH = 120, CHSiMe 3). Anal. Calcd for TaSi 4N6C19 H49 : C, 34.84; H, 7.54;

N, 12.83. Found: C, 34.99; H, 7.48; N, 12.86.

(1) With trimethylsilylazide to give [N3N]Ta=NSiMe3. [N3 N]Ta(TI2 -C2H 4 ) (30

mg, 0.0527 mmol) and ferrocene (10 mg, 0.0580 mmol) were dissolved in ~ 1 mL toluene-d8 in an

NMR tube. Trimethylsilylazide (8.0 gL, 0.0580 mmol) was then added via syringe and the tube

was sealed. After 3 weeks at -25 'C, the mixture was found by 1H NMR to contain a >99% yield

of [N3N]Ta=NSiMe 3 (vs. ferrocene internal standard). 1H NMR (C6D6) 8 3.26 (t, 6, CH2), 2.17

(t, 6, CH2 ), 0.45 (s, 9, =NSiMe3), 0.34 (s, 27, NSiMe3); 13C{ 1H} NMR (C6 D6) 8 58.7 (CH 2),

48.6 (CH2), 5.7 (=NSiMe 3), 2.8 (NSiMe3).

(m) With acetylene to give [N3N]Ta(CHCHCH 2 CH 2 ) (11). A 100 mL glass

bomb fitted with a Teflon stopcock was charged with a solution of [N3N]Ta(rj 2 -C2H4 ) (381 mg,

0.670 mmol) in 10 mL diethyl ether. The mixture was subjected to three freeze(-196 °C)-pump-

thaw cycles. Acetylene (1.61 mmol) was condensed into the bomb at -196 'C. The reaction vessel

was allowed to warm to room temperature and was stirred for 19 h. The purple reaction mixture

was filtered through Celite in order to remove the polyacetylene and the solvents were removed

from the resulting yellow-orange filtrate. The resulting solid was recrystallized from pentane at -35

'C to give yellow crystals (364 mg, 0.612 mmol, 91%): 1H NMR (C6D6) 85 8.62 (dd, J = 9, 2, 1,

TaCH), 8.12 (dd, J = 9, 2, 1, TaCHCH), 3.64 (m, 2, TaCHCHCH 2), 3.35 (t, 6, CH 2), 2.17 (t,

6, CH2), 2.14 (t, 2, TaCHCHCH 2CH 2), 0.25 (s, 27, SiMe3); 13C NMR (C6D6 ) 8 208.4 (dt,

1JCH = 126, TaCH), 159.2 (d, 1JCH = 145, TaCHCH), 80.3 (t, 1JCH = 116, TaCHCHCH 2 ),

60.0 (t, 1JCH = 136, CH2), 50.1 (t, 1JCH = 135, CH 2), 44.0 (t, 1JCH = 124, TaCHCHCH 2 CH2 ),

2.5 (q, 1JCH = 118, SiMe 3). Anal. Calcd for TaSi 3N4 C1 9H 45 : C, 38.37; H, 7.62; N, 9.42.

Found: C, 38.50; H, 7.60; N, 9.35.



Kinetics of decomposition of [N3N]Ta(r12-C2H4). Decomposition reactions

were followed by UV/VIS Spectroscopy. In UV/VIS runs a Hellma 221-QS quartz cell (path

length = 10 mm) sealed to a gas adapter fitted with a teflon stopcock was charged with 2 mL of a

stock solution of [N3N]Ta(7l 2-C2H4) (4) via syringe. The cell was placed in the HP 8452 Diode

Array spectrophotometer and the temperature was then set utilizing a HP 89090A Peltier

temperature control accessory. Upon reaching the desired temperature, the reaction was monitored

by observing the decrease in the absorbance of the solution at 494 nm at fixed time intervals via an

interface to a HP 9000 Series 300 computer. The reaction temperature was maintained to within

+0.2 'C of the set point. The fractional uncertainty in the measured rate constants was assumed to

be 1% on the basis of subjective inspection of the sensitivity of the fits to the Absorbance vs. Time

plots.

Reactions of [N3N]Ta(Tl 2 -C6H4). (a) With aniline to give [N3N]Ta=NPh.

An NMR tube was charged with a solution of [N3N]Ta(l 2-C6H 4) (20 mg, 0.0324 mmol) and

ferrocene (3 mg, 0.0161 mmol) in ~-1 mL toluene-ds. Aniline (2.9 gL, 0.0324 mmol) was then

added via syringe and the tube was sealed and placed in an oil bath at 90 'C for 4 d. The reaction

mixture was determined by 1H NMR spectroscopy to contain a >99% yield of [N3N]Ta=NPh via

integration versus ferrocene as an internal standard.

(b) With pentafluoroaniline to give [N 3N]Ta=NC 6 Fs. An NMR tube was

charged with a solution of [N3N]Ta(fl 2 -C6H 4 ) (10 mg, 0.0162 mmol), pentafluoroaniline (3 mg,

0.0162 mmol), and ferrocene (2 mg, 0.0122 mmol) in ~-1 mL toluene-ds. The tube was then

sealed and placed in an oil bath at 110 'C for 7 days. The reaction mixture was shown by 1H

NMR spectroscopy to contain a 98% yield of [N3N]Ta=NC6F5 via integration versus ferrocene as

an internal standard.

(c) With phenylarsine to give [N3N]Ta=AsPh (12). A glass bomb fitted with a

teflon stopcock was charged with a solution of [N3N]Ta(1 2-C6H4) (550 mg, 0.892 mmol) in 3

mL toluene. A solution of phenylarsine (200 gL, 1.30 mmol) in 3 mL toluene was added to the

bomb via a pipet containing a 2" column of activated alumina. The bomb was sealed and its



contents were stirred magnetically in the dark over a period of four weeks. The brown-yellow

mixture was concentrated in vacuo and extracted with 80 mL pentane. The brown extract was

filtered through Celite to yield an orange filtrate. The orange filtrate was concentrated in vacuo to

provide an orange solid that was shown via 1H NMR to contain the arsinidene contaminated by

small amounts of N[CH2CH 2N(H)SiMe 3]3 and an unknown product proposed to be a cyclic

oligomer of phenylarsine. Recrystallizations of the product mixture from diethyl ether at -35 'C

afforded 326 mg (0.471 mmol, 53%) of product as orange needles: 1H NMR (CD2Cl 2) 8 7.55 (d,

2, Ph), 7.34 (t, 2, Ph), 7.12 (t, 1, Ph), 3.86 (t, 6, CH2), 2.94 (t, 6, CH 2), 0.32 (s, 27, SiMe 3);
13C NMR (CD 2 Cl 2) 8 165.8 (s, Ph), 134.9 (d, 1JCH = 163, Ph), 129.0 (d, 1JCH = 160, Ph),

127.4 (d, 1JCH = 162, Ph), 55.2 (t, 1JCH = 136, CH 2), 51.4 (t, 1 JCH = 136, CH 2), 5.9 (q, 1JCH

= 118, SiMe 3 ). Anal. Calcd for TaAsSi 3N4 C2 1H4 4 : C, 36.41; H, 6.40; N, 8.09. Found: C,

36.02; H, 6.30; N, 7.80.
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CHAPTER 2

Alkyl and Alkylidene Complexes of Tantalum

that Contain a Triethylsilyl-Substituted Triamidoamine Ligand

Much of the material covered in this chapter has appeared in print:

Freundlich, J. S., Schrock, R. R., Davis, W. M. Organometallics 1996, 15, 0000.



Introduction

Chapter 1 documented our implementation of the [N3 N]Ta core ([N3N]3-

[(Me 3SiNCH 2CH 2)3N] 3-) to prepare monomeric complexes that contain a Ta-ligand multiple

bond. The main features of the triamidoamine ligand system responsible for the stability of these

species are the steric protection of the multiple bond afforded by the encircling trimethylsilyl

groups and the presence of one a-type and two orthogonal 7 orbitals used in forming the multiple

bond. The majority of [N3N]Ta=E species prepared feature a pseudo-triple bond between tantalum

and phosphorus, 1,2 nitrogen, 2,3 arsenic,2 carbon, 2,3 oxygen, 1,3 selenium, 4 or tellurium.4 The

alkylidene ligands in [N3N]Ta=CHR may be viewed as a, 2c ligands by virtue of an agostic

interaction5 of the Calkylidene-H bond6'7 with a d-orbital on Ta. Efforts to prepare alkylidenes with

Cp substituents other than hydrogen led to the discovery that a- and P-H abstraction are

competitive processes in this system. In the reaction of [N3N]TaCl2 with two equivalents of

R'CH2CH2MgX it was shown that as R' increased in size (from Me to i-Pr to t-Bu) the preference

for a-H abstraction increased to the point where no 3-abstraction took place at all. It was

suggested that the larger Cp substituent forces the Ta-Ca-Cp angles in the proposed dialkyl

intermediate to increase as a consequence of unfavorable steric interactions between R' and the

encircling silylamide substituents, thereby activating the a-H's and leading to formation of the

alkylidene. At the same time the required intermediate in which a P-hydrogen was activated toward

abstraction became sterically more difficult to form.

On the basis of these results, it seemed possible that an increase in the steric bulk of the

trialkylsilyl groups may lead to a-H abstraction processes being favored over P-H abstraction

processes. Therefore, we turned to the synthesis of [N3N*]Ta complexes where [N3N*] 3- =

[(Et3SiNCH 2CH 2)3N]3-. The results of this endeavor are described in this chapter along with two

X-ray crystallography studies, one that illustrates a significant limitation of trialkylsilyl-substituted

TREN ligands in preparing reactive tantalum complexes, and the other that confirms the

dramatically distorted nature of alkylidene ligands in tantalum complexes of this general type.



Results

Synthesis and Alkylation of a Tantalum Dichloride Complex.

Li3 [N3N*] ([N3N*] 3- = [(Et3SiNCH2CH 2)3N]3-) can be prepared by a method analogous

to that used to synthesize Li3 [N(CH 2CH 2NSiMe 3 )3], 8' 9 i.e. treatment of N(CH 2 CH 2NH 2 )3

successively with three equivalents of n-butyllithium, three equivalents of triethylchlorosilane, and

three equivalents again of n-butyllithium. 10 However, unlike Li3 [N(CH2CH2NSiMe 3)3], which is

isolated as white microcrystals from pentane at -35 'C, Li3 [N3N*] has not yet been induced to

crystallize. It is most convenient to isolate crude intermediate N(CH 2CH2NHSiEt3)3 as an oil (eq

1), and generate Li 3 [N3N*] from it for each reaction. The greater solubility of triethylsilyl

derivatives versus trimethylsilyl derivatives is to be expected, and is a persistent hindrance in

developing the chemistry to be described here.

1. 3 n-BuLi, THF,-78 °C
N(CH 2CH 2NH2)3  1. n-BuLi, THF, -78 C N(CH2CH 2NHSiEt3)3  (1)

2. 3 Et 3SiC1, THF, -78 oC

Tantalum pentachloride reacts with Li3 [N3N*] at -78 'C to afford [N3N*]TaCl2 (1) in 19%

yield (eq 2), 11 which is less than half the yield of [N3N]TaCl2 .1 We have speculated that the low

yield of [N3N]TaC12 can be ascribed to reduction of tantalum(V) to intractable products. A

decrease in yield upon increasing the bulk of the silyl substituent would be consistent with that

proposal, as nucleophilic attack at the metal would be slower for steric reasons. Fortunately,

[N3N*]TaCl 2 can be isolated in pure form as a solid. Proton and carbon NMR data suggest that it,

like [N3N]TaCl 2, is C3-symmetric on the NMR time scale between 25 'C and -90 oC.

H 3[N3N*] 1. 3 n-BuLi, Et20, -35 oC [N3N*]TaC 2  (2)
2. TaC15, -78 oC 11

Alkylation of [N3N*]TaCl 2 with two equivalents of methylmagnesium chloride in diethyl

ether affords [N3N*]TaMe 2 (2) quantitatively as a yellow-brown oil (eq 3). Samples of yellow

crystalline [N3N*]TaMe 2 can be obtained upon standing concentrated pentane solutions of 2 at



-35 'C for weeks, although the crystallized yield is low. A resonance for the two methyl groups

of [N3N*]TaMe 2 is found as a singlet at 1.31 ppm in the 1H NMR spectrum between 25 'C and

-90 'C and as a quartet ( 1JCH = 117 Hz) at 64.9 ppm in the 13C NMR spectrum. All NMR data are

consistent with 2 having a solution-state structure analogous to that of [N3N]TaMe2.3

[N3N*]TaC 2  2 MeMgCl [N3N*]TaMe2  (3)
1 Et20,-35 oC 2

A toluene-d8 solution (~0.01 M) of 2 in a sealed NMR tube is stable up to -70 'C where it

begins to evolve methane. At 110 'C decomposition is complete over the period of 1 day to afford

a product that appears to be analogous to the thermolysis product of [N3N]TaMe2
2 and to the

thermolysis product of [N3N*]Ta(T12-C 2H4), whose X-ray structure is described later in this

chapter. Most prominent in the 1H NMR spectrum of 3a are diastereotopic ligand methylene

resonances and a singlet at 0.80 ppm for a methyl group. Thermolysis of [N3N*]Ta(CD 3)2

affords CD 3H and product characterized by a singlet at 0.91 ppm in the 2H NMR spectrum.

Therefore formation of CD 4 and [N3N*]Ta=CD 2 can be ruled out. Details of the method of

formation of methane are not known. As only two of the three orbitals in the apical coordination

site are involved in bonding to the two methyl groups, we speculate that a C-H bond in a backbone

methylene group is activated by the metal, possibly in a species where the apical nitrogen atom is

dissociated from the metal. The activation of a ligand C-H bond then facilitates the abstraction of

that proton by the methyl group. Most significant is the finding that an increase in the steric bulk in

the silyl substituents does not alter the manner in which these tren-based complexes decompose.

Et3Si Me
toluene-d 8  . I / SiEt3SEt3Si", N,. a • /

[ 3N*]TaMe 2  " Ta-N (4)
110 oC, - CH 4

3a



Addition of two equivalents of ethylmagnesium chloride to [N3N*]TaCl 2 produces the

ethylene complex 4 as red-purple crystals in 82% isolated yield (eq 5). As in the case of

[N3N]Ta(T12-C2H4), rotation of the ethylene ligand about the ligand-metal bond is fast on the NMR

time scale. Therefore the complex has apparent C3 symmetry at temperatures down to -90 oC.

However, the ethylidene complex 5a makes up -10% of the crude product mixture, judging from a

quartet resonance at -0.52 ppm in the 1H NMR, a position to be expected for an alkylidene Ha in

complexes of this type (cf. -0.41 ppm for Ha in [N3N]Ta=CHMe 3). The low yield and high

solubility of 5a prevented its isolation in pure form. This result differs from that obtained in the

N3N system where only [N3N]Ta(T12-C2H4) is formed upon adding two equivalents of ethyl

Grignard to [N3N]TaCl2 .

[N3N*]TaCl2  2 EtMgCl [N3N*]Ta(i 2'-C 2H4) + [N3N*]Ta=CHMe (5)
1 Et20, -35 0C

14 5a

Reactions between [N3N*]TaCl2 and two equivalents of RCH 2CH 2MgX (R = Me, Et, i-

Pr; X = Cl or Br) afforded the alkylidene complexes 5b - d in 87%, 71%, and 81% isolated

yields, respectively (eq 6). There is no evidence in NMR spectra of the crude product mixtures for

species that arise from decomposition of the olefin complex by a 3-abstraction process. These

results contrast markedly with those for analogous reactions involving [N3N]TaCl 2 where

products from both a- and P-H abstraction pathways are observed. 2 Unfortunately, only 5b

could be crystallized, and then only after storage of a concentrated pentane solution at -35 'C for

several months. 5b - d are stable at 110 *C for days as toluene-d8 solutions (-0.1 M). Like

complexes that contain the [N3N]Ta core, 5b - d exhibit an upfield triplet resonance for Ha (-

0.27 to 0.14 ppm) in the 1H NMR spectrum and a very low value of 1JCH (-70 Hz) for the

alkylidene carbon in the 13C NMR spectrum, characteristic of "distorted" alkylidenes 6,7 in which

there is an a-agostic5 interaction of the C-Ha electron pair with the metal. The alkylidenes are

effectively pseudo-triply bonded via a, 2n interactions to the electrophilic tantalum center. The

Ta=CHR functionality may be cleaved in a Wittig-like reaction 12 with benzaldehyde to give a



mixture of cis- and trans- isomers of the expected olefin and [N3N*]Ta=O. 13

2 RCH 2CH2MgX
[N3N*]TaC12  2 RCH2CH2MgX [N3N]Ta=CHCH 2R (6)

Et20, -35 oC

1 R = Me (5b), Et (5c), i-Pr (Sd)

[N 3 N*]TaCl 2 reacts with two equivalents of trimethylsilylmethyllithium or

benzylmagnesium chloride to yield 5e and 5f (eq 7). [N3N*]Ta=CHSiMe 3 (5e) may be attained

as a yellow crystalline solid in 71% yield whereas 5f could be isolated only as a red-orange oil

contaminated by small amounts of remaining Grignard reagent as determined by 1H NMR. Both

complexes exhibit similar NMR spectra and reactivity to other alkylidenes prepared with the

triamidoamine ligand framework.

2 RCH2M
[N3N*]TaCl 2 RCH2 [N3N*]Ta=CHR (7)

Et20, -35 oC
1 R = SiMe3 (Se: M = Li)

R = Ph (5f: M = MgCl)

An X-ray Study of the Product of Decomposition of [N3N*]Ta(02-C 2 H 4 ).

Thermolysis of a 0.16 M toluene-d8 solution of 4 affords ethyl species 3b (eq 8).

Decomposition of 4 in toluene at concentrations between 0.0061 and 0.015 M was followed by

UV/Vis at Xmax = 510 nm and shown to be first order in tantalum with k = 4.23 (4) x 10-5 s-1 at

70 'C. This rate is approximately one-third of that for the trimethylsilyl-substituted analog

( k = 1.37 (1) x 10-4 s-1 ) under the same conditions.2 Most characteristic in the proton NMR

spectrum of 3b are the vinyl resonances at 6.55 ppm (dd), 4.54 ppm (d), and 4.11 ppm (d,

obscured by diastereotopic ligand methylene resonances). Heating a 0.22 M solution of

[N3N*]Ta(fl2-C 2D4) in toluene-d8 to -100 'C in a sealed tube affords a product analogous to 3b

that contains a CD 2 CD 2 H group, according to 1H and 2 H NMR. The decomposition of

[N3N*]Ta(rl2-C 2D4 ) was determined to be a first order process with k = 4.72 (5) x 10-4 s-1 at 70

'C. This measurement allowed the calculation of an inverse a-secondary kinetic isotope effect of



0.90 (2) at 70 'C, signifying a change in hybridization of the ethylene carbons from sp 2 to sp 3 in

the rate-limiting step. 14 This kinetic isotope effect is identical within experimental error to that

measured in the related N3N system: kH/kD = 0.89 (2) at 70 oC.2 Thermolysis of [N3N*]Ta(112 -

C2D4 ) (0.010 M in toluene-d8) in the presence of I atm of ethylene also produces a TaCD2CD 2H

species. All of these data are consistent with decomposition of 3b by irreversible intramolecular

abstraction of a proton a to the equatorial nitrogen atom in the ligand methylene backbone. The

data rigorously discount a mechanism involving initial loss of ethylene to generate a trigonal

monopyramidal Ta(III) species, followed by 3-H elimination from the ligand backbone to form a

Ta(V) hydride complex that would insert free ethylene to form the decomposition product.

SiEt 3

(8)
[N3N*]Ta(1 2 _C2H4) toluene-d8  _

4 110 oC

An X-ray crystal study of 3b (Table 2.1; Figure 2.1) showed it to be a "tetraamido" ethyl

complex with a distorted trigonal bipyramidal geometry. (Relevant bond lengths and angles are

listed in Table 2.2). A mirror plane bisects silylamide nitrogens N(1) and N(3) that remain tethered

to what was once the tertiary amine donor in 4 and is now an amide donor to the metal center ( Ta-

N(4) = 1.97 A). The Ta-N-Si bond angles for the two equivalent amide groups (1330 and 1350)

are comparable to those in [N3N]Ta(Me)Et. 2 The ethyl group appears to be relatively undistorted

with a Ta-C(1) bond length of 2.17 A and a Ta-C(1)-C(2) bond angle of 1180 and is similar to the

Ta-Et linkage in [N3N]Ta(Me)Et. 2



Table 2.1. Crystallographic Data, Collection Parameters, and Refinement Parameters for

EtTa[N(SiEt 3 )(CH=CH 2 )] [N(CH 2CH 2NSiEt 3)2] (3b).

Empirical Formula

Formula Weight

Diffractometer

Crystal Color, Morphology

Crystal Dimensions (mm)

Crystal System

a

b

c

C26H6 1N4Si 3Ta
695.00

Enraf-Nonius CAD-4

yellow, parallelepiped

0.260 x 0.320 x 0.340

Triclinic

9.9701 (8) A
11.3064 (9) A

15.586 (2) A
82.34 (2) °

75.96(1) 0

86.26 (2) 0

1688.3 (7) A3

P1 (#2)

2

1.368 g/cm 3

718

33.40 cm -1

o-20

187 K

4404

3811

308

0.041

0.053

1.93

f3
7
V

Space Group

z
Dcalc

Fo000

g(MoKQ)

Scan Type

Temperature

Total No. Unique Reflections

No. Observations with I > 3.000(I)

No. Variables

R

Rw

GoF



Figure 2.1. X-ray Crystal Structure of EtTa[N(SiEt 3 )(CH=CH2 )][N(CH 2CH 2NSiEt3 )2] (3b).

C(104)

C(103)

C(2)



Table 2.2. Selected Intramolecular Distances (A) and Angles (deg) for the Non-Hydrogen

Atoms of EtTa[N(SiEt 3)(CH=CH2)][N(CH 2CH2NSiEt 3)2] (3b).

Bond Lengths

Ta-N(1) 2.025 (7)

Ta-N(2) 2.009 (7)

Ta-N(3) 2.035 (8)

Ta-N(4) 1.966 (8)

Ta-C(1) 2.17 (1)

C(1)-C(2) 1.53 (1)

C(103)-C(104) 1.32 (1)

Bond Angles

Ta-N(1)-Si(1) 134.7 (4)

Ta-N(2)-Si(2) 125.2 (4)

Ta-N(3)-Si(3) 133.5 (4)

N(1)-Ta-N(3) 152.2 (3)

N(1)-Ta-C(1) 97.2 (3)

N(3)-Ta-C(1) 94.6 (3)

Ta-C(1)-C(2) 117.6 (7)



Synthesis and X-ray Study of a Dimeric Alkylidene Complex.

[N3N]TaCl2 is known to react with two equivalents of vinylmagnesium bromide to afford

structurally characterized [N3N]Ta(112-C2H2) in high yield.2 The reaction is proposed to proceed

via P-hydrogen abstraction in intermediate [N3N]Ta(HC=CH 2)2, although x-hydrogen abstraction

to yield [N3N]Ta=C=CH 2 initially could not be ruled out. In contrast, [N3N*]TaCl 2 reacts with

two equivalents of vinylmagnesium bromide in refluxing toluene to afford a mixture of two

species, one of which is [N3N*]Ta(rI2-C 2H2) 6, according to proton and carbon NMR spectra that

are analogous to those of [N3N]Ta(112-C2H 2) (eq 9). The other product 7 of the -1:1 mixture is a

yellow crystalline solid that could be isolated in 39% yield. Proton and carbon NMR established

that this molecule is a C3 symmetric "distorted" alkylidene complex with a Ca resonance at 201.3

ppm (1JCH = 69 Hz) and an He resonance at -0.27 ppm. A methylene group attached to Ca is the

origin of a proton resonance at 3.51 ppm and a carbon resonance at 49.4 ( 1JCH = 128 Hz) as

determined by 1H-1 3C HETCOR spectroscopy. Therefore, we postulated that 7 was a dimer

{ [N3N*]Ta=CHCH 2 1}2, formed from two hypothetical d1 [N3N*]Ta(CH=CH 2) molecules in

which the P-carbon atoms had coupled.

2 H 2C=CHMgBr
[N3N*]TaCI2  - [N3N*]Ta(f1 2-C2H2) + {[N 3N*]Ta=CHCH 2}2  (9)

1 toluene, 80 'C 6 7

An X-ray crystal study of 7 (Table 2.3; Figure 2.2) revealed that it is indeed a dimeric

alkylidene complex, { [N3N*]Ta=CHCH 2 }2. (Relevant bond lengths and angles are listed in Table

2.4). The precision of the structure was lowered by the presence of a disordered toluene in the

lattice. The two [N3N*]Ta units are identical within statistical deviations. Each end may be

described as a distorted trigonal bipyramid. The Ta-Neq distances of 2.02 - 2.03 A, average Ta-

Nax (2.36 A), and Neq-Ta-Neq and Ta-Neq-Si bond angles are similar to those found in

[N3N]Ta(i 2 -C2H2)2 and [N3N]Ta=PCy. 1 The average Ta=Cac-Cp bond angle (173 ° ) and Ta=C



bond length (1.89 A) are characteristic of a "distorted" alkylidene in which there is a significant

interaction of the C-He bond with the metal. Among the early examples of "distorted" alkylidenes

in the literature 6 are [Ta(CHCMe3)(PMe 3)C13]2 (Ta=C = 1.898 A, Z Ta=C-C = 161.20 )7,15 and

Cp*Ta(CHCMe3)(C2H 4)(PMe3) (Ta=C = 1.946 A, Z Ta=C-C = 170.0').15 Compound 7 is

actually the first triamidoamine complex in which the distorted nature of the alkylidene ligand has

been confirmed. Although steric factors would certainly contribute to an increase in the Ta=C-C

angle, it does not appear that alkylidene ligands are more distorted in SiEt3 derivatives than in

SiMe3 derivatives (at least according to the values for 1JCH).

Figure 2.2. Two Views of the X-ray Crystal Structure of { [N3N*]Ta=CHCH 2}2 (7). (a) View

with hydrogen atoms omitted. (b) View with hydrogen atoms, triethylsilyl carbon atoms, and

toluene solvent molecule omitted for greater clarity.

Si(

Si(4)

Si(2)

N(4)

(a) (b)



Table 2.3. Crystallographic Data, Collection Parameters, and Refinement Parameters for

{ [N3N*]Ta=CHCH 2 1}2 (7)a.

Empirical Formula

Formula Weight

Diffractometer

Crystal Color, Morphology

Crystal Dimensions (mm)

Crystal System

a

b

c

0

7
V

Space Group

Z
Dcalc

F0 00

g(MoKa)

Scan Type

Temperature (oC)

Total No. Unique Reflections

No. Variables

R

Rw
GoF

C59H12 8N8Si 6Ta 2

1480.12

Siemens SMART/CCD

yellow, prismatic

0.33 x 0.28 x 0.28

Monoclinic

19.3176 (11) A
20.8010 (12) A
18.6252 (11) A

900

99.3130(10) o

900

7385.4 (7) A3

P21/c

4

1.331 g/cm 3

3060
30.96 cm- 1

co) scans

193 (2) K

10616

642

0.0719

0.2075

1.022

a Crystals of 7 contain one molecule of toluene per dimer.



Table 2.4. Selected Intramolecular Distances (A) and Angles (deg) for the Non-Hydrogen

Atoms of { [N3N*]Ta=CHCH 2}2 (7).

Bond Lengths

Ta(1)-N(5)

Ta(1)-N(6)

Ta(1)-N(7)

Ta(1)-N(8)

Ta(1)-C(1)

Ta(2)-C(4)

C(1)-C(2)

C(13)-C(20)

2.031 (11)

2.030 (10)

2.024 (10)

2.375 (10)

1.891 (11)

1.898 (10)

1.53 (2)

1.42 (2)

Bond Angles

Ta(1)-N(5)-Si(6)

Ta(1)-N(6)-Si(4)

Ta(1)-N(7)-Si(5)

N(5)-Ta-N(6)

N(5)-Ta-N(7)

N(6)-Ta-N(7)

Ta(1)-C(1)-C(2)

Ta(2)-C(4)-C(3)

128.3 (5)

124.9 (6)

125.4 (5)

113.1 (4)

116.6 (4)

115.8 (4)

172.1 (12)

173.1 (12)



Synthesis and Reactivity of a Metallaaziridine Complex.

The reaction of dichloride 1 with two equivalents of lithium dimethylamide in diethyl ether

affords [N3N*]Ta(CH 2NMe) (8) as colorless crystals in 74% yield (eq 10). It is interesting to

note that the analogous [N3N]Ta-based complex cannot be prepared cleanly via a similar route.

The reaction of [N3N]TaCl2 with two equivalents of lithium dimethylamide in diethyl ether at room

temperature or in refluxing toluene affords metallaaziridine product contaminated by unidentifiable

ligand-containing species. The 500 MHz 1H NMR spectrum of 8 supports a metallaaziridine (vs.

imine) description of the species based on the equivalence (25 to -90 'C) of the methylene protons

(singlet at 2.23 ppm) in the metallacycle and the well-precedented electrophilicity of the tantalum

triamidoamine core. These protons are inequivalent in the 1H NMR spectra of uncoordinated

methyleneimines. 16 The 13C NMR of 8 locates the methylene carbon as a triplet (1JCH = 151 Hz)

at 61.3 ppm. The relatively low energy metallaaziridine N-C stretch is found at 1269 cm -1 and

should be compared to those for organoimines (ca. 1450 - 1700 cm -1) and organoamines (ca. 1000

- 1250 cm-1). 17 A number of early transition metal imine/metallaaziridine complexes have been

reported 18-25 and the NMR and IR data for [N3N*]Ta(CH 2NMe) are quite similar to that for

Cp*Ta(CH 2 NMe)Me 2 prepared by Bercaw and co-workers. 20 In both complexes, the

metallaaziridine may be viewed as a 2y, i donor.

Me
2 LiNMe 2 -3

[N3N*]TaC12  2 [N3N*]T
Et20, -35 oC

1 8

(10)

Solutions of 8 in toluene-d8 (-0.04 M) are stable upon thermolysis at 110 'C for days.

[N3N*]Ta(CH 2NMe) reacts cleanly with 2,6-lutidinium triflate (LutHOTf) in dichloromethane to

afford white crystalline triflate 9 in 51% yield (eq 11). The dimethylamide ligand is seen as a



singlet at 3.14 ppm in the 1H NMR and as a quartet (1JCH = 137 Hz) in the 13C NMR. 19F NMR

and IR spectroscopy confirm the presence of the coordinated triflate. 9 is converted back to

metallaaziridine 8 via reaction with one equivalent of methylmagnesium chloride. Other than its

protonation, 8 has proven to be quite unreactive. An -0.03 M toluene-d8 solution of

[N3N*]Ta(CH2NMe) does not react with one atmosphere of ethylene or acetylene at 80 oC over a

period of days. Diethyl ether solutions (-0.03 M) of 8 do not react with one equivalent of

trimethylsilyldiazomethane or pyridine-N-oxide after one day at room temperature.

Me
/N LutHOTf

[N3N*]TC [N3N*]Ta(NMe 2)OTf

CH 2Cl2, -35 oC8 -- 9

(11)

Discussion

The synthesis of [N3N*]Ta complexes was undertaken in order to probe the effect of

changing the amide nitrogen substituent from trimethylsilyl to the more bulky triethylsilyl. The

most pronounced effect is that a-H abstraction is the sole process observed upon alkylating

[N3N*]TaCl 2 with two equivalents of RCH 2CH 2MgX where R is larger than hydrogen. This

contrasts with the [N3N]Ta-based system in which a- and P-H abstraction processes are

competitive for R groups smaller than t-butyl. These observations are consistent with a-hydrogen

abstraction from a dialkyl intermediate being much more favored in the more crowded coordination

pocket created by SiEt3 substituents; the Ta-Ca-Cp bond angles in the dialkyl intermediate are

forced to increase, thereby inhibiting 3-hydrogen abstraction and encouraging a-hydrogen

abstraction.

The increase in sterics about the apical coordination site has also allowed the synthesis of

complexes not obtainable by similar routes in the trimethylsilyl-based system. Metallaaziridine 8

may be prepared whereas the reaction of [N3 N]TaCl 2 with two equivalents of lithium



dimethylamide at room temperature or 80 'C in toluene affords a product mixture containing a

metallaaziridine along with intractable ligand-containing products. Presumably, the increased steric

protection offered by the ligand "pocket" stabilizes an intermediate along the reaction coordinate

with respect to decomposition. Compound 7 is also a compound for which no [N3N]Ta-based

relative is known, simply because treatment of [N3N]TaCl 2 with two equivalents of

vinylmagnesium bromide affords only [N3N]Ta(112-C2H2).3 We speculate that { [N3N*]Ta=CH-

CH 2 12 forms via coupling of 0-carbon atoms in dI [N3N*]Ta(CH=CH 2) and that an analogous

species is not formed when [N3N]TaCl 2 reacts with vinyl Grignard because nucleophilic

substitution is faster than reduction of the metal via electron transfer in this sterically more

accessible coordination sphere. This result, therefore, is another consequence of the more

crowded coordination sphere in [N3N*]Ta complexes versus [N3N]Ta complexes. We suggest, in

the absence of an in-depth mechanistic study, that two [N3N*]Ta(CH=CH 2) may couple to form 7

in analogy to the reaction of [N3N]MoCl with sodium or lithium acetylide to afford { [N3N]Mo-C-

CH= }2 .26 Again, the increased sterics surrounding the apical coordination site are proposed to

promote this coupling possibly by stabilizing a Ta(IV) intermediate and/or promoting its formation

via reduction of a Ta(V) precursor.

The X-ray structure of { [N3N*]Ta=CHCH 2}2 supports our proposal that alkylidene

complexes with the tantalum triamidoamine core are "distorted" and provides a key example of the

preference for these systems to form a pseudo-triple bond. Oxo, imido, phosphinidene, and

arsinidene ligands are well-suited electronically to form a pseudo-triple bond with tantalum via

utilization of lone-pair electrons. The alkylidene ligand, however, can only form a pseudo-triple

bond with a metal center by interaction of its C-Ha bond. Structural and spectroscopic data have

demonstrated that alkylidenes with the [N3N]Ta and [N3N*]Ta cores are among the most

"distorted" to be reported. These systems contrast sharply with those, ie. Cp2Ta(CH 2 )CH 3,27 in

which the metal center does not have an available orbital to form a pseudo-triple bond to the

alkylidene.

The steric hindrance in triamidoamine complexes could be increased even further than



found in [N3N*]Ta species by employing (i-Pr3 )Si amide nitrogen substituents. Although

Li 3 {N[CH 2CH 2 NSi(i-Pr3)]3} has been prepared by methods analogous to those used to

synthesize Li3[N3N*], 28 attempts to isolate a tantalum dichloride derivative so far have not been

successful. We postulate that for steric reasons nucleophilic attack by Li 3 {N[CH 2CH 2NSi(i-

Pr3)]3 } on tantalum is too slow relative to the rate of reduction of the metal, at least under the

conditions employed so far. A greater propensity toward other side reactions (ie. loss of the silyl

substituent to form a chlorosilane) as the silyl substituents become larger cannot be ruled out. The

failure to prepare (i-Pr3)Si-substituted TREN derivatives of tantalum is unfortunate, since it would

be interesting to observe how further steric pressure in the apical coordination site would effect the

chemistry of these complexes. Future efforts in this research group will forego the synthesis of

these (i-Pr3)Si-substituted TREN complexes of tantalum in deference to the preparation of novel

triamidoamine ligands that should form complexes of tantalum that are stable to the decomposition

pathways documented in this and the preceding chapter.

Conclusions

The synthesis of a variety of [N3N*]Ta-based complexes has been explored in order to

determine the effect of changing the ligand amide nitrogen substituent from trimethyl- to

triethylsilyl. The increase in steric bulk about the apical coordination site of these species favors o-

over P-H abstraction reactions and facilitates the preparation of novel alkylidene dimer and

metallaaziridine complexes unaccessible via similar routes with the [N3N]Ta core. Expectedly, the

bulkier coordination "pocket" does not alter the tantalum center's propensity to utilize the three

orbitals (la and 2t) available in that protected site to form a pseudo-triple bond to a ligand.

However, when all three of these orbitals are not utilized to bond to the ligand(s) in the apical

coordination site, such complexes are prone to P-H abstraction in the ligand backbone. Thus,

further explorations of triamidoamine complexes of tantalum will necessitate the design of new

ligand systems which are not subject to this decomposition pathway.



Experimental Section

All experiments were carried out under a nitrogen atmosphere in a Vacuum Atmospheres

drybox or by standard Schlenk techniques, unless otherwise noted. Reagent grade solvents were

purified by standard methods.

1H and 13C NMR data are listed in parts per million downfield from TMS while 19F NMR

data are listed in parts per million downfield from trifluoroacetic acid (8 -76.53). Routine coupling

constants are usually not reported; those listed are in units of Hz. IR spectra were recorded on a

Perkin-Elmer 1600 FT-IR spectrometer. Elemental analyses (C, H, N) were performed by Oneida

Research Services, Whitesboro, New York or on-site using a Perkin-Elmer 2400 CHN analyzer.

X-ray data were collected on an Enraf-Nonius CAD-4 diffractometer or a Siemens platform

goniometer with a CCD detector. A complete description of data collection, structure solution, and

structure refinement can be found in the supplementary material. NMR tube reactions were carried

out in a Wilmad 512-7" or 512-9" NMR tube sealed to a 14/20 outer joint. This joint was

connected to a gas adapter outfitted with a 28/15 ball joint and a Teflon stopcock. The contents of

the tube were degassed on a high-vacuum line using three freeze(-196 °C)-pump-thaw cycles

before flame sealing under a static vacuum.

H3 [N3 N*]. A solution of tris(2-aminoethyl)amine (12.00 g, 0.0820 mol) in 200 mL

tetrahydrofuran was chilled to -78 'C and was subjected to the addition of n-butyllithium (154

mL, 1.6 M in hexanes, 0.246 mol) via cannula. The milky-white mixture was allowed to warm

slowly to room temperature and was then stirred for 8 h. The mixture was then chilled to -78 'C

and subjected to the addition of triethylchlorosilane (37.10 g, 0.246 mol) via cannula. The cloudy

white mixture was allowed to warm slowly to room temperature and was then stirred for 12 h. All

volatiles were then removed in vacuo to yield a cloudy pink oil. The oil was extracted with 150

mL pentane and was filtered through Celite. The light pink filtrate was then concentrated in vacuo

for 2 d. A light pink oil was collected to afford 39.16 g (0.0801 mol, 98%) of product: 1H NMR

(C6D 6) 85 2.80 (q, 6, CH 2), 2.39 (t, 6, CH 2), 1.05 (t, 27, SiCH 2CH 3), 0.77 (t, 3, NH), 0.59 (q,

18, SiCH 2CH 3); 13C NMR (C6 D6) 59.4 (t, 1JCH = 132, CH 2), 40.5 (t, 1JCH = 133, CH 2), 7.6



(q, 1JCH = 125, SiCH 2 CH3), 5.25 (t, 1JCH = 116, SiCH2CH 3).

[N3N*]TaCI2 (1). A solution of [N3N*]H 3 (3.912 g, 8.00 mmol) in 100 mL diethyl

ether was chilled to -35 'C and was subjected to the addition of n-butyllithium (15 mL, 1.6 M in

hexanes, 24.0 mmol) via cannula. The pale yellow reaction mixture was stirred for 7 h and was

then chilled to -78 'C. Tantalum(V) chloride (2.866 g, 8.00 mmol) was then added under Ar

counterflow. The reaction mixture was allowed to warm slowly to room temperature and was then

stirred for 14 h. All volatiles were removed in vacuo and the resulting brown solid was extracted

with 70 mL diethyl ether. The extract was filtered through Celite and the brown-yellow filtrate was

concentrated in vacuo to yield oily brown solid. The solid was recrystallized from pentane at -35

'C. Yellow-orange crystals were collected to afford 1.117 g (1.51 mmol, 19%) of product: 1H

NMR (C6D 6 ) 8 4.00 (t, 6, CH 2 ), 2.56 (t, 6, CH 2 ), 1.13 (t, 27, SiCH2 CH 3 ), 1.06 (q, 18,

SiCH 2CH 3 ); 13C NMR (C6D6) 8 66.2 (t, 1JCH = 139, CH 2), 55.7 (t, 1JCH = 137, CH 2 ), 8.6 (q,

1JCH = 125, SiCH2 CH3 ), 7.0 (t, 1JCH = 119, SiCH2CH 3). Anal. Calcd for TaSi 3N4Cl 2C24H57 :

C, 39.07; H, 7.79; N, 7.59. Found: C, 39.42; H, 7.62; N, 7.48.

[N3N*]TaMe 2 (2). A -35 'C solution of [N3N*]TaCl 2 (300 mg, 0.407 mmmol) in 8

mL diethyl ether was subjected to the addition of methylmagnesium chloride (298 tL, 3.0 M in

tetrahydrofuran, 0.895 mmol) via syringe. A white precipitate was observed immediately and the

mixture was stirred for 2 h. The mixture was concentrated in vacuo, extracted with 70 mL

pentane, and was filtered through Celite. The brown-yellow filtrate was concentrated in vacuo to

afford 263 mg (0.377 mmol, 93%) of product as a brown-yellow oil. The complex may be

isolated as pale yellow crystals upon recrystallization from pentane at -35 'C over a period of

weeks. 1H NMR (C6D6 ) 8 3.49 (t, 6, CH 2 ), 2.23 (t, 6, CH 2 ), 1.31 (s, 6, CH 3 ), 1.09 (t, 27,

SiCH 2CH 3 ), 0.88 (q, 18, SiCH 2CH 3); 13C NMR (C6D6 ) 8 64.9 (q, 1JCH = 117, CH 3), 61.1 (t,

1JCH = 135, CH 2), 50.4 (t, 1JCH = 135, CH 2), 8.5 (q, 1JCH = 123, SiCH 2 CH 3), 7.0 (t, 1JCH =

118, SiCH2 CH 3). Anal. Calcd for TaSi3N 4 C26 H6 3: C, 44.80; H, 9.11; N, 8.04. Found: C,

44.89; H, 8.96; N, 7.91.

MeTa[N(SiEt3)(CH=CH 2 )][N(CH 2 CH 2 NSiEt 3 )2 ] (3a). A solution of



[N3N*]TaMe 2 (175 mg, 0.251 mmol) in ca. 1 mL toluene-d8 was added to an NMR tube which

was then sealed. The tube was heated to 110 'C in an oil bath for 24 h. 1H NMR demonstrated

the sole reaction products to be methane (6 0.17) and 3a: 1H NMR (toluene-d8) 8 6.45 (dd, 1,

CH=CH2 ), 4.63 (d, 1, CH=CH2), 4.18 (d, 1, CH=CH2 ), 3.94 (m, 4, CH 2), 3.83 (m, 4, CH 2),

1.03 (t, 9, NSiCH 2CH 3 ), 1.00 (t, 18, NSiCH2 CH 3), 0.81 (q, 6, NSiCH 2 CH 3), 0.80 (s, 3,

CH 3 ), 0.66 (q, 12, NSiCH 2CH 3); 13C NMR (toluene-d8) 8 133.9 (d, 1JCH = 164, CH=CH 2),

97.8 (t, 1JCH = 161, CH=CH2), 68.0 (t, 1JCH = 134, CH2 ), 55.2 (t, 1 JCH = 136, CH 2), 34.9 (q,

1JCH = 120, CH 3), 8.3 (q, 1JCH = 125, NSiCH 2CH 3), 7.8 (q, 1JCH = 121, NSiCH2 CH3), 6.6

(t, 1JCH = 117, NSiCH2CH 3), 5.6 (t, 1JCH = 115, NSiCH2CH3 ).

[N3N*]Ta(i12-C 2 H4) (4). A -35 'C solution of [N3N*]TaCl 2 (500 mg, 0.678 mmol)

in 10 mL diethyl ether was subjected to the addition of ethylmagnesium chloride (627 gL, 2.3 M in

diethyl ether, 1.44 mmol) via syringe. Within 5 minutes, the yellow solution turned red-purple

with the formation of a white precipitate. After 2 h, the reaction mixture was concentrated in

vacuo, extracted with 20 mL pentane, and was filtered through Celite. The red-purple filtrate was

stripped to solid that was determined to be a 9:1 mixture of [N3N*]Ta(112-C 2H 4 ) (4) and

[N3N*]Ta=CHMe (5a) via 1H NMR spectroscopy. [N3N*]Ta=CHMe: 1H NMR (C6D6) 5 3.43

(t, 6, CH2), 2.83 (d, 3, CHMe), 2.20 (t, 6, CH2), 1.10 (t, 27, SiCH2CH3), 0.92 (q, 18,

SiCH2CH3), -0.52 (q, 1, CHMe). The solid was recrystallized from pentane at -35 'C. Two

crops of red-purple needles were collected to afford 386 mg (0.555 mmol, 82%) of product: 1H

NMR (C6 D 6 ) 5 3.46 (t, 6, CH 2 ), 2.37 (t, 6, CH2), 2.10 (s, 4, H 2 C=CH2 ), 1.03 (t, 27,

SiCH 2CH 3 ), 0.71 (q, 18, SiCH 2CH 3); 13C NMR (C6D6 ) 8 62.7 (t, 1JCH = 141, H2 C=CH2 ),

60.7 (t, 1 JCH = 136, CH2 ), 49.5 (t, 1 JCH = 135, CH2 ), 8.1 (q, 1JCH = 125, SiCH2 CH 3), 7.0 (t,

1JCH = 117, SiCH2 CH 3). Anal. Calcd for TaSi 3N4 C26H6 1: C, 44.93; H, 8.85; N, 8.06. Found:

C, 44.73; H, 8.61; N, 7.90.

EtTa[N(SiEt 3 )(CH=CH 2 )][N(CH 2 CH 2 NSiEt 3 )2 ] (3b). A solution of

[N3N*]Ta(1l2-C 2H4 ) (76 mg, 0.109 mmol) in ca. 1 mL toluene-d8 was added to an NMR tube

which was then sealed. The tube was heated to 110 'C in an oil bath for 24 h. 1H NMR



demonstrated the sole reaction product to be 3b: 1H NMR (toluene-d8) 8 6.55 (dd, 1, CH=CH2 ),

4.54 (d, 1, CH=CH2 ), 4.11 (m, 3, CH2 and CH=CH2 ), 3.87 (m, 6, CH 2), 2.06 (t, 3, CH 2CH 3),

1.56 (q, 2, CH 2 CH 3), 1.06 (t, 18, NSiCH 2 CH 3 ), 1.05 (t, 9, NSiCH 2 CH 3 ), 0.85 (q, 6,

NSiCH 2CH 3), 0.74 (q, 12, NSiCH 2 CH 3); 13C NMR (toluene-d8) 8 135.5 (d, 1JCH = 161,

CH=CH 2), 95.5 (t, 1JCH = 161, CH=CH 2), 67.6 (t, 1JCH = 133, CH 2), 55.7 (t, 1JCH = 134,

CH 2 ), 54.8 (t, 1JCH = 117, CH 2 CH 3), 18.1 (q, 1JCH = 125, CH2 CH 3 ), 8.4 (q, 1JCH = 125,

NSiCH 2 CH 3), 8.1 (q, 1JCH = 123, NSiCH2 CH 3), 6.8 (t, 1JCH = 116, NSiCH 2CH 3), 5.7 (t,

1JCH = 118, NSiCH2CH 3).

[N3N*]Ta=CHEt (5b). A -35 'C solution of [N3N*]TaCl 2 (340 mg, 0.461 mmol) in 8

mL diethyl ether was subjected to the addition of n-propylmagnesium chloride (387 gL, 2.5 M in

diethyl ether, 0.968 mmol). The precipitation of a white solid was evident within 5 minutes and

over a period of 1 h the mixture changed in color to yellow-brown. After 23 h, the reaction

mixture was concentrated in vacuo, extracted with 30 mL pentane, and was filtered through Celite.

The yellow filtrate was concentrated in vacuo to afford 285 mg (0.402 mmol, 87%) of a yellow

oil. 1H NMR (C6D 6) 8 3.43 (t, 6, CH 2), 3.30 (m, 2, CH 2 CH 3), 2.24 (t, 6, CH 2), 1.19 (t, 3,

CH 2CH 3 ), 1.08 (t, 27, SiCH2CH 3), 0.90 (q, 18, SiCH 2CH3 ), -0.27 (t, 1, Ta=CH); 13C NMR

(C6D6 ) 8 202.8 (d, 1JCH = 70, Ta=CH), 56.3 (t, 1JCH = 135, CH 2), 49.7 (t, 1JCH = 134, CH 2),

38.6 (t, 1 JCH = 126, CH2CH 3 ), 18.2 (q, 1JCH = 125, CH 2 CH 3 ), 8.2 (q, 1JCH = 120,

SiCH 2 CH3), 7.5 (t, 1JCH = 120, SiCH2CH 3).

[N3N*]Ta=CHPr (5c). A -35 'C solution of n-butylmagnesium chloride (569 gL, 2.5

M in diethyl ether, 1.42 mmol) in 10 mL diethyl ether was subjected to the addition of

[N3N*]TaCl 2 (500 mg, 0.678 mmol). After 24 h, the yellow cloudy mixture was concentrated in

vacuo to yield an oily yellow solid. The solid was extracted with 30 mL pentane and filtered

through Celite. The yellow filtrate was concentrated to afford 348 mg (0.481 mmol, 71%) of

product as a yellow oil. 1H NMR (C6D6 ) 8 3.43 (t, 6, CH 2), 3.25 (m, 2, TaCHCH 2CH 2 CH 3),

2.24 (t, 6, CH 2), 1.64 (m, 2, TaCHCH2 CH 2CH 3), 1.23 (t, 3, TaCHCH2CH 2CH 3), 1.07 (t, 27,

SiCH 2CH 3 ), 0.95 (q, 18, SiCH 2CH 3), -0.19 (t, 1, TaCHCH 2CH 2CH 3 ); 13C NMR (C6 D6 ) 8



201.3 (d, 1JCH = 69, TaCHCH 2CH 2 CH 3), 56.4 (t, 1JCH = 136, CH 2), 49.7 (t, 1JCH = 135,

CH 2), 48.3 (t, 1JCH = 124, TaCHCH2CH2CH 3), 21.2 (t, 1JCH = 127, TaCHCH2 CH 2CH 3), 9.0

(q, 1JCH = 124, TaCHCH2 CH2CH 3), 8.2 (q, 1JCH = 127, SiCH 2 CH 3), 7.5 (t, 1JCH = 124,

SiCH2 CH 3).

[N3N*]Ta=CHCH 2CHMe 2 (5d). A -35 'C solution of i-pentylmagnesium bromide

(502 gL, 1.7 M in diethyl ether, 0.854 mmol) in 8 mL diethyl ether was subjected to the addition

of [N3N*]TaCl 2 (300 mg, 0.406 mmol). After 24 h, the cloudy yellow-orange mixture was

concentrated in vacuo, extracted with 30 mL pentane, and filtered through Celite. The filtrate was

concentrated in vacuo to afford 244 mg (0.331 mmol, 81%) of product as a yellow oil. 1H NMR

(C 6D 6 ) 8 3.41 (t, 6, CH 2), 3.35 (dd, 2, TaCHCH 2CHMe 2 ), 2.19 (t, 6, CH 2 ), 1.95 (m, 1,

CHMe 2), 1.11 (t, 27, SiCH2 CH 3), 1.10 (d, 6, CHMe2), 0.95 (q, 18, SiCH2CH 3 ), 0.14 (t, 1,

TaCHCH 2CHMe 2); 13C NMR (C6D6) 8 201.2 (d, 1JCH = 71, TaCHCH 2CHMe2 ), 57.1 (t, 1JCH

= 136, CH2), 54.9 (t, 1JCH = 123, TaCHCH 2CHMe2), 49.5 (t, 1JCH = 135, CH 2), 31.6 (d, 1JCH

= 126, CHMe 2), 23.6 (q, 1JCH = 125, CHMe2), 8.2 (q, 1JCH = 125, SiCH2CH 3), 7.4 (t, 1JCH =

116, SiCH2CH 3).

[N3N*]Ta=CHSiMe3 (Se). A -35 'C solution of [N3N*]TaCl 2 (300 mg, 0.407 mmol)

in 8 mL diethyl ether was subjected to the addition of trimethylsilylmethyllithium (80 mg, 0.854

mmol). After 22 h, the cloudy orange solution was concentrated in vacuo, extracted with 10 mL

pentane, and was filtered through Celite. The orange filtrate was concentrated in vacuo to afford

an orange solid that was recrystallized from pentane at -35 'C. Yellow crystals were collected to

provide 218 mg (0.289 mmol, 71%) of product: 1H NMR (C6D6) 8 3.36 (t, 6, CH 2), 2.10 (t, 6,

CH 2), 2.09 (s, 1, CHSiMe 3 ), 1.09 (t, 27, SiCH 2 CH 3), 0.96 (q, 18, SiCH 2CH 3), 0.43 (s, 9,

CHSiMe3); 13C NMR (C6D6 ) 8 206.8 (d, 1JCH = 69, Ta=CH), 58.3 (t, 1 JCH = 135, CH 2), 49.9

(t, 1JCH = 135, CH2 ), 8.0 (q, 1JCH = 127, SiCH 2CH 3), 7.1 (t, 1JCH = 118, SiCH 2CH 3 ), 4.8

(q, 1JCH = 118, SiMe 3). Anal. Calcd for TaSi 4 N4C28H67 : C, 44.65; H, 8.97; N, 7.44. Found:

C, 44.53; H, 8.88; N, 7.29.

[N3N*]Ta=CHPh (5f). A -35 'C solution of benzylmagnesium chloride (1.08 mL,



1.1 M in diethyl ether, 1.19 mmol) in 7 mL diethyl ether was subjected to the addition of

[N3N*]TaCl 2 (419 mg, 0.568 mmol). After 23 h, the cloudy orange mixture was concentrated in

vacuo and extracted with 20 mL pentane. The orange extract was concentrated in vacuo to provide

a red-orange oil that was shown to contain [N3N*]Ta=CHPh contaminated by small amounts of

benzylmagnesium chloride. Numerous attempts to separate the benzylidene from remaining

Grignard reagent via recrystallizations from diethyl ether and/or pentane at -35 'C failed. 1H NMR

(C6D6 ) 8 7.19 (t, 3, Ph), 6.67 (t, 2, Ph), 3.42 (t, 6, CH 2), 2.25 (t, 6, CH 2), 2.09 (s, 1, TaCH),

0.97 (t, 27, SiCH2CH 3 ), 0.82 (q, 18, SiCH 2 CH 3); 13 C NMR (C6D 6) 8 200.9 (d, 1JCH = 71,

TaCH), 152.6 (s, Ph), 129.1 (d, 1JCH = 148, Ph), 127.2 (d, 1JCH = 156, Ph), 122.4 (d, 1JCH =

158, Ph), 57.6 (t, 1 JCH = 135, CH 2 ), 49.7 (t, 1JCH = 135, CH 2 ), 8.1 (q, 1 JCH = 127,

SiCH 2 CH3), 7.3 (t, 1JCH = 120, SiCH2CH 3).

{[N 3N*]Ta=CHCH 2}2 (7). A solution of [N3N*]TaCI 2 (708 mg, 0.959 mmol) in 10

mL toluene was subjected to the addition of vinylmagnesium bromide (1.55 mL, 1.3 M in

tetrahydrofuran, 2.01 mmol). The resulting brown-red mixture was then heated at ca. 80 'C for 1

d. The yellow-brown mixture was concentrated in vacuo and extracted with 60 mL pentane. The

extract was filtered through Celite and the filtrate was concentrated to provide a yellow-brown

solid. The product was determined to be a 1:1 mixture of alkylidene 7 and [N3N*]Ta(12-C 2H2)

(6) via 1H NMR. [N3N*]Ta(fl2-C 2H2 ): 1H NMR (C6D6 ) 8 12.15 (s, 2, HC-CH), 3.55 (t, 6,

CH 2), 2.46 (t, 6, CH2 ), 1.17 (t, 27, SiCH2 CH3), 1.10 (q, 18, SiCH 2CH 3); 13C NMR (C6D6) 8

219.4 (dd, 1JCH = 168, HC-=CH), 55.9 (t, 1JCH = 136, CH 2 ), 49.4 (t, 1JCH = 135, CH 2 ), 8.3

(q, 1JCH = 120, SiCH 2CH3), 7.5 (t, 1JCH = 117, SiCH2CH 3). Fractional recrystallization of the

product mixture from pentane afforded the alkylidene free of the acetylene complex. Yellow

crystals were collected to afford 261 mg (0.194 mmol, 39%) of product: 1H NMR (C6D6) 5 3.51

(br s, 4, TaCHCH 2), 3.45 (t, 12, CH 2), 2.21 (t, 12, CH 2 ), 1.20 (t, 54, SiCH2 CH 3), 1.03 (q, 36,

SiCH 2CH3 ), -0.27 (br s, 2, Ta=CH); 13C NMR (C6D6) 8 201.3 (d, 1JCH = 69, Ta=CH), 56.6 (t,

1JCH = 136, CH2 ), 49.6 (t, 1JCH = 135, CH 2 ), 49.4 (t, 1JCH = 128, TaCHCH2), 8.0 (q, 1JCH =

124, SiCH 2 CH 3), 7.5 (t, 1JCH = 117, SiCH2 CH 3). Anal. Calcd for Ta 2Si 6 N8 C52H 12 0 : C,



45.00; H, 8.71; N, 8.07. Found: C, 45.10; H, 8.90; N, 8.16.

[N3 N*]Ta(CH2NMe) (8). A -35 'C solution of [N3N*]TaCl 2 (150 mg, 0.203 mmol)

in 8 mL diethyl ether was subjected to the addition of lithium dimethylamide (22 mg, 0.427 mmol).

After 23 h, the cloudy yellow solution was concentrated in vacuo, extracted with 5 mL pentane,

and was filtered through Celite. The yellow filtrate was concentrated to afford to a yellow-brown

oil that was recrystallized from pentane at -35 'C. Colorless crystals were collected to provide 200

mg (0.282 mmol, 74%) of product: 1H NMR (C6D6) 8 3.89 (s, 3, NMe), 3.43 (t, 6, CH 2), 2.38

(t, 6, CH 2 ), 2.23 (s, 2, MeNCH 2 ), 1.05 (t, 27, SiCH 2CH 3), 0.68 (q, 18, SiCH2 CH 3); 13 C

NMR (C 6D6 ) 8 61.3 (t, 1JCH = 151, MeNCH 2 ), 60.1 (t, 1JCH = 136, CH 2), 50.5 (q, 1 JCH =

133, NMe), 48.8 (t, 1JCH = 135, CH 2 ), 8.2 (q, 1JCH = 124, SiCH 2 CH 3), 6.8 (t, 1JCH = 116,

SiCH2CH 3 ). Anal. Calcd for TaSi 3N5 C26H62: C, 43.98; H, 8.80; N, 9.86. Found: C, 43.79; H,

9.13; N, 9.69. IR (nujol, background subtracted): 1269 cm -1 (v MeNCH2).

[N3 N*]Ta(NMe 2 )OTf (9). A -35 'C solution of [N3N*]Ta(CH 2NMe) (739 mg, 1.04

mmol) in 10 mL dichloromethane was subjected to the addition of 2,6-lutidinium triflate (268 mg,

1.04 mmol). After 22 h, the light yellow-brown solution was concentrated in vacuo, extracted

with 20 mL diethyl ether, and filtered through Celite. The filtrate was concentrated in vacuo to

provide a yellow-brown oily solid that was recrystallized from diethyl ether at -35 'C. White

crystals were collected to afford 458 mg (0.532 mmol, 51%) of product: 1H NMR (C6D6) 8 3.69

(t, 6, CH 2 ), 3.19 (t, 6, CH 2 ), 3.14 (s, 6, NMe 2), 0.94 (t, 27, SiCH2 CH 3 ), 0.58 (q, 18,

SiCH 2CH3 ); 13C NMR (C6 D6 ) 8 62.9 (t, 1JCH = 139, CH 2), 51.4 (t, 1JCH = 140, CH 2), 45.2 (q,

1JCH = 137, NMe 2), 7.7 (q, 1 JCH = 126, SiCH2 CH 3), 6.6 (t, 1JCH = 117, SiCH 2CH 3); 1 9F

NMR (C6D6 ) 8 -76.3 (s). Anal. Calcd for TaSi 3N5SF 3 03C27H6 3: C, 37.70; H, 7.38; N, 8.14.

Found: C, 38.02; H, 7.44; N, 8.16. IR (nujol, background subtracted): 1276 cm -1 (v OTf).

Kinetics of decomposition of [N3N*]Ta(T12 .C 2 H 4 ) (4). Decomposition

reactions were followed by UVIVIS spectroscopy. In UV/VIS runs a Hellma 221-QS quartz cell

(path length = 10 mm) sealed to a gas adapter fitted with a teflon stopcock was charged with 2 mL

of a stock solution of [N3N*]Ta(R12-C 2H4) (4) via syringe. The cell was placed in the HP 8452



Diode Array spectrophotometer and the temperature was then set utilizing a HP 89090A Peltier

temperature control accessory. Upon reaching the desired temperature, the reaction was monitored

by observing the decrease in the absorbance of the solution at 510 nm at fixed time intervals via an

interface to a HP 9000 Series 300 computer. The reaction temperature was maintained to within

+0.2 'C of the set point. The fractional uncertainty in the measured rate constants was assumed to

be 1% on the basis of subjective inspection of the sensitivity of the fits to the Absorbance vs. Time

plots.
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CHAPTER 3

Synthesis of Trimethylsilyl-Substituted Triamidoamine Complexes of Niobium



Introduction

Chapters 1 and 2 described the use of tren-based triamidoamine ligand systems to prepare

complexes containing Ta=E multiple bonds where E = C, N, P, As, and O. The syntheses of

these species are in part successful due to the presence of three metal-based orbitals (1 a and 27t)

that can form a tantalum-ligand multiple bond in an apical coordination site sterically-protected by

three encircling trialkylsilyl groups. Tren-based triamidoamine complexes of vanadium have also

been prepared that exhibit a propensity for forming vanadium-ligand multiple bonds. 1 A logical

extension of these studies of vanadium and tantalum is the synthesis of analogous triamidoamine

complexes of niobium. In the literature, the number of niobium amides pales in comparison to the

multitude of niobium complexes featuring one or more cyclopentadienyl ligands.2,3 The relatively

few reports of niobium amide complexes feature NR2- ligands where R is an alkyl,4-6 aryl, 7 or

silyl 7,8 group. Gambarotta and co-workers have examined the reactivity of complexes with the

Nb[NCy2]x (x = 2 or 3) core and have found a transient tris(amido) species binds dinitrogen in

end-on fashion.4 It is anticipated that these species and other low-valent niobium amides may have

the potential for performing interesting and useful organic transformations such as the coupling of

imines with aldehydes and ketones as has been demonstrated with NbCl 3(dme). 9,10 Thus, we

have decided to pursue the synthesis of [N3N]Nb-based complexes ([N 3N] 3 - =

(Me 3 SiNCH 2 CH 2 )3N] 3-) with the goals of preparing a trigonal monopyramidal niobium(III)

species and molecules featuring niobium-ligand multiple bonds.

Results

Synthesis of Niobium Oxo and Imido Complexes.

Given the successful use of TaCl5 as a precursor to [N3N]TaCl2 and [N3N*]TaCl 2 , our

initial efforts to prepare tren-based complexes of niobium involved niobium halide starting

materials. NbCl 5 reacts with Li 3[N3N] in a variety of solvents including pentane, diethyl ether,

and toluene at -78 oC to afford intractable brown solids. 1H NMR spectra of the product mixtures

fail to demonstrate the presence of the triamidoamine ligand, most likely signifying the formation

of reduced niobium species. In the hope that a stable dialkyl or alkylidene complex could be



prepared by analogy with the tantalum chemistry, we mixed NbR 2Cl3 (R = Me,11 CH 2CMe 3
12)

with Li3 [N 3N] in pentane or diethyl ether at -35 'C. The products were characterized by numerous

resonances in the ligand regions of the 1H NMR spectra. While apparently obviating the problem

of reduction of the do metal center, the introduction of niobium alkyl groups does not result in the

formation of identifiable [N3N]Nb-based species. Mixing NbCl 4(THF) 2 with Li3 [N3N] in

tetrahydrofuran at -35 'C affords a brown-purple solid upon standard work-up. 1H NMR

demonstrates this solid to be a mixture of [N3N]Nb=O (vide infra) and an unknown species

identified by broad resonances at ca. 3.3, 0.0, and -6.0 ppm. While this unknown has a 1H NMR

spectrum similar to that for complexes of the type [N3N]NbOR (vide infra), its isolation and

complete characterization are hampered by its extreme solubility in common organic solvents.

Tetrahydrofuran solvent appears to be the source of the oxo functionality in [N3N]Nb=O as the

reaction of NbCl4(THF)2 with Li3[N3N] in diethyl ether at -35 'C affords only the unidentifiable

paramagnetic species. The niobium oxo complex may be formed via ring opening of

tetrahydrofuran by a low valent niobium intermediate as has been purported to occur in the

syntheses of NbO[N(SiMe 3)2] 3
8 and WOCl3(THF)2

13 from their respective metal halide starting

materials. We will later in this section present a logical and high-yielding synthetic route to

prepare [N3N]Nb=O. The final attempt to mix a niobium perhalide with Li3 [N3N] also failed,

since NbCl 3(dme) 10 reacts with Li3 [N3N] in tetrahydrofuran or toluene at -35 'C to afford

intractable products.

Successful placement of the triamidoamine ligand on niobium is achieved via mixing

NbOCl 3 (THF) 2
14 with Li 3 [N3N]*THF 2

15 in diethyl ether at -35 'C to afford 1 as a white

crystalline solid in 81% yield (eq 1). NbOCl 3(CH 3CN)2
14 reacts with Li3 [N3N]*THF 2 in diethyl

ether at -35 'C to afford 1 contaminated by H3 [N 3N] which is formed most likely via

deprotonation of three molecules of CH 3CN by the trilithium salt of the ligand. 1H and 13C NMR

spectra demonstrate the presence of the tren framework bound to niobium and show that the

complex has C3 symmetry on the NMR timescale at room temperature. Unfortunately, the Nb-O

stretch could not be located in the IR spectrum of 1 as it is most likely obscured by N-Si



absorptions in the 800 - 1000 cm -1 region (cf. NbOCl3(THF)2 v Nb-O = 960 cm- 1 14).

Li3 [N 3N]*THF 2
NbOC13(THF)2  L [N3N]Nb=O

Et20, -35 oC 1

(1)

Nb(NSiMe 3)Cl 3 (py)216 reacts with Li 3[N3N]*THF 2 in diethyl ether at -35 'C to afford

white crystalline 2 in 53% yield (eq 2). 1H and 13C NMR spectra verify the presence of the ligand

bound to niobium in a complex with apparent C3 symmetry on the NMR timescale at room

temperature. The trimethylsilyl imide is found as a singlet at 0.52 ppm in the 1H NMR spectrum.

Nb(NSiMe3 )Cl 3(py)2  Li3[N3N]*THF 2  [N3N]Nb=NSiMe 3
Et20, -35 oC 2

(2)

Reactivity of Niobium Complexes Containing Imido, Oxo, Alkoxide, and Siloxide

Donors.

Imide 2 exhibits a lack of reactivity similar to the tantalum imides described in

Chapter 1. [N3N]Nb=NSiMe 3 (0.01 M in diethyl ether) does not react with one equivalent of

methyl triflate, aniline, or pivaldehyde over a period of days. Cleavage of the imide nitrogen-

silicon bond is not realized upon mixing a 0.02 M solution of 2 in tetrahydrofuran with cesium

fluoride for 6 hours at room temperature. Addition of iodomethane to the reaction mixture only

affords [N3 N]Nb=NSiMe 3 upon standard work-up. Mixing a 0.02 M solution of 2 in

dichloromethane with three equivalents of 2,6-lutidinium triflate for one day at room temperature

does produce a reaction. However, the 1H NMR spectrum of the product mixture does not contain

any resonances attributable to ligand-containing species. Similar results are observed upon stirring

one equivalent of pyridinium triflate with a 0.02 M solution of oxo 1 in dichloromethane for one

day at room temperature. Curiously, 1 (0.02 M in diethyl ether) does not react with one equivalent



of ethereal hydrogen chloride under similar conditions. [N3N]Nb=O reacts with excess

triethylaluminum in pentane at -35 'C to afford [N3N]Nb=O*A1Et 3 (3) in 84% yield as white

crystals (eq 3). The three equivalent ethyl groups on Al are characterized by triplet and quartet

resonances at 1.67 and 0.44 ppm, respectively, in the 1H NMR spectrum, and quartet (1JCH = 123

Hz) and triplet ( 1JCH = 108 Hz) resonances at 12.1 and 5.1 ppm, respectively, in the 13C NMR

spectrum. An 2 7A1 NMR spectrum of 3 shows a broad singlet at 180 ppm which should be

compared to a resonance at 154 ppm for A1Et3.

[N3N]Nb=O AlEt3  [N3N]Nb=O*AlEt 3
1 C5, -35 oC 31 3

(3)

Niobium siloxide complexes are prepared via reaction of 1 with Me 3SiX (X = OTf, I) in

dichloromethane to afford 4a and 4b quantitatively (eq 4). Both siloxides are proposed to be salts,

with non-coordinated triflates, on the basis of their insolubility in diethyl ether and solubility in

tetrahydrofuran and dichloromethane. [N3N]Ta(Me)OTf, a complex which has been demonstrated

to contain a bound triflate ligand via an X-ray study, is soluble in diethyl ether. 17 The presence of

the triflate ligand in 4a is confirmed by a singlet resonance in the 19F NMR spectrum at -78.9 ppm

and a stretch at 1276 cm -1 in the IR spectrum. A 0.01 M solution of 1 in diethyl ether does not

react with five equivalents of chlorotrimethylsilane after stirring the mixture for one day at room

temperature. [N3N]Nb=O reacts with methyl triflate to afford [N3N]NbOMe+OTf - (5) in

quantitative yield (eq 5). However, a 0.03 M solution of 1 in dichloromethane fails to react with

one equivalent of iodomethane after one day at room temperature. Methoxide 5 exhibits similar

NMR and IR spectra to 4a. In the reactions described in eqs 5 and 6, it is interesting to note that

Nb-O singly-bonded complexes are formed even in the presence of excess silylating or methylating

reagent.



[N3N]Nb=O Me3SiX [N3N]NbOSiMe 3 X-
CH 2C12, -35 °C

1 X = OTf (4a), I (4b)

(4)

[N3N]Nb=O MeOTf [N3N]NbOMe+ OTf

1 CH 2Cl 2, -35 oC 5

(5)

Limited success has been realized while exploring the reactivity of these niobium alkoxide

and siloxide complexes. Reactions of 4a, 4b, and 5 with methyl or ethyl Grignard reagents in

tetrahydrofuran for one day afford intractable product mixtures. The salts (-0.02 M in

dichloromethane) do not react with proton sources such as pyridinium triflate and ethereal

hydrogen chloride over the period of one day at room temperature. Attempts to replace the iodide

or triflate counterions in these species via reaction with one or more equivalents of [Et4N]CI or

[Ph4As]CI in dichloromethane provide oxo 1. These transformations most likely occur via attack

of chloride ion on silicon to produce chlorotrimethylsilane and 1. Reductions of 4a, 4b, and 5

with sodium amalgam in tetrahydrofuran are readily achieved to provide blue-purple

[N3N]NbOSiMe 3 (6a) and blue [N3N]NbOMe (6b) in 82 - 91% yields (eq 6). The 1H NMR

spectra of these highly-colored species feature broad singlets in the +3 to -3 ppm window for

hydrogens associated with the amide trimethylsilyl groups, the trimethylsiloxide or methoxide

moieties, and one of the two types of ligand methylene units. The resonance for the second set of

ligand methylene hydrogens is most likely too broad to be observed due to paramagnetic line

broadening associated with the d1 niobium center. In comparison, the 1H NMR spectrum of

[N3N]V-Cl does locate both ligand methylene resonances, but one of them is an extremely broad

singlet (Av 1/2 = 310 Hz) at -46.13 ppm. 18 Elemental analyses of 6a and 6b are consistent with

their formulations.



Na/Hg
[N3N]NbOR+ X- THF, -35 C- [N3N]NbORTHF, -35 oC

4a R = SiMe3, X = OTf
4b R = SiMe3, X = I R = SiMe3 (6a), Me (6b)
5 R=Me, X = OTf

(6)

As with the related do siloxide and alkoxide complexes, 6a and 6b contain rather

unreactive Nb-O bonds. These niobium(IV) species are not reduced by excess sodium amalgam in

pentane at room temperature over a period of days and they do not react with one equivalent of

methylmagnesium chloride under similar conditions. Subjection of solid 6a or 6b to

dichloromethane affords oxo 1, most likely via chloride abstraction followed by loss of

chlorotrimethylsilane. 6a reacts with one equivalent of SiCl4 to provide [N3N]NbOSiCl 3 (7) (eq

7). Siloxide 7, isolated as a purple solid in 46% yield, exhibits a 1H NMR spectrum similar to 6a

and 6b and also has been characterized by elemental analysis. It is interesting to note that all of the

other species containing a niobium-oxygen bond (1, 4a, 4b, 5, and 6b) do not react with SiCl 4,

a reagent that has been demonstrated to cleave Ta(g-O) bonds, 19 to afford tractable ligand-

containing products.

SiCl4
[N3N]NbOSiMe3  SC, [N3N]NbOSiCI3

C5, -35 oC
6a 7

(7)

Discussion

One of the major goals of this work has been the preparation of triamidoamine species

containing a niobium-ligand multiple bond. Our inability to make [N3N]NbCl 2 necessitated the

implementation of routes different from those used to prepare related tantalum complexes described

in Chapters 1 and 2. The syntheses of 1 and 2 rely upon the use of oxo and imido functionalities

to protect the niobium(V) center from reduction by the trilithium salt of the ligand. Imido groups,
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in particular, have been utilized to stabilize high oxidation state transition metal alkylidene

complexes of molybdenum 20 and tungsten. 21,22 The inaccessibility of a dichloride species also

prevents the exploration of routes to niobium alkylidene, phosphinidene, imide, and alkyne

complexes that would be analogous to those described in the preceding chapters for tantalum.

Such species should be stable with regard to decomposition pathways given the orbital

arrangement and steric environment in the apical coordination site of the metal center that lends

homage to the Nb=E (E = O, NSiMe3) linkages in 1 and 2.

[N3N]Nb=NSiMe 3, similar to the tantalum imides described in Chapter 1, is observed to

be relatively inert under the employed reaction conditions. The oxo complex is more reactive by

virtue of the additional lone pair on oxygen. It is interesting to note that reaction of 1 with A1Et 3

produces a base adduct of the oxo moiety rather than [N3N]NbEt2 which should be unstable to P3-

H abstraction. An example of trialkylaluminum-facilitated metal-oxo bond cleavage is the reaction

of OsO(NAr)(CH 2CMe3)2 with trimethylaluminum to afford Os(NAr)Me 2(CH 2CMe3)2 where Ar

= 2,6-i-Pr2-C6H3. 23 Reduction of the formal niobium-oxygen bond order may be achieved by

mixing 1 with strongly electrophilic silylating or alkylating agents to form dn (n = 0, 1) siloxides

or alkoxides. However, complete removal of oxygen from the early transition metal's coordination

sphere has not been realized. The metal-oxo bond may be cleaved by a silylating agent in cases

where the metal is less oxophilic, e.g. OsO(NAr)(CH 2CMe 3 )2 reacts with two equivalents of

Me 3SiI to afford Os(NAr)(CH2CMe 3)212 where Ar = 2,6-i-Pr2-C6H3 .23 All of these observations

demonstrate the [N3N]Nb core to be well-suited to form robust covalent bonds to nitrogen and

oxygen.

The successful synthesis of these [N3N]Nb-based complexes contrasts with our inability to

prepare a hypothetical niobium(II) trigonal monopyramidal species. The preference for forming

a niobium-heteroatom covalent bond in the apical coordination site is demonstrated by the failure to

completely remove the nitrogen or oxygen ligand from the niobium center in 1 and 2. The

reactions of niobium perhalides of various oxidation states with Li3 [N3N] also do not afford the

trigonal monopyramidal complex. The reduction of NbC15 by lithium amides is well-known, 5 but
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we have been unable to harness this reduction chemistry to provide an identifiable ligand-

containing complex. Equally fruitless are the reactions of NbC14 (THF)2 and NbCl3(dme) with

Li3[N3N]. Although no reports exist in the literature to our knowledge concerning the reaction of

NbCl3(dme) with lithium amides, the reaction of NbCl4(THF)2 with lithium amides is well known

to form niobium(IV) amido species. 7'24 We are, thus, unable to prepare [N3N]Nb and observe its

stability with regard to the ligand decomposition pathways documented for some tantalum

triamidoamine complexes in Chapters 1 and 2. The successful preparation of a triamidoamine

complex of niobium(III) may rest on the development of more robust ligands than [N3N]3- and

new methods for placing these ligands on niobium(V) while avoiding unproductive reduction of

the metal.

Conclusions

The synthesis of [N3N]Nb-based complexes has been explored in order to compare and

contrast the chemistry to that with the related tantalum core. In contrast to the rather large number

of tantalum complexes described in Chapter 1, only a few such niobium species have been

prepared. [N3N]Nb-based chemistry remains at this time limited by the dearth of methods for

placing the tren-based ligand on the niobium center while tantalum chemistry is greatly aided by the

facile, albeit low-yielding synthesis of [N3N]TaCl 2 . Similar to their tantalum analogs, the

prepared niobium complexes take advantage of the presence of the proper frontier orbitals and

steric environment in the apical coordination site to form metal-ligand multiple bonds. Robust

niobium-oxygen covalent bonds are formed which unfortunately contribute to our inability to

prepare the hypothetical [N3N]Nb. Future work should allow us to harness the strengths of tren-

based ligands to further explore the organometallic chemistry of niobium with a major goal

remaining to be the preparation of a trigonal monopyramidal complex of niobium(III).

Experimental Section

All experiments were carried out under a nitrogen atmosphere in a Vacuum Atmospheres
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drybox or by standard Schlenk techniques, unless otherwise noted. Reagent grade solvents were

purified by standard methods. NbOCl3(THF)2,14 Nb(NSiMe3)C13(py)2,16 and Li3 [N3N].THF 2
15

were prepared according to literature methods.

1H and 13C NMR data are listed in parts per million downfield from TMS while 19F NMR

data are listed in parts per million downfield from trifluoroacetic acid (8 -76.53) and 27A1 NMR

data is listed in parts per million downfield from hexaaquoaluminum(III) (8 0.00). Routine

coupling constants are usually not reported; those listed are in units of Hz. IR spectra were

recorded on a Perkin-Elmer 1600 FT-IR spectrometer. Elemental analyses (C, H, N) were

performed by Oneida Research Services, Whitesboro, New York or on-site using a Perkin-Elmer

2400 CHN analyzer. NMR tube reactions were carried out in a Wilmad 512-7" or 512-9" NMR

tube sealed to a 14/20 outer joint. This joint was connected to a gas adapter outfitted with a 28/15

ball joint and a Teflon stopcock. The contents of the tube were degassed on a high-vacuum line

using three freeze(-196 'C)-pump-thaw cycles before flame sealing under a static vacuum.

[N 3 N]Nb=O (1). A -35 'C mixture of NbOCl 3(THF) 2 (2.341 g, 6.51 mmol) and

Li3 [N3N]*THF 2 (3.417 g, 6.51 mmol) was subjected to addition of 100 mL diethyl ether at -35

'C. After stirring for 23 h at room temperature, the brown reaction mixture was filtered through

Celite to yield a brown filtrate. The filtrate was concentrated in vacuo to afford solid that was

recrystallized from pentane at -35 'C. White crystals were collected to provide 2.467 g (5.26

mmol, 81%) of product: 1H NMR (C6D 6) 8 3.20 (t, 6, CH 2), 2.23 (t, 6, CH 2 ), 0.45 (s, 27,

SiMe3); 13C NMR (C6D6) 8 54.2 (t, 1JCH = 136, CH 2), 49.4 (t, 1JCH = 134, CH 2), 2.1 (q, 1JCH

= 118, SiMe3 ). Anal. Calcd for NbSi 3N4 C15H 390: C, 38.44; H, 8.39; N, 11.95. Found C,

38.26; H, 8.32; N, 11.98.

[N3N]Nb=NSiMe 3 (2). A -35 'C solution of Nb(NSiMe 3 )C13 (py) 2 (366 mg, 0.823

mmol) in 20 mL diethyl ether was subjected to addition of Li3 [N3N]*THF 2 (432 mg, 0.823

mmol). The brown reaction mixture was stirred for 13 h and was then filtered through Celite. The

brown filtrate was concentrated in vacuo to provide solid that was recrystallized from pentane at

-35 'C. White crystals were collected to afford 555 mg (1.03 mmol, 53%) of product: 1H NMR
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(C6D6 ) 8 3.16 (t, 6, CH2 ), 2.19 (t, 6, CH2 ), 0.52 (s, 9, SiMe3 ), 0.36 (s, 27, SiMe 3); 13C NMR

(C6 D6 ) 8 58.7 (t, 1 JCH = 139, CH 2), 49.3 (t, 1 JCH = 136, CH 2), 4.7 (q, 1JCH = 118, SiMe 3),

2.7 (q, 1JCH = 120, SiMe3). Anal. Calcd for NbSi 4 N5Cl8H 48 : C, 40.05; H, 8.96; N, 12.97.

Found: C, 40.10; H, 8.83; N, 12.81.

[N3N]Nb=O*AlEt 3 (3). A -35 'C solution of [N3N]Nb=O (337 mg, 0.719 mmol) in

15 mL pentane was subjected to addition of triethylaluminum (197 hL, 1.44 mmol). A white

precipitate formed immediately and the solution was stirred for 28 h. The cloudy white solution

was concentrated in vacuo, extracted with 50 mL diethyl ether, and filtered through Celite. The

off-white filtrate was concentrated in vacuo to afford an off-white solid that was recrystallized from

diethyl ether at -35 'C. White crystals were collected to afford 354 mg (0.607mmol, 84 %) of

product: 1H NMR (toluene-ds) 8 3.05 (t, 6, CH2), 2.14 (t, 6, CH 2), 1.67 (t, 9, CH 3), 0.44 (q, 6,

CH 2), 0.26 (s, 27, SiMe3); 13C NMR (toluene-ds) 8 60.4 (t, 1JCH = 135, CH 2), 51.3 (t, 1JCH =

137, CH 2 ), 12.1 (q, 1 JCH = 123, CH2 CH3 ), 5.1 (t, 1 JCH = 108, CH2CH3), 1.6 (q, 1JCH = 119,

SiMe 3); 27A1 { 1H} NMR (C6D6) 8 180. Anal. Calcd for NbSi 3N4OA1C 2 1H54 : C, 43.28; H, 9.34;

N, 9.61. Found: C,. 42.80; H, 9.28; N, 9.76.

[N3N]NbOSiMe 3+OTf- (4a). A -35 'C solution of [N3N]Nb=O (1.00 g, 2.13 mmol)

in 40 mL dichloromethane was subjected to addition of -35 'C trimethylsilyltriflate (413 gL, 2.13

mmol). The colorless solution turned yellow and was stirred for 24 h. The yellow solution was

concentrated in vacuo to provide a yellow solid that was washed with 10 mL of -35 'C diethyl ether

and then dried in vacuo. Light yellow crystals were collected to afford 1.42 g (2.06 mmol, 97%)

of product: 1H NMR (CD 2 Cl2 ) 8 3.82 (t, 6, CH 2), 3.13 (t, 6, CH 2), 0.43 (s, 9, OSiMe3), 0.30

(s, 27, NSiMe 3); 13 C NMR (CD 2Cl 2) 8 62.7 (t, 1JCH = 138, CH 2), 54.5 (t, 1JCH = 139, CH 2),

3.6 (q, 1JCH = 118, OSiMe3), 1.2 (q, 1JCH = 120, NSiMe3); 19F { 1H} NMR (CD 2Cl 2) 8 -78.9.

Anal. Calcd for NbSi 4N40 4F 3SC 19H4 8: C, 33.03 H, 7.00; N, 8.11. Found: C, 33.34; H, 7.30;

N, 8.36. IR (nujol, background subtracted): 1276 cm -1 (s, v OTf).

[N3N]NbOSiMe 3+I- (4b). A -35 'C solution of [N3N]Nb=O (700 mg, 1.49 mmol) in

30 mL dichloromethane was subjected to addition of trimethylsilyliodide (425 gL, 2.99 mmol) via
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syringe. The color of the reaction mixture changed from colorless to orange-red immediately and

was stirred for 24 h. The solution was concentrated in vacuo to yield solid that was recrystallized

from pentane/dichloromethane (10:1) at -35 'C. Light-yellow crystals were collected to provide

957 mg (1.43 mmol, 96%) of product: 1H NMR (CD 2Cl 2) 8 3.84 (t, 6, CH2 ), 3.23 (t, 6, CH 2),

0.42 (s, 9, OSiMe3 ), 0.30 (s, 27, NSiMe3); 13 C NMR (CD 2Cl 2) 8 62.9 (t, 1JCH = 141, CH 2),

54.6 (t, 1JCH = 139, CH 2 ), 3.6 (q, 1JCH = 120, OSiMe 3), 1.3 (q, 1JCH = 120, NSiMe 3). Anal.

Calcd for NbSi 4N4OC1 8H4 8I: C, 32.33; H, 7.23; N, 8.38. Found: C, 32.52; H, 7.58; N, 8.22.

[N3N]NbOMe+OTf- (5). A -35 'C solution of [N3N]Nb=O (500 mg, 1.07 mmol) in

20 mL dichloromethane was subjected to addition of -35 'C methyl triflate (241 gL, 2.13 mmol).

The colorless solution turned yellow and was stirred for 24 h. The yellow solution was then

concentrated in vacuo to afford a yellow solid that was recrystallized from pentane/dichloromethane

(10:1) at -35 'C. Lemon yellow crystals were collected to provide 651 mg (1.03 mmol, 96%) of

product: 1H NMR (CDC13) 8 4.43 (s, 3, OMe), 3.79 (t, 6, CH 2), 3.20 (t, 6, CH 2 ), 0.16 (s, 27,

SiMe3); 13C { 1H} NMR (CDCl3) 8 65.9 (OMe), 59.4 (CH2), 53.4 (CH2), 1.0 (SiMe3); 19F { 1H}

NMR (CD 2Cl2) 8 -78.9. Anal. Calcd for NbSi 3N40 4 F3SC 17 H42 : C, 32.27; H, 6.69; N, 8.85.

Found: C, 31.97; H, 6.84; N, 8.58.. IR (nujol, background subtracted): 1276 cm - 1 (s, v OTf).

[N3N]NbOSiMe 3 (6a). (a) From [N3N]NbOSiMe 3+OTf-. A -35 'C solution of

[N3N]NbOSiMe 3+OTf- (800 mg, 1.16 mmol) in 40 mL tetrahydrofuran was subjected to addition

of freshly-prepared sodium amalgam (0.5 wt% Na, 2.32 mmol). The yellow-orange solution

turned purple after approximately 2 minutes. After 6 h, the purple solution was decanted from

remaining amalgam and was concentrated in vacuo. The purple solid was extracted with 25 mL

pentane and was filtered through Celite. The blue-purple filtrate was concentrated in vacuo to

provide solid that was recrystallized from pentane at -35 oC. Blue-purple crystals were collected to

afford 571 mg (1.05 mmol, 91%) of product: 1H NMR (C6D6 ) 8 3.23 (br s, 27, NSiMe3), 1.28

(br s, 9, OSiMe3), -3.23 (br s, 6, CH2 ). Anal. Calcd for NbSi4N4OC18H48: C, 39.90; H, 8.93;

N, 10.34. Found: C, 40.17; H, 9.22; N, 10.35.

(b) From [N3N]NbOSiMe 3+I-. A -35 oC solution of [N3N]NbOSiMe 3+I- (590 mg,
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0.882 mmol) in 20 mL tetrahydrofuran was subjected to addition of freshly-prepared sodium

amalgam (0.5 wt% Na, 1.76 mmol). The yellow-orange solution turned purple after

approximately 2 minutes. After 11 h, the purple solution was decanted from remaining amalgam

and was concentrated in vacuo. The purple solid was extracted with 25 mL pentane and was

filtered through Celite. The blue-purple filtrate was concentrated in vacuo to afford solid that was

recrystallized from pentane at -35 'C. Blue-purple crystals were collected to provide 391 mg

(0.726 mmol, 82%) of product.

[N3N]NbOMe (6b). A -35 'C solution of [N3N]NbOMe+OTf- (394 mg, 0.623 mmol)

in 20 mL tetrahydrofuran was subjected to addition of freshly-prepared sodium amalgam (0.5 wt%

Na, 1.25 mmol). The yellow solution turned blue after 2 minutes and was then stirred for 8 h.

The blue solution was decanted from remaining amalgam and was concentrated in vacuo. The

resulting oily solid was extracted with 30 mL pentane and was filtered through Celite. The filtrate

was concentrated in vacuo to 268 mg (0.554 mmol, 89%) of product as an oily blue solid. The

complex may be isolated as blue crystals by recrystallization from pentane at -35 oC. 1H NMR

(C6D6) 8 3.37 (br s, 27, NSiMe 3), 1.25 (br s, 3, OMe), -0.43 (br s, 6, CH 2). Anal. Calcd for

NbSi 3N4 OC1 6H42 : C, 39.73; H, 8.75; N, 11.58. Found: C, 39.66; H, 8.37; N, 12.01.

[N 3N]NbOSiCI 3 (7). A -35 oC solution of [N3N]NbOSiMe 3 (1.57 g, 2.90 mmol) in

18 mL pentane was subjected to addition of silicon tetrachloride (366 gL, 3.20 mmol). The blue-

purple solution slowly turned purple over a period of hours and after 24 h, the reaction mixture

was filtered through Celite. The purple filtrate was concentrated in vacuo to yield purple solid that

was recrystallized from pentane at -35 'C. Purple crystals were collected to afford 802 mg (1.33

mmol, 46%) of product: 1H NMR (C6D6) 8 3.30 (br s, 27, NSiMe3), -6.04 (br s, 6, CH 2). Anal.

Calcd for NbSi 4N 4Cl 3OC 15H 39 : C, 29.87; H, 6.52; N, 9.28. Found: C, 30.27; H, 6.25; N,

9.10.
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APPENDIX A

Synthesis of Trimethylsilyl-Substituted Triamidoamine Complexes of Tungsten
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Introduction

The three chapters of this thesis have described the successful use of tren-based

triamidoamine moieties as ligands for tantalum and niobium. Previous efforts in these laboratories

have also outlined the chemistry of triamidoamine complexes of vanadium. 1'2 These group 5

complexes all demonstrate a propensity for forming metal-ligand multiple bonds in a sterically-

protected apical coordination site containing three metal-based orbitals (1l and 2r). A logical

extension of these studies is the examination of group 6 triamidoamine complexes where one

would also anticipate the formation of metal-ligand multiple bonds. Initial studies began with the

synthesis of [N3N']Cr where [N3N'] 3- = [(t-BuMe 2SiNCH 2 CH 2)3N]3-. 3 The focus of research

then turned toward molybdenum and tungsten given their involvement in systems participating in

olefin4 6 and acetylene 5-7 metathesis in addition to dinitrogen fixation.8-10 The implementation of

the [(F5 C6 NCH 2 CH 2 )3N] 3- ligand allowed the preparation of molybdenum and tungsten d2

monochloride complexes." A related [(F5C6NCH 2CH 2)3N]MoOTf species may be reduced to

afford what is proposed to be the sodium salt of a molybdenum(II) complex of dinitrogen. The

use of silylated tren-based ligands also met with some success in the early stages of this project as

[N3N]MoCl could be prepared, albeit in low yield, where [N3N]3- = [(Me3SiNCH 2CH 2)3N]3-.12

Interesting reactions of these molybdenum triamidoamine species include dinitrogen fixation and

acetylide coupling to form {[N3N']Mo }2(g-N2) and { [N3N]Mo-CCH} 2, respectively. Thus, the

early success in preparing species with molybdenum-ligand multiple bonds to nitrogen and carbon

encouraged efforts in the direction of synthesizing analogous tungsten complexes.

Results

Synthesis of a Tungsten Neopentylidyne Complex.

Initial efforts to react Li3a[N 3N] with tungsten perhalides of various oxidation states were

unsuccessful, affording unidentifiable product mixtures. 13 These results mirrored those in

niobium chemistry and, thus, the idea arose of using a tungsten-ligand multiple bond to protect the

tungsten starting material from reduction by Li3 [N3N]. The ready availability of complexes of the

general type Me3CC-WCl 3Lx14 suggested that an alkylidyne moiety might be a useful protecting
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group for the do metal center. W(CCMe3)C13(dme) 14 reacts with Li3[N3N] in diethyl ether at -78

'C to afford yellow crystalline 1 in 54% isolated yield (eq 1). The 1H NMR spectrum of 1 locates

the characteristic tren-based ligand resonances in addition to a singlet at 1.63 ppm for the t-butyl

hydrogens. Most prominent in the 13 C NMR spectrum of 1 is the alkylidyne carbon singlet at

295.2 ppm which may be compared to the analogous resonance for W(CCMe3)C13(dme) at 335.1

ppm. Unfortunately, we were unable to observe satellites about this singlet due to coupling to
183W (S = 1/2, 14% natural abundance); 1Jcw is expected to be in the range of 200 - 300 Hz. 15

Li3[N3N
W(CCMe 3)C13(dme) 3  [N3N]W CCMe 3

Et20, -78 oC [NNWCC 3

1

(1)

Reactivity of a Tungsten Neopentylidyne Complex with Terminal Acetylenes.

Given the well-documented ability of tungsten alkylidynes to engage in acetylene

metathesis reactions, 15 we were interested in exploring the reactions of alkylidyne 1 with

acetylenes in an effort to prepare other tungsten-carbon triply-bonded species. A 0.02 M solution

of 1 in diethyl ether does not react with two equivalents of 2-butyne over the period of one day at

room temperature. A 0.04 M solution of 1 in diethyl ether, however, does react with five

equivalents of phenylacetylene in one day to afford benzylidyne 2 as orange needles in 60% yield

(eq 2). Most prominent in the 13C NMR spectrum of 2 is a singlet at 277.2 ppm for the alkylidyne

carbon. As with the 13C NMR spectrum of 1, we were unable to observe satellites attributable to

one-bond tungsten-carbon coupling. A red-orange solid by-product is formed that is insoluble in

diethyl ether but is soluble in dichloromethane. This species is characterized by a 1H NMR

spectrum showing only resonances in the aromatic region. The olefinic region of the spectrum is

absent of resonances, ruling out the formation of poly(phenylacetylene), while the lack of

resonances associated with the tren-based ligand argues against a [N3N]W-containing product.
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5 PhC-CH
[N3N]W-CCMe 3  [N3N]W=CPh

1 Et20 2

(2)

[N 3 N]W=-CCMe 3 (0.04 M in diethyl ether) reacts with five equivalents of

trimethylsilylacetylene in one day at room temperature to afford a 2:1 mixture of 1 and

[N3N]W-CSiMe 3 (3) along with a yellow insoluble material (eq 3). This insoluble product is

proposedly formed via a similar reaction pathway that yields the red-orange by-product in the

formation of 2 from 1. Although the mixture of alkylidynes 1 and 3 could not be separated by

fractional recrystallization, the 1H NMR resonances atttributable to 3 are identical to those

observed for a pure sample of [N3N]W=CSiMe 3 prepared via an independent route. 16,17 These

referenced publications by co-workers contain a complete description of the characterization of 3

via NMR and elemental analysis.

5 Me3SiC-CH
[N3N]W-CCMe 3  [ 3N]WECSiMe3

1 Et 20 3

(3)

Mixing a 0.01 M solution of neopentylidyne 1 in diethyl ether with five equivalents of

acetylene for three days produces an insoluble black-purple solid, presumed to be poly(acetylene),

and methylidyne 4 in 48% isolated yield (eq 4). Most notably, the 1H NMR spectrum of 4 shows

the methylidyne hydrogen as a singlet at 7.08 ppm (2JHW = 81 Hz). A more complete description

of the characterization of 4 via 1H and 13C NMR and elemental analysis is published elsewhere via

co-workers who prepared the methylidyne complex by a more direct route. 16,17
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5 HC=-CH
[N3N]W-CCMe 3  [N3N]W-CH

Et20
1 4

(4)

Discussion

The neopentylidyne moiety functions as a protecting group to allow placement of the

triamidoamine ligand on the do tungsten center. The resulting alkylidyne [N3N]W=-CCMe 3 does

not react with internal acetylenes such as 2-butyne, most likely for steric reasons due to the amide

trimethylsilyl groups that encircle the tungsten-carbon triple bond. We, thus, chose to explore the

reactivity of 1 with terminal acetylenes. Neopentylidyne 1 reacts with excess RC=CH (R = Ph,

SiMe3) to afford new alkylidynes 2 and 3. Methylidyne 4 is not isolated as a product, although it

may be prepared via mixing 1 with acetylene. These reactions of 1 all presumably proceed

through the intermediacy of a metallacyclobutadiene 7 and, when considering the reaction of 1 with

RC=CH, two such metallacyclobutadienes are viable intermediates (eq 5). It is possible that the

formation of the a,a'-disubstituted metallacyclobutadiene (5) is preferred over formation of the

c,13-disubstituted metallacyclobutadiene (5'). Steric interactions between the a-t-butyl group and

R may render the formation of 5' thermodynamically unfavorable. It is interesting to note that the

reaction of W(CPh)(OCMe 3)3 with phenylacetylene in the presence of pyridine is proposed to

involve an intermediate a,a'-disubstituted metallacycle. 18 However, the isolated product in this

reaction is not an alkylidyne but rather a deprotonated metallacyclobutadiene

W(OCMe3)2(C3Ph2)(py)2. In some related tungsten systems, careful tuning of the size of the

alkoxide ligand and the reaction conditions facilitates the isolation of small amounts of alkylidyne

product. 19 Alterations in the nature of the alkoxide ligands in Mo(CCMe3)(OR) 3 also effect a

preference for deprotiometallacyclobutadiene vs. alkylidyne formation. 19 These examples from the

literature all describe reactions that invoke the preferential formation of a,o'-disubstituted

metallacyclobutadienes and, thus, lend credence to our proposal that the reaction of 1 with a

terminal acetylene may occur via the intermediacy of 5 which then decomposes to afford the new
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alkylidyne product. However, further efforts in these laboratories are necessary to test this

proposed mechanism and attain a better understanding of the reactivity of [N3N]W-CR with

terminal acetylenes.

CMe 3  CMe 3

RC=-CH -
[N3N]W-CCMe 3  R [N3N] H or [N3N]W O R

1
R H

5 5'

(5)

Conclusions

The synthesis of tren-based triamidoamine complexes of tungsten containing a metal-

carbon triple bond has been achieved. The triple bond is favorable due to the presence of three

tungsten-centered orbitals (la and 27t) to form the multiple bond that is sterically protected by the

three encircling trimethylsilyl groups of the ligand framework. The neopentylidyne complex is

reactive with terminal acetylenes to produce benzylidyne, trimethylsilylmethylidyne, and

methylidyne complexes. The successful preparation of these species with the [N3N]W core has

spurred efforts in these laboratories to further explore group 6 triamidoamine chemistry.

[N3N]WCI may be synthesized in moderate yield and its reactions with alkyllithium reagents afford

transient tungsten(IV) alkyls that undergo acz,-dehydrogenation to provide alkylidynes,16,17 some

of which were first prepared as described herein. Other work has studied competitive a- and 13-H

elimination processes in these molybdenum and tungsten systems20 and the synthesis of metal-

ligand multiple bonds to phosphorus 21 and arsenic. 22 Future efforts should continue to uncover

new and interesting chemistry of these group 6 tren-based triamidoamine complexes.

Experimental Section

All experiments were carried out under a nitrogen atmosphere in a Vacuum Atmospheres
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drybox or by standard Schlenk techniques, unless otherwise noted. Reagent grade solvents were

purified by standard methods. W(CCMe 3)C13 (dme) was prepared according to a published

procedure. 14 1H and 13C NMR data are listed in parts per million downfield from TMS. Routine

coupling constants are usually not reported; those listed are in units of Hz.

[N 3 N]W-CCMe3 (1). A -78 'C mixture of W(CCMe 3)C13 (dme) (310 mg, 0.690

mmol) and Li3[N3N] (263 mg, 0.690 mmol) was subjected to addition of 30 mL diethyl ether at

-78 'C via cannula. After 19 h, the green-brown mixture was filtered through Celite to provide a

brown-red filtrate. The filtrate was concentrated in vacuo to yield a brown-red solid that was

recrystallized from pentane at -35 'C. Yellow crystals were collected to provide 228 mg (0.372

mmol, 54%) of product: 1H NMR (C6D 6) 8 3.35 (t, 6, CH 2), 2.06 (t, 6, CH2), 1.63 (s, 9,

CMe 3 ), 0.46 (s, 27, SiMe 3); 13 C NMR (C6 D6) 8 295.2 (s, CCMe 3), 55.9 (t, CH 2 ), 51.5 (s,

CCMe 3 ), 50.8 (t, CH 2), 35.5 (q, CCMe3 ), 4.6 (q, SiMe3 ). Elemental analysis results may be

found elsewhere. 17

[N3N]WE-CPh (2). Phenylacetylene (94 gL, 0.816 mmol) was added via syringe to a

room temperature solution of [N3N]W-CCMe 3 (100 mg, 0.163 mmol) in 4 mL diethyl ether.

After 24 h, the red mixture was filtered through Celite to remove an insoluble red-orange solid.

The resulting filtrate was concentrated in vacuo to afford a red-orange solid that was recrystallized

from pentane at -35 'C. Orange needles were collected to provide 62 mg (0.0980 mmol, 60%) of

product: 1H NMR (CD 2 Cl 2 ) 8 7.25 (m, 4, Ph), 6.89 (m, 1, Ph), 3.88 (t, 6, CH 2 ), 2.81 (t, 6,

CH 2 ), 0.25 (s, 27, SiMe3); 13C NMR (CD2Cl 2 ) 8 277.2 (s, CPh), 152.0 (s, Ph), 134.5 (m, Ph),

126.8 (m, Ph), 125.1 (m, Ph), 52.6 (t, CH 2), 52.4 (t, CH2 ), 5.1 (q, SiMe3). Elemental analysis

results may be found elsewhere. 17

[N3N]W-CSiMe 3 (3). Trimethylsilylacetylene (81 gL, 0.571 mmol) was added via

syringe to a room temperature solution of [N3N]W-CCMe3 (70 mg, 0.114 mmol) in 3 mL diethyl

ether. After 22 h, the yellow mixture was concentrated in vacuo and the resulting yellow solid was

extracted with 20 mL diethyl ether. The extract was filtered through Celite to remove an insoluble

yellow solid and the filtrate was concentrated in vacuo to afford 62 mg of yellow solid. A
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benzene-d6 solution of the solid was demonstrated via 1H NMR to contain a 2:1 mixture of

neopentylidyne 1 and trimethylsilylmethylidyne 3. [N3N]W=-CSiMe 3: 1H NMR (C6D6) 8 3.47 (t,

6, CH 2), 1.98 (t, 6, CH 2), 0.52 (s, 27, NSiMe3), 0.51 (s, 9, CSiMe3). 13C NMR and elemental

analysis data may be found elsewhere. 17

[N3N]W-CH (4). Acetylene (0.334 mmol) was condensed into a -196 'C glass bomb

containing [N3N]W=-CCMe 3 (41 mg, 0.0669 mmol) in 10 mL diethyl ether. Upon warming to

room temperature, the reaction mixture changed in color from yellow to black-purple. After

stirring at room temperature for 3 d, the reaction mixture was filtered through Celite to remove

poly(acetylene). The removal of volatiles from the filtrate produced 18 mg (0.0323 mmol, 48%) of

product as a yellow solid: 1H NMR (C6D6 ) 8 7.08 (s, 2JHW = 81, WCH), 3.46 (t, 6, CH 2), 2.06

(t, 6, CH 2 ), 0.50 (s, 27, NSiMe3). 13C NMR and elemental analysis data may be found

elsewhere. 17
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