
Sine-Wave Amplitude Coding using Wavelet Basis Functions

by

Pankaj Oberoi

S.B., Massachusetts Institute of Technology (1991)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Feburary 1996

© Pankaj Oberoi, MCMXCVI.

The author hereby grants to MIT permission to reproduce and to distribute copies
of this thesis document in whole or in part, and to grant others the right to do so.

. J j

Author ......... . . . . ., ... ............ ...................... .................

/fepartment of Electrical Engineering and Computer Science
December 22, 1995

-.-- %

Certified by ...... • .......... •"'.7.........

Senior Staff,

Certified by.-. .. '......-. ....-... T .-.. .--. .,.....

Senior Staff,

Robert J McAulay
MIT Lincoln Laboratory

Thesis Supervisor

........................

Thomas Quatieri
MIT Lincoln Laboratory

Thesis Supervisor

A'A A

A ccepted by ......... . ................................
S( Frederic R. Morgenthaler

Chairman\ Departmental Committee on Graduate Students

..,,,,SAC;USETTS INST'ITUTE
OF TECHNOLOGY

APR 111996

LIBRARES



Sine-Wave Amplitude Coding using Wavelet Basis Functions

by

Pankaj Oberoi

Submitted to the Department of Electrical Engineering and Computer Science
on December 22, 1995, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

This thesis presents an alternate method for low-rate speech coding using wavelet basis
functions to decompose the spectral envelope. Low-rate speech coding of the spectral envelope
using correlated channel gains was implemented in the sinusoidal transform coder (STC). The
spectral envelope is like a 1/f signal, and based on Wornell's [37] work which showed that for
1/ f and nearly 1/f signals the wavelet coefficients are uncorrelated, the wavelet coefficients
of the spectral envelope should be uncorrelated and more robust for coding.

A discrete symmetric-periodic wavelet algorithm was implemented to avoid problems that
arise with decomposition of finite duration signals. Initial tests were performed using two
sets of wavelet basis functions: Daubechies' compactly supported wavelet basis functions and
M-allat's spline wavelet basis. The spline basis functions were chosen over Daubechies' func-
tion for the wavelet-based sinusoidal transform coder (WSTC) because they require fewer
coefficients to represent the spectral envelope. The first five wavelet scale coefficients did not
contribute much information to the represntation and were discarded allowing the represent-
ation to be reduced from 512 to 33 coefficients. The coefficients at each wavelet scale had a
Gaussian distribution, and their variances were similar to the variance progression seen by
Wornell [37]. A quantization scheme based on the coefficient histograms was developed to
reduce quantization errors between the original and reconstructed envelopes.

A WSTC system was implemented at 3700 bits per second and compared to a sim-
ila.r STC system that was implemented at 4800 bits per second. The two systems sounded
comparable, but the STC system performed slightly better at synthesizing unvoiced speech.
Further enhancement of the coding schemes to exploit the statistical properties of the wavelet
coefficients could improve the quality of the synthesized speech or reduce the coding rate.
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Chapter 1

Introduction

1.1 Motivation

Improved speech representations can lead to advances in the areas of speech recognition,

synthesis, enhancement, and coding. Speech production and auditory models have been de-

veloped to understand which speech parameters are essential for retaining high quality speech

while reducing the number of parameters. By coding only those parameters of the speech

signal needed for intelligibility and high quality, the bandwidth required to transmit speech

is reduced. In communications areas such as cellular, mobile, and military radio communica-

tions where the transmission bandwidth is limited, reduced representations can allow for an

increase in the number of connections and a re-allocation of bits to error protection for more

robust communication. Current low-rate coders are able to reasonably represent speech at

rates from 4800 to 1200 bits per second [23].

1.2 Description of a Canonical Vocoder

There is a. tradeoff between the perceptual quality of coded speech and the amount of data

allocated for coding. Even though speech has a bandwidth of 10 kHz and humans can resolve

tones at over 16 bits of intensity variations, but only a small subset of a combination of

these sounds is interpreted as speech. To fully represent the speech signal over 160,000 bits

per second are needed, but for a perceptual represent of intelligible speech, many fewer bits

are needed. The objective of a low-bit-rate vocoder is to produce good-sounding intelligible

speech while compressing it to low data rates below 4800 bits per second. In addition to low
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Figure 1-1: Block diagram of a generic vocoder.

rates, the vocoder must be robust to additive acoustical noise, and the coded signal needs to

be resilient to transmission noise and errors.

A speech coding system consists of an analysis and a synthesis section as shown in Fig-

ure 1-1. In the analysis, the speech signal is sampled using an A/D converter and transformed

into a minimal set of parameters which are then quantized for storage or transmission. In

the synthesis section, the quantized parameters are first decoded to recover the speech para-

meters, from which a synthetic speech signal is generated and converted back to a continuous

signal using a D/A converter. Compared to the original speech signal, the quality of the syn-

thesized speech may be degraded due to the inadequacies of the parametric representation,

and the algorithm used to quantize the parameters.

1.3 Sine-Wave Amplitude Representation

Several speech representations have been developed for coding speech, including subband

coding, linear predictive coding, phase coding, formant coding, and cepstral coding [14, 30].

Another representation, developed at Lincoln Laboratory [23], uses the sinusoidal model

(described in Chapter 2) to represent the speech signal. This thesis uses the speech repres-

entation developed for the sinusoidal transform coder (STC).

In the sine-wave representation, the speech signal is decomposed into a sum of sine-waves.



NMcAulay and Quatieri have shown that the amplitudes of these sine-waves form a sufficient

set of speech parameters [23]. The sine-wave amplitudes are represented by the spectral

envelope which is sampled and quantized in the form of channel gains in the STC system.

The wavelet-based sinusoidal transform coder (WSTC), developed in this thesis, decomposes

the spectral envelope into a set of wavelet coefficients.

1.4 Wavelet Introduction

Current applications of wavelet research have centered around removing redundancies found

in images for the purpose of image coding. One goal of this thesis project is to determine

if, by choosing a good wavelet basis, redundancies in the spectral content of speech can be

removed.

Wavelet theory has been compared to subband and multirate systems which have been

used to code speech [30] in which the speech waveform is separated into different spectral

bands. The wavelet transform uses basis functions similar to the filters in the subband

systems, but the basis functions are applied to the speech spectral envelope rather than to

the speech waveform itself. This thesis will test the hypothesis that basis functions with

shapes similar to the formant structure in the envelope should reduce the number of wavelet

coefficients.

Recent work done by Wornell [37] has shown that orthonormal wavelets basis expansions

act as a Karhunen-Lobve-like representation for 1/f processes and "appear to be robust,

nearly optimal representations for all 1/f processes, including nearly 1/f processes." [36]

Wornell's work has shown that the wavelet coefficients obey a variance progression which

can be useful in parameter estimation and coding. The wavelet coefficients for a 1/f or

nearly 1/f process are uncorrelated along the wavelet scale and across scales. The complex

cepstrum of the speech spectrum decays at least as fast as 1/n [26], therefore, the log mag-

nitude of the spectral envelope will yield a /(1/f)n process. Based on Wornell's results, a

wavelet decomposition of the speech spectral envelope should produce a set of uncorrelated

coefficients.



1.5 Objective of Thesis

The overall goal of this thesis is to obtain a, wavelet representation of the speech spectrum for

low-bit-rate coding at rates near 4800 bps while maintaining high quality speech. The focus

is on representing and quantizing the speech spectral envelope. In order to maintain good

quality synthesized speech, the difference between the original and reconstructed spectral

envelopes must be small. A complete wavelet representation should exactly reconstruct the

envelope, thereby, producing high-quality speech; however, the complete wavelet representa-

tion contains too many coefficients for low-rate coding. An analysis of the wavelet coefficients

should yield a subset that are necessary for reconstruction of the envelope.



Chapter 2

Speech Production Model and the

Sine-Wave Representation

A good speech production model is important because unwanted sounds can be generated by

a poor representation of speech. This chapter describes a typical speech production model

and how speech can be represented using that model. The sinusoidal model, based on the the

acoustic speech production model, produces parameters which can be quantized for storage or

transmission. In this model, the speech signal is modeled as a sum of sine-wave amplitudes,

which are the primary parameters coded. The sine-wave amplitudes can be gotten from

sampling the spectral envelope.

2.1 Acoustic Speech Production Model

Speech production can be modeled as an excitation produced by the vocal cords which is

passed through a linear time-varying system which represents the glottal system, the vocal

tract., and the radiation at the lips [30]. The model, shown in Figure 2-1, is the underlying

model for most speech analysis/synthesis systems [30], and can be further simplified as an

excitation and a system function (H,(w, t)).

If speech production is assumed to be linear system, the vocal tract can be modeled as a

cascade of linear acoustic tubes. The transfer function of the vocal tract is simplified to an

all-pole system, making it a computationally efficient representation because the system can

be estimated by linear prediction analysis using all-pole coefficients.

The transfer function of an all-pole system is characterized by peaks at the natural fre-
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Figure 2-1: Block diagram of the acoustic speech production model. e(t) is a series of
impulses separated by a pitch period. It is then modified by the glottal pulse to produce
periodic glottal pulses. Hg(w, t) is low-pass in nature. The vocal tract and radiation are
represented as linear filters which modify the glottal pulses.

quencies of the vocal tract, called formant frequencies or poles. In the ideal lossless case,

the transfer function has infinite gain at the formant frequencies, but losses such as heat,

viscosity, and compliance of the vocal tract, cause the formants to have finite amplitudes and

bandwidths. Because the vocal tract is real and dissipative, the system response can only

contain real or complex-conjugate-pair poles. In practice, the transfer function only contains

complex-conjugate-pairs and may be written as:

sis, 8282*T(s) = KS2* (2.1)
(8 - s1)(S - 8s) (8 - s2)(S - 8) 2 .

where s, = cr, + j•, are the complex frequencies of the poles. The equation shows that for

frequencies greather than the pole, the system function magnitude falls off as 1/f and can

be seen in the Figure 2-2. This 1/f rolloff reduces the peak magnitude of higher-frequency

formants.

The all-pole model requires that the parameters vary slowly and are approximately con-

stant over 10 to 20 ms [30]. This assumes that the vocal tract is unchanging over a short-time

period, so during speech transitions, where the vocal tract changes rapidly, the all-pole model

does not perform well. However, the all-pole model is a good representation for vowels, where

the vocal tract is the same for a short duration.

The all-pole model also breaks down when the speech is nasal and or is a fricative. During

nasalized speech another cavity is opened in the vocal tract, so an acoustic zero is introduced

by the resonance of the the second airway. During fricatives, a turbulent source at the glottis

can produce acoustic zeros in the system function.
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Figure 2-2: Single pole transfer function with a finite resonance bandwidth. Pole at 1000 Hz
with bandwidth of 200 Hz.

These acoustic zeros can affect the shape of the transfer function in many ways. A zero

can generate a formant-like structure close to the formant frequency, as shown in Figure 2-3,

or the formant bandwidth can be decreased by a narrowing effect due to the zero. A zero

occuring at a frequency almost identical to the formant frequency can either cancel the peak

in the transfer function or decrease the amplitude of the peak.

The shape of the system function is important for speech synthesis. Errors in reconstruct-

ing the system function could have the same affect as additional zeros and the synthesized

speech might artifically sound nasalized or like a, fricative. When the formant bandwidth

is incorrectly reconstructed, the synthesized speech may sound muffled. Psychoacoustical

tests have shown that variations in the amplitude and the bandwidth of the formant peak

can significantly affect speech perception and quality [11]. Appendix A shows the prelimin-

ary results of a psychoacoustic test in which the bandwidths of a formant in the utterance

/a// /b/ /a/ were varier and the just-noticeable differences were recorded. This test showed

that untrained listeners were able to detect 4dB changes in the formant bandwidth, so the

system function must be well represented for speech synthesis.
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Figure 2-3: System transfer function of nasalized speech. The nasalization produces a second
peak near 1000 Hz by a zero which occurs near 650 Hz.

2.2 Sinusoidal Model

The sinusoidal model is based on the speech production model shown in Figure 2-1 with

the excitation being represented as a sum of sine-waves [22, 29] rather than pulses. During

voiced speech, the excitation can be decomposed into harmonic sine-waves with predictable

phase variations; during unvoiced speech the sine-wave components are aharmonic with ran-

dom phases. When these sine-waves are filtered by the vocal cords and vocal tract, the

speech, s(n), is a linear combination of sine-waves with different amplitudes {At} and phases

{41 } [23]:
L

s(n) = C Al cos(wln + 41) (2.2)
/=1

During speech analysis, the speech is broken up into frames by windowing the speech

signal using a Hamming window. For each frame, the sine-wave peaks are obtained from the

magnitude of the short-time Fourier transform (STFT), and the largest peaks are retained,

but limited to a maximum of 80 peaks. The speech can be synthesized using the amplitudes

and phases at the set of frequencies (we).
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Figure 2-4: Block diagram of the major portions of the sinusoidal transform coder. After
a, STFT is obtained, a peak detection algorithm finds the peaks in the spectrum for each
frame of speech. From the peaks, a smooth spectral envelope, which represents the vocal
tract transfer function; pitch estimator; and voicing probability are obtained. The synthesis
section decodes the coded signal and computes the spectral envelope, and reconstructs the
speech signal. The shaded components are the ones that will be altered in this thesis.

2.2.1 Sinusoidal Transform Coder

Each speech frame requires a large number of parameters for the complete sine-wave rep-

resentation of the transfer function and excitation. The number of sine-waves in each frame

may vary as well, so this parameter set is not well suited for low-rate coding. The sinusoidal

transform coder (,STC) simplifies the sine-wave representation to a small set of amplitudes,

a p)itch and a voicing probability [23]. The STC system, shown in Figure 2-4, is briefly

described, with emphasis placed on portions of the coder relevant to this thesis.

During voiced speech, the sine-waves frequencies will have harmonic spacing and the set of

frequencies will be multiples of the first harmonic. A pitch estimator (jo ) which estimates the

spacing between the frequencies reduces the set of sine-wave frequencies to a single parameter

for both voiced and unvoiced speech. Speech can be synthesized by the following equation

where 0 is a minimum phase function, and /k is the phase onset [23].

kL;o

s(n) = A(4ko) cos(nk o + Ok + 0(kio)) (2.3)
k=1



For the purposes of this thesis it is not important how the onset is obtained, but that it

is used to assist in aligning the speech frames when synthesizing speech. A residual phase

function is computed as the difference between the phases of the synthesized speech using the

estimate of the onset and the harmonic spacing. During voiced speech the residual is nearly

zero, and it is random for unvoiced speech [23].

Cepstral coefficients are obtained by taking the inverse Fourier transform of the log mag-

nitude of the Fourier transform. Since the speech signal is assumed to be minimum phase,

the system function, amplitude envelope, and phase can be gotten directly from the cepstral

coefficients.
00

log A (w) = co + 2 1 Cm cos(mw) (2.4)
m=1

•,(w) = -2 E cm sin(rnw) (2.5)
m=1

The phase of the vocal tract, without the sign or temporal onset, can be recovered from the

cepstral coefficients, which are derived from the log magnitude function.

The set of phases is reduced to a voicing probability which during synthesis forces the

residual phase to zero, for voiced speech, or a random signal, for unvoiced speech. The voicing

probability can be computed from the residual phase generated in the analysis section, or it

can be determined from the mean squared error between the signal (s(n)) and the estimated

signal (s(n)) in the harmonic model [23] because the mean squared error is larger for unvoiced

fames due to the aharmonic spacing of sine-waves.

Unvoiced speech is represented by a large number of sine-waves, but the STC limits the

number of sine-waves to a harmonic set, so it is not represented well by the harmonic model.

Estimates of the fundamental frequency larger than 150 Hz for unvoiced speech can produce

perceptual artifacts due to too few sine-waves representing a noise-like signal [23]. For

unvoiced speech with estimated fundamental frequencies larger than 100 Hz, the fundamental

frequency is defaulted to 100 Hz, hence satisfying the Karhunen-Loeve expansion.

The sine-wave amplitudes are converted into a continuous function using an algorithm

from the Spectral Envelope Estimation Vocoder (SEEVOC) which finds the largest sine-wave

amplitude within each pitch interval [l, 2-]. A cubic spline interpolation between the largest

peaks in each envelope form a smooth envelope which is similar to the system transfer function

shown in Figure 2-3



INPUT SPEECH
2I

-40 I
,-40 - 0 20 40

TIME (ma)
ONSrT UKEmnOOn FUmenO

TIME (ms)

Figure 2-5: Onset estimation of a frame of speech. (a) a typical frame of voiced speech with
the pitch pulse occuring near the center of the frame. (b) onset estimation. (c) Residual
phase. (d) Spectral domain representations of the STFT and cepstral envelope [23].

The construction and representation of the spline envelope is crucial for synthesizing the

coded speech because the amplitude and phase information are contained in the envelope.

As mentioned in Section 2.1, alterations to this envelope can affect the quality of the speech

since it represents the speech transfer function.

The envelope consist of 512 points, representing the speech spectrum up to 4kHz. The

large number of points makes it a poor representation for low-rate coding, so a representation

for the envelope is needed to reduce it to a smaller set of coefficients.

2.2.2 Coding the Spline Envelope

The spline envelope can be coded in many ways, but since the cepstral coefficients are needed

for determining phase, the STC system uses a cepstral-based coding algorithm [23]. The



mel vs kHz kllz vs mel

4

3

2

1

0 1 2 3 4
kHz

4

3

2

1

0

Figure 2-6: Mel warping function [23].

number of cepstral coefficients retained is a design parameter used to determine the rate of

the vocoder. Experimentally it was shown that retaining more than 40 coefficients does not

improve the quality of the speech, so the number of points for the representation is always less

than 40 depending on the vocoder rate [23]. Truncating the cepstrum to M points (M < 40)

has the effect of low-pass filtering the spline envelope.

Recordings from the auditory nerve as well as other information indicate that the coch-

lea is highly frequency-selective bank of filters which is not as frequency-selective at high

frequencies. [28] The representation for the high-frequency bands can made coarser than the

low-frequency bands by allocating fewer coding bits to the coefficients representing the high-

frequency range. The frequency axis of the STFT is warped (shown in Figure 2-6) to exploit

the properties of the auditory system.

The reduced number of cepstral coefficients are transformed back into the frequency

domain because the large dynamic range of the cepstral coefficients makes them unfavorable

for low-rate coding. A new smoother envelope is sampled at linearly spaced intervals known

as channel gains. The mel-warping causes the gains to be non-linearly spaced on the original

frequency axis as shown in Figure 2-7.

The channel gains are spectral amplitudes at a set of frequencies, and further reduction

in coding can be achieved by quantizing them according to the perceptual properties of the

ear [23]. More bits are given for the channels in the lower frequency range than in the

higher frequency range. The channel gains are quantized and coded using delta pulse code

modulation (DPCM) [17, 27].

kHz vs melmel vs kHz
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Figure 2-7: Channel gains computed from the cepstral envelope [23].

In order to decrease the data rate, a frame-fill interpolation method is used, in addition to

the DPCM, so that channel gains are sent every other frame. The mid-frames are interpolated

from the two adjacent frames. Two bits are used to tell the synthesis section whether the

odd frame resembles the kth frame, the k + 2nd frame, or a combination of the two frames.

2.2.3 STC Coding Rates

The STC system is able to code speech at data rates of 2400 and 4800 bits per second using

just the spline envelope, pitch, and voicing probability, and frame interpolation bits. Since

the pitch and voicing probability functions are inherent to the sine-wave system, they are not

altered in the vocoder developed in this thesis.

Twelve bits per frame are used for coding non-envelope information. The pitch is coded

using 7 bits, the voicing probability with 3 bits, and the frame-fill interpolation with 2 bits.

If the frame interval is 20 ms long and frame-fill is used, 25 frames per second need to be

coded. To achieve 4800 bits per second for 25 frames per second, 192 bits for frame must



code all information. This leaves 180 bits per frame for coding the envelope.

2.3 Wavelet STC System

This thesis describes the performance and development of the wavelet-based sinusoidal trans-

form coder (WSTC). The front-end of the WSTC system is identical to the STC system.

Speech is decomposed into the spline envelope, pitch estimate, and voicing probability, as

shown in Figure 2-4. The main focus will be on the development of a wavelet representation

for the sine-wave amplitudes.

Instead of using the cepstral coefficients to determine the channel gains, the WSTC per-

forms a wavelet transform on the spline envelope and a set of the wavelet coefficients are

quantized. Since the spline envelope is real and even, the log of the spline envelope can be

shown to have a 1/f property (see Appendix B). 1/f processes are well represented by a

wavelet decomposition [37] and the wavelet coefficients have the advantage of being uncor-

related (shown in the next chapter). An inverse wavelet transform of the quantized wavelet

coefficients is performed at the synthesis portion to obtain the spline envelope. From the

envelope, speech is synthesized, as it is in the STC system.



Chapter 3

Wavelet Theory

Development of the wavelet transform originated in seismic data analysis from the work of

Morlet [25] in 1982. The development was motivated by the need for good low-frequency

resolution and good time resolution of high-frequency bursts simultaneously. Original wave-

let work decomposed signals into frequency bands to extract information from the different

bands. Numerical analysis of wavelet coefficients led to signal decomposition using wavelet

basis function which are best suited for decomposing the signal so that the resulting coeffi-

cients are easily compressed [7]. The number of coefficients needed to reconstruct the signal

is minimized by using a set of carefully chosen basis functions.

Motivation for using the wavelet transform to represent the spline envelope came from

work done by Wornell which suggests that the wavelet transform is supposed to be optimal

and robust for representing 1/f signals, such as the spline envelope. The spline envelope is

a smooth version of the log magnitude of the speech spectrum, and therefore its spectrum

contains mostly low frequencies and is 1/f. Wornell showed that the variance of the wavelet

coefficients will be related to the order of 1/f or nearly 1/f signals and that as the scale

increases, the variance of the coefficients increases [37]. Therefore, WSTC coefficients should

be characterized by a set of variance parameters leading to the extraction of information

about the speech signal.

While no new theory is developed in this chapter, basic wavelet theory and subband

coding theory, upon which many of the results are based, is reviewed. Wavelet notation

used throughout the thesis is introduced. A more rigorous mathematical treatment of wavelet

theory can be found in Chui [5] and Daubechies [9]. Other tutorials can be found in Mallat [19]
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Figure 3-1: Time-Frequency plane for the STFT. Can be viewed as either a FT at time r, or
a set of modulated filters. [31]

and Vetterli [31]. A practical algorithm for the wavelet transform is presented which is

similar to subband and multirate systems used to code images and speech [30, 33, 3]. The

properties of the wavelet basis functions, and the wavelet transform are explained to provide

the background for the algorithms used in the coder developed in this thesis. Finally, the

wavelet representation for the 1/f signal shown by Wornell and Oppenheim will be reviewed.

3.1 Continuous Wavelet Transform

The Short Time Fourier Transform (STFT) is commonly used to analyze non-stationary

signals. The STFT operation can be viewed as a two-step process: first the signal is windowed

in time to produce a temporal localization, and then the Fourier transform is computed.

The STFT is given by,

STFT(r, f) = x(t)g*(t - T)e-2ftdt (3.1)

The signal x(t) is windowed by a function g(t) at some time r, and the Fourier transform of

the windowed signal represents the STFT.

Alternatively, the STFT can be viewed as a bank of modulated filters, in which the signal

is convolved with the modulated window g*(t - r)e - 2j3"f t . Figure 3-1 shows the two inter-

pretations of the STFT. The STFT maps the signal into a two-dimensional time-frequency

space [31].

The width of the window determines both the time and frequency resolutions. The time-

~1



frequency trade-off for the STFT is governed by the uncertainty principle, which states that

the time and frequency localizations of the decomposition are related by

rofo > -- (3.2)
- 47r

where fo and r, are the frequency and time resolutions. Time resolution is sacrificed for

frequency localization. Shorter STFT windows produce better time resolution, but the fre-

quency localization is impaired. For signals which contain both low-frequency component

and high-frequency bursts, it is desirable to analyze the signal with both short and long

windows.

The wavelet transform (WT) uses scaled basis functions to produce good temporal and

spectral localizations, but not both simultaneously, by changing the STFT constant band-

width filters to constant Q bandpass filters with Af/f as a constant (frequency band over

the center frequency). The uncertainty principle (Equation 3.2) always holds, so at high

frequencies where the window is short, the system produces better time localization and at

the longer windows frequency resolution improves [31].

The continuous wavelet transform (CWT) uses frequency-scaled and time-shifted versions

of a basic function called the mother wavelet ?b(t). Unlike the basis functions of the STFT,

which are modulated versions of the same windowing function, the basis functions of the

continuous wavelet transform, shown in Figure 3-2, can be written as:

'a,b(t) = I1 a (3.3)

CWT (a, b) = W x (t) } = x(t)*(t b)dt (3.4)

The CWT, Equation 3.4, is an inner product of the signal with shifts and dilation of

a mother wavelet. Shifted versions of the wavelet basis needed to cover the time domain

from t = -oo to +oo and the dilations allow for complete coverage of the frequency domain.

Wavelets were explored primarily for their localization properties, so it is desirable, but not

required, for the mother wavelet to have compact support, meaning that for IxI > xz the

wavelet is zero.

f +oo
J- OO



STFT Basis Functions

Wavelet Basis Functions

Figure 3-2: Modulated basis functions for the STFT are modulated exponentials. The wavelet
basis functions are scaled versions of a mother wavelet. The mother wavelet shown here is a
Battle-Lemair6 spline wavelet.

An inverse synthesis formula must exist for this transform to be useful. The reconstruction

formula imposes restrictions on 0. A necessary and sufficient condition to reconstruct x(t)

from the wavelet transform (as shown by Grossman et. al. [15]) is that the wavelet 0(t) must

satisfy the admissibility condition,

2

C, = • dw < oo (3.6)

where $(w) is the Fourier transform of the mother wavelet.

Provided that ?(w) is continuous, and 0'(t) has reasonable decay (at least as fast as

It-l-), then the admissibility requirement is equivalent to

f+00

(0) = a (t)dt = 0 (3.7)

and fbr all practical purposes this is considered to be the admissibility condition [9].



The synthesis equation for the wavelet transform

x(t) = W- CWTx(a,b)} = - a f--]• • CWTx(a, b) a,bdb (3.8)

holds for all admissible wavelets.

3.2 Discrete Wavelet Transform

The CWT is highly redundant and not practical to implement since the shifts and dilations

are continuous functions. The shift-scale plane is discretized as

aj = a,; bk = ka'bo (3.9)

to minimize redundancy in the representation. This discretization plane is chosen because of

the dilation property associated with the wavelet transform. The wavelet decomposition is

simplified by using dyadic sampling with ao = 2 and b_ = 1 and the wavelet basis functions

and coefficients for this lattice are

?Pj,k(t) = 2-'/24 (2-jt - k); (3.10)/+oo
Xi,k = (t),'*k(t)dt. (3.11)

Daubechies showed that the sampling lattice of the WT must be correctly chosen for a com-

plete and stable reconstruction using the following synthesis equation [8, 9].

x(t) = , xj,k j ,k(t) (3.12)

3.2.1 Multiresolution Analysis

Even though the scale and shift parameters are discrete, the basis functions and the signal

are still continuous functions, making the DWT impractical since the speech signal and most

other signals are discretized by an A/D system.

Mallat [19] developed the multiresolution signal analysis for wavelets which provides a

practical way of applying the wavelet transform to discrete signals. The multiresolution

decomposition projects the signal on to successive subspaces which are coarser representa-
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Figure 3-3: Graphical representation of the subspaces in the multiresolution analysis for the
wavelet transform. The transform consists of nested approximation subspaces, and ortho-
gonal complement subspace.

tions of the previous subspace. The projections are obtained by smoothing the signal, which

produces a. coarser temporal resolution. The multiresolution provides a method for look-

ing at the wavelet transform as subspace and basis decomposition as opposed to frequency

decomposition.

Multiresolution analysis leads to shifted and dilated functions that form a complete or-

thonormal basis for L2(). The L2() space is composed of a sequence of successive approxim-

ation spaces Vi such that the subspaces are nested

... +,1 C V CE _ C c... (3.13)

As j is increased, the resolution becomes coarser. 1 A coarser representation has signals which

are smoother, or blurred from the finer representation. The subspaces must also satisfy

U I = L2() (3.14)

n v = {0) (3.15)

so that the subspaces define the entire range of L2(). A graphical representation of the

subspaces are shown in Figure 3-3.

Sets of non-orthogonal spaces can be generated from the previous constraints. To impose

the orthonormality condition of the multiresolution analysis, scale-invariance and translation-

1The sign of j varies between papers. Some authors use a negative j corresponding to a coarser resolution.



invariance properties are needed. The scaling property (3.16) allows an approximation at a

coarser resolution to be derived from an approximation at any other finer subspace. The

translation constraint (3.17) guarantees that if the original signal is shifted by n, then the

approximation to the signal is shifted by a proportional amount. These constraints (3.13 -

3.17) form orthonormal dyadic subspaces.

x (t) = Vj <= x (2t) = Vj_ 1  (3.16)

x(t) E Vj eý= x(t - 2in) E Vj (3.17)

A linear operator Aj, known as the approximation operator, defines the projection of the

signal to the subspace at resolution at j. The approximation of the signal (Aj x (t)) approaches

the signal at infinitely small resolutions, and converges to zero (since there is no DC L2())

as the approximation gets coarser. This can be thought of looking at a signal through a pair

of glasses. As j -+ oc, the glasses are very much out of focus, and everything is blurred. As

j -4 -oc, the glasses come into focus with the infinite resolution.

lim Ax (t) = x(t) (3.18)

lim Ajx(t) = 0 (3.19)
3-o00

Mallat [19] showed that there exists a scaling function O(x) E L 2() such that the dilated

and shifted (23J(2Jx - n)fE) functions form an orthonormal basis of Vy which projects the

signal to the different subspaces.

Ajx(t) = Eaj,n j,n(t) (3.20)
n

aj,n = x(t)Mj,,(t)dt (3.21)

where the coefficients aj,, are the projections.

The scaling function 0(t) has a low-pass frequency response because it projects from a

fine resolution to a, coarser one [19]. Equation 3.21 can be represented as a filtering operation

followed by downsampling

aj,n = (x(t) * j,o) It=23n (3.22)

The difference between two adjacent approximations, aj,n and aj-,n,, is called the detail



signal, which can be downsampled as well if the detail basis functions exhibit the same dyadic

constraints. The collection of approximation subspaces contain redundant information, but

the detail signals contain different information at each scale or subspace and can be thought

of as frequency bands. The detail signal resides in the orthogonal complement to Vj1 , Wj (see

Figure 3-3), such that the following are satisfied

WIj I V (3.23)

wj D Vj = V3j 1  (3.24)

W I1 W', j $ J'. (3.25)

There exists a wavelet basis function 0(t) E L2 () whose shifted versions form an or-

thonormal basis for Wj. The projection operator from V to W is

Djx(t) = E Xj,n bj,n(t) (3.26)
n

where the coefficients Xj,n are the projections

X,n = z x(t) j,n(t)dt. (3.27)

The wavelet basis function must have a bandpass spectrum because it contains the in-

formation found between two subspaces Vj and Vj_ 1. Any subspace Vj can be recursively

decomposed into a sum of orthogonal subspaces [37]

Vj = WJ+1 VJ+1 = WJ+1 ( (WJ+2 e V+z2 ) = Wj (3.28)
j>J

such that
- OO

v = wj.
= oo

Analog signals have infinite resolution, and are located in the space j = -oo, but it is

impossible to start a decomposition at j = -oo, so the sampled signal after the A/D step is

taken to be at the Oth subspace.

ao,n = x (t) o,n (t) dt
/-OO



Aox(t) = E ao,no,n(t)
n

The projection step is low-pass in nature because of the scaling function. This is consistent

with the need for an anti-aliasing low-pass filter within the A/D stage. This is an approxim-

ation that is necessary for implementing the multiresolution analysis.

3.2.2 Cascade Filter Implementation

The key feature of the multiresolution analysis is that any subspace can be contrived from a

finer resolution subspace. V is included in V_1, and _-1,n is an orthonormal basis in V_1.

¢, which is an orthonormal basis in V, is constructed as a linear combination of _-1,, with

h,, as the Fourier coefficients between the two spaces.

S'= hn4-li,n (3.29)

hn =< ¢, _-1,n > (3.30)

The detail space Wj is derived from the approximation space Vj_i, so the wavelet basis

function at the nth subspace is defined as:

0 = gn-l,n (3.31)
n

gn =< 7, 0-l,n > • (3.32)

The approximation of a signal at a resolution is obtained by iteratively taking approx-

imations from one space to its subspace (finer to coarser subspaces). The procedure is

implemented as a filter-and-downsample (3.33).The detail coefficients are also obtained by a

filter-and-sample procedure (3.34).

a,n = Zh(1 - 2n)aj_1,, (3.33)

,n = g(l - 2n)a -1,I (3.34)

The combination of Equations 3.33 and 3.34 is known as the pyramidal algorithm. Fig-

ure 3-4 shows the analysis and synthesis steps required to go from one scale to an adjacent

one. Inverse filters of hn and gn are used in the synthesis stages. Filters with finite length

provide an efficient method for computing the wavelet transform.
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Synthesis Section

Figure 3-4: Single stage of the pyramidal analysis and synthesis stage of a dyadic discrete-
wavelet transform. The analysis step consists of a filtering operation followed by a down-
sampling. The synthesis is performed by upsampling the discrete representation and then
filtering using the inverse filters of those used in the analysis section.

To satisfy the orthogonality constraint on the scaling and wavelet bases, Mallat [19]

showed that the filters h[n] and g[n] must be be related by:

(3.35)

(3.36)

g[n] = (-1)h[1- n]

G(w) = e-J"H*(w + r)

A further constraint of orthonormality of the scaling functions Oj,n requires

IH(0)12 = 1 (3.37)

(3.38)IH(w) 2 + IH(w + 7)12 = 1

The filters g[n] and h[n] form quadrature mirror filters (QMF) pair, in which g[n] is

highpass and h[n] is lowpass [19]. The wavelet transform is defined entirely through h[n]



since the scaling function is constructed by dilations of the h[n] such that

(w) = H(2-w) (3.39)
p=l

and the detail coefficients are obtained using Equation 3.36 to get the corresponding highpass

filter. The QMFs provides perfect reconstruction of the signal from their coefficients.

The wavelet transform is similar to using exact reconstruction QMFs in subband sys-

tems [35]. All orthonormal wavelet bases that are used in the multiresolution analysis pro-

duce QMFs, but not all QMFs satisfy the orthonormality condition [9]. The multiresolution

analysis of the wavelet transform is therefore, a subset of the subband system. Wavelet re-

search has produced methods for the construction of different types of wavelet bases and

QMFs which are suited for certain signals [9].

3.2.3 Finite Length Signals

Each subspace is dyadically downsampled, so the maximum depth of decomposition depends

on the number of points in the signal at the Oth scale. A signal which contains No2M samples

can be decomposed to xi such that

j = 1,2 .... ,M

n = 0, 1,..., N 02
2j - 1 _ 1

with a maximum depth of decomposition of M and at scale M there are No wavelet coefficients.

For example, if the signal is 256 points, then the maximum depth of decomposition is 8 at

which scale there will be only one coefficient. A single coefficient at the maximum depth of

decomposition scale usually corresponds to the DC value which should be zero for L2().

An implementation problem arises because the Fourier coefficients h" used to transform

between subspaces remains the same size at each subspace, but the size of the signal is being

downsampled. The signal will be downsampled to the point where the number of approx-

imation coefficients is smaller than the number of Fourier coefficient. When this happens,

the wavelet coefficients are mapping energy outside the edges of the signal. When the signal

is scaled such that it is smaller than the filter width, finite duration problems discussed in

Section 4.1 are encountered.



3.3 Wavelet Functions

Wavelet bases have been constructed for different types of signals and applications. Choosing

a basis function that better represents the signal reduces the number of non-zero coefficients,

decreases numerical complexity, and reduced perceptual errors in the synthesized speech.

Two types of wavelet basis function are examined in this thesis. Compactly supported

wavelets reduce the amount of numerical computation in the wavelet algorithm by having a

small and finite set of coefficients while symmetric filters improve signal reconstruction and

reduce quantization noise at the boundaries of the signal.

3.3.1 Compactly Supported Wavelets

Daubechies [8] developed a method for constructing compactly supported orthonormal wavelet

bases which have good frequency properties and R vanishing points for increasing regularity.

A wavelet basis function with Rth-order regularity is constructed by choosing H(w) to have

R zeros or vanishing points at w = ir [37]. These wavelet bases and the corresponding scaling

functions are shown in Figure 3-5. Daubechies' compactly supported orthonormal wavelet

bases are not symmetric like the Meyer and Battle-Lemari6 wavelets and it has been shown

by Daubechies [9], and Smith and Barnwell [32] that exact reconstructing QMF filters cannot

be symmetric about the origin if the synthesis filters are the inverse of the analysis filters.

The compact support allows for good time localizations and reduces additional coeffi-

cients produced to represent the edges when the wavelet algorithm is implemented through

convolution. The convolution produces n - 1 additional coefficients for wavelet functions with

length n.

3.3.2 Symmetric Filters

Filters with symmetric coefficients are called linear phase if the phase of the function is a

linear function of the frequency. The Harr wavelet, which is a piecewise spline,

(x) 0<= <1,
) 0 otherwise,



Wavelet Function

0 1 2 3 -1 0 1

1

0.5

0

-0.5

-1

0 5

Figure 3-5: Daubechies'
R. (top) R=2, (middle)

-2 0 2 4

0 5

compactly supported scaling functions and wavelets with regularity
R=4, and (bottom) R=7.

1.5

1

0.5

0

-0.5

1.5

1

0.5

0

-0.5

1.5

1

0.5

0

-0.5

-I

Scaling Function



1 0<2<• 2-x 2

(x)= -1 < X <1,

0 otherwise,

is not linear phase. Even though it is symmetric about ., the phase is discontinuous at ir, so

it is not linear phase under the current definition. The Harr filter is included as being linear

phase if the definition is extended to include filters for which the phase is piecewise linear,

with constant slope, and has discontinuities only where the function is 0 [9].

A class of spline scaling functions generated by Battle and Lemari6, were used in Mallat's

development of the multiresolution analysis approach to wavelets [19]. Piecewise B-spline

functions generate a multiresolution analysis, but they are not orthogonal to their trans-

lates [5] and can be orthogonalized by [9]

E#(w) = ()[ (w + 2rk)12]2 (3.40)
k=-oo

Spline scaling functions are generated by recursive convolution of the Harr scaling function

where the Nth-order scaling function is

(w) = e- • 2( (3.41)

and the scaling function is then orthogonalized using Equation 3.40. The symmetry of the

orthogonalized function (q#) is the same as the symmetry of the original spline function. For

odd order splines, the functions are symmetric about 1, and even order spline are symmetric

about the origin. The orthogonalized spline functions no longer have finite duration, but their

decay is exponential and is faster for larger N [9].

The filters h[n] and g[n] in Equations 3.33 and 3.34 can be obtained by using

4(2w) = H(w)O(w) (3.42)

and Equation 3.36. The filters, h[n] and g[n], have infinite duration, which is not good for

implementing the wavelet transform, but because of the exponential decay, the filter can be

truncated, making them no longer perfect reconstruction filters. If the truncation is done

properly, however, the errors are small compared to the computation required to reduce the
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Figure 3-6: (Top) Cubic Battle-Lemarid scaling and wavelet function. (Bottom) Coefficients
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errors.

Mallat [19] used a Battle-Lemaire wavelet, which is a cubic spline wavelet basis, when

developing the multiresolution analysis approach to wavelets. The filter coefficients for h[n]

and the scaling function and wavelet bases that are generated are shown in Figure 3-6.

The spline envelope is made using a cubic spline interpolation between the peaks of the

periodogram. The spline wavelet is also generated using splines, so it may be well suited to

represent the spline envelope. It can be hypothesized that the spline wavelet will perform

better at reducing the number of coefficient than the compactly supported wavelets. The next

chapter will investigate which wavelet basis function is better suited for the spline envelope.

3.4 Wavelets and 1/f Processes

Wornell showed that for 1/f and nearly 1/f processes, the wavelet coefficients follow a

variance progression [37]. Appendix B shows that the spline envelope is like a 1/f signal.

This suggests that the wavelet transform is well suited to represent the spline envelope and
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provides a Karhunen-Lobve-like expansion. The wavelet coefficients for the spline envelope

should also follow a similar variance progression.

Nearly 1/f processes are defined as being bound by [37]

2  2
°'L < Szx(f) < 2 ,U (3.43)
Ifll - -I-I

Wornell showed that the wavelet coefficients j,,, follow the variance progression of the

form

Var xj,, = a 22- y j  (3.44)

and the magnitude of the correlation between coefficients across scales and within scales

decays according to

IXj,n;yj,,nl = O(12-n - 2-j'n'l12R - I) (3.45)

as

2-in - 2-1'n'/ -- 0c

where Xj,n;j,,n, is the autocorrelation, j is the scale, n is the shift, and R is the regularity of

the wavelet [37]. Wornell verified both the variance progression and weak correlation using

several 1/f processes.

The result that the coefficients are uncorrelated or weakly correlated is very exciting for

coding the spectral envelope. This means that the wavelet coefficients of the spline envelope

will each represent a, different part of the speech signal. Analysis of the coefficients could

lead to an understanding of which parameters or features are important for maintaining high

quality speech. The variance progression might allow for statistical coding of 1/f processes

and may assist in coding of the spline envelope at lower rates.



Chapter 4

Wavelet Algorithm Development

Early wavelet papers [8, 9, 19, 31] developed wavelet theory and mentioned applications in

which wavelets might be useful; but explicit algorithms were not presented, even though im-

plementation problems were noted. Taking a wavelet transform of a finite duration signal has

many problems associated with it, and there have been proposed solutions by other research-

ers, but a, rigorous analysis of the proposed solutions has not been performed. This chapter

examines several methods for implementing the wavelet transform of the spline envelope.

Two wavelet bases are examined to determine which is better suited for representing the

spline envelope. For the purposes of this thesis, the better basis function is the one which

reduces the number of coefficients needed to reconstruct the envelope and minimizes the error

between the original and reconstructed envelopes. The wavelet coefficients generated by both

basis functions are analyzed to see which coefficients are needed to minimize reconstruction

errors. The result of this chapter should provide the wavelet algorithm used in the WSTC.

4.1 Convolution-Based Decomposition

The wavelet decomposition algorithm, based on multiresolution analysis, is a recursive de-

composition of the approximation coefficients that are generated in each stage of the analysis

section shown in Figure 3-4. The filters, h[n] and g[n], are convolved with the approximation

signal at each scale. The synthesis algorithm is a recursive reconstruction using the final ap-

proximation and the wavelet coefficients. Code used to implement the analysis and synthesis

portions are given in Appendix C.

The spline envelope is considered to be at the Oth scale and higher order scales, j > 0,



Table 4.1: Number of coefficients at the different wavelet scales (dk) and the final approxima-
tion (d9) scale. A decomposition of a 512-length signal was decomposed with a convolution-
based algorithm using the Daubechies N=2 compactly supported wavelet and Mallat's spline
wavelet N=25.

represent coarser resolutions of the envelope. At each decomposition, the signal gets coarser

until all that it left is the DC offset. The maximum depth of decomposition, using dyadic

wavelet analysis, is the 9th wavelet scale.

Boundary problems are apparent when a convolution-based algorithm is used. The con-

volution at each stage increases the number of coefficients by m - 1, where m is the length of

the filter. Table 4.1 shows the number of coefficients generated by the convolution-based de-

composition for both the Daubechies and Mallat wavelets. The first column shows the number

of coefficients generated by the ideal case in which the signal is dyadically downsampled at

every scale. The maximum decomposition scale for the envelope is 9 scales because the ori-

ginal envelope is a 512-point discrete signal. The number of coefficients using the convolution

algorithm is larger than in the original signal, which defeats the purpose of the transform. In

the ideal case d9 represents the DC value and in L 2() the DC is zero.

The reconstruction properties for Daubechies' compactly supported wavelet bases, D2

and D4 and for the spline wavelet with truncation lengths of 31, 25, and 19, were examined

for those algorithms. The first set of experiments, were done using all the coefficients to

obtain perfect reconstruction of the envelope. The next experiment was done by truncating

the extra coefficients to determine their importance reconstruction of the envelope.

Two parameters were tested for each basis function: final depth of decomposition (FDD)

and the number of scales used (NSU) for reconstruction. The FDD is the scale at which

Scale Ideal Daubechies (D 2) Mallat N=25

d, 256 258 268
d2  128 131 146
d3  64 67 85
d4  32 35 55
d5  16 19 40
d6  8 11 32
d7 4 7 28
ds 2 5 26
d9 1 4 25
a9  1 4 25

total 513 537 705



the final approximation is kept. For example, in the ideal case, a FDD of 4 corresponds

to a representation with the wavelet coefficients in the first 4 scales and the approximation

coefficients at scale 4. To reduce the number of coefficients passed between the analysis and

synthesis portions, the wavelet coefficients corresponding to the first I scales are zeroed. The

NSU is defined as the number of non-zero wavelet coefficient scales used for synthesis. The

NSU helps to evaluate what information is contained in the lower-scale coefficients.

4.1.1 Non-Truncation Experiments

The same algorithm was used for both the Daubechies and Mallat spline basis functions. The

initial tests were performed for a FDD to the ninth scale.

The first and last points in the spectral envelope are not zero, so a large edge is pro-

duced in the signal. Figure 4-1 shows a typical spectral envelope for reconstructed voiced

speech comparing two different Daubechies basis functions. The NSU ranged from 0 to 5.

When all the low scales are used for the reconstruction (1 = 0), the reconstructed signal is

identical to the original. As the first few wavelet coefficient scales are zeroed, the edges of

the reconstructed envelope begin to degrade because eliminating the low-scale wavelet coef-

ficients removes the high-frequency components which are needed to represent the edge. All

frequency components are necessary to reproduce that edge which is one porblem with finite

duration signals.

The overall formant structure of the envelope is still intact even when the first 5 scales

are discarded, but the formants in the reconstructed signal begin to take on the shape of

the scaling function. Altered formant shape is most prominent in the D 2 case (Figure 4-1b),

where the formant peaks look like the scaling basis functions.

The first four scales (1 = 4), using the D4 basis functions, can be removed without

affecting the shapes of the formants and while maintaining a small difference error in the

middle of the signal. Even though the overall formant structure is similar, the first formant is

altered significantly and can cause poor speech synthesis. The lower-scale wavelet coefficients

affect the reconstruction of unvoiced envelopes more than voiced envelopes (see Figure 4-2)

because as the first few scales of wavelet coefficients are removed, some of the smaller peaks

are not reconstructed.

Decompositions at different depths for spline wavelets of length 25- and 31-points are

shown in Figure 4-3. No wavelet coefficients were zeroed, so the entire wavelet representation
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Figure 4-2: Reconstructed signal and difference error of an envelope representing unvoiced
speech. (a) Original envelope for a frame of unvoiced speech. (b) Reconstruction using the
Daubechies wavelet D4. The first I wavelet scale coefficients are zeroed. All decompositions
were done to scale 9 (d = 9).

is used. The envelopes were decomposed to a maximum scale depth of d. FDDs beyond the

4th or 5th scale were poorly reconstructed with large DC shifts, and altered formant structure.

At the 5th scale, the wavelet function is much larger than the envelope (Figure 4-4), so it

is representing information beyond that of the envelope. Most of the information contained

in the coefficients above the 5th scale is generated by the basis function in the form of

the addition coefficients due to the convolution. Figure 4-4 shows how the wavelet basis

scales with respect, to the input envelope. Since these are perfect reconstruction filters, good

reconstruction should be expected, but Figure 4-3 shows that the algorithm does not work

when the signal is small compared to the filter length.

4.1.2 Truncation Experiments

One possible method to reduce the number of additional coefficients produced by the filters

is to truncate the output of the convolution by m - 1, where m is the filter length. This
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Figure 4-4: Spline wavelet basis at scales 9 to 5 compared to the input envelope.

algorithm produces large errors at the boundaries, and the decomposition is possible only to

about the 3rd or 4th scale (for D4) before the first formant is altered significantly. A large

portion of the edge information is contained in the coefficients that have been truncated. An

example of reconstructed signals at two different depths of decomposition scales is shown in

Figure 4-5.

The boundary effects are large when the lower-scale coefficients are removed. A more

efficient method is needed to eliminate the boundary effects in order to produce a low-rate

WSTC which can reconstruct the spline envelope. These effects often alter the low-frequency

speech spectrum, by altering the first two formants which results in poorly reconstructed

speech.

Several problems exist with the convolution-based algorithm. For the Daubechies func-

tions, all the wavelet scales are needed in order to reconstruct the edges, even though most

of the wavelet coefficients at lower scales (0 to 4) have values near zero. The convolution

generates additional coefficients, increasing the size of the representation which is opposite

from the goal of reducing the representation. The spline wavelets do not perform well because

of the finite duration of the signal and the infinite duration of the basis function.
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Figure 4-5: (a) Original envelope for a frame of voiced speech. (b) Reconstruction using the
truncation convolution algorithm and Daubechies D4 with a decomposition depth to scale 2
and 3.

4.2 Boundary Algorithms

Reconstruction of the envelope boundaries using the wavelet transform requires a large num-

ber of coefficients. The periodic and periodic-symmetric algorithms were evaluated to better

represent the ends of the envelope. In both algorithms, the envelope is extended to represent

the envelope over the entire space from n = -oo to n = +oo to eliminate the boundary

effects. Extending the envelope is needed so the higher-scale wavelet basis functions overlap

with useful information and project information contained within the original envelope. The

spline wavelet basis at scale 5, for example, extends beyond the 512 interval of the envelope

(Figure 4-4). Extending the envelope does not increase the representation because only those

coefficients which represent the 512 points of the envelope are retained.

4.2.1 Periodic Envelope Algorithm

The periodic boundary matching algorithm makes the spline envelope periodic; therefore, the

wavelet coefficients are periodic and the size of the wavelet representation does not increase

because the algorithm is implemented using circular convolutions rather than the convolution

described in the previous section. A circular convolution is also used in the synthesis portion

vll~g"'str 3r~llal
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Figure 4-6: Periodic envelope algorithm with the envelope periodically replicated with a
period of 7r. (a) Original and (b) Reconstructed signal using the Daubechies functions of
regularity with N = 4. (c) Reconstructed signal using the Mallat spline basis function with
length N = 25.

to reconstruct the envelope.

The periodic algorithm works well for signals in which there are no boundary edges or in

which the boundaries are at the same DC level. The amplitude of the envelope at n = 0 is

usually much larger than the amplitude at n = 511, creating a large edge at each boundary

(Figure 4-6). The wavelet coefficients at all scales are needed to reconstruct these edges.

The first formant can be altered by inadequate reconstruction of the boundaries when only

a partial set of coefficients is used for reconstruction. Shifts in the higher-order formants are

not as noticeable perceptually or visually.

4.2.2 Periodic-Symmetric Boundary Matching

The envelope is made symmetric about the origin and is then made periodic by using the

circular convolution (Figure 4-7). The new wavelet representation has twice as many coef-

,
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Figure 4-7: (top) Original symmetric-periodic envelope. (bottom) Reconstructed signal using
the Daubechies D4 basis function while zeroing the first 1 wavelet scales.

ficients as in the previously described algorithms because each period is a length of 1024

points. Using Daubechies' basis functions, the envelope can be reconstructed using the wave-

let coefficients from scales 5 to 9 (Figure 4-7). Since the original signal is twice the size of

the envelope, the number of coefficients used in this representation is 64.

The main difference seen in this reconstruction between the 4th and 5th scale is the ability

to reconstruct the first peak in the envelope. When the 4th-scale coefficients are used (first

3 scales zeroed), the peaks are better represented, and the error between the original and

reconstructed signal is small. Better reconstruction can be obtained using the lower-scale

coefficients in addition to the higher-scale coefficients. The first peak is less prominent when

the envelope symmetric, so the synthesized speech poorly matches the original speech due to

a missing or reduced first formant.

The symmetric representation is redundant since half the wavelet coefficients represent the

mirror image of the envelope. The wavelet coefficients obtained using Daubechies' wavelets

are not symmetric because asymmetric basis functions produce asymmetric coefficients even

if the signal is symmetric. If the wavelet coefficients were symmetric, then half of them could

be discarded. Half of the coefficients were discarded as a test and the reconstructed signal

is similar to the truncation case in which the boundaries are altered but the middle of the

envelope can still be reconstructed, and there is a small DC shift in the signal.

A symmetric basis function should produce symmetric coefficients. Since the spline scaling



function is symmetric about the origin, the approximation signals at each scale should also

be symmetric about the origin. While the continuous approximation signal is symmetric,

the coefficients are not symmetric because they are downsampled versions of the continuous

approximation signal. Figure 4-8 shows that the approximation signals at each scale are

symmetric, but when they are sampled, the sampled points are not symmetric. For example,

the 8th approximation has coefficients which are projections at -512, -256, 0, and 255 and

the coefficients at 0 and -512 do not have the same value. For the approximation coefficients,

all the coefficients except the ones at 0 and -512 are symmetric.

The wavelet function is symmetric about the axis x = I resulting in a shift in the projec-

tion. This shift in the projection allows for the sampled wavelet coefficients to be symmetric.

For example, at the 8th scale, the wavelet coefficients are projections of the approximation

at points n = -384, -128, 127, and 383 shifted to the locations n = -512, -256, 0, and 255.

Figure 4-8 shows that the four coefficients are symmetric, so two coefficients (at n = -512

and n = -256) are redundant and can be removed from the representation.

The values of the symmetric wavelet coefficients are not exactly the same, but the differ-

ence between symmetric coefficients is always less than -30dB and is usually less than -60dB.

The difference is probably due to the truncation of the wavelet filter; as the length of the

spline wavelet filter is increased, the coefficients are more symmetric. Synthesized speech

using the actual coefficients from -512 to 511 was compared to a reconstruction using only

the coefficients from 0 to 511, which were then forced to be symmetric. The results showed

that forcing the wavelet coefficients to be symmetric for the spline wavelet does not affect

reconstruction. Forcing the wavelet coefficients generated by Daubechies' wavelet basis to be

symmetric produced large alterations in the envelope.

For voiced speech the reconstruction using wavelet coefficients from the 5th to 9th scales is

sufficient to produce an envelope which is visually identical to the original spectral envelope.

Using one-half of the wavelet coefficient from scale 5 to 9 (ds., to d9,n) and both of the

approximation coefficients at scale 9 (aa,,), the wavelet representation for the spline envelope

is reduced to 33 coefficients, which is a significant reduction in the number of coefficients

from the number of coefficients produced by the complete decomposition.

Figure 4-9 shows examples of both a voiced and a transitional envelope reconstructed

using the wavelet representation beyond the fifth scale. Voiced speech is well represented

using the 33 coefficients, but transitional speech is often poorly represented due to the lar-
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Figure 4-9: (a) Original voiced envelope, (b) reconstructed using the symmetric-periodic
algorithm, and (c) difference error envelope for a frame of voiced speech. (d) Original trans-
itional envelope, (e) reconstructed using the symmetric-periodic algorithm, and (f) difference
error envelope for a frame of unvoiced/transitional speech. Reconstruction was performed
using wavelet coefficients from scales 5 to 9 and the approximation at the 9th scale. The
Mallat spline wavelet with length 25 is used.

ger number of peaks in the envelope. The peaks in the transitional envelope have smaller

bandwidths, giving it a. higher frequency content. Adding the wavelet coefficients at the 4th

scale (d4,n) doubles the coefficients, but the reconstructed envelope is almost identical to the

original signal.

Fine ripples in the reconstructed envelope are produced by truncation of the filters g[n]

and h[n] which produce small edges in the wavelet and scaling functions. These ripples should

have little effect on the reconstructed speech, since the sine-wave system samples the envelope

at the fundamental frequency and the ripples are small and closely spaced.

4.3 Discussion of Wavelet Algorithms

The two basis functions used in this chapter were Daubechies' compactly supported wavelets

and a cubic spline wavelet. It is hypothesized that the cubic spline wavelet bases are better

suited for representing the spline envelope because of their shapes are similar to the formants.

Figure 4-10 shows the wavelet coefficients for both the spline wavelet basis and the D2 wavelet

basis.
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Many voiced frames decomposed using the D2 wavelet generate 4th-scale wavelet coeffi-

cients required for reconstruction whereas the spline wavelet for the same speech frame did

not need the 4th-scale coefficients for reconstruction (Figure 4-10). During unvoiced and

transitional frames, both wavelets produce sizable coefficients in the 4th frame when there

are a large number of peaks in the envelope. Based on this, it seems that the spline wavelet

is better than the Daubechies' wavelet for compressing voiced frames.

In addition to the size, the other noticeable difference between the two sets of wavelet

coefficients is the range of values for the coefficients. The higher-scale coefficients have a

much larger dynamic range for the D2 wavelet which may make them more susceptible to

quantization errors.

The first four wavelet scale coefficients were analyzed using the spline wavelet to make

sure that the low-order scales could be discarded. The wavelet coefficients at the low-order

scales, corresponding to rapid transitions and spikes, are small or zero for the spline envel-

ope (Figure 4-11) because the envelope contains mostly low-frequency energy. Most of the

envelope's information is contained in a subset of the wavelet coefficients; therefore, many of

the lower-scale (below the 5th scale) coefficients can be eliminated. For signals with a large

number of peaks, such as a fricative speech signal (Figure 4-11d), there are large coefficients
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in the lower-order scales as well.

During voiced speech, the formant structures are very distinct, and the sine-wave system

constructs a smooth envelope which contains fewer than 10 peaks. During unvoiced and

transitional speech, however, the number of peaks in the envelope usually exceeds 10, and

the bandwidth of each peak is smaller than the bandwidths during voiced speech. Peaks

with smaller bandwidths, and envelopes with more peaks can have significant energy in the

lower scale wavelet coefficients while voiced speech has its energy primarily in the highest

few wavelet coefficients.

When the bandwidths of the peaks are small, coefficients from lower scales generate a

significant part of the representation. The reason for this is that the bandwidth of the spline

wavelet, which is used in Figure 4-11, is also smaller at the lower scales. Figure 4-4 shows the

cubic spline wavelet at many scales along with a typical spline envelope. The bandwidth of

the wavelet peak decreases as the wavelet scale decreases. The graphs are shown on the same

axis scales. The bandwidths of the peaks of most voiced envelopes are about the same size as

the bandwidth of the basis functions at scales 5 through 7; therefore, a basis decomposition

with these scaling basis functions would strongly represent the formant structure.

4.4 Wavelet Algorithm in the WSTC

The symmetric-periodic algorithm reduces the number of wavelet coefficients while main-

taining high-quality reconstruction. This algorithm was chosen to be the one used for the

wavelet transform in the WSTC. Mallat's spline basis functions are used in the algorithm

because they provide a greater reduction in the number of coefficients than Daubechies' basis

functions. Spline basis functions are symmetric, so the periodic-symmetric algorithm can be

used without increasing the number of coefficients.

The number of coefficients is reduced using the spline wavelet, but the coefficients must

also be numerically stable so that they can be quantized. The properties of the coefficients

are examined in the next chapter.
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Chapter 5

WSTC System

Design and testing of the WSTC system, which is based on the wavelet algorithm developed

in the previous chapter, is explained in this chapter. A block diagram of the WSTC system

is shown in Figure 5-1 with the shaded boxes representing changes made to the original

STC system (Figure 2-4). The unshaded sections are common to both the STC and WSTC

systems.

The distributions of the wavelet coefficients are analyzed to determine their numerical

significance. Using information from the distribution and the structure of the basis functions

at the different scales, several methods of quantizing the coefficients are explored. The WT

algorithm is modified by extending it to the 10th scale, so the highest-scale coefficients are

better quantized. The synthesis portion is used to evaluate the reconstruction of the spline

envelope and to determine the effectiveness of the coding algorithms developed in the analysis

section.

5.1 Analysis Section

The symmetric-periodic algorithm discussed in Section 4.2.2 is used to convert the spline

envelope into wavelet coefficients. The Mallat spline wavelet of length N = 25 is the wavelet

basis function used in the WT because it produces fewer coefficients than Daubechies' wavelet

basis functions tested. The reduced representation may be due to similarities between the

smoothness of the peaks in the envelope and the smoothness of the main peak in the spline

wavelet and scaling functions. Figure 4-4 shows similarities between the peaks in the envelope

and in the scaled wavelet functions.
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Figure 5-1: Block diagram of the main portions of the wavelet-based sinusoidal transform
coder. The shaded components are the sections that have been added to or modified in the
original STC system.

Tests were performed with the depth of decomposition to the ninth scale. All the wavelet

coefficients across all scales were analyzed along with the two approximation coefficients at

scale 9 (a9,,). From this analysis, quantization methods for coding the coefficients were

examined. A quantization scheme using 180 bits per frame or lower is attempted which is at

the same rate as the STC system coding at 4800 bps with frame-fill.

5.1.1 Analysis of Coefficients

The maximum, minimum, mean, and variance of the coefficients at each scale, pooled

across about 10,000 frames, are shown in Table 5.1.

The means and variances for the coefficients in the first four scales are close to zero. These

coefficients can be removed from the representation without affecting the reconstruction, as

shown in Chapter 4. The fourth scale is required for compelete reconstruction of many

unvoiced and transitional frames, but is not used in the WSTC.

The variance progression of the pooled coefficients should follow that of Equation 3.44 if



Table 5.1: Maximum, minimum, mean, and variance for wavelet coefficients at a particular
scale across frames.

the envelope is like a 1/f process. Figure 5-2 shows that for the middle scales, the variances

follow such a progression which suggests that the envelope is like a 1/f process. There are

some deviations from the progression. The variance at the 9th scale is not as large as the

progression would predict, which means many of the envelopes share a common structure

and low-frequency content. Wornell did not present any data showing the variance at such

high scales [37]. Other 1/f data that he presented were similar to the progression seen here.

At the first scale, the variance is larger than the progression would predict, which is probably

due to the limited precision of the wavelet filter coefficients.

In addition to analyzing the large pool of coefficients, a subset of frames, containing both

voiced and unvoiced speech, was analyzed on a frame-by-frame basis. The mean and variance

of the coefficients at each scale were analyzed a single frame at a time. The single-frame

analysis showed that the variances of the coefficients at the first four scales are very small. In

transitional or unvoiced frames with a large number of peaks, the 4th-scale coefficients had

a variance 10 to 100 times larger than the pooled variance.

This result suggests that voiced frames can be distinguished from unvoiced and trans-

itional frames. The subsets of frames were further separated into voiced and unvoiced subsets.

Many of the unvoiced frames had a larger 4th-scale variance, but for the majority of unvoiced

frames, where there were few peaks, the variance did not deviate from the progression. The

4th-scale coefficients, alone, are not a good measure of voicing. The larger range of the 4th-

scale coefficients is caused by larger but narrower peaks during transitional and unvoiced

speech frames.

Coefficients # of Coef. Maximum Minimum
Per Frame Value Value Mean Variance

di,n 256 0.290 -0.519 0.016 0.0001
d2,n 128 0.302 -0.294 0.015 0.0001
d3,n 64 0.290 -0.318 0.016 0.0003
d4,n 32 1.290 -1.090 0.017 0.006
ds,n 16 1.98 -2.21 0.015 0.027
d6,n 8 1.85 -1.78 0.014 0.149
d7,, 4 1.80 -1.98 0.0078 .2247
ds,, 2 1.78 -1.84 -0.046 .6114
dg,n 1 1.23 -1.63 -. 157 .2311
a9.n 2 14.8 0.80 8.45 2.67
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Figure 5-2: Variance progression for the scale-to-scale wavelet coefficients.

In the previous chapter, the coefficients in the first four scales were zeroed. When the

coefficients are set to their mean value of 0.015, the fine ripples in the reconstructed envelope

are reduced. There is also a slight improvement in the reconstructed envelope on the order

of 2dB for most envelopes when non-zero values are used for the low-order scales. The mean

value changes very slightly between different speakers by less than .001, so we can use the

approximation of 0.015 for all speakers.

Histogram of Wavelet Coefficients

Figure 5-3 shows that the histograms for the coefficients used in the WSTC are Gaussian-like

and have a dynamic range from -2 to 2. The 8th- and 9th-scale coefficient histograms have

two peaks which look like a combination of two Gaussian distributions. At first it may seem

that the two peaks in the histogram of ds are due to the individual coefficients, since there are

two at that scale, but separate histograms of ds,1 and d8,2 still show a bimodal distribution.

When the frames are separated into voiced and unvoiced categories, there are no apparent

differences in the coefficient distributions from the 6th to the 9th scales. The peak just above

zero in the 8th scale histogram is slightly larger for unvoiced speech. The coefficients at

the 5th scale had a, larger variance for unvoiced and transitional speech than for the voiced

speech. On a frame-by-frame analysis, the variance of the 5th scale coeffficients increased



suggesting that they might be useful predicting the voicing probability.

Projection Analysis

The wavelet transform is a basis decomposition, so the decomposition at each scale contains

different information about the spline envelope. The wavelet coefficients for some samples

frames of speech with the reconstructed envelopes are shown in Appendix D. The wavelet

basis at scales 5 through 9 along with a sample envelope are shown in Figure 4-4. The basis

functions get broader at higher scales, so the representations are coarser. The 5th to 7th scales

represent smaller bumps or fine structure of the envelope. Peaks which are separated by less

than 32 points are not well represented because at the 5th scale the coefficients are shifts of

32 points and those peaks separated by less than 32 points generate frequency content higher

than the highpass cutoff of the frequency characteristic of the 5th-scale basis functions. The

32-point shift in the envelope corresponds to 256 Hz in the speech spectrum, so formants

or structures separated by less than 256 Hz, are not well respresented. As a result, smaller

amplitude peaks may be missed, and larger peaks may have a reduced amplitude or smaller

bandwidth. An example of this can be seen in Frame 20 in Appendix D. In these cases,

4th-scale coefficients are needed to represent higher frequencies.

The location and bandwidth of the envelope peaks is important for synthesizing high

quality speech which sounds similar to the original speech. Since the basis functions occur

at, discrete dyadic shifts at each scale, the location of the envelope peaks may not exactly

overlap with the peak of the wavelet basis function. The coefficients at the lower scales adjust

the location of the peak because of their finer sampling rate. Mallat showed a peak can be

tracked across multiple scales and therefore this could be useful in adjusting the envelope

reconstruction [21].

The width of the spline function at the 6th and 7th scales is similar to the widths of most

of the envelope peaks. The peak bandwidths reconstructed from the 6th and 7th scales are

modified by the 5th-scale coefficients. Removal of the lower scales means that corrections to

the peak bandwidths and location will not be made in the reconstruction.

The 8th- and 9th-scale coefficients represent changes in the speech spectrum from low to

high frequencies. Voiced envelopes show a two-step shape in which the mean amplitude at the

lower 256 points is different from the mean amplitude at the higher 256 points (Figure 4-11).

In these cases, one of the 8th-scale coefficients has a much larger value than the other.
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Figure 5-4: Histograms for approximation and wavelet coefficient at the 10th scale.

Approximation Coefficient

Both approximation coefficients at the 9th scale must be retained because they are not sym-

metric. The two coefficients represent the spectral tilt and average energy of the speech

spectrum (see Figure 4-8). The coefficients have a non-uniform distribution which does not

look Gaussian, with a range from 0 to 14. High-coding precision of these coefficients is

needed to ensure that the speech energy is maintained. When random noise from -.4 to .4

was added to the coefficients, the reconstructed speech fluctuated in power, and the synthes-

ized speech had loudness fluctuations. The quantizer must have a percision greater than .4,

which corresponds to at least 7 bits per coefficient.

The two approximation coefficients are better represented by taking the average and the

difference between them. The difference yields the spectral tilt, and the average gives the

mean power of the speech. Implementation of another wavelet decomposition, to the 10th

scale, is equivalent to taking the mean and the difference.

The approximation at the 10th scale represents the mean power of the speech spectrum.

The range for alo, the approximation coefficients, is 0 to 12; and a histogram of a subset of

frames is shown in Figure 5-4. The 2 peaks in the distribution are not correlated to voicing

probability. No correlations could be found between the peaks, with one possible exception:

during periods of silence or transition, the values of the coefficients tended to be lower.

The wavelet coefficient dlo represents the spectral tilt. In most of the voiced envelopes,

the mean value for the first half of the envelope is higher than for the second half. This

difference is the spectral tilt of the envelope. Unvoiced and transitional frames usually have

very flat envelopes. In this case, the 10th-scale coefficient is close to zero, or slightly positive.
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The histogram of the coefficients shows two peaks which are correlated to voiced and unvoiced

frames with the peak near -1 is composed mostly of unvoiced speech. The wavelet coefficient,

dIo, has a larger range than the other wavelet coefficients, from -3.5 to .5, and its mean is

centered near -2.

5.1.2 Quantization of Coefficients

For 4800 bps system, there are 180 bits per frame available for coding the coefficients. The

10th scale coefficients (dlo and alo) are coded with 16 bits. The remaining bits can be evenly

distributed among the remaining 31 wavelet coefficients. This would allow for 5 bits per

coefficient. Since a lower rate is desired, 4 bits were allocated for the 31 wavelet coefficients

(3 bits for the value and one sign bit) and 12 bits were allocated for the 10th scale. If the

frame rate is 50 Hz with frame-fill, the coder rate is 3700 bps.

The next step, after computing the coefficients, is to quantize them for the synthesis

system. Quantization can be done in three ways: uniform quantization, logarithmic division,

and inverse log.

The range of the coefficients is between -2 and 2, but 97% of them are between -1.5 and

1.5, which is therefore chosen to be the quantization range. The coefficients outside this

range corresponded to transition frames which contained a large edge, or to frames in which

the differences between formant peaks were large. The quantization results are shown in

Table 5.2.

Code Uniform Logarithmic (1) Logarithmic (2) Inverse Log (1) Inverse Log (2)
000 .1875 .0053 .0234 .6980 .2561
001 .3750 .0346 .0937 .9008 .4617
010 .5625 .1043 .2109 1.046 .6517
011 .7500 .2279 .3750 1.162 .8322
100 .9375 .4181 .5859 1.262 1.006
101 1.125 .6862 .8437 1.349 1.175
110 1.312 1.043 1.148 1.428 1.339
111 1.500 1.500 1.500 1.500 1.500

Table 5.2: Quantization breakpoints for three methods of quantization. One additional bit is
used for coding the sign.

The first scheme tested was the uniform quantization. The range was quantized uniformly

into 16 bins from -1.5 to 1.5. The distributions for the quantized coefficients from scales



5 through 7 remained Gaussian with a smaller variance, with the cofficients having used

only one or two bits. The quantized coefficients in the 8th and 9th scales formed uniform

distributions.

The logarithmic quantizer allocates more bits to better quantize coefficients near zero.

This quantization scheme flattens the Gaussian distribution, making the distribution of the

quantized coefficients more uniform. The inverse logarithm quantizer yields higher precision

for the coefficients at the edges of the range. Most of the quantized coefficients are put into

the lowest two or three bins for the lower scales.

Using a single quantization scheme for all coefficients does not reconstruct the envelope

well because the scales represent different features of the envelope. The 5th-scale coefficients

require higher precision at the lower values because they represent finer fluctuations in the

envelope. The first logarithmic quantizer is used for the 5th scale. This quantizer over-

represents the lower values for coefficients in the 6th- and 7th-scale coefficients, so they need

to be represented at slightly higher magnitudes. The second logarithmic quantizer (2) is

used to quantize these coefficients. The 8th scale is best quantized using the second inverse

logarithmic quantizer (2). The 9th-scale coefficient is best coded using a linear quantizer. All

these coefficients are coded with 4 bits. The 10th-scale wavelet coefficient and approximation

coefficient are coded using a uniform quantization scheme, but with a different range than

the other scales. The range for the wavelet coefficient, -3.5 to .5, is quantized using 5 bits.

The approximation coefficient is quantized to 7 bits uniformly distributed from 0 to 12.

5.2 Synthesis Section

The synthesis section is broken into two steps. The first step in the synthesis section is to

reconstruct the 9th-scale approximation from alo and x 1o. The wavelet synthesis takes the

wavelet coefficients up to scale 9m and the 9th-scale approximation is taken as the input. The

output is the reconstructed envelope. The coefficients are made symmetric at each stage for

reconstructing the symmetric-periodic envelope. Instead of zeroing the wavelet coefficients

at the lower four scales, the wavelet coefficients at these scales are set to a value of 0.015.

Which is the mean value for a large set of envelopes tested. Additional coding bits can be

used in the future to code the mean value for these coefficients.

Appendix D shows a. set of consecutive frames which are reconstructed using the WSTC.



The unquantized wavelet coefficients are plotted below the original and reconstructed envel-

opes.

For voiced envelopes, all the peaks are represented. There are two main errors in the

reconstruction. The envelope peaks and valleys are not reconstructed exactly because of

quantization errors. A low sampling rates results in misalignment of the wavelet peaks

and formant peaks which has the effect of making the formant bandwidths either wider or

narrower. In some cases, there is also a small shift in the maximum frequency of the formant,

which can alter the synthesized speech. This shift is prominent in many of the frames in

Appendix D, as seen in frame 11, where the amplitude of the first formant peak is larger than

the original and the frequency of the maximum is also shifted by a few points. The larger

amplitude makes the bandwidth of the formant larger than it should be. In frame 12, the

local minima between the first two formants is smaller in the reconstructed envelope. This

may cause a reduction in the formant bandwidths.

In some of the voiced envelopes, there is a small peak at the beginning of the envelope.

This peak is probably due to the first and second formants being very close to each other and

at a low frequency. Because the envelope is made symmetric, this peak is not represented in

the reconstruction if it is small enough and close to zero. Figure 4-7 shows an example of

a frame in which the inital peaks are lost in the reconstruction if the lower-order scales are

removed. Loss of the peaks is a problem when there is also a larger peak near the inital peak,

because the coefficients represent the larger peak. This problem is more common in unvoiced

speech, such as frame 63 in Appendix D, where the first little peak is not reconstructed.

The small peak can also be exaggerated, which causes quality differences in the synthesized

speech.

During unvoiced and transitional speech, the variance of the 5th-scale coefficients in-

creases even though the mean does not. The increased number of peaks in unvoiced speech

means that finer detail coefficients are needed. The logarithmic quantizer does not perform

well for unvoiced speech. Uniform quantization for all scales is a good method for unvoiced

speech. The peaks are exaggerated for unvoiced speech, as seen in frame 18. When there are

too many peaks, usually greater than 16, many of them are removed from the reconstruction,

as is seen in frames 20 and 37.

The next chapter describes how these errors affect the synthesized speech and how they

compare to the STC system with similar coding rates.



Chapter 6

Evaluation of the WSTC

This chapter describes a comparison of the speech synthesized by the WSTC with speech syn-

thesized by the existing STC using comparable coding rates. The evaluation was performed

for the WSTC system at a coding rate of 3700 bps and for the STC system at a rate of 4800

bps. The WSTC system was not tested at 4800 bps because when the tests were performedm

the coder rates were miscalculated. During the tests, the WSTC coder rate was believed to

be slightly larger than 4800 bps, but subsequent calculations, shown in the previous chapter,

show that the rate was actually 3700 bps.

6.1 Simulation

The comparison was done using a non-real-time simulation. Both coders were tested on a Sun-

4/370 computer using speech phrases from a Lincoln Laboratory database. The synthesized

speech from both coders was compared to the input speech and evaluated by the author for

clarity and quality. Similar evaluations were performed by other untrained listeners who were

presented a subset of the phrases.

The STC system was set to a zero-phase system with a 20-ms frame interval at a rate

of' 4800 bps with frame-fill activated. Only the pitch, voicing probability, and amplitude

were used for speech synthesis. It has been shown that high-quality synthetic speech can be

achieved using just the sine-wave amplitudes [23].

The WSTC system was set to a 20-ms frame interval with frame-fill. The pitch and the

voicing probability generated by the STC system were used and the amplitudes represened

as the 32 wavelet coefficients from ds,n to dlo0 , and the approximation coefficient a10,1. When



these coefficients were passed to the synthesis system without quantization, the synthesized

speech sounded almost indistinguishable from the input speech. The wavelet-based system

is able to code the sine-wave amplitudes using 33 coefficients, and high-quality speech is

recoverable from these coefficients.

The same WSTC system was implemented with the coefficients quantized so the coding

rate of the system was 3700 bps. Problems with the reconstructed speech are primarily due

to the quantizer algorithms developed in the previous chapter.

6.2 Evaluation

Speech synthesized by the WSTC system generally sounds similar to speech reconstructed

using the STC system, but the STC-generated speech sounds slightly better. The weaker

vowels generated by the WSTC system sounded more muffled and are not as crisp as the

STC vowels. These sections of speech were analyzed on a frame-by-frame basis and the first

peak or a small structure in the first formant was altered significantly. Muffling occurred

in many cases where the first peak was attenuated or removed and during back vowels, for

which the frequency of the first formant, Fl, is smaller than 500 Hz. When the formant is

below 500 Hz, it is represented by only one coefficient because of the sampling, and its peak

location can be easily altered by quantization error.

Fricatives synthesized by both systems sound similar because the unvoiced envelope is

poorly represented in both systems. The poor representation is probably due to both the

harmonic model and a lack of fine structure in the reconstructed envelope. The harmonic

model fixes the maximum number of sine waves used in synthesizing speech. Envelopes for

unvoiced and transitional speech, in general, have more peaks than voiced speech. Using a

limited set of coefficients does not allow for complete reconstruction of all the peaks. Some

of the frames (20 and 37) show reconstructed envelopes in which many of the peaks are lost

due to the wavelet reconstruction.

Both systems have similar clarity problems. Many of the reconstructed speech segments

sound "muffled" or "nasalized." Unvoiced speech often sounds "buzzy" and like a computer

synthesized voice. The lack of clarity could be due to the lack of the phase information

in reconstructing the speech. Another possible explanation is the change in the formant

ba,ndwidths and amplitudes in the spline envelope. McAulay and Quatieri suggest that the



muffling and buzzing could be due to smoothing the formant null [23].

Comparing voiced and unvoiced speech, the synthesized unvoiced speech sounds worse

than the synthesized voiced speech. Both systems generate a hiss or metallic sound in the

unvoiced speech, but occasionally the WSTC-synthesized speech sounds better.

To understand differences between the two systems, reconstructed envelopes for subsets

of unvoiced speech were compared. The WSTC-synthesized envelopes have more peaks

reconstructed than the STC-synthesized envelopes. The peaks which were better represented

in the WSTC often had maxima near the dyadic shifts of the 5th scale coefficients (n =

0, 32, 64, 96, 128, ...), which suggests that the wavelet projections form a good representation

of the peaks. Despite the loss of some of these peaks, there was only a small noticeable

difference in the synthesized speech. The loss of 4 to 5 peaks in the envelope can still produce

intelligible unvoiced speech.

There is no noticeable difference between the two systems for male and female speakers.

Both systems perform slightly worse for the two female speakers, due to a higher fundamental

frequency. The same harmonic model is used in both the WSTC and STC, so similar results

are expected for both systems.

These evaluations are all based primarily on a single listener. A small subset of the

original speech, STC-synthesized speech, and WSTC speech were played to other people

within the group. The other listeners were asked their opinion regarding differences which

sounded subtle to the primary listener. The secondary listeners were not trained, so not all

the qualities, such as brightness or vibrancy, were evaluated. To completely characterize the

differences, several trained listeners should give their subjective evaluations of the synthesized

speech. Another possible measure is to produce a psychoacoustical experiment in which the

synthesized speech and the original speech are compared. The main problem with such

psychoacoustical tests and asking for subjective information is that people may use different

criteria for perceiving speech.

A quantitative assessment of synthesized speech could be performed using the diagnostic

acceptability measure (DAM) and the diagnostic rhyme test (DRT). Time constraints on the

project did not allow for the evaluation of the WSTC using these standard tests.



6.3 Conclusions

The spline wavelet; basis functions have peaks with bandwidths similar to those of the peaks

in the spectral envelope (Figure 4-4). The spline wavelet decomposes the spline envelope into

fewer coefficients than the compactly supported wavelets, making it a better representation

for low=rate coding. The spline wavelet may be better because both the envelope and basis

functions are made using cubic spline, but this was not proven.

A basis decomposition - rather than the cepstrum, LPC coefficients or other represent-

ations of the envelope -- allows for a better understanding of which features of the spline

envelope correspond to perceptual difference in the synthesized speech as compared to the

original speech. The 5th-scale coefficients represent the fine structures in the envelope and

increasing bit allocation to these coefficients results in less buzzing or hissing in the unvoiced

speech. The wavelet coefficients at the 10th scale suggest that the envelopes have a common

tilt. Tests can be performed to find out what happens to the perceived speech when the

tilt is set to a constant. In the future a systematic alteration of the different wavelet scale

coefficients can be done to determine the effect on the synthesized speech. A systematic ad-

justment of the wavelet coefficients on each scale could give additional insight into how the

spectral envelope relates to perception of the synthesized speech.

The study described in Appendix A shows that small changes in bandwidth are notice-

able for a simple synthesized utterance. Since the formant bandwidth changes in the spline

envelope are much larger than the 4dB and there is still little difference in the way the syn-

thesized speech is preceived, the first formant bandwidth changes are probably not the only

perceptual cues used in perceiving continuous speech. The structure of the spline envelope

can be altered significantly, and yet the synthesized speech is still comprehensible.

Mallat and Zhong showed that the derivative first order spline wavelet is similar to an

edge, so the wavelet transform finds the edges of images. The edge can be tracked across a

set of scales to determine the exact location and strength of an edge [21]. Similarly, future

work on the WSTC system could provide a method to adjust the location or bandwidth of

the spectral peaks using the lower wavelet scales. In initial experiments, 4th scale coefficients

were added around the major peaks in the 5th and 6th scales to make the peaks narrower.

The goal was to make the formant bandwidths narrower to determine whether the muffled

voiced speech was due to formant broadening. The additional 4th scale coefficients caused



the speech to sound metallic and synthesized. More work needs to be performed to determine

the appropriate narrowing.

An iterative modification to the wavelet coefficient can be used in the WSTC where the

error between the original and synthesized speech is used to modify the quantization of the

coefficients. If a large peak in the spline envelope usually shows up as a coefficient across

several scales, quantization errors can sum across the scales producing an exaggerated peak.

If the error is used to adjust the coefficients across scales, the amplitude of the envelope

peaks may be better represented and the errors in the reconstruction could be minimized.

Testing of the quantization algorithms and bit allocation is needed to obtain better envelope

reconstruction.

The distribution of the wavelet coefficients appears to have a Gaussian nature and follow

a variance progression of a 1/f process. From the distribution of the coefficients, certain

parameters of the 1/f process, such as the mean and variance, may be coded to make the

representation more robust. Stochastic coding methods may be able to perform better than

the quantizer developed in this thesis. Coding methods were not the main focus of the

evaluation of the WSTC, but they could be explored in future work to reduce coding rates

for the WSTC system.

The performance of the WSTC coder developed in this thesis is similar to the STC system

at 4800 bps. Lower rates are difficult to obtain because the coefficients need at least 3 bits

per coefficient to reconstruct the envelope. The envelope was not warped as is done in the

STC, because it would not yield dyadic sampling. Warping could be achieved by discaring

half of the 5th-scale coefficients corresponding to points n = 256 to n = 511 which would

remove the finer structure at the higher frequencies. It has been shown that the ear is less

sensitive to frequency differences at frequencies above 2.5 kHz, so this would be possible

without having a large effect on the perception of the synthesized speech.

The wavelet-based sinusoidal coder provides another approach to coding speech at low

rates. The system can represent the sine-wave amplitudes using 33 wavelet coefficinet which

are uncorrelated and could lead to better coding algorithms. In this thesis, simple quant-

ization of these coefficients leads to a low-rate coder which is comparable in quality to the

exisiting STC system. Future analysis of the wavelet coefficients may lead to insights into

which features of the envelope correspond to perceptual errors in the synthesized speech.



Appendix A

Formant Bandwidth Tests

A.1 Introduction

In the 1950s, Flanagan performed psychoacoustic experiments to determine the precision with

which different formant parameters needed to be coded in speech coders. Flanagan performed

just-discriminable differences for the formant frequency, over-all amplitude level (Figure A-

1). and second formant amplitude (figure A-2) [12, 11, 13]. The results of these experiments

were used to develop a formant-coding speech compression system. These studies did not

explore the affect of formant bandwidth alteration on human perception and how it affects

the quality of speech.

Flanagan found that the difference limen (DL), which is the noticed difference 50 percent

of the time, for the formant frequency was about 12%. The DL for the overall amplitude is ±

1.5 dB and the DL for the amplitude of F2 is about ± 4 dB. Speech quality is most sensitive

to variations in the formant frequency, and then to variations in the over-all amplitude.

A.2 Psychoacoustic Experiments

To determine the just-noticeable difference for the bandwidth of the first four formants, a

simple AB discrimination test was administered to 8 untrained listeners.

The synthesized utterance (/a b a/) were produced using the Klatt synthesizer at MIT.

The "normal" utterance was developed by Professor K. Stevens. The bandwidths of the first

four formants were all changed with respect to the initial bandwidths of the formants in

the normal utterance. The normal synthesized utterance has formant bandwidths of 90 Hz,
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120 Hz, 150 Hz, and 300 Hz for the first four formants respectively. Nine utterances were

generated using bandwidth differences of-12, -6, -2.5, 0, 2.5, 4.9, 6, and 8 dB, corresponding

to bandwidths that are 25%, 50%, 75%, 100%, 133%, 175%, 200% and 250% of the normal

bandwidths.

The voicing amplitude parameter was varied along with the bandwidth to keep the RMS

level of the spectra at three different points in the utterance (the first /a/, the burst of /b/,

and the second /a/) within 1 dB of the "normal" utterance. The amplitude of F4 was the

only formant amplitude that varied significantly.

Each trial in the test was an AB discrimination test, in which a pair of utterances with

different formant bandwidths were presented. During each trial, utterance A was always

the normal and the formant bandwidth of utterance B was altered. The experiment was

administered as two tests. In one test, the narrow test, the bandwidths were made narrower.

In the second AB test, the broad test, the bandwidths were the same or larger. The first

just-noticeable test was performed to determine noticeable differences between the normal

synthesized utterance and the altered utterances with smaller bandwidths (called the nar-

row test). The second test compared the normal utterance to the utterances with broader

bandwidths (called the broad test).

The listeners were asked if the utterance B was the same or different from utterance A.

Each test consisted of 25 AB trials. The listeners were briefly trained by being presented the

normal sound six times in succession. Just before each test three sample trials were given

where the utterances were at the extremes of the bandwidth change.

In addition to the AB discrimination test, the listeners were asked informally to describe

the quality of the altered speech. This was asked to determine what questions might be asked

in future experiments. This query also was expected to determine whether the listeners were

hearing quality differences comparable to those heard in the speech coder.

A.2.1 Results

Plots were made for the total percentage of the judgments that were called different as a

function of narrowing and broadening the formant bandwidths (Figure A-3. The difference

limen is near ±4dB.

One measure of variance was determined to be the number of times the AA combinations

was judged differently. There was only one subject that responded with a different for a AA
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Figure A-3: Percentage of judgments called different as a function of formant bandwidth.

trial. But since that was one response out of 5 trials, the variance is small and the data was

retained.

Each AB combination was presented 6 times for the narrow test and 5 times for the broad

test. For example, subject 1 responded 3 times out of 5 that the 2.5 dB increase sounded the

same as the original. Since a 2.5dB increase is at about a 30% noticability difference, a high

variance is expected. At the extremes, very little variance is expected. At most the variance

is 1 or 2 differing from the majority of the 5 responses. More trials need to be done to obtain

better variance measures.

When asked about the what qualities were different between the utterances, many of them

stated that if they had to choose a word for the broadened utterances, they would say that

the utterance sounded muffled, but not softer. For the narrower utterances, several subjects

stated that they did not sound very natural, or sounded harsh and breathy like someone with

a false larynx.

A.2.2 Discussion

Before the experiment was conducted, the spectrum for three different locations of each of

the utterances were examined to confirm that the formant and RMS amplitudes did not
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Figure A-4: Speech spectrum of the /a/ in the utterance /a//b//a/. The formant bandwidth
is altered by -6dB and 4.8dB.

vary by more than 1 dB. The magnitude of the spectrum for the normal, -50%, and 175%

cases are overlayed in Figure A-4. There are two main differences that are seen. First the

amplitude between the formants are increased for broader bandwidths and decreased for

narrower bandwidths. Second, the higher order formants, F3 and F4, appear to be more

distorted for the broader bandwidths. These results are similar to the effects seen in the

envelope reconstruction in the sinusoidal low-rate coder.

The results for the experiment showed that the DL is near ±4dB for the formant band-

widths. The judgment graph was steeper for broader bandwidths. A finer resolution between

-4 and 4 dB changes should be performed in the future to determine a better curve for the

noticeable as noticeable as the F2 amplitude. To make sure that the listeners were listening

to just the change in the bandwidth and there wasn't a side effect of altering F2 amplitude,

the spectra of the synthesized speech was checked to make sure the F2 amplitudes were

never more than 1 dB different from the original. The results are attributed primarily to the

changes in formant bandwidths.



The Utterance

It would have been useful to determine which formant bandwidths contributed the most

to the altered signal. It seems that since the first formant affects the remaining formants,

it's bandwidth should be the most important in quality of the synthesized speech. Some

utterances were generated where only the first or the third formant bandwidth was altered.

A quick review of these utterances resulted in no noticeable difference between varying the

third formant bandwidth and not varying any bandwidths was was noticed. A more complete

set of experiment on individual formant bandwidths needs to be conducted.

The utterance /a b a/ was a good utterance to use because of the /a/. The first two

formants of /a/ are very close to each other. This means that the energy between the

formants will rise much more rapidly than for any other vowel when the bandwidths are

broadened, and will fall much quicker for narrowing of the bandwidths.

A.3 Conclusion

Just-noticeable experiments were performed to determine the formant bandwidth variations

that were perceived as "different." Another set of tests were done where the amplitude of F1

was inadvertently increased by broadening Fl. The results showed that formant amplitude

changes masked bandwidth changes because the DL was larger for the experiment where both

amplitude and bandwidth were changed than for the experiment where just the bandwidth

was changed. Changes in formant bandwidths by about 3dB or by about 40% are noticeable

about 50% of the time. When the amplitude masked the bandwidth changes, the noticeable

difference was closer to 2 dB. Small changes in bandwidth of about 10% to 20% will also be

noticeable about 25% of the time.

These results show that the auditory system is able to detect small changes in bandwidth.

But the criterion used by the listeners to judge the difference may not be the same for all the

listeners. This creates a flaw in the analysis of the results. Overlaying spectrum plots (shown

in Figure A-4) shows that there are large changes in the shapes and amplitudes of the 3rd and

4th formant peaks. The listeners could also be cuing on the transitions between the /b/ and

the /a/. Since the reconstruction of the spline interpolated spectral envelope in the STC often

broadens the first formant by more than the 4 dB seen in these experiments. The auditory

system is probably using additional cues, such as additional phonemes, or transitions, to



correct for the perception of the broadened formant. The attention paid to the broadened

formant may not be the key element in perceiving clarity, but may be a contributing factor

to finer quality issues.



Appendix B

1/f Property of the Spline Envelope

The cepstrum of the speech signal is written as the inverse Fourier transform of the log

magnitude of the frequency response:

c, = - log A,(w) cos(nw)dw n = 0, 1, .... (B.1)
7r 0

Cepstral coefficients Cm have certain general properties [26]. The main property relavent

to this thesis is that the cepstrum decays at least as fast as 1/n [26]. Therefore, the log

magnitude of the Fourier transform of speech has a 1/n like cepstrum.

If instead of taking the inverse Fourier transform of the log magnitude produces a 1/n

signal, then the Fourier transform of the log magnitude results in a spectrum that is 1/f.

The discrete Fourier transform (DFT) is as follows:

N-1

y'[n] = x'[k]e - j (27/N)kn (B.2)
k=O

and the inverse DFT is
SN-1

y[n] = - x[k]e j(2· / N )kn (B.3)
k=O

The two equations are similar except for a factor of 1/N, and the negative j in the exponential.

For x'[n] real and even, y'[n] will be real and even. The same holds for z[n] and y[n]. If

x'[n] = x[n] and it is real and even, then y[n] = -y'[n].

The inverse Fourier transform of the log magnitude is similar to the Fourier transform of

the log magnitude except for a 1/N factor. The log magnitude (log A,(w)) is real and even,



so the inverse DFT, will yield the complex cepstrum which is also real and even. The DFT

of log As(w) will be the same except for a factor of N which is the length of the signal. If

the log magnitude response is the signal being analyzed, it will have a 1/f response. This

means that the speech envelope is a 1/f signal.



Appendix C

Matlab Code

This appendix contains the Matlab code used for testing out the wavelet algorithms from

Chapter 4. The C code used in the WSTC system was a direct translation of the following

Matlab code.

C.1 Convolution-Based Algorithm

\begin{small}
function [approx,wavecof,len] = conana(x,h,g,scal);

% Analysis section of the wavelet transform using the
X convolution method

%Input: x -- signal
% h -- low pass filter
% g -- high pass fitler
% scal -- number of scales

%Output: approx -- final approximation signal at scale n
X wavecof -- wavelet coefficients
% len - length of coefficients at each scale
len=[] ;
wavecof= [];
approx=x;
for i=l:scal,
t=conv (g, approx);
approx=conv (h, approx);
t=t(1:2:length(t));



approx=approx(1:2:length(approx));

len=[len length(t)] ;

wave_cof=[wavecof t] ;
end;

function out = con_syn(wv,apr,len,h,g,scal,fin,m);

% Synthesis section of the wavelet transform using the
% symmetric method. The synthesized approximation at each scale
% is truncated by length(h) in the front and end.

%Input: wv -- wavelet coefficients from con_ana

% apr - final approximation at scale scal

% len - length vector of length at each scale

% h -- low pass filter

% g -- high pass fitler

% scal -- number of scales the signal was decomposed
% fin - final scale in which the wavelet coefficients

% are to be use, after which they are zeroed.
% m -- scaling factor for wavelet (Usually 2 for B-L)

%Output: out -- Reconstructed signal

% wave_cof -- wavelet coefficients
X len - length of coefficients at each scale
ap=apr;

for i=scal-l:-1:0,
if i>=fin

t=wv(sum(len(l:i))+l:sum(len(l:i+l)));

tr=conv(g,m*srexpand(t,2));

ap=tr+conv(h,m*srexpand(ap,2));
else

ap=conv(h,m*srexpand(ap,2));

end

if i==O
out=ap(length(h):512+length(h)-l);
else

ap=ap(length(h):len(i)+length(h)-l);
end

length(ap);
end

\end{small}



C.2 Periodic WT Functions

function [approx,wave.cof,len] = perana(x,h,g,scal,n);

% Analysis section of the wavelet transform using the
% convolution method

%Input: x -- signal
% h -- low pass filter

% g -- high pass fitler
% scal -- number of scales
% n -- offset of the basis frunction from zero

%Output: approx -- final approximation signal at scale n
% wavecof -- wavelet coefficients
% len - length of coefficients at each scale

len=[] ;
wavecof=[];
approx=x;
for i=l:scal,
t=cconv(g,approx,n(2)); % Circular Convolution
approx=cconv(h,approx,n(1)); % Circular Convolution
t=t(1:2:length(t)); % Downsample
approx=approx(1:2:length(approx)); % Downsample
len=[len length(t)];
wave-cof=[wavecof t] ;
end;

function out = symsyn(wv,apr,len,h,g,scal,fin,m,n);

% Synthesis section of the wavelet transform using the
X symmetric method. The synthesized approximation at each scale
% is truncated by length(h) in the front and end.

%Input: wv -- wavelet coefficients from conana
% apr - final approximation at scale scal
% len - length vector of length at each scale
% h -- low pass filter
X g -- high pass fitler
% scal -- number of scales the signal was decomposed
% fin - final scale in which the wavelet coefficients
% are to be use, after which they are zeroed.
% m -- scaling factor for wavelet (Usually 2 for B-L)
% n -- offset of the basis frunction from zero



,Output: out -- Reconstructed signal

ap=apr;

for i=scal-l:-1:0,
if i>=fin

t=wv(sum(len(1:i))+l:sum(len(l:i+1)));

tr=cconv(g,m.*srexpand(t,2),n(4)); % Upsample and Circ Conv
ap=tr+cconv(h,m.*srexpand(ap,2),n(3)); % Upsample and Circ Cony
else

ap=cconv(h,m.*srexpand(ap,2),n(3));

end

end

out=ap;

C.3 Periodic-Symmetic Functions

funct'ion [approx,wave_cof,len] = wstc_ana(x,h,g,scal,n);

% Analysis section of the WSTC system. The algorithm used is
% the symmetric-periodic algorithm where the signal is made
% symmetric and then a circular convolution is used.

%Input: x -- Spline Envelope (input)
% h -- low pass filter

% g -- high pass fitler

% scal -- number of scales of decomposition
% n -- offset of the filter from zero

%Output: approx -- final approximation signal at scale n
% wave_cof -- wavelet coefficients
% len - length of coefficients at each scale

len=[] ;
wave_cof=[] ;
approx=[fliplr(x) x]; X Make the input symmetic about 0
for i=l:scal,

t=cconv(g,approx,n(2)); % Circular Convolution
approx=cconv(h,approx,n(1)); X Circular Convolution
t=t(1:2:(length(t)/2)); % Downsample and take 1/2 Coefficients
approx=approx(1 :2:length(approx)); % Downsample
len=[len length(t)];

wave_cof=[wave_cof t] ;
end;



function out = wstcsyn(wv,apr,len,h,g,scal,m,n);

% Synthesis section of the WSTC using the symmetric-periodic

% algorithm. The wavelet coefficients are made symmetric and
% then a circular convolution is used.

%Input: wv -- wavelet coefficients from wtscana

X apr - final approximation at scale scal

% len - length vector of length at each scale
% h -- low pass filter

% g -- high pass fitler

% scal -- number of scales the signal was decomposed
% m -- scaling factor for wavelet (Usually 2 for B-L)

% n -- offset of the filter from zero

%Output: out -- Reconstructed signal

ap=apr;

for i=scal-1:-1:0,

t=wv(sum(len(1:i))+1:sum(len(1:i+1)));

t=[t fliplr(t)]; % Make Wavelet Coefficient Symmetic
tr=cconv(g,m.*srexpand(t,2),n(4));

ap=tr+cconv(h,m.*srexpand(ap,2),n(3));
end

out=ap(1: length(ap)/2);

C.4 WSTC System

load data/spec.dat -mat % Load envelope Data
load data/bl.dat -mat % Load Wavelet Basis Functions
off=11; % Truncate Wavelet basis to
blset; % N=25
m=[] ;
test=[] ;
wavelet=[] ;

ap=[] ;

for z=1:90, % Sample 90 frames
setquan; % Set the Quantizers
input=inp((z*512)+1: ((z+I)*512)); % Get envelope information
[approx,wavel,len]=wstcana(input,h,g,9,n);
plotwstc; % Ploting Routines
wquant; % Quantize Coefficients
t=wavelet(length(wavelet));
t=cconv(g,2.*srexpand(t,2),n(4)); 7 Decompose 10th Scale



approx=t+cconv(h,2.*srexpand(ap,2),n(3));
sigout=wstcsyn(wavelet,approx,len,hl,gl,9,2,n);

% Sigout is the reconstructed signal

end

wquant.m
% Quantizer in the Analysis portion

% Set the initial 4 Scales to 0.015

wavelet=ones(1,sum(len(1:4)))*.015;

% Logarithmic (1) Quantizer for Scale 5

wavelet=[wavelet quantize(wavel(1+sum(len(1:4)):sum(len(1:5))),logl)];

h Logarithmic (2) Quantizer for Scale 6 and 7

wavelet=[wavelet quantize(wavel(1+sum(len(1:5)):sum(len(1:7))),log2)];

% Inverse Log (2) Quantizer for Scale 8

wavelet=[wavelet quantize(wavel(l+sum(len(1:7)):sum(len(1:8))),ilog2)];

% Uniform Quantizer for Scale 9

wavelet=[wavelet quantize(wavel(1+sum(len(1:8)) :sum(len(1:9))),uni)] ;

t=cconv(g,approx,n(2)); % Decompose the approximation to scale 10
ap=cconv(h,approx,n(1));
t=t(1:2:(length(t)/2))
t=squant(t,(-3.5:.1875:.5)); % Quantize wavelet coeff from -3.5 to .5
wavelet= [wavelet t] ;
ap=ap(1:2:length(ap));
ap=squant(ap,(.1875:.1875:12)); % Quantize approx coeff from 0 to 12

C.5 Support Functions

function vec=ccconv(h,x,n)
% Cicrular Convolution h is the filter, x is the signal, n is the number
% of negative offset.

if length(x)>=length(h),



H=fft(h,length(x));

X=fft(x,length(x));

vec=real(ifft(H.*X,length(x)));
n=n-floor(n/length(vec))*length(vec);

if n>O,
vec=[vec(n+l:length(vec)) vec(l:n)];
end

if n<O,

vec=[vec(length(vec)-n:length(vec)) vec(1:length(vec)-n-1)]
end

end

if length(x)<length(h),

sj=n+l-length(h);

h=fliplr(h);

for i=0:length(x)-1

sum=O;

for j=sj:length(h)-l+sj
sum=sum+h(j-sj+l)*x(modulo(i+j+(10*length(x)),length(x))+1);
end
vec(i+1)=sum;
end

fliplr(h);

end

set_quant.m

% Setup the Quantizer Tables

i=exp(log(.5) ./2.7183);
i=i/8:i/8:i;

logl=i.^2.7183;

i=exp(log(l.5)./2);

i=i/8:i/8:i;

log2=i.^2;

uni=.1875:.1875:1.5;

i=exp(log(1.5)./(1/2.7183));

i=i/8:i/8:i;

ilogl=i.^(1/2.7183);

i=exp(log(1.5) ./.85);
i=i/8:i/8:i;

ilog2=i.^.85;

function t=quantize(x,q);



% Quantize the vector x using the vector q which is centered around 0

qlen=length(q);

t=zeros(size(x));

q=[0 q];
for i=2:qlen

t=t+((x>q(i-1))&(x<q(i)))*q(i);

t=t+((x<(-q(i-1)))>&(x>(-q(i))))*(-q(i));

end

t=t+(x>q(qlen))*q(qlen+l);

t=t+((x<(-q(qlen)))*(-q(qlen+1)));



Appendix D

Raw Data

This appendix contains a sample set of frames which were decomposed and reconstructed

using the WSTC. The original envelope is the solid line. The dashed line is the reconstructed

envelope using the complete WSTC system. The unquantized wavelet coefficients are given

below along with the approximation at the 9th scale. From the approximation at the 9th scale

we can see the spectral tilt and the DC value of the enevelope. The graph below shows the

labeling of the figures for the frames.
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