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ABSTRACT

The partial synthesis of deuterated versions of corticosterone was performed.
The C-3 and C-20 carbonyls of corticosterone were protected by forming ethylene
glycol-derived ketals. This was followed by the protection of the C-21 hydroxy group
with tert-butyldiphenyl silyl chloride, after which the C-11 beta-hydroxy group was
oxidized to the ketone with a pyridine-chromic acid reagent. The C-21 silyl ether
was then deprotected. Deuteriums were then incorporated, into the 11-keto steroid,
at what are believed to be positions C-9 and C-12: (1) one compound with the C-9
and C-12 positions perdeuterated; (2) another with only one deuterium at the beta
position of C-12; (3) and a third compound with deuteriums at C-9 and the alpha
position of C-12. All non-deuterated intermediates have been characterized by
NMR, IR, and MS. MS spectra of the deuterated steroids were consistent with the
expected products.

Purifications of adrenodoxin, adrenodoxin reductase, and cytochrome P450
110-hydroxylase (all from bovine adrenal glands) were performed. Preparation of
pure 110-hydroxylase relied on the use of an adrenodoxin-Sepharose affinity matrix,
resulting in a specific activity of 8.3 nmol of the P450 chromophore per mg of
protein; this was free of contaminating cytochrome P450 cholesterol side chain
cleavage enzyme. Each of these purified proteins gave single bands on silver-
stained SDS PAGE gels.

Three-pulse electron spin echo envelope modulation (ESEEM) studies on 14N
and "1 N isotopically labeled bis (imidazole) and bis (ethyl thioglycolate) heme model
compounds were performed. All measurements were conducted at g=2.25 (2900
Gauss, microwave frequency of 9.14 GHz) and a 250 nsec delay between the first and
second pulses. A relatively unperturbed "5N-derived larmor frequency modulation
at 1.27 MHz (from a sample containing s'N in both its porphyrin and imidazole
ligands) was assigned to the axial imidazole. An Apple Macintosh computer
program was written that converts 20 bit integer (Nicolet 1180E computer) ESEEM
time-domain data to ASCII format. This program also allows the visualization of
the data and manipulation of data points, on Apple Macintosh computers.



Extended x-ray absorption fine structure (EXAFS) experiments (measured in
fluorescence mode) were performed on bovine cytochrome P450 113-hydroxylase
(with either 11-deoxycorticosterone or metyrapone, bound in the active site) and
heme model compounds. Multiple data sets were acquired for each sample, using
an energy-resolving 13-element Canberra x-ray fluorescence detector. The dead time
for each detector element was determined, after which data from the multiple scans
were added. Distinguishable backgrounds from the 13 different detector elements
were found, dictating that future data analysis involve 13 separate background
removals before all the data (for any one sample) can be accurately summed.
Detector artifacts were found to be responsible for the low distance peaks found in
previously reported EXAFS studies on the cytochrome P450 side chain cleavage
enzyme.

Thesis Supervisor: William H. Orme-Johnson
Title: Professor of Chemistry
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CHAPTER 1

Placing Cytochrome P4501,, in Context



Mammalian biosynthesis of steroid hormones relies heavily on the activities

of cytochromes P450, membrane-bound enzymes which catalyze most of the

oxidations in this pathway. With few exceptions, steroidogenesis can be completely

described as a series of cytochrome P450 enzyme reactions (see Figure 1.1). Steroid

hormones are essential in maintaining many vital systems in mammals; they are

found in deficit (e.g. congenital adrenal hyperplasia, Addison's disease, and in

certain immune deficiencies [1]) or excess (Cushing's syndrome and Conn's

syndrome [2]) in many human ailments. Designing effective treatments for these

pathologies requires an understanding of both the physiological systems controlling

steroidogenesis and the cytochrome P450 enzymes themselves, which perform most

of the actual chemical reactions.

Specific human disorders center on the resulting products (or lack thereof),

arising from the enzyme cytochrome P450 1113-hydroxylase (P45011,). Since it is

usually easier to inhibit an enzyme, rather than activate it, the main goal in

studying P45011, is to design effective inhibitors; however, the ability to activate it

would be beneficial as well. Targeting P45011, in these illnesses is complicated by the

fact that it plays a role in excesses of both glucocorticoids (Cushing's syndrome) and

in mineralocorticoids (Conn's syndrome) [2]. Although it is possible to inhibit the

hormonal activation of some enzymes, in some ailments steroid overproduction is

insensitive to this level of control. For example, hypertension can often be treated

by trying to lower levels of angiotensin-II, which activates P450aldo - a form of P45011

which makes aldosterone; however, there are conditions of elevated P450aldo activity

which are not affected by angiotensin-II. In such cases, the ability to inhibit the

P4 5 0 aldo itself offers the ability to directly limit aldosterone formation. The goal of

the work described in this thesis is to add to both the understanding of P45011, (and

P4 5 0 aldo) and the complex activities which are catalyzed by cytochrome P450 proteins

in general. This introduction will attempt to place P45011, in context - both

chemically, (when compared to other P450 enzymes) and functionally (with respect

to steroid hormone synthesis overall).
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1.1. P450 Chemical Mechanism

Issues concerning the chemical mechanism of P450 enzymes have been

pursued in studies on each of the enzymes mentioned in Figure 1.1, as well as on

other cytochromes P450. For instance, studies on cytochrome P450 d-camphor

hydroxylase (P450cam) from the bacteria Pseudomonas putida have provided

significant mechanistic and structural information. Studying bacterial P450

enzymes carries the advantage that they are not membrane bound and can easily be

purified and stabilized. In addition, mammalian livers contain P450 enzymes

(possessing a wide range of substrate acceptance) whose function is to oxidize

organic toxins, making them more water soluble - thus facilitating their removal

from the body; these enzymes were among the first mammalian P450 enzymes

purified and their study has yielded a great deal of mechanistic information.

Cytochrome P450 proteins owe their name to the fact that they, when reduced

with sodium dithionite and incubated with carbon monoxide, give rise to an optical

absorption maximum at 450 nm, relative to an identical sample lacking carbon

monoxide - the prefix 'P' representing the word 'pigment'. They fall into a class of

enzymes called mixed function oxygenases, or monooxygenases. Monooxygenases

oxidize organic substrates using molecular oxygen, leaving one oxygen atom on the

organic product, while reducing the other oxygen to form water. The most common

reaction catalyzed by P450 enzymes is the hydroxylation of unactivated carbons on

alkanes (see Figure 1.2). Apart from an organic substrate and oxygen, this reaction

requires reducing equivalents, provided by NADPH, which are usually delivered to

the P450 enzyme via one or two electron transfer protein(s).

R1 R

H' + NADPH + R2111"'"-C- H + 02 - R2 1111.i"-C- OH + NADP ÷ + H20

R3 R3

Figure 1.2: The stoichiometry of aliphatic hydroxylation by P450 enzymes.



It is common knowledge that some hydrocarbons, once heated or ignited in

the presence of oxygen, are readily flammable; however, the controlled oxidation of

unactivated alkanes, by molecular oxygen, is considered a difficult chemical

reaction. This difficulty lies in the fact that ground state oxygen exists in a triplet

spin state, whereas an aliphatic carbon is found in a singlet spin state. This reaction

therefore requires either a significant input of energy - to activate the reagents into

compatible spin states - or a catalyst to mediate the reaction. Cytochrome P450

enzymes are capable of mediating this mechanistic impasse, utilizing the

organometallic cofactor heme, iron porphyrin, (see Figure 1.3).

Figure 1.3: The structure of heme, iron protoporphyrin IX.

Cytochrome P450's heme (when the iron is in the ferrous, 2+, state) is capable

of binding molecular oxygen in the same way as hemoglobin and myoglobin. In

fact, the EPR spectrum of oxy-ferrous P450cam:substrate complex (generated by X-

irradiation of the oxy-ferric complex) resembles that of oxy-ferrous hemoglobin and

myoglobin (generated in the same way) [3]. However, an oxy-ferrous complex of

substrate-bound P450sec was shown to decay to the ferric substrate-bound P450scc [4],

releasing superoxide. Nevertheless, what distinguishes P450 enzymes (from

hemoglobin and myoglobin) is their ability to accept another electron - giving rise to

the chemistry described in Figure 1.2.

COOH



This unique cytochrome P450 chemistry has motivated a great deal of study

on heme systems in general. The major chemical difference between P450 enzymes

and the globins is the identity of the heme axial ligand, projecting from the interior

of the protein (referred to as the proximal ligand). The proximal axial ligand for

hemoglobin and myoglobin is histidine, whereas cysteine occupies this position in

P450 enzymes. From the examination of a thiolate-tethered heme model

compound, the protein's unique spectroscopic characteristics have been attributed

to this key ligand [5]; cysteinate ligation is also believed to be mostly responsible for

P450's chemical properties [6, 7]. Factors arising from the polarity and structure of

the active site appears to carry the largest remaining influence in P450 catalysis [6].

The catalytic cycle of cytochrome P450 enzymes has been discussed at great

lengths in other sources [6, 8-13]. Figure 1.4 summarizes what is now the accepted

model of hydroxylation of alkanes by cytochromes P450. The ferric resting state

(state A) exists in a predominantly low spin state with either water or hydroxide as

the distal heme axial ligand (i.e. the position closest to the surface of the protein).

When this form of the enzyme binds its substrate, the active site experiences a

dehydration, which includes the displacement of the water (or hydroxide) ligand

from the heme. The spin state of the iron then changes to predominantly high spin

at the same time as the iron's redox potential shifts in the positive direction, making

it more easily reducible (state B). If the enzyme is then reduced by one electron

(delivered by its companion electron transfer protein), it can achieve state C which

can then readily bind 02, giving rise to state D (the oxy-ferrous state). (State B can

also be immediately converted to state F by the addition of peroxides or various

single-oxygen atom donors; this non-physiological pathway is known as the

peroxide shunt.) Further reduction of the state D, by a single electron gives rise to

state E. State E can also be momentarily detected by combining a ferrous substrate-

bound P450 enzyme with superoxide [14]. State E quickly decomposes into a

postulated state F which is believed to be the hydroxylating species.



The existence and nature of state F has been debated for some time now. The

present consensus is that it is the bona fide oxidizing agent for P450 enzymes - at

least where hydroxylations are concerned. The fact that single-atom oxygen donors -

such as peroxides, iodosobenzene, and amine oxides - can cause P4 5 0 cam to catalyze

hydroxylations, without the need for oxygen or reducing equivalents [6, 13, 15-17]

(the peroxide shunt) supports the model that the hydroxylating species requires only

a single oxygen on the iron atom. Chloroperoxidase (a heme enzyme which also

has a cysteine proximal ligand) and horseradish peroxidase (an imidazole-ligated

heme protein) - both capable of cleaving the 0-0 of 02 - have been found to possess

[FeO]3÷ and [FeO]2
+ heme intermediates (referred to as compounds I and II,

respectively; see Figure 1.5) in their catalytic cycles [6]. EXAFS studies of two

horseradish peroxidase samples, prepared in the compound I and II states, have

confirmed short Fe-O bond distances (-1.63 A), consistent with the structures shown

in Figure 1.5 [6]. Rapid scan absorption spectroscopy of m-chloroperbenzoate-treated

P4 5 0 cam also revealed many intermediates - one of which was indistinguishable from

compound I [18]. Since chloroperoxidase catalyzes some of the same kind of

reactions as cytochromes P450 [6], it's believed that state F is identical to compound I.

In addition, synthetic model I compounds are also able to catalyze oxygen transfer

reactions [13].
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The sequence of events leading from state F back to the resting state (A) is

presently known as the oxygen rebound mechanism [13]. It is illustrated in Figure

1.6. It states that the iron-oxo species of state F (termed an oxenoid moiety [19]) first

abstracts a hydrogen atom from a carbon on the alkane, creating a carbon radical and

a hydroxide radical (which is bound to the iron porphyrin). These two radicals can

then recombine to form the alcohol.

R2 R2 R2

R3 R R R,

I
SOHOH

OH

P450 - Fe3+- P450 - Fe3 --
A Dehydrated

State F State G State A

Figure 1.6: The oxygen rebound mechanism. States F and A are the same states
depicted on Figure 1.4. An additional state (G) is postulated in this mechanism.

Although the oxygen rebound mechanism is well accepted as the mode of

operation in hydroxylation reactions, it does not explain all P450 reactions. For

instance, the cleavage of some carbon-carbon bonds in certain P450 enzymes is

believed to proceed via a Baeyer-Villiger type of oxidation which supports an iron-

peroxy species in the final chemistry. This type of mechanism has been proposed in

mechanisms of aromatase (P450arom) [20-22], lanosterol 14a-demethylase (P 4 5 014DM)

[23] and in the C17,20 lyase activity of P450c17 [24, 25]. This mechanism is illustrated

in Figure 1.7. Whether a protonated state E (as shown in Figure 1.7) or a state F (as

shown in Figure 1.6) becomes the initiating oxidizing species may be related to the

P450 enzyme's stabilization of one state over another or to the proximity of the

carbonyl when State E is reached.

Proton leakage into a P450 active site (perhaps in state E of Figure 1.4) may be

related to the commonly seen side product, hydrogen peroxide. Loida and Sligar

have reported, from work done on P450cam mutants, that H20 2 production is related

I13+



to the level of hydration of the the active site [12]. Swinney and Mak proposed that

the initiating iron-peroxy species (at the top of Figure 1.7) is most likely

deprotonated when it attacks the carbonyl carbon and that protonation of this

species favors its decomposition into water and the oxenoid moiety [25]. Interaction

of certain substrates with oxygenated heme may also cause a preference toward one

mechanistic path over another. The ability of 2(3)-t-butyl-4-hydroxyanisol to

enhance the production of the hydrogen peroxide side product from P450cam may be

an example of such a situation [26]. The normal catalytic cycle of P450 enzymes has

also been proposed to be subverted by the actions of 'pseudosubstrates' which: bind

to P450 enzymes, allow electrons to be accepted and oxygen to bind, and cause

oxygen-derived free-radical damage of these proteins [27].

In the consideration of the effect of substrates on the chemical mechanism of

P450 enzymes, one must not forget that the electron transfer protein, which delivers

reducing equivalents, is also a substrate. In the case of P450, 7, it has been found that

the concentration of P450 reductase (the companion electron transfer protein) is

found to influence whether the enzyme catalyzes a C-17 a-hydroxylation or a C-17,20

lyase activity [28, 29]. Cytochrome b5, which is also capable of delivering electrons to

P450c17, has also been found to increase the lyase activity, relative to the hydroxylase

activity [29, 30]. In addition, a fusion protein of P450 reductase and P450c 7, was

found have a six-fold higher level of lyase activity when cytochrome b5 was added

while reconstituting activity [31]. The proven influence of these electron transfer

proteins on P450ci 7 is suggestive that the 2Fe-2S ferredoxin, which delivers electrons

to the mitochondrial P450 enzymes, may also play a role in determining the

chemistry of substrate oxidation.
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A factor which may influence eukaryotic P450 enzymes is the effect of the

lipid composition of membranes holding these proteins. For example, the

polychlorinated biphenyl compound Aroclor 1254 lowers the rate of P450c21 and

P450c 7, by altering the fluidity of the membranes; however, this compound has no

effect on the rate of these enzymes if they are prepared free of membranes [32].
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Another example of the role of membranes is that lipids high in cardiolipin (see

Figure 1.8) stimulate the activity of P450sc, [33] - yet they inhibit P45011, [34]. Since

substrates are delivered to membrane-bound P450 proteins via the lipid bilayer, the

lipid composition could also affect the availability of the substrate to the enzyme.

One example, suggestive of this mode of control, is the fact that cholesterol sulfate (a

good substrate for P450scj) binds unproductively to this enzyme at high

concentrations; this inhibitory mode of cholesterol sulfate binding is prevented by

phospholipids [35].

Figure 1.8: Cardiolipin: A dimer of two phosphatidic acid molecules, bridged at
their phosphate head groups by an intervening glycerol moiety.

Apart from the lipid composition of membranes, interaction of P450 enzymes

with other membrane-bound proteins (even other cytochromes P450) may play a

role in controlling P450 activity. Since different P450 proteins (in the same

membrane) all receive their reducing equivalents from the same electron transfer

companion protein, the activity of one enzyme may be dependent on the state of

other membrane-sharing P450 enzymes. Where P450c21 and P450 17, are present in

the same membrane, it has been shown in inhibition studies on P450c21 (with the

addition of specific antibodies), that there is no direct competition for reduced P450

reductase (their common electron transfer companion protein) [29]. In the case of

the two mitochondrial P450 enzymes P450sc and P450 11,,, the affinity of
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corticosterone for P45011, was significantly decreased when P450scc was present in the

same membranes [36]. Both of these situations suggest that membrane-bound P450

enzymes have some 'awareness' of the presence of other enzymes in the same

membrane.

1.2. Structural Studies On P450 Enzymes

1.2.1. Crystallographic Studies

Much of what we know about the structure (as well as the mechanism) of

cytochrome P450 enzymes comes from work performed on P450cam. As mentioned

above, it is a bacterial protein and not membrane-bound. This enzyme was the first

P450 to be purified [37, 38] and the first to be crystallized [39]. Its crystal structure has

been determined in many ferric forms: camphor-bound [39, 40], substrate-free [41],

metyrapone-bound [42], phenylimidazole-bound [42], norcamphor-bound [43],

adamantanone-bound [43], phenyl-bound [44], camphane-bound [45], adamantane-

bound [45], and thiocamphor-bound [45]. The crystal structure of only one ferrous

form of P450cam has been determined to date, that of carbon monoxide- and

camphor-bound ferrous P450cam [46]. The crystal structure of the P450cam Thr252Ala

mutant (known to 'uncouple' electron transfer and camphor hydroxylation,

producing hydrogen peroxide and water) has also been determined [47].

Information from all of these crystal structures, along with biochemical

characterization of P450cam mutants, are helping to reveal more details of P450

chemistry in general.

The crystal structures of other bacterial P450 enzymes have also recently been

reported. These are P4 50,,terp [48] and P4 5 0 BM3 [49]. P450terp (found in P. putida as well)

is similar to P450cam in the sense that it requires two electron transfer proteins - a

flavoprotein and an iron sulfur protein (ferredoxin) - to mediate the delivery of

reducing equivalents from NADH; such enzymes are labeled as class I P450 proteins.

These are similar to mitochondrial P450 enzymes which also require a flavoprotein

and a ferredoxin. Class II P450 proteins are found in the endoplasmic reticulum;

they require only one electron transfer protein (P450 reductase) which contains both

a flavin adenine dinucleotide (FAD) and a flavin mononucleotide (FMN) cofactor.



P4 5 0 BM3 (found in Bacillus megaterium) is unique because it is a single component

monooxygenase system [50]; it does not require any electron transfer proteins.

P 4 5 0 BM3 is able to accept reducing equivalents directly from NADH. However,

P 4 5 0 BM3 is considered to be a class II P450 protein since it has 2 separate domains - a

P450 reductase and a heme monooxgenase domain [50, 51]. The availability of the

structure of P450cam has been used to make models of eukaryotic P450 enzymes [52-

56]. The availability of the P450terp and P450BM3 structures will aid in such work.

However, since it is assumed that such comparisons (using bacterial class I P450

proteins) is more suited for modeling mitochondrial P450 enzymes, the newly

available P 4 5 0
BM3 structure may now help make more accurate models of

microsomal (class II) cytochromes P450.

In the study of mammalian P450 enzymes, one ideally wants a crystal

structure of a membrane-bound P450. Unfortunately, no such structure has yet been

reported. In fact, there have been very few reported crystal structures of membrane

proteins in general. The main problem is that membrane proteins, due to their

lipophilic nature, are not easily crystallizable. In the hope of making P450scc more

crystallizable, Iwamoto et al. [57] treated this enzyme with pyridoxal phosphate

(PLP) and trapped the PLP-P450scc imines with NaBH 4. From this derivatized

protein, they were able to form crystals. Unfortunately, the optical absorption

spectrum of this crystallized protein did not match that which is known from the

native enzyme. However, a partial crystal structure for P450scc may yet be possible.

Chashchin et al. [58] have demonstrated that limited trypsinolysis of P450.. c yields

two fragments which can reconstitute activity when incubated together - thus

demonstrating the domain structure of this enzyme. If one of these fragments is

less lipophilic than the original P450,sc, it could conceivably be more crystallizable

than the holoprotein. In principle, such an approach could be applied to any other

P450 protein which demonstrates independently folded domains. Furthermore, if

the fragments are small enough, Nuclear Magnetic Resonance (NMR) could also be

used to determine their solution structures.



1.2.2. Non-Crystallographic Studies

The lack of crystals for any membrane-bound P450 enzymes has not impeded

all efforts of obtaining structural information on these proteins. Spectroscopic

techniques, such as NMR, Electron Spin Echo Envelope Modulation (ESEEM), and

Extended X-ray Absorption Fine Structure (EXAFS) spectroscopies have been able to

(at least) offer local structural information. NMR studies on the relaxation of

protons were able to determine the closest point of approach of water molecules to

the heme iron of P450scc, when bound with different steroids [59]. ESEEM studies

with P450scc, complexed with deuterated steroids have been able to give iron-

deuterium distances [55, 60]. EXAFS studies with 22(R) aminocholesterol and 22(S)

thiacholesterol-S-oxide were able to give still more iron-steroid distances [55]. With

the concerted application of all the local distance information (available from

various spectroscopies), along with possible domain structural determinations, it

may be feasible to model mammalian P450 on presently known P450 structures to

obtain 'best guess' structures.

1.3. Two Classes of Cytochromes P450

P450 enzymes require electron transfer companion proteins since they can

only accept one electron at a time, yet NADPH is a two-electron donor. These

electron transfer proteins offer the ability to accept the complete hydride from

NADPH while delivering the electrons singly to the P450. Mammalian P450

enzymes come in two classes - mitochondrial (class I) and microsomal (class II;

found in the endoplasmic reticulum). Each class has a different means of acquiring

their reducing equivalents.

1.3.1. Class I Mammalian P450 Enzymes

Mitochondrial P450 enzymes acquire their electrons (from NADPH) through

the mediation of a 2Fe-2S ferredoxin (named adrenodoxin (Adx), when obtained

from adrenocortical tissue) and an FAD-containing oxidoreductase (called

adrenodoxin reductase (AdR), when obtained from the same source as adrenodoxin)

(see Figure 1.9A). Additionally, since mitochondria do not produce NADPH



through the normal course of the Krebs cycle, these enzymes are dependent of the

action of (at least) three different sources for this reductant: (1) NADP÷-linked malic

dehydrogenase, (2) NADP÷-linked isocitrate dehydrogenase, and (3) energy-linked

transhydrogenation of NADP ÷ by NADH [61].

The current model for electron transfer from adrenodoxin reductase to class I

cytochromes P450 invokes what is known as the adrenodoxin 'shuttle mechanism'

[62] (see Figure 1.9A). This mechanism is described by the following sequence of

events: (1) NADPH binds to oxidized adrenodoxin reductase (AdR), reducing its

FAD cofactor to FADH 2; (2) oxidized adrenodoxin (Adx) then binds to the reduced

AdR (if it was not already bound to the oxidized AdR, before its reduction by

NADPH) and acquires one electron, leaving the AdR flavin cofactor in the

semiquinone state. (3) reduced Adx, having a 20-fold lower affinity for AdR [63],

then dissociates; (4) the reduced Adx, having an elevated affinity for the substrate-

bound class I P450 enzyme, then binds to the cytochrome and reduces it; (5) the

resulting oxidized Adx, having a 2-fold lower affinity for reduced P450 [63],

dissociates from the cytochrome and cycles back to another fully reduced AdR or an

AdR in the semiquinone state - to be reduced yet again. The net result is the

stepwise reduction the P450, concurrent with the stepwise oxidation of reduced

AdR.

There are three class I cytochromes P450 in the adrenal cortex and two in the

kidney. In the adrenal cortex, these are P450scc, P45011, , and P4 50aldo - the latter two

having very similar activities and might not even be present together in the same

mitochondrion. The activities of these enzymes are shown in Figure 1.1. P450scc is

the only class I enzyme in all other steroidogenic tissues (except for the brain which

also has P45011, [64]). In the kidney, the class I enzymes are P45 0D1a (25-

hydroxyvitamin D 3 la-hydroxylase) and P450
D24 (1a,25-dihydroxyvitamin D3 24-

hydroxylase). Although slightly different versions of the 2Fe-2S ferredoxin have

been found in adrenocortical and kidney tissues, these ferredoxins can substitute for

one another when reconstituting in vitro class I P450 activity.



1.3.2. Class II Mammalian P450 Enzymes

Microsomal P450 enzymes acquire their NADPH-stored reducing equivalents

through the intermediary P450 reductase, a protein containing both an FAD as well

as an FMN cofactor (see Figure 1.9B). P450 reductase - by itself - is sufficient in

delivering both electrons for microsomal P450 catalysis.

However, P450 reductase may not hold a complete monopoly on the source of

all electrons. The first electron, delivered to the P450, must come from P450

reductase, but it has been proposed that reduced cytochrome b5 (also found in the

endoplasmic reticular membrane) may be able to deliver the second electron [65, 66].

The addition of moderate amounts of oxidized cytochrome b5 to reconstituted P450

reductase/cytochrome P450 systems often leads to a stimulation of P450 activity,

whereas large amounts lead to suppression of activity [65]; this suppression is

believed to be caused by interference with P450 reductase-binding to cytochrome

P450 [65]. The stimulation was found to reach a maximum when one equivalent of

cytochrome b5 (relative to cytochrome P450) is used [67]. Such information is

suggestive that b5 may act as an allosteric modifier of cytochrome P450 and/or acts as

a second conduit of electron transfer from P450 reductase to the P450 enzyme. In

fact, a proposal has been raised that cytochrome b5, when bound to the P450 enzyme,

may allow the reductase to deliver both electrons to the b5-P450 complex in a single

interaction [68]. Apart from this stimulation of activity, cytochrome b5 is believed

to also play a role in controlling the dual activities of P450,17 (see sections 1.3.2 and

1.4.2.4).

There are three class II steroidogenic P450 enzymes in mammals. These are

P450c21, P450, 17, P450arom; their activities are shown in Figure 1.1. P450 17, and P450arom,

like P450sce and P45011,, both have multiple activities. Interestingly, P450c21 is unique

in that it is the only steroidogenic P450 enzyme to have only one activity - the

C-21 hydroxylation of either pregnenolone or progesterone.
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1.3.3. Similarities Between the Two Classes of Mammalian P450 Enzymes

Even though microsomal and mitochondrial P450 enzymes utilize different

electron transfer proteins, some degree of cross-reactivity has been reported. For

example, cytochrome b5 was found to bind to P450,sc with a Kd of 0.28 ýxM;

crosslinking, followed by limited proteolysis revealed that the interaction was at

both hydrophobic and hydrophilic regions of P450sc, [69]. Additionally, when a

reconstituted P450scc system was supplemented with cytochrome b5, an

enhancement of P450 activity was observed [70]. Cytochrome b5 was also found to
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protect P450scc from being phosphorylated by protein kinase C. [71]. Another

example is that adrenodoxin reductase has been reported to have a stimulatory

effect on both P450c21 and on the 17ot-hydroxylase activity of P450,17 [72]. Although

cytochrome b5 has been reported in mitochondria from liver [73], it was found in

the outer mitochondrial membrane; this fact makes it unlikely that it is involved in

the in vivo actions of class I cytochromes P450.

1.4. Steroidogenesis

All known steroid hormones are derived from cholesterol (shown at the top

left of Figure 1.1) which by itself plays a role in influencing the fluidity of cellular

membranes [74]. Apart from its role in membranes, cholesterol can be degraded to

bile acids which act as detergents in the small intestine - aiding in the solubilization

of ingested lipids [75]. Rearrangement of the steroid nucleus of 7-dehydrocholest-

erol is also involved in Vitamin D (cholecalciferol) production [76], which has an

essential role in the absorption and mobilization of calcium in mammals [77].

Alternatively, cholesterol can be transformed into steroid hormones.

Once cholesterol is processed by the cytochrome P450 side chain cleavage

enzyme (P450s,,), its product (pregnenolone, see Figure 1.1) becomes committed to

the production of steroid hormones. P450s,, also controls the rate limiting step of

steroidogenesis [78]. P450s,, is perhaps the most studied of all mammalian

steroidogenic P450 enzymes. That fact arises from the pivotal role that it plays and

also because it is one of most stable mammalian enzymes in its class. Since all

mammalian P450 enzymes are membrane-bound proteins, they have proven

difficult to both purify and stabilize for mechanistic and structural studies. From

pregnenolone onwards, steroidogenesis branches off into different directions,

leading to hormones that regulate specific systems of the body. Apart from the

medicinally useful knowledge gained in P450c,, studies, the endocrinological

challenge has long been to build on what can be learned from stable P450 proteins in

order to understand all P450 enzymes. The prize, from such an endeavor, would be

the ability to medicinally regulate the production of either the mineralocorticoids,

the glucocorticoids, or the sex steroids (the androgens and the estrogens).



The obvious starting place, in devising a medicinal strategy is to understand

how the normal organism controls these pathways and to learn about what is

similar and different about each of the enzymes involved. From a close

examination of Figure 1.1, it becomes apparent that one cannot make a simple list of

P450 enzymes which influence the production of mutually exclusive categories of

hormones. Cytochrome P450 17a hydroxylase/C17,20 lyase (P450cl 7, which can

hydroxylate the C-17 a-position, as well as cleave the carbon-carbon bond connecting

C-17 to C-20, of steroids) is required for the production of the sex steroids as well as

the glucocorticoids. In addition, P450 21-hydroxylase (P450c21) is involved in the

production of both glucocorticoids and mineralocorticoids. Finally, P450 110-

hydroxylase (which exists in two forms, P450 11,, which can hydroxylate at both the

C-11 and C-18 positions of the steroid, and P 4 5 0 aldo, which has the same activities as

P45011, but can also synthesize aldosterone) is required in the biosynthesis of both

glucocorticoids and mineralocorticoids. This intertwining of different enzymes in

different pathways - which are all specifically regulated by the body - has introduced

issues ranging from similar isozymes (differentially regulated or differentially post-

translationally modified) to regulated sequestration of substrates from enzymes.

In addition to the lack of correspondence of individual cytochromes P450

with different biosynthetic pathways, some of these enzymes have multiple

activities which are differentially regulated. The regulated chemical flexibility of

P450c, 7, P450 11,, and P4 5 0 aldo suggests the presence of either covalent (through

phosphorylation, glycosylation, or some other post-translational modification) or

non-covalent (i.e. allostery) alteration of these proteins. The modes of control

available to the organism is further increased when one considers the fact that these

enzymes are found in membranes whose lipid (or proteinaceous) composition can

be controlled. Regulated access of the organic substrate and/or molecular oxygen, to

the active site, may also be involved in the modulation of activity. The

requirement of electron transfer companion proteins, add yet another dimension to

control the activity of these enzymes.



1.4.1. Description and Localization of Steroidogenic Cytochromes P450

Mammalian steroidogenic P450 enzymes are found in a variety of tissue cells

- some of which specialize in the production of certain classes of hormones.

Cholesterol side chain cleavage enzyme (P450sc¢) is found in the adrenal cortex [63],

testis [63], ovary [63], corpus luteum [79], and brain [64]. 113-Hydroxylase (P45011,) is

found in the brain [64] and in both the inner (zonae reticularis-fasciculata) and outer

(zona glomerulosa) regions of the adrenal cortex [63]. Aldosterone synthase

(P4 5 0 aldo) is found only in the glomerulosa portion of the adrenal cortex [63]. 21-

Hydroxylase is found in all regions of the adrenal cortex [63]. 17x0-Hydroxylase/17,20

lyase (P450,17) is found in the adrenal cortex [63], testis [63], and corpus luteum [80].

Aromatase (P450arom) is found in the ovary [63], placenta [63], corpus luteum [81],

adipose [82], and brain [82]. Since the production of any steroid hormone hinges on

the presence and activity of P450sc,, the regulation of any portion of steroidogenesis

is related to the regulation of this key enzyme.

1.4.2. Physiological Regulation of Steroidogenesis

1.4.2.1. Hormonal Regulation

1.4.2.1.1. Adrenocorticotrophic Hormone (ACTH)

Many P450 enzymes (but predominantly P450scc) are stimulated and largely

maintained by signals from the brain, or the placenta (in a pregnant woman), to the

tissue involved. The brain signals are peptides, released from the anterior lobe of

the pituitary gland: adrenocorticotropic hormone (ACTH), luteinizing hormone

(LH), and follicle stimulating hormone (FSH) [83]. The signal from the placenta is

human chorionic gonadotropin (hCG). ACTH affects a variety of processes in the

adrenal cortex. LH and FSH regulate the growth and function of the gonads and are

thus grouped in the category of gonadotropins, along with hCG; however, hCG's

specific function is to maintain the corpus luteum during pregnancy [83]. Overall,

the functions of LH, FSH, and hCG are similar to that of ACTH, except that they

affect different tissues. Since this thesis is concerned primarily with the synthesis of

corticosteroids, only ACTH's function will be described further.



Specific effects of ACTH include: stimulation of the transcription of the genes

for P450scc, P450O1, P450c21, P450c17, and adrenodoxin [84]; stabilization of P450seC

mRNA [84]; and the mobilization of cholesterol from lipid droplets in the

cytoplasm to the inner mitochondrial membrane [63]. Cortisol secretion into the

bloodstream, resulting from ACTH stimulation of adrenal cortex, eventually comes

in contact with the pituitary gland, causing a down regulation of ACTH. Any

pathology which inhibits cortisol production, siphons cortisol onward to form still

other steroids, or renders the pituitary insensitive to cortisol, effects some

subversion of this feedback mechanism. The result of such a disorder is the

excessive stimulation of the adrenal cortex (caused by the effects of continually

secreted ACTH), giving rise to an hyperplasia. The synthetic corticosteroid

dexamethasone (which binds to glucocorticoid receptors ten and five times more

strongly than cortisol and corticosterone, respectively [85]) is capable of replacing

cortisol in this feedback mechanism. One of the uses of dexamethasone has

therefore been to test individuals (who suffer from the effects of corticosteroid

overproduction) for an aberrant feedback control system [2]. When this control

system is not operative, treatment often necessitates the approach of directly

inhibiting the P450 enzyme(s) involved.

Many of the ACTH's functions are enacted by cAMP (cyclic AMP, a second

messenger) within the affected cells. However, cAMP may not be the sole second

messenger for ACTH, since treatment of cultured adrenocortical cells with cAMP

analogs do not exactly mimic the effects of ACTH [86]. Nevertheless, the role of

cAMP is essential. There is an absolute requirement for cAMP in the transcription

of P450s [87]. cAMP, itself, also activates different classes of protein kinases. cAMP

is known to effect transcription of genes in certain operons by way of binding to

transcription initiators [88]; however, in adrenocortical cells, cAMP is known to

activate the synthesis of short-lived protein factors which mediate increases in

transcription of specific genes [89]. In the case of cAMP-dependent transcription of

the adrenodoxin gene, however, it has been shown (albeit, in cultured

choriocarcinoma cells) that protein synthesis is not required [78]. cAMP-dependent

protein synthesis has also been linked with the mobilization of cholesterol to the



inner mitochondrial membrane [90]. Intracellular cholesterol movement also

appears to be dependent on GTP hydrolysis and on Ca2" levels [91].

Protein kinases (PKs) also play a complex role in the regulation of P450

activity. Some cAMP-dependent PKs have been linked with gene transcription [92-

94]. The activation of PK-dependent transcriptional regulation can also be controlled

by factors apart from cAMP; for example, high extracellular potassium

concentrations have been found to stimulate PK-dependent induction of P4 5 0 aldo

[93]. A cAMP-dependent PK is also known to activate cholesterol esterase, which

hydrolyzes cholesterol esters to free cholesterol [63]. The fact that PKs are known to

activate (or deactivate) enzymes via phosphorylation raises the possibility that this

form of covalent modification of P450 enzymes (or their electron transfer proteins)

may also be able to regulate P450 activity (see section 1.4.2.2)

1.4.2.1.2. Angiotensin II

The other significant hormonal regulation of the adrenal cortex is caused by

the peptide angiotensin II (A-II). Production of A-II results from the coordinated

actions of many separate bodily tissues - heart, kidney, lung, and adrenal cortex (see

Figure 1.10). The purpose of this whole response system is to do any (or all) of the

following: (1) control the loss of sodium, (2) cause the loss of potassium, and (3)

restore blood pressure. When the sodium/potassium levels and blood pressure

become normal, the production of angiotensin II ceases. This hormone stimulates,

either primarily (e.g. bovine [95]) or uniquely (e.g. rat [96]), the zona glomerulosa of

the cortex, stimulating the production of proteins required for aldosterone synthesis:

P450scc [97, 98], 33-hydroxysteroid dehydrogenase [98]; adrenodoxin [97, 98], P450c21

[98], and (especially) P450aldo [97-101].

The actions of A-II, as with ACTH, are enacted through the efforts of second

messengers. A-II gives rise to a rapid and transient increase in cAMP levels [102].

Cellular intake of Ca2' has been shown to be required in aldosterone synthesis since

the administration of calcium channel antagonists (verapamil and nifedipine)

suppress A-II's effects [103]. In spite of treatment with verapamil, A-II-dependent

increases of free intracellular levels Ca2+ has been reported [96], suggesting a direct



role of Ca2" in mediating the effects of A-II [96]. However, in turkey adrenocortical

cells, elevations in intracellular Ca2' concentration and aldosterone production were

dissociable events and effected by different A-II receptors [104]. Larger increases in

the glomerulosa (over the fasciculata) of intracellular levels of inositol phosphates

has also been shown to result from A-II treatment [105].
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Figure 1.10: Some of the major systems which regulate blood pressure in humans.
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stimulation and suppression, respectively.

Apart from effecting an increase in the proteins contributing to aldosterone

synthesis, A-II is believed to also lower the level of proteins which divert steroid

intermediates toward non-mineralocorticoids. For example, regions of the promoter

for the P450c 7, gene have been shown to contain sequences which suppress

transcription when activated by the Ca2+/protein kinase C system, used by A-II [107].
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1.4.2.2. Regulation by Post Translational Modification

1.4.2.2.1 Protein phosphorylation

The discovery of protein kinase C's (in vitro) ability to phosphorylate P4 5 0 D1,

[108] (25-hydroxyvitamin D3 lao-hydroxylase, found in the kidney [63]), P450scc [71],

and P45011, [109] suggests that this may also be a means of regulating P450 activity.

cAMP-dependent PKs have been found to phosphorylate both renodoxin (the

mitochondrial ferredoxin in the kidney) and adrenodoxin [110, 111].

Phosphorylation of adrenodoxin was found to lower its Km in both P450sce and

P45011, reactions [110]. In addition, parathyroid-dependent stimulation of P4 50D1,

activity is accompanied by the dephosphorylation of phosphorylated renodoxin [112,

113]; in vitro studies showed that phosphorylated renodoxin significantly inhibits

P4 5 0 D1a [112]. Protein kinase C is also known to phosphorylate the Atrial Natriuretic

Factor (ANF) receptor [114] which, when bound with ANF, affect cellular events

leading to the production of corticosterone [114] as well as the secretion of

aldosterone [115].

1.4.2.2.2. Protein Glycosylation

Protein glycosylation may also be involved in the regulation of

steroidogenesis. Both P450,,c [116] and adrenodoxin reductase [116, 117] have been

reported to be glycoproteins. Since these reports, the glycosylation of P450scc has been

put in question. In the case of P450,sc, it was originally reported that neuraminidase

(an enzyme which removes sialic acid residues from glycosylated proteins)

treatment of P450seC and/or adrenodoxin reductase abolishes cholesterol side chain

cleavage [116]. Subsequently, Tsubaki et al. reported that carbohydrate-specific stains

could not show that P450s5 C was glycosylated [118]. In addition, expression of the

cDNA for P450,sC in E. coli (which is not believed to glycosylate proteins) produced a

protein - when reconstituted with purified adrenodoxin and adrenodoxin reductase

- that could catalyze cholesterol side chain cleavage activity [119, 120]. E. coli

expression of adrenodoxin [121] and adrenodoxin reductase [122] also produced an

active protein - suppressing suspicions that these too might be glycosylated.



Therefore, the glycosylation of adrenodoxin reductase - originally reported to have a

composition of 2% (w/w) carbohydrate [117] - is questionable.

1.4.2.2.3. Limited Protein Hydrolysis

The partial hydrolysis of P450 proteins (and/or their electron transfer

proteins) is yet another means that steroidogenesis may be controlled. In

purification of three separable, but equally active, forms of P450sec, Tsubaki et al.

found that one of these was missing its original N-terminal amino acid residue

[118]; such an alteration, however benign toward side chain cleavage activity, could

conceivably cause a different interaction with P45011, , (sharing the same membrane)

and/or cause a difference in the strength of competition (between P450.sc and P45011,)

for reduced adrenodoxin.

Adrenodoxin has also been reported to be active in differentially (C-terminal)

truncated forms. In the original report of the amino acid sequence of adrenodoxin

[123], it lacked many C-terminal amino acids that were found when its mRNA was

translated in vitro [124] and which were found coded for in its sequenced cDNA

gene [125]. The lack of certain amino acids at the C-terminus has also been

demonstrated to enhance adrenodoxin's effectiveness as an electron transfer agent

[121, 126]. Trypsinolysis of purified adrenodoxin produced a protein lacking the C-

terminal amino acid residues 116-128; this smaller version was found to have a 3.8-

fold and 3.5-fold lower Km (compared to normal adrenodoxin) when reconstituted in

P450,sc and P4501,, catalyzed reactions, respectively [126]. In addition, the spectral

association constant between the truncated adrenodoxin and P4505sc was also found

to increase 1.5-fold [126]. Removal of adrenodoxin residues 116-128, however, was

not found to significantly affect its interaction with adrenodoxin reductase [126].

Similar C-terminal deletion studies on adrenodoxin were also performed

using deletion mutants of an adrenodoxin cDNA, expressed in E. coli [121].

Uhlmann et al. reported that adrenodoxin may be truncated (at the C-terminal) as

far back as amino acid 115 without much effect [121]. Shortening the protein this

much did not significantly affect its EPR or absorption spectrum, nor did it affect its

ability to accept electrons from adrenodoxin reductase [121]. However, deletion



mutants 4-114 (having only amino acid residue numbers 4 through 114) and 4-109

demonstrated an change in their EPR and CD, compared to normal adrenodoxin

[121]. Deletion of a unique proline at position 108 (in making mutant 4-107)

abolished its EPR spectrum [121]. The 4-108 and 4-114 mutants were also found to

accelerate the first electron transfer to P45011, 4.5-fold, but not for P450scc.

1.4.2.3. Neuronal Regulation

The release of adrenocortical steroids (and possibly their production) is also

under some neuronal control. Neural stimulation, performed on whole pig

adrenal glands (with their attached nerve cells still intact) effected an increase in

cortisol and aldosterone release [127]. This increase was attributed to the local

release of vasoactive intestinal peptide (VIP) [127], which is known to stimulate the

secretion of aldosterone and corticosterone [128]. Studies performed on whole frog

adrenal cells demonstrated that calcitonin gene-related peptide (CGRP), released by

nearby nerve cells, stimulates corticosterone and aldosterone secretion [129].

Different neurotransmitters have also been found to have specific effects on

corticosteroid production and/or release. In frogs, adrenal chromaffin cells have

been shown to be capable of secreting serotonin which stimulates the production of

both corticosterone and aldosterone [130]. Conversely, dopamine has been shown to

inhibit both the A-II-dependent rise in intracellular cAMP [102] and A-II-stimulated

secretion of aldosterone [131, 132]. The neurotransmitter nitric oxide has also

recently been proposed as a possible regulator of P450 activities since it was found to

inhibit P450 activity in vitro [133].

1.4.2.4. Redox Regulation

The regulation of the dual activities of P450,17 (17a-hydroxylase and 17,20

lyase) appears to be effected by the level of P450 reductase and cytochrome b5 present

in the environment of this enzyme. As stated in section 1.4.2.4, the higher the level

of these two electron transfer proteins, the higher the ratio of P450c17's lyase activity

over its 17a-hydroxylase activity. This control over the direction of catalysis could

be the main fashion by which the organism regulates these activities. The fact that



adrenal cortical tissue is 3.5-fold lower in P450 reductase activity, compared to the

testis, could account for the higher content of androgens, produced by the latter

tissue [28].

Regulation based on the levels of P450 redox partners present may also be

involved in the control of 110-hydroxylation and aldosterone synthesis activities.

11P-Hydroxylation of steroids occurs in all regions of the adrenal cortex (the zonae

reticularis-fasciculata and the zona glomerulosa), but aldosterone is made uniquely

in the glomerulosa. Bovine glomerulosa mitochondria (when compared to

reticularis-fasciculata mitochondria) have considerably more of

semidehydroascorbate reductase [134, 135] and NADH-cytochrome C reductase

[134] - both of which contribute to malate-dependent NADPH formation. If the

formation of aldosterone requires an altered level of coupling with adrenodoxin

and/or a higher level of reducing potential, then the form of activity control

apparent in P450c,7 may also be operative in P4 5 0 aldo.

Antioxidants such as P-carotene and ascorbate may also serve a protective

function toward P450 enzymes. As mentioned in section 1.1, the oxyferrous form of

P450 enzymes can decay to ferric forms with concomitant production of superoxide.

Superoxide may then initiate P450 chemical modification - leading to inactivation.

In the corpus luteum (whose name means 'yellow body'), its high concentration of

the yellow pigment P-carotene was found to be (at least one of the factors)

responsible for inhibition of endogenous P450,,cc:adrenodoxin covalent crosslinking -

destroying side chain cleavage activity [136] This crosslinking was oxygen-

dependent and inhibited by the P450,,,c inhibitor aminoglutethimide [136]. Ascorbate

could not replace the function of 1-carotene in these cells [136]. However, ascorbate

was also found to play a similar protective role toward P45011, in cultured

adrenocortical cells [137].



1.4.3. A Closer Look at P450scc

Due to the fact that P450scc is found in the same mitochondrial membranes as

P45011,, and also reliant on adrenodoxin for its reducing equivalents, it is

worthwhile to review some key features about this enzyme. Both P450sc, [138, 139]

and P450n,g [140] are found in the inner mitochondrial membrane; they can also be

localized in the same mitochondrion [141]. In addition to their possible in vivo

associations, P45011, and P450sec have significant sequence homologies in certain

stretches of their amino acid sequence [55, 142]. Therefore, some structural

information acquired for P450sec may be potentially transferable to P4501 p,.

1.4.3.1. P450,c Catalyzed Reactions

P4505 sc catalyzes the conversion of cholesterol to pregnenolone by way of three

cycles of oxygen- and NADPH-dependent oxidations (see Figure 1.11). Since its

catalytic intermediates are not released by the enzyme, the first hydroxylation

commits the enzyme to the formation of pregnenolone. Not surprisingly, the first

hydroxylation is the rate limiting reaction [143]. The two hydroxylations of

cholesterol to 20(S),22(R)-dihydroxycholesterol (with the intermediate 22(R)-

hydroxycholesterol) are believed to proceed by way of the accepted P450

hydroxylation cycle (see Figure 1.4). However, the nature of the oxidative glycol

cleavage from 20(S),22(R)-dihydroxycholesterol to pregnenolone remains

undetermined. The possibility of a third hydroxylation, followed by rearrangement

appears unlikely due to the retention of the 22(S) hydrogen of 20(S),22(R)-

dihydroxycholesterol in the product of isocapraldehyde [9]. In addition, Takemoto

et al. found little or no incorporation of oxygen into pregnenolone via P450scc

catalysis of the glycol cleavage reaction [144]. However, it should be noted that these

experiments did not establish the quantitative lower bound of detectability for

oxygen incorporation.



22(R) hydroxycholesterol

Pregnenolone Isocapraldehyde 20(R),22(R)dihydroxycholesterol

Figure 1.11: The conversion of cholesterol to pregnenolone, catalyzed by P450sc.

Ortiz de Montellano has proposed a heterolytic and a homolytic mechanism

in which an oxenoid moiety could cause this glycol cleavage reaction (see Figure

1.12) [9]. Either one of these mechanisms (paths i and ii of Figure 1.12) initially

requires the oxenoid moiety to homolytically break a hydrogen-oxygen bond on one

of the hydroxyls. This is noteworthy since an oxygen-hydrogen bond is

approximately 12 kcal/mol stronger than a carbon-hydrogen bond [145]. If P450

enzymes are capable of generating substrate-bound hydroxyl radicals, this would

offer precedence for hydroxyl-radical mediated hydrogen migration proposed, in this

introduction, for the final steps in aldosterone formation (see section 1.5.5.3).

The glycol cleavage is distinct from the first two oxidations of cholesterol,

from the perspective of the protein's overall conformation. There is resonance

Raman [146] and EPR evidence [147] that there is a significant conformational

change in the side chain of cholesterol between the last two oxidations. This

conformational change is facilitated by the binding of reduced Adx [147].
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Figure 1.12: Proposed mechanisms for P450-catalyzed glycol cleavage [9]. Both
pathways are initiated by hydrogen abstraction from a substrate hydroxyl. Pathway i:
This is followed by a recombination of the substrate hydroxyl radical with the iron-
bound hydroxyl radical, forming an alkyl peroxide (A), which can coordinate to the
iron. The iron then acts as a Lewis acid, catalyzing the heterolytic cleavage of the
carbon-carbon bond. Pathway ii: The initially formed hydroxyl radical (B)
rearranges, giving rise to a carbonyl and a carbon-based radical on the remaining
alcohol (C). Compound C then either recombines with the iron-bound hydroxyl
radical to form a gem diol (path iii) which dehydrates to form a carbonyl;
alternatively, C somehow loses a hydrogen atom (path iv) and directly forms a
carbonyl.
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1.4.3.2. Importation Into the Mitochondrion and Proteolytic Processing

P450scc and P450n,1 appear to share a common means of importation, from the

cytoplasm, into the mitochondrion. A synthetic peptide corresponding to the first

15 amino acid residues of P450scc was effective at inhibiting the importation of

precursor (pre-) forms of P450sec, P450n11 , adrenodoxin, and malate dehydrogenase

[148]. In studies performed on isolated mitochondria from corpus luteum (a tissue

which does not express P45011, activity), it was found that pre-P45011, was effectively

imported and processed into its mature size by removal of its N-terminal extension

peptide [149]. Therefore, this import process appears to be common in different cell

types. In fact, pre-P450,cc was also found to be successfully incorporated in isolated

soybean cotyledon mitochondria [150]. Nonetheless, this import system is not

universal since pre-P45011, [149] and pre-P450,,, [151] could not be imported into

isolated heart mitochondria.

The process of P450-binding to mitochondrial membranes may be distinct

from that of importation, since it was reported that hydrophobic peptides

(containing either lysine or arginine at specific positions) inhibited both pre-

adrenodoxin and pre-P450,sc incorporation, but did not affect pre-P450sc's ability to

bind to the mitochondrial surface [152]. In addition, these peptides were found to

not affect the membrane's fluidity [152]. The specific function of P450 extension

peptides may be related to the proposal that some mitochondrial signal sequences

may aid in the fusion of both the inner and outer mitochondrial membranes, which

may be required for P450 importation [153]. It is interesting to note that cardiolipin

(which, by it structural nature (see Figure 1.8), could facilitate membrane fusion)

appears to be involved in P450scc's ability to bind to membranes [154].

The following series of facts leads to a compelling hypothesis for mechanism

of importation of pre-P450cc. Cardiolipin-containing liposomes are able to fuse

more easily when P450,,c is present [155]. Cardiolipin is known to be a positive

effector for cholesterol binding to P450,sc [33, 62]. Cardiolipin is also known to

strongly associate with membrane-bound P450,sc [156]. Therefore, it seems plausible

that pre-P450sc binding to the outer mitochondrial membrane may cause a



clustering of cardiolipin molecules, facilitating membrane fusion, which may be

required for subsequent incorporation into the inner membrane.

If P450scc and P45011, do indeed share a common mitochondrial import

mechanism, then the incorporation of specific information from P45011, studies may

provide more details on this mutual process. A peptide corresponding to the first 45

amino acid residues of P45011, was found to be incorporated into mitochondria in a

fashion independent of extramitochondrial ATP [157]. This import was found to

not require mitochondrial surface proteins [157]. However, P45011, was found to be

imported via a potential-dependent pathway and reliant upon protein components

on the outer surface of the inner mitochondrial membrane [157].

Note that mitochondrial importation and cleavage of a protein precursor's

N-terminal sequence need not be coupled. For instance, Omura and coworkers

found that a partially purified rat liver mitochondrial protease was capable of

processing pre-P450sc and pre-P450n11 , but not pre-adrenodoxin [151]. That laboratory

also found that a partially purified mitochondrial metalloprotease (from either rat

liver or bovine adrenal cortex), which processes precursor forms of adrenodoxin and

malate dehydrogenase to their mature lengths, had no effect on pre-P450scc and pre-

P45011, [158]. Subsequently, however, that same laboratory reported that a more

highly purified sample of the rat protease was indeed cable of processing all four of

these proteins - however, with different levels of efficiency [159]. Therefore, at

present, there seems to be a preponderance of evidence that the proteolytic

maturation process of P450 proteins is different from that of other mitochondrial

proteins.

1.4.3.3. P450s6 c's Membrane Topology

1.4.3.3.1. P450,sc's Orientation in the Membrane

In evaluating the membrane topology of P450sec, it was found that the enzyme

is a transmembrane protein. As mentioned in section 1.2.1, trypsin can cleave

P450sec into two fragments (F1 and F2) which (when combined) still catalyze the side

chain cleavage of cholesterol. In the trypsinolysis of P450,,c, it was found that its



trypsin site is on the matrix side of the inner mitochondrial membrane [160]. In

addition, specific (polyclonal) antibodies for P450,cc were used to demonstrate that

P450scC has regions exposed on both sides of the membrane [161]. The fraction of

P450scc residing within the bilayer, however, may be small. Results from rotational

diffusion studies and the absence of any intramembrane particles (examined by

freeze-fracturing) suggest it to be weakly penetrating into the membrane and to have

large parts exposed to the aqueous interior of the mitochondrial matrix [156].

1.4.3.3.2. P450sec's Interaction With Adrenodoxin

The binding of adrenodoxin to P450,cc (and presumably to P450,11 as well)

causes several important effects on the cytochrome. At least in cases of where a high

concentration of cholesterol sulfate is used, Adx inhibits unproductive binding of

this substrate to P450,cc [35]. As mentioned in section 1.4.3.1, Adx facilitates a

conformational change in P450,cc, which appears to be necessary for its glycol

cleavage reaction. Optical absorption measurements of reduced P450,sc-phenyl

isocyanide complexes have shown that, upon Adx binding, Adx causes a

conformational change around the ferrous heme.

The interaction between Adx and P450sec is known to be coordinated via ionic

interactions since the Kd for Adx:P450scC complexation and Adx's Km in P450scc

catalyzed reactions increase exponentially with ionic strength [162]. Chemical

crosslinking of Adx:P450s~c ionic structures [163] and site-directed mutagenesis [120,

164, 165] have helped to point out some of the residues involved in the docking of

these two proteins. The resulting generalization is that Adx (a highly acidic protein)

appears to associate with positively charged patches on class I cytochromes P450.

Modification of P450scC with pyridoxal phosphate (PLP) and NaBH 4 led to an

inhibition of side chain cleavage activity [166]. This modification was protected by

adding excess Adx. It is interesting to note that PLP modification of P450,,c increased

cholesterol's affinity towards P450sc [166]. The region of attachment of PLP (lys 377

or lys 381) maps to a peptide region which is highly homologous to P450,11 [166]. In

site-directed mutagenesis studies on the P450,cc gene, replacement of either of these

lysine residues significantly raised the Kd for Adx binding (150-600 fold, depending



on the mutation) without changing the spectral properties of the enzyme or its

ability to catalyze its reaction [120]. Upon crosslinking Adx and P450scc with a

carbodiimide reagent (and characterization of the complex), it was found that

binding occurred in the regions of Leu88-Trp108 and Leu368-Trp417 of P450scc [163,

167] In site-directed mutagenesis studies on an E. coli expressed cDNA for Adx,

tyrosine-86 (believed to be required for electron delivery from its 2Fe-2S cluster to

the P450) was mutated to phenylalanine, serine, and leucine [164]; this raised its Km

(as much as 4-fold) for mitochondrial P450 enzymes, but affected P450scc and P450 11,

catalyzed reactions differently [164].

1.4.3.3.3. Possible Existence of an AdR:Adx:P450 Complex During Catalysis

Since the transfer of electrons from FADH2 (on AdR) to P450scc via Adx offers

many opportunities for autoxidation, the concept of an in vivo ternary complex of

these proteins - efficiently transferring electrons - is an appealing one. However, in

several kinetic studies with reconstituted mixtures of adrenodoxin reductase,

adrenodoxin, and P450,sc, the formation of a ternary complex does not appear to be

required for activity. Activity titrations with AdR demonstrate that active

complexes of AdR:Adx:P450 are not needed for P450scc catalysis in vesicle-

reconstituted system [168]. In addition, crosslinking only Adx and P450,cc (using a

carbodiimide reagent), produced a complex which cannot be reduced by NADPH and

AdR [163, 167].

Nevertheless, some evidence in favor of the ternary complex has also been

reported. Evidence has been found for AdR:Adx:P450s•c complex formation by

crosslinking studies. Turko et al. argue that these proteins form a ternary complex

in solution and have shown that treating a mixture of them with N-succinimidyl-6-

(4'-azido-2'-nitrophenylamino)-hexanoate gives rise to a complex of 114 kdal [169].

Shkumatov et al. found, using second derivative difference spectroscopy (in the

median UV-region) that an Adx-induced P450scc conformational change increased

when AdR was added [170].

From measuring the decay of absorption anisotropy (after photolysis of the

carbonyl-heme) of adrenocortical mitochondria, it was found that membrane-bound



P450s become increasingly more mobile as the level of cholesterol becomes depleted

[171]. The authors of this study propose that the less mobile version of P450,, c

(which is known to bind more strongly to Adx, when it is bound with cholesterol) is

complexed with adrenodoxin as well as AdR [171]. This immobilization was found

to be salt dependent [172]. Adx by itself, helped immobilize the P450 molecules but

AdR (alone) did not [172]. However, if Adx and AdR were added together, this

resulted in a decreased mobility [172]. Since Adx binds more tightly to P450scc when

the cytochrome is bound with cholesterol (and the Adx-P450,,c complex is known to

be held together by ionic interactions), these studies argue that Adx, AdR, and

mitochondrial P450 enzymes are capable of forming transient tertiary complexes

[171, 172]. Ohta et al. also point out that such a ternary complex need not be 1:1:1,

but may include multiple adrenodoxin molecules [171], since it is known that Adx's

binding site for AdR and P450,,,c overlap [165]. However, these studies were

complicated by the fact that P450scc and P45011, may have been sharing the same

membranes. Therefore, higher order levels of complexation could also have been

taking place with the electron transfer proteins as well as the two different P450

enzymes.

1.5. Background on P45011, and P4 50aldo

1.5.1. History of these two proteins

P450 1 , and P4 50aldo are responsible for the last steps in the formation of

glucocorticoids and mineralocorticoids. The glucocorticoids corticosterone and

cortisol are known be made by P450,11 from 11-deoxycorticosterone (DOC) and 11-

deoxycortisol, respectively. The mineralocorticoid aldosterone is made from DOC in

three P450-dependent reactions (see Figure 1.13). In all mammals examined to date,

it has been found that only the outer regions of the adrenal cortex (the zona

glomerulosa) is capable of making aldosterone [173]; however, all regions (the

glomerulosa and the zonae reticularis and fasciculata) are capable of making

corticosterone and cortisol [61].



The sequence of events and even the identity of the intermediates in

aldosterone formation are an issue of some controversy. The overall result is that

DOC needs to be hydroxylated at the 3-position of C-11 and its C-18 methyl group

must be oxidized to the level of an aldehyde. Since corticosterone, 18-hydroxy-DOC,

and 18-hydroxycorticosterone are all naturally occurring corticosteroids, these have

long been assigned as intermediates in the aldosterone biosynthetic reactions. Since

P45011, is known to make corticosterone, one of the steps was initially assigned to

this enzyme. The remaining activities - the hydroxylation of C-18 and the oxidation

of the 18-hydroxy group to aldehyde - are often referred to as corticosterone methyl

oxidase I (CMO-I) and corticosterone methyl oxidase II (CMO-II), respectively [174].

CMO-I was presumed to be catalyzed by a specific 18-hydroxylase P450 enzyme. Since

both 18-hydroxy-DOC and 18-hydroxycorticosterone are known to exist in mammals,

it was put forward that there may exist one (or two) 18-hydroxylase(s) which can act

on both (or either) DOC and (or) corticosterone. The report that a DOC 18-

hydroxylase co-purified with P45011,, led to the suspicion that P45011, could catalyze

both the 111- and 18-hydroxylations of DOC. This was confirmed when the pairs (or

sometimes more than two) of cDNAs (from different species) for P45011, were

expressed in COS cells and were found to have both of these activities. In most

species, only one of these cDNA clones (from the same source) was found capable of

making aldosterone. These results have led to the conclusion that there exist two

similar enzymes in the adrenal cortex which can both synthesize corticosterone

(P450 1p), with only one of them capable of making aldosterone (P4 5 0 aldo). The fact

that all known bovine [175] and porcine [176] P450,1, enzymes can also make

aldosterone suggests that in some species, P45011, and P4 50aldo have distinguishable

catalytic properties only in intact mitochondria.
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Figure 1.13: Two pathways from 11-deoxycorticosterone (DOC) to aldosterone,
catalyzed by P45 0aldo. The preferred path appears to be that which goes through
corticosterone first.

Examination of the primary sequence for P45011, and P4 5 0aldo reveals a

homology of 93% in humans [177], 86% in mouse [178], and 88% in rats [179].

Although, there are clearly separate genes for P450,11 and P45 0 aldo, the only two

different P450,1, cDNA clones isolated from bovine are both able to synthesize

aldosterone from deoxycorticosterone. Calf fasciculata primary cell cultures (unlike

their glomerular counterparts) are unable to synthesize aldosterone; however, when
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incubated in the presence of the certain additives (the antioxidants butylated

hydroxyanisol and selenous acid, the radioprotectant DMSO, and the P450 inhibitor

metyrapone), these cells acquire the ability to produce aldosterone [95]. In intact

bovine and porcine adrenocortical mitochondria, only those from the glomerulosa

can make aldosterone; however, upon solubilization (with the detergent cholate),

mitochondria from all adrenocortical zones were able to make aldosterone to the

same extent [180]. Two different P450 11, proteins (48.5 kdal and 49.5 kdal) have been

shown to exist in bovine adrenal cortex - both of which, when purified, can make

aldosterone [175]. In the porcine case, only one protein has yet been purified (46

kdal) which was shown to be able to make aldosterone [176]. This 'liberation' of

aldosterone synthase activity, from P45011,, however, is not seen in the purified

human [181], rat [182, 183] or mouse [178] versions. So far two different cDNAs for

bovine P450 11, have been cloned and expressed in COS cells - both of which have

shown aldosterone synthase activity [95]; however, one produces aldosterone more

effectively than the other [184]. Since two separate P 4 5 0 aldo enzymes have been

characterized - with no limited P450 1, , (i.e. incapable of making aldosterone) yet

identified - it seems reasonable to assert that there exists some in vivo inhibition of

either or both of the two known P450,1, proteins in bovine (and porcine [173])

mitochondria. This inhibition may arise by way of allosteric modification of one of

the components in the P450 reaction (the P450, adrenodoxin, or adrenodoxin

reductase) or in the controlled availability of reducing equivalents.

1.5.2. How P45011, and P4 50aldo Proteins are Regulated

1.5.2.1. Hormonal Regulation

ACTH's mechanism of control of P450,1 , is the same as that described earlier

for its control of all of adrenocortical steroidogenesis (see section 1.4.2.1.1). Since

cortisol is the major physiological downregulator for pituitary secretion of ACTH

[2], it is clear that ACTH's major goal is to stimulate cortisol production. Although

the ACTH-regulated P450 11, produces corticosterone, the additional transformations



required to make aldosterone (catalyzed by P4 5 0aldo) are regulated by angiotensin II

(A-II). Therefore, of the two human chromosomal genes CYP11B1 and CYP11B2

(coding for P45011, and P 4 5 0 aldo, respectively), the first is under the control of ACTH-

dependent events and the latter is regulated by the effects of A-II [173].

The major physiological function of cortisol and corticosterone is to regulate

sugar metabolism in the body; aldosterone serves the function of controlling blood

pressure. However, both cortisol and aldosterone effectively bind to the

mineralocorticoid receptor [185]. This is resolved by the fact that cortisol may be

transformed into cortisone, by 113-hydroxysteroid dehydrogenase, which has very

little affinity for this receptor [185]. Regulation towards hypertension can therefore

manifest itself in the control of 113-hydroxysteroid dehydrogenase [186].

1.5.2.2. Possible Regulation By Interaction with Other Proteins

1.5.2.2.1. Interaction with P450SCC

Since P450scC and P45011, levels, in adrenocortical mitochondria, are roughly

the same [187], their ability to regulate each other through direct interaction has

been studied. In liposomal studies performed on bovine P450 11, and P450,cc, Ikusiro

et al. [188] reported that these proteins form a 1:1 complex. P450,, c was found to

stimulate the 11f-hydroxylase and 18-hydroxylase activities of P450,11 , but

suppressed the production of 18-hydroxycorticosterone and aldosterone [188]. In

addition, when anti-P450sec IgG was added to bovine adrenocortical inner

mitochondrial membranes from the zonae reticularis-fasciculata, it was found to

stimulate the production of aldosterone [188]. However, no increase in aldosterone

synthesis was found when mitochondria from the zona glomerulosa was treated in

the same way [188]. Interestingly, P450 1 ,, was also found to stimulate the side chain

cleavage activity of P450,cc [188]. Further evidence toward an allosteric effect of

P450sec on P450,11 has been provided by Kominami et al. who reported that the

binding of corticosterone for liposomal P45011 , was much lower when P450,cc was

also present [36].



1.5.2.2.2 Interaction With Adrenodoxin

Since both P450sCc and P450 11, require adrenodoxin to deliver their reducing

equivalents, there would seem to be a natural competition for this protein. It has

been shown that reduced Adx has a roughly three-fold greater preference for P450scc

than for P450 11, [187]. A decreased access to reduced adrenodoxin would definitely

decrease the total activity of P4501,,. The lower effective concentration of reduced

adrenodoxin may also affect the type of reactions catalyzed by P45011 , in the same

way that the level of P450 reductase affects the ratio of lyase to 170o-hydroxylase

activities of P450c17. It would be beneficial to examine the proportion of different

products formed, based on different concentrations of reduced adrenodoxin; such a

study (to the best of the author's knowledge) has not yet been performed.

1.5.2.2.3. Interaction With Other Proteins Or Small Molecules

As mentioned in section 1.4.2.1.2, one of the effects of angiotensin II

stimulation of aldosterone synthesis involves some action by Ca 2+ ions. Apart from

a direct role of Ca2 + on P450 11,, Ca 2+ may also bind to other proteins which may then

directly interact with P450,p. A Ca2+-dependent role for calmodulin has been

suggested for the control of P450,11 [189]. Ohnishi et al. have reported that bovine

adrenocortical calmodulin (in the presence of Ca 2+ ) - when added to P450 11,-

reconstituted systems - increases the rate of production of 18-hydroxycorticosterone

but decreases the rate of aldosterone synthesis [189]. This interaction was found to

be separate from that of adrenodoxin with P45011p [189].

Cytochrome c reductase may also play a role in favoring aldosterone

formation. Cytochrome c reductase (found between the inner and outer

membranes) is much more active in bovine adrenocortical mitochondria from the

glomerulosa than from the fasciculata [134]. It is plausible that the extra reduced

cytochrome c reductase (in addition to its normal function of reducing cytochrome



c) may be able to effect a reduction of P450 11, from the intermembrane space side of

the inner mitochondrion; alternatively, it could reduce yet another species which

may somehow deliver reducing equivalents to P450 11,.

Ascorbate appears to play a role in the function of P450 11, and P4 5 0 aldo. P450

enzymes are known to produce both superoxide and hydrogen peroxide when

electron transfer and substrate oxidation become uncoupled - either through a

mutation [12] or when catalytically stimulated with a pseudosubstrate [190] (which

may even be a product of one of its reactions [27]). This uncoupling (or electron

leakage) is also found to occur in the normal course of action of endogenous P450

enzymes. Rapoport et al. reported that corticosterone stimulated this electron

leakage in P450,11 , whereas pregnenolone had no such added effect for P450scc [191].

A protective role of ascorbate for P450,11 , in pseudosubstrate-mediated loss of

activity, was reported by Hornsby et al. in studies on cultured bovine adrenocortical

cells [137]. The concentration of semidehydroascorbate reductase (the enzyme

which restores the semi-reduced form of ascorbate to its fully reduced form) is

present in bovine adrenocortical glomerular mitochondria at more than twice the

levels of mitochondria from the fasciculata [135]. This fact, along with their

demonstration that added ascorbate and NADH stimulate aldosterone synthesis, led

Yanagibashi et al. to propose that ascorbate may provide a source of reducing

equivalents, specific for aldosterone formation [135].

1.5.2.3. Interaction With Lipids

Since the bulk of the P45011, and P 4 5 0 aldo proteins are associated with

membrane, it is not surprising that the composition of this environment also affects

the properties of these proteins. The ratio of the production of aldosterone over the

production of 18-hydroxycorticosterone (by purified bovine P4501 1,) increases from

0.2 to 0.5 when neutral lipids are added to the reconstituted system [192]. The

amount of both of these steroids increased (7-fold for aldosterone and 3-fold for 18-

hydroxycorticosterone) when these neutral lipids were added [192].



P450 11, appears to have a preference for phospholipids containing fatty acids

which contain no double bonds [34]. The use of phospholipids with unsaturated

fatty acids causes a significant decrease in Vmax, but only a moderate increase in Km

[34]. Inhibition by cardiolipin, however, results in significant changes in Vmax

(decrease) and Km for deoxycorticosterone (increase) [34].

1.5.3. Additional Products made by P45011, and P4 5 0 aldo

Apart from the glucocorticoids cortisol and corticosterone and the

mineralocorticoid aldosterone, P450 11, and P4 5 0aldo are able to make other steroids of

unknown physiological value. As already mentioned, P450 11, and P 4 5 0
aldo can

synthesize 18-hydroxy-DOC. This steroid could be of value as intermediate in

aldosterone synthesis. The fact that 18-hydroxy-DOC is found sequestered in the cell

membrane of the zona glomerulosa supports the claim that its major role is one of

an intermediate [193, 194]. In the case of 18-hydroxycorticosterone, it may also

simply serve as an intermediate in aldosterone formation. However, it has also

been reported that 18-hydroxycorticosterone may spontaneously and reversibly

convert into less polar forms and derivatives, some of which appear to promote

hydrogen transport in renal tubuli [195].

Apart from arguable intermediates in aldosterone formation, P45011, and

P4 5 0 aldo have also been either implicated or directly shown to be capable of making

steroids of still unknown function. Additional reported P450 11,-derived steroids are:

63-hydroxy-DOC [196], the A6-7 version of androstenedione [196], 18-hydroxycortisol

[197], 18-oxocortisol [197], cortisone [198], 19-oxoandrostenedione [198], 18,19-

dihydroxycorticosterone [199], 19-hydroxy-DOC [184, 200], 19-hydroxycorticosterone

[201], 18,19-dihydroxy-DOC, 11 -hydroxyandrostenedione [202], 19-

hydroxyandrostenedione [202], 19-norandrostenedione [203], 111-hydroxy-19-

norandrostenedione [204], 18-hydroxy-19-norandrostenedione [204], 6p-

hydroxynorandrostenedione [204], and estrone [203, 205, 206].



1.5.3.1. P45011,-Catalyzed oxidations at C-6

Mochizuki et al. [196] reported that P45011, is capable of: transforming DOC to

6f3-hydroxy-DOC and performing 6-desaturase activity on androstenedione.

However, this report gives no description of the purity of their enzyme. If P45011,

was in fact responsible for these reactions, then it may imply another mode of

substrate binding in the active site of this enzyme.

1.5.3.2. P450aldo-Catalyzed Formation of 18-Hydroxycortisol and 18-Oxocortisol

Calf adrenocortical preparations from the zona glomerulosa were used to

show the formation of 18-hydroxycortisol and 18-oxocortisol [197]. Their formation

was (competitively) inhibited by metyrapone [197] (a relatively specific inhibitor for

P45011, [190, 207]). Corticosterone inhibited cortisol to 18-hydroxycortisol and 18-

oxocortisol transformations with a Ki very close to the Km for corticosterone in

aldosterone formation [197]. From this, the authors conclude that the same enzyme

which makes aldosterone is also making both 18-hydroxycortisol and 18-oxocortisol

[197]. In studying the regulation of 18-oxocortisol production in normal human

indivi-duals, it was found to be differentially regulated by either or both the ACTH

and renin-angiotensin system, depending on the individual [208]. In another study

on normal individuals, Yamakita et al. reported that 18-hydroxycortisol and 18-

oxocortisol production is more dependent on ACTH regulation and less on the

renin-angiotensin system than aldosterone production [209]. In studying the form-

ation of 18-hydroxycortisol in rats, it was found that it could be made from either 11-

deoxycortisol or cortisol in the glomerulosa, but could only be made from 11-deoxy-

cortisol (and not cortisol) in the fasciculata-reticularis [210]. These results are

informative about the possible different modes of cortisol binding in rat P45011, and

P 4 5 0 aldo. Since the P45011,- (in the inner zones) catalyzed reaction must have

proceeded by first forming 18-hydoxy-11-deoxycortisol, this means either that this

inter-mediate can bind more favorably than cortisol or that once cortisol is formed,



the enzyme is incapable of hydroxylating the C-18 position. P45 0al,, (in the

glomerulosa), however, seems to be able to both bind cortisol and catalyze its 18-

hydroxylation.

Although 18-hydroxycortisol is found in patients with primary

aldosteronism, it has very little effectiveness as either a glucocorticoid or

mineralocorticoid [211]. Even though 18-oxocortisol is found in some patients with

glucocorticoid-suppressible aldosteronism [212], it has also been shown to be poor as

either a glucocorticoid or mineralocorticoid [213].

1.5.3.3. P45011-Catalyzed Hydroxysteroid Dehydrogenase Activity

The ability of P45011, to make cortisone form cortisol and 19-

oxoandrostenedione from 19-hydroxyandrostenedione assigns it a hydroxysteroid

dehydrogenase activity [198]. Such an activity can be accounted for by a direct

oxidation of hydroxy oxygen of the substrate or as the formation of a gem diol which

spontaneously dehydrates to the carbonyl. The gem diol intermediate is believable

in a 19-oxidase activity, but not as easily acceptable for an 11-oxidase activity.

Presumably, P-hydroxylation at the C-11 position (by P45011,) occurs because the

heme is positioned on the 0 face (see Figure 1.18) of the steroid. In order to perform

a second hydroxylation at this position, the 110-hydroxysteroid would either have to

epimerize at the C-11 position or bind in a completely different fashion. It therefore,

seems more reasonable that P450,11 is capable of directly oxidizing an 110-steroidal-

hydroxyl group. While the physiological role of 19-oxygenated steroids is unknown,

the ability to make cortisone would enable P45011, to reduce the levels of cortisol in

the body. Since cortisol (unlike cortisone) can also bind to the mineralocorticoid

receptor [185], this would implicate some role for P45011, in the lowering of blood

pressure.



1.5.3.4. P45011,-Catalyzed 19-Hydroxylation

19-Hydroxylation of various steroids [184, 199-201] should not be surprising

since the C-11 position is very close in space to the C-18 and C-19 positions. Since

purified bovine P45011, has been shown to hydroxylate DOC to both corticosterone

and 18-hydroxy-DOC with a ratio of 6:1 [202], it appears that the heme center is

positioned closer to the C-11 carbon, when DOC is bound. This positioning of the

heme relative to substrate may: (1) change when different steroids are bound, (2) be

different in individual isozymes of P45011, , or (3) alter, if the protein is induced into

a certain conformation. The effect of different steroids in seen between the facility

by which P45011, performs a 19-hydroxylation on androstenedione versus DOC. One

fourth of the P45011, hydroxylations on androstenedione occur at C-19 [202], whereas

approximately two percent of P4501 1, hydroxylations of DOC occur at the C-19 locus

[200]. In terms of differences in isozymes, it was shown by Nonaka et al. that

although rat P45011, could occasionally transform DOC into 19-hydroxy-DOC, no

detectable 19-hydroxy-DOC was found when using rat P4 5 0 aldo [200]. Additionally, it

is known that corticosterone and 19-hydroxycorticosterone are produced in nearly

equal amounts in gerbils [201]. On studies using solubilized gerbil adrenal

mitochondria, Drummond et al. showed that 19-hydroxycorticosterone formation

was inhibited by a polyclonal antibody against bovine P45011, and by metyrapone

[201]; in addition, they found that application of these inhibiting agents caused a

parallel decline in both 113- and 19-hydroxylations. The possibility of induced

conformational changes in P45011,, which may cause a change in product

distribution, remains to be demonstrated but is plausible - considering the ability of

some (still undetermined) component of bovine fasciculata mitochondria which

inhibits aldosterone formation [173].



1.5.3.5. P450110-Catalyzed 10-Demethylase and Aromatase Activity

P450 11,'s demonstrated 10-demethylase (in the formation of 19-

norandrostenedione [203]) and aromatase (in the formation of estrone [203, 205,

206]) demonstrates still more catalytic versatility. P45011, can form either 19-

norandrostenedione [203] or estrone [203, 205, 206] from 19-oxoandrostenedione.

The formation of a 19-nor steroid could arise from the spontaneous (or perhaps

enzyme-assisted) activities decarboxylation of the C-19 carboxylic acid, which is a

vinylogous 3-keto acid. Estrone formation could result from a Baeyer-Villiger type

of oxidation as described in Figure 1.7. If the mechanism of Figure 1.7 is operative in

P45011,-catalyzed estrone formation, it would imply that this enzyme may be capable

of stabilizing an iron-peroxy oxidizing species in its catalytic cycle. The existence of

this rarely considered species may play some role in the differentiation of P45011,
and P4 5 0 aldo activities.

1.5.4. Inhibitors of P45011, and P4 50aldo

1.5.4.1. Reversible Inhibitors

Reversible binding to P450 proteins is loosely grouped into two categories -

those that cause a type-I or a type II spectral shift. A type-I shift is normally caused by

a substrate (but could also be effected by inhibitors), which favors a recruitment of

the resting state ferric heme protein to the electronic high spin state. Conversely, a

type-II binder is named for causing a shift toward the low spin state. In general, a

type-II spectral shift is indicative of an amino ligation to the ferric heme.

The most successful example of a reversible (type-II) inhibitor for P4501 1, and

P4 5 0 aldo is the compound metyrapone (see Figure 1.14). Although metyrapone

shows some degree of binding to most P450 enzymes, it has a particularly strong

affinity for P45011, and P4 50aldo. This preference for metyrapone is often used to

selectively suppress the activity (or cause a spectral change [207]) of P45011, [201, 214],

when present in the same mixture as P450scc; it exhibits a Ki in the range of 0.1-0.2

gM for P45011,-catalyzed reactions, whereas its Ki for P450,,c is 160 gM [202]. With the



goal of determining what factors make this simple compound an effective P45011,
inhibitor, Tobes et al. reported the inhibition properties of different metyrapone

analogs toward P45011, and P450scc [215]. These analogs each had the same structural

skeleton, but substituted a phenyl ring for one of either or both of the metyrapone

pyridyl rings. The result was that there is an absolute requirement for the B-pyridyl

ring, and less need for the A-pyridyl ring, in the inhibition of both P45011, and P450scc

[215]; for all of these analogs, inhibition was also greatest toward P45011,.

Aminoglutethimide (see Figure 1.14), although displaying some degree of

inhibition for P45011,, has a stronger affinity towards P450s,c [216]. This offers the

reverse effects of metyrapone, when studying a two-component system of P450,5 c and

P45011 ,.

Imidazole-containing compounds have also been successful P45011,

inhibitors. Ketoconazole, clotrimazole, and micoanzole (normally agents used to

treat fungal infections) and etomidate (an anesthetic) (see Figure 1.14) are known to

inhibit P45011, [216-220]. Inhibition by the anti-fungal agents affects P450 enzymes of

all pathways [216]. However etomidate appears to be more specific - inhibiting

P45011, and P450seC effectively, while not affecting P450c21 [216]. Like metyrapone, it

has a stronger preference for P45011,, over P450,ec [218].

Spironolactone (an aldosterone antagonist for the mineralocorticoid receptor)

is also known to bind to P45011,, albeit at high levels [216]. P45011, is even capable of

hydroxylating spironolactone at the f-position of C-11 [221], leaving the enzyme

unharmed.

1.5.4.2. Mechanism-Based Inhibitors

At present, there are no fully characterized mechanism-based inhibitors for

P45011,. There have only been reports of compounds which exhibit adrenocortical

cytotoxic activities, once activated by P45011,. Examples of these are 7-

hydroxymethyl-12-methylbenz(a)anthracene [190], 7,12-dimethylbenz(a)anthracene



[190], 3-methylsulphonyl-2,2-bis (4-chlorophenyl)-1,1-dichloroethene [214], and 18-

ethynyl-deoxycorticosterone (18-E-DOC) [222] (see Figure 1.14). The first two are

claimed to act as pseudosubstrates for P45011, - causing the enzyme to produce

peroxides and superoxide [190], which are known to destroy P450 enzymes. The

third compound was reported to irreversibly bind within adrenal mitochondria; this

permanent binding was inhibited by the inhibitor metyrapone, implicating P45011,

as the activating species [214]. It is not certain whether 18-E-DOC requires activation

or not, for its inhibition of aldosterone formation. In studies performed on calf

adrenal zona glomerulosa cells, it was found that pre-incubation of the cells with 18-

E-DOC (followed by washing for 5 minutes) caused a 75% inhibition of aldosterone

formation [222]. After 24 hours of washing, 50% of aldosterone synthesis capabilities

returned [222]. Even lacking information on the any required activation of 18-E-

DOC, it seems likely that it might indeed be a mechanism-based inhibitor. Its

structure is reminiscent of the steroid, 19-acetylenic androstenedione which is

known to be a mechanism-based inhibitor for P450arom. Future studies are required

to bear this out.
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Figure 1.14: Examples of a few P45011, inhibitors.

1.5.5. P45011, Chemical Mechanism

1.5.5.1. The Identification of Intermediates

Ordinarily metabolic pathways involve the sequential production of

intermediates. This is not the case in the production of aldosterone, which can be

made by two pathways (Figure 1.13) [611. A dual pathway is also seen in the

production of 17ea-hydroxyprogesterone (see Figure 1.15) [223].

The two routes to 17a-Hydroxyprogesterone are made possible due to the

versatility of both 3p-hydroxysteroid dehydrogenase/isomerase (3tHSD) and P450cl7.



33HSD can act on either pregnenolone or 17a-hydroxypregnenolone and P450c 7, can

perform a 17o-hydroxylation on either pregnenolone or progesterone [223].

30

Pregnenolone Progesterone

IHSD

17a-Hydroxypregnenolone
17a-Hydroxyprogesterone

Figure 1.15: Two pathways to get from pregnenolone to 17a-hydroxyprogesterone.
17a-hydroxyprogesterone can then be directed into the synthesis of the sex steroids
or into 11-deoxycortisol (see Figure 1.1).
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Although the production of aldosterone from DOC has been found possible

by a single P4 5 0aldo, there appears be two valid sequences of events that can occur

(see Figure 1.13). P 4 5 0 aldo can make aldosterone from either DOC, corticosterone, 18-

hydroxy-DOC, or 18-hydroxycorticosterone. The acceptance of all of these substrates

is consistent with the production of a common intermediate. Since 18-

hydroxycorticosterone is also made by P4 5 0 aldo [224], this would appear to be that

intermediate. However, when the cDNA for P4 5 0 aldo was expressed in COS-7 cells, it

was found that administration of 18-hydroxy-DOC or 18-hydroxycorticosterone

could not form aldosterone [200]; these same cells, however, could make

aldosterone from either DOC or corticosterone [200]. The immediate suspicion that

administration of 18-hydroxyDOC and 18-hydroxycorticosterone may not have been

able to cross the membrane of these cells is seemingly resolved by the fact that the

same report was able to detect outward diffusion of both of these steroid

intermediates when DOC and corticosterone (respectively) were used as substrates

[200]. However, Lantos et al. report that 18-hydroxycorticosterone exists in many

forms in solution, some of which are less polar than others [195] (see Figure 1.16). If

P45011, forms 18-hydroxycorticosterone in a relatively non-polar form, it may diffuse

across the membrane and spontaneously (or as a result of the extraction process)

transform into a more polar and less membrane-diffusible form. These forms are

found to be rapidly interconvertible at low pH [195]. If the immediate vicinity of the

cytosolic side of the inner mitochondrial membrane is substantially acidic (as it

perhaps should be, due to the Mitchel chemi-osmotic hypothesis), then the P450 11,

enzyme may be able to utilize a preferred version of 18-hydroxycorticosterone, from

this pool of interconverting species. Alternatively, P45011, may directly produce a

single form of 18-hydroxycorticosterone; it may only be when examining these

steroids (after extraction from the reconstituted mixture) that the analytical methods

recruit this steroid to a form different from than in the native mitochondria (or

even from that diffused out from the cell. Such a scenario would make 18-

hydroxycorticosterone appear as a false intermediate in the synthesis of aldosterone

in rats.



Another explanation for the rat data may be that P4 5 0 aldo prefers to make

aldosterone from DOC, without releasing any intermediates [224]. This situation is

reminiscent of P450scC which is known to make pregnenolone from cholesterol via

two tightly held intermediates 22(R)-hydroxycholesterol and 20(R),22(R)-

dihydroxycholesterol. However, as was found for P450sc, these intermediates have

much lower dissociation constants for the enzyme than does cholesterol [225]. This

does not appear to be the case for bovine P4 5 0 aldo [224].
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Figure 1.16: Different possible forms of '18-hydroxycorticosterone', known to
interconvert under acid conditions [195]. 18-DAL stands for 21-hydroxy-11f,18-
oxido-4-prenene-3,20-dione [195].
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Ikushiro et al. reported that when bovine P4 5 0 aldo is reconstituted into

liposomes, it was found to produce aldosterone (from DOC) with very little release

of the intermediates corticosterone, 18-hydroxy-DOC, and 18-hydroxycorticosterone

[224]. These intermediates were also found to be poorer substrates than DOC [224];

the rates of aldosterone formation from corticosterone and 18-hydroxycorticosterone

were 70% and 30% (respectively) of the rate measured when DOC itself was used

[224]. In addition, when radioactive DOC was added to the liposomal P450aldo, the

addition of non-radioactive corticosterone, 18-DOC, and 18-hydroxycorticosterone

did not significantly dilute out the radioactivity from the produced aldosterone

[224].

From the rat data along with the experiments done on bovine liposomal

P4 5 0 aldo, the validity of (at least) 18-hydroxycorticosterone, as an intermediate, is in

question.

The identity of a key intermediate in aldosterone biosynthesis appears to have

been determined by Lantos et al. [195]. Having discovered that 18-

hydroxycorticosterone is able to interconvert into different forms (see Figure 1.16),

they measured the rate of aldosterone synthesis with different forms of this steroid.

They eventually found that the steroid 18-DAL (21-hydroxy-11j,18-oxido-4-

pregnene-3,20-dione) was a much more favorable substrate than the 11-hydroxy,18-

hydroxy form of 18-hydroxycorticosterone. From their data, they proposed the

reaction sequence shown in Figure 1.17.

. #'. I

Figure 1.17: Reaction sequence from corticosterone to aldosterone. This figure was
adapted from Lantos et al. [195].
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1.5.5.2. The first oxidation by P45011, or P450aldo

The first hydroxylation of DOC to either corticosterone or 18-hydroxy-DOC is

well described by the common P450 hydroxylation mechanism depicted in Figure

1.6. The fact that both the 110-hydroxylated and 18-hydroxylated versions of DOC

are both made may reflect the crowded substrate 0-face (see Figure 1.18) that P45011,

must contend with. In terms of the 6:1 ratio of 110 to 18-hydroxylation of DOC, this

may reflect the positioning of the heme with respect to the substrate and/or the

stability of the substrate based radicals; the secondary carbon radical intermediate at

C-11 would be more stable than the primary radical at C-18.

1.5.5.3. The second oxidation by P4 5 0 aldo

1.5.5.3.1. Hydroxylation at the Remaining (C-11 or C-18) Unhydroxylated Carbon

If the P-face of the steroid is indeed crowded, then a second hydroxylation

could conceivably cause a space problem for the enzyme. Accommodation for a

dihydroxysteroid could be one of the advantages that P 4 50aldo has over P45011, . If the

reaction sequence described by Lantos et al. is at work, the newly formed 18-

hydroxycorticosterone would then have to convert into 18-DAL before the last

oxidation can occur. Lantos et al. describe this conversion as taking place on the

acidic interior side of the inner mitochondrial membrane. If this area is sufficiently

acidic, then it would appear to be a valid means by which 18-DAL could form.

However, if we are to include the information from experiments on bovine P4501 1,

reconstituted within liposomes (with no proton gradient), we need another means

to make the putative essential 18-DAL intermediate. P4 5 0 aldo may yet prove capable

of catalyzing this conversion itself.

1.5.5.3.2 Direct Formation of 18-DAL

From this collection of facts, the following questions surface. Could 18-DAL

be formed directly within the active site of P 4 50aldo? Can 18-DAL be made directly

from either corticosterone or 18-hydroxy-DOC, without adding a second hydroxy

group on an already crowded face of the steroid? Figure 1.18, Figure 1.19, and



Figure 1.20 describe how 18-DAL could be directly made from either corticosterone

or 18-hydroxy-DOC.

Protein -- CH,

Corticosterone +
P450aldo + 02
+ 2 Equivalents

of Reduced
Adrenodoxin

Figure 1.18: The radical-mediated formation of 18-DAL, from corticosterone.
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Figure 1.9: The radical-mediated formation of 18-DAL, from 18-hydroxy-DOC.

18-Hydroxy-DOC +
P450aldo + 02
+ 2 Equivalents

of Reduced
Adrenodoxin



1.5.5.3.2.1. Radical-Mediated Formation of 18-DAL

The key feature in these radical-mediated direct syntheses of 18-DAL (Figures

1.18 and 1.19) is the initial abstraction of a hydrogen atom from a hydroxyl oxygen,

by the oxenoid moiety. Although this step does not appear to have great deal of

precedence in known cytochrome P450 chemistry, it is implied in some situations.

In the glycol cleavage reaction of P450scc, there has not yet been any evidence of a

third hydroxylation that might initiate the C-20 to C-22 bond lysis. In fact, the two

most prominent suggested mechanisms involve an initial step requiring the

abstraction of a hydrogen atom from a substrate hydroxyl group [9]. In addition,

P45011,, was shown capable of oxidizing cortisol to cortisone, entailing the formation

of carbonyl at C-11 from an 113-hydroxy group [198]. If the oxidizing agent in this

reaction involves the heme cofactor, then it seems that it could only form the gem

diol if it first epimerized the 110-hydroxy group to an 11a-hydroxyl or if the steroid

would bind in an 'upside down' manner, relative to its normal mode of binding.

Without these extra conditions, P45011, could only form the C-11 carbonyl by

abstracting a hydrogen for the 110-hydroxyl. Since the oxenoid moiety has proven

itself as a radical initiator, it is plausible that an 11-oxidase activity could manifest

itself in a homolytic fashion on P4501,1 . Assuming this property of P45011, , and

knowing that P450aldo is highly homologous to it, the initial steps described in

Figures 1.18 and 1.19 appear reasonable.

Once we allow the possibility of having an oxygen centered radical, we now

can explore what other reactions are possible beyond this point. It is well known

that radical-initiated hydrogen atom migrations are readily possible when the

transition state forms a six-member ring, in a chair conformation [226, 227]. In the

case of corticosterone- or 18-hydroxy-DOC-derived alkoxy radicals, the rigid nature of

the steroid itself, forces an almost perfect 6-member chair transition state.

Therefore, the 1,5 hydrogen transfer, proposed in Figures 1.18 and 1.19 is well

precedented.

Beyond the 1,5 hydrogen transfer the mechanisms on Figures 1.18 and 1.19

require the removal of another hydroxyl hydrogen atom. Formation of this second



alkoxy radical would conceivably lead to a rapid recombination with either the C-18

or C-11 carbon-based radical, forming 18-DAL directly from either corticosterone (see

Figure 1.18) or 18-hydroxy-DOC (see Figure 1.19), respectively.

1.5.5.3.2.2. Heterolytic-Type Formation of 18-DAL

If 18-DAL is formed without leaving the active site of P4501,, - and if 18-

hydroxycorticosterone is not a valid intermediate - 18-DAL could conceivably be

arrived at via a C-ring olefin intermediate. Two pathways for this alternative are

given in Figure 1.20. The formation of such an intermediate would be another way

of not crowding the active site. The major shortcoming to this proposed route for

18-DAL formation is that it is not accessible to the substrate 18-hydroxy-DOC. If this

pathway is operative in P450,1,, the question which arises is where might the C-ring

olefin reside? Considering a report by Sih in 1969 that 9,11-dehydrocortexolone (the

A9-1 version of 11-deoxycortisol) was converted to the epoxide by P4501,, [228], this

argues against path i of Figure 1.20. This is due to the fact that epoxides are not

known to be intermediates in aldosterone synthesis along with the assumptions

that 11-deoxycortisol is known to make 18-oxocortisol (presumably by the same

pathway as DOC is transformed to aldosterone). However, if the A9-11 version of

corticosterone did form, it would probably result in the wash out of the C-9

hydrogen of corticosterone (see Figure 1.20) as well as the 113-hydroxy oxygen; these

could be confirmed with isotope studies.

Evidence for the existence of a A~ 1-12 olefinic intermediate could also be found

in isotope wash out experiments. Pathway ii of Figure 1.20 may cause the wash out

of hydrogen atoms at the C-12 position. This pathway also involves the loss of the

110-hydroxyl oxygen of corticosterone. Turnover studies with deuterated

steroid/protonated water or simply with 1802 would answer these questions. Such

experiments would address whether or not this compound is a chemically

competent intermediate in aldosterone formation.



1.5.5.4. The third oxidation by P4 5 0 aldo

Since Lantos et al. have shown that 18-DAL is the most probable penultimate

intermediate in aldosterone formation, the final oxidation appears straightforward

[195]. Once 18-DAL binds in the active site of P4 5 0aldo, it may bind in such a way as to

deliver the C-18 methylene closer to the heme. In addition, the C-18 methylene can

now stabilize a radical more easily, due to the presence of oxido oxygen that it shares

with C-11.
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Figure 1.20: The direct formation of 18-DAL via the formation of one of either two
C-ring olefins.
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18-DAL may not only be a sensible chemical intermediate; it also appears to

play a complementary and sometimes antagonistic role (in vivo), when compared

to aldosterone [195]. Lantos, et al. point out that sodium retention by the kidneys,

effected by the aldosterone signal, compromises the body's ability to get rid of acid

[195]. 18-DAL, by competing with aldosterone for the mineralocorticoid receptor,

may be a key hormone in regulating the loss of H' in the urine. When P4 5 0 aldo

converts 18-DAL into aldosterone, it not only increases the concentration of

aldosterone, but it also decreases the concentration of perhaps its key competitor for

the mineralocorticoid receptor. This would potentially make the last step of

aldosterone a point of control (which may go wrong in some pathologies), which

additional mitochondrial factors could modulate in some way. It is interesting to

note that there are individuals who produce sufficient amounts of 18-

hydroxycorticosterone to make aldosterone, but lack the ability to carry through the

additional step to make aldosterone [229]. This suggests that the final step

(hydroxylation of 18-DAL) perhaps proceeds by yet a different mechanism.

1.5.6. Known Structural Information on P45011, and P4 50a1do

Compared to P450s,,, very little structural information has been reported on

cytochrome P45011,. This fact is linked to its instability when removed from

mitochondrial membranes. It has always been easier to allow the contaminating

P450 11, (in P450,3 c preparations) to deactivate, leaving only one type I P450 form as

the active species. Another factor involved in the relative neglect of P45011,

concerns the fact that its multiple activities implied that one could not remove it

from its 'contaminating activities'. The expression of cDNA clones for P45011, and

P4 5 0 aldo [178, 179, 230-232] has convinced investigators of the catalytic capabilities of

this single enzyme. The increasing trend of studying mammalian P450 enzymes in

liposomes may also bring needed attention back to this important enzyme.

Nevertheless, knowledge gained in the study of other P450 proteins will help

us to better understand P45011p . Both steroidogenesis in general and cytochrome

P450 proteins in particular have common themes which can be carried over to less



explored pathways and enzymes. The availability of several crystal structures on

P450cam [39-47, 233] as well as the structures of P450te,, [48] and P 4 5 0
BM3 [49], has

enabled sequence alignment studies, associating sections of mammalian P450

proteins with well defined domains. The NMR solution structures of

putidaredoxin [234-237] will presumably soon reveal the binding mode of this

protein with P450cam . This will have a direct benefit to type I P450 enzymes. Even

though putidaredoxin and adrenodoxin are not interchangeable in the respective

catalytic cycles of mitochondrial and bacterial type I P450 enzymes, it may still lead to

generalizable modes of electron transfer between ferredoxins and cytochromes P450.

The studies on adrenodoxin and P450sc will also benefit P45011, research.

Even though P450sc is the preferred acceptor of reducing equivalents from

adrenodoxin [187], P45011, still gets its electrons from this electron transfer protein

and may bind in similar ways.

1.5.6.1. P45011, is Mostly Membrane-Integrated

Lombardo et al. reported that trypsin treatment of liposome-integrated P45011,
left a 34 kdal peptide component still in the membrane [109]. This membrane-

bound fragment was found to still hold onto the heme [109]. Although P45011, has

been shown to be capable of phosphorylation at a serine, by a cAMP-dependent

protein kinase, the identity of this residue remains uncertain due to its instability

while subjecting it to mild proteolytic digestion. [109].

1.5.6.2. Spectroscopic Information

In EPR [207, 238] and Resonance Raman studies [238], it was found that the

low spin forms of P4501 1, and P450scc are similar, but that their high spin forms

differ.



1.5.6.3. Mutations Known to Alter Activity

In mammals, P45011, is made from the transcription of a gene designated as

CYP11B1, whereas P 4 5 0 aldo is a product the CYP11B2 gene. These genes have been

isolated and characterized in human[231, 232], rat [200, 230], and mouse [178]. In the

case of bovine, both of the isolated genes give rise to proteins with in vitro

aldosterone synthase activity; therefore, the designation of one of these as the

CYP11B2 remains undecided.

In humans these genes are 95% identical in the coding regions and give rise

to proteins which are 93% identical (in terms of amino acids) [177]. There are

known mutations which affect the activity of the final gene product. An arginine-

448 to histidine mutation was found responsible for 110-hydroxylase deficiency in

some human subjects, with congenital adrenal hyperplasia [239]. The mutation of

Va1386 to Ala (in the CYP11B2 gene) causes CMO II deficiencies [240]. Unequal

crossing over between the CYP11B1 and CYP11B2 genes gave to a form of

glucocorticoid-suppressible hyperaldosteronism [241]. In one group of individuals,

the following mutations in the CYP11B2 gave rise to these effects (compared to wild

type): R181W lowered 18-hydroxylase activity and eliminated 18-oxidase activity

and V386A gave rise to small but consistent reduction in 18-hydroxycorticosterone

formation [174, 242]. A mutation in CYP11B1 (in yet another group), where Arg448

was changed to histidine, gave rise to a deficiency in P45011, activity [174, 243]; this

mutation is believed to be in the heme binding region [243].

Mutations which might provide insight on the mechanism of P45011, and

P4 5 0 aldo have also been noted in other species. The amino acid changes Phe66 to Leu

and Ser126 to Pro was found to extinguish all cortisol and aldosterone synthesis

activities from bovine P45011, [244]. The cDNA sequence for P450 11, from salt-

resistant normotensive (DR) rats (lacking normal levels of aldosterone) possessed

five amino acid changes compared to the wild type; these were Arg127 to Cys, Val351

to Ala, Va1381 to Leu, Ile384 to Leu, and Va1443 to Met [245]. The rate of 18-

hydroxylation to 110-hydroxylation, of DOC, was 0.58 for wild type and 0.23 for the

P45011,-DR-expressed COS-7 cells.



1.5.6.4. Molecular Modeling

Lacking a crystal structure of P450 11,, molecular modeling offers an important

tool in building an emerging model for this protein. Since its reported crystal

structure in 1985 [39], P450cam has long been the model that all other P450 proteins

have been compared to. Three-dimensional models of the highly homologous

herbicide-inducible bacterial proteins P450su, and P450su2 (from Streptomyces

griseolus) have been obtained by aligning them with the known structure of P450cam

[246].

The known structure of P450BM3 has also been reported to have been used in

the modeling of a mammalian P450 enzyme. Ruan et al. generated a three-

dimensional model of the human protein P450 thromboxane synthase [51].

Although information for both P450cam and P450BM3 were used to obtain their

derived structures, the authors mention that P 4 5 0 BM3 was a more suitable template.

The less homologous, but still related, P450 enzymes from mammals have

also benefited from P450cam's known structure. Sequence alignments among many

of the sequenced mammalian P450 enzymes, with each other and with P450cam, have

been reported [55, 247-249]. Alignment of the predicted secondary structures of these

mammalian P450 proteins with P450cam has also been done [55, 249-251]. So far this

kind of study has led to complete three-dimensional predicted structures for P450

nifedipine oxidase [53], P450 debrisoquine 4-hydroxylase [54], and P450scc [56].

The prediction of protein structures from information gained of crystallized

(and similar) proteins, however, is still an emerging technique. It is a process with

many steps, with sometimes diverging choices at each stage. Braatz et al. have

commented that their models of P450su1 and P450SU2 changed depending on choices

made during primary and secondary structural alignments as well as during

refinement [246]. They mentioned that some regions of the active sites (of the

aligned structures) are highly dependent on different choices made during energy

minimization [246]. Such concerns encourage using additional spectroscopic and

structural information - already known about the protein in question - to constrain

the different structures that molecular modeling generates.



Since eukaryotic P450 enzymes are longer in sequence than P450cam, alignment

methods inevitably generate gaps. Some of the stretches of unhomologous amino

acids have been proposed to be related to the fact that the eukaryotic P450 proteins

must bind to membranes, where P450cam does not. However, this dual phase in

which eukaryotic P450 proteins exist, is not accounted for in the modeling work

reported at present.

In an effort to avoid the problems of modeling membrane P450 proteins with

soluble P45 0cam, Joardar constrained his modeled structures of some mammalian

steroidogenic P450 enzymes (P450c1 7, P450C21, P4508se, and P45011,) to areas of the

heme binding site and the presumed substrate binding site [55]. Amino acid

residues in the initial P4 50cam structure were replaced with 'aligned' amino acids

from the mammalian P450 protein in question; this was performed only in the

(P450cam-designated) regions of helices I and L and in the sequence connecting them.

No sequence gaps were introduced. Once these substitutions were made, the

mutated structures were energy minimized. For the P450sc structure, Joardar

incorporated known distances between heme iron and substrate (acquired from

EXAFS and ESEEM experiments), along with a docked substrate, before performing

the final energy minimization [55]. Although complete structures of the

mammalian enzymes were not obtained in this method, they introduced fewer

perturbations into the pre-minimized structure and may offer more meaningful

representations of the derived active site structures.

The P45011, structure, obtained by Joardar [55], would be a good place to begin

in mapping out its active site. The goal of the work presented in this thesis is to add

to the spectroscopically-obtained structural information on P450 11,. As more

information obtained from mutation results, mechanistic studies, and

(experimentally-obtained) structural work is incorporated into a modeled structure

of P4501 ,, , we will hopefully come to be better understand this intriguing enzyme.
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CHAPTER 2

Synthesis of Deuterated Versions of Corticosterone



2.1. Uses of Corticosterone Analogs

Corticosterone is the product of 11-hydroxylation of 11-deoxy-corticosterone

by cytochrome P450 11-hydroxylase (P450 11,) as well as aldosterone synthase

(P4 5 0 aldo). It is one of the glucocorticoid hormones and also an intermediate in the

biosynthetic pathway leading to aldosterone. On occasion, P45011, is able to

hydroxylate corticosterone once more at the C-18 position, forming 18-

hydroxycorticosterone [1]. Cytochrome P4 5 0 aldo (aldosterone synthase) is able to use

corticosterone, as a substrate, to make aldosterone (see Chapter 1). Since

corticosterone is able to bind to both P45011, and P4 50aldo, it can serve as a structural

probe for both of these enzymes. Spectroscopically determined iron-corticosterone

distances may then offer valuable information on any structural differences in the

active sites of these related enzymes.

2.1.1 The Requirements of ESEEM and EXAFS Spectroscopies

Iron-steroid distances have been successfully determined by Groh et al. [2] and

Joardar [3], for the case of cholesterol side chain cleavage enzyme (P450scc). Both of

these reports utilized the technique of electron spin echo envelope modulation

(ESEEM); Joardar also used extended x-ray absorption fine structure (EXAFS)

spectroscopy [3]. Both of these techniques benefit enormously from substrates

which exhibit some degree of covalency toward the heme iron.

ESEEM benefits from ligands that are able to induce a low spin in the

paramagnetic heme iron. Since ESEEM directly benefits from long paramagnetic

relaxation times, low spin complexes (indicative of low spin-orbit coupling) allow

data to be collected at longer times; this allows more modulations to be observed

which have a direct effect on the resolution of the frequency domain spectrum.

Groh et al. [2] capitalized on this when utilizing the (deuterated version of the) low

spin inducing [4] 22(R)-hydroxy-cholesterol. Joardar's sulfoxide probe was also a low

spin inducer [3, 5].

Apart from the benefit added from low spin complexes, ESEEM studies have

the absolute requirement of a detectable nuclear spin in the structural probe. The



preferred nuclear spin in such experiments is deuterium. The specific replacement

of a hydrogen, from the P450-binding probe, with a deuterium allows one to use

spectra from both the protonated and deuterated P450:probe complexes to pull out

the specific spin echo modulation arising from the deuterium. Fitting the

experimental data to simulations then provides the iron-deuterium distance [6].

Additionally, electron spin echo spectrometers can be specifically tuned to measure

deuterium modulations, without any background proton modulations [7].

In the case of EXAFS, a bond between the iron and the substrate helps to

diminish the Debye-Waller damping term in the equations used when

transforming the raw data into structural information [8]. Joardar's two EXAFS

probes (22(R)-aminocholesterol and 20(S),22(R)-22-thiacholesterol-S-oxide)

demonstrated good iron coordination from EPR studies [3] - which contributed to a

more favorable EXAFS structural determination than would otherwise be the case.

EXAFS also benefits from the incorporation of large atoms into the substrate; this

advantage was also exploited by Joardar, in the utilization of a sulfur-containing

cholesterol analog as a structural probe [3].

2.1.2. Desired Properties in Corticosterone Analogs as P45011, Probes

If one wishes to use corticosterone analogs as structural probes for ESEEM and

EXAFS studies of P45011, , the spectroscopic requirements (mentioned above) must be

examined. The fact that corticosterone is known to bind only weakly to detergent-

solubilized P45011, [9], and that it does not completely recruit P4501 1, to the low spin

state [10], argues that it may not be the ideal probe for these spectroscopies.

However, corticosterone's affinity for liposomal-bound P45011, is substantially better

[9]. In addition, it is still capable of a 60 to 70% low spin inducement [10]. Therefore,

under the proper conditions, corticosterone meets the binding properties of both

spectroscopies.

Corticosterone is also ideally set up for a relatively straightforward specific

incorporation of deuteriums. With a properly protected version of this steroid, its

11 1-hydroxy group can be oxidized to a carbonyl, after which it then has



exchangeable protons (ax to the carbonyl atom). This chapter describes the synthesis

of the 11-keto version of corticosterone (see Figure 2.1). In addition, the

incorporation of deuteriums in the C-9 and C-12 positions is described. The

deuterated steroids, synthesized in this work, still require further spectroscopic

(NMR) evidence before the deuteriums can be assigned to specific carbons.

2.2 Materials

Corticosterone (1) was purchased from Merck Sharpe & Dome.

p-Toluenesulfonic acid and tert-Butyldiphenylchlorosilane were obtained from

Fluka. All other reagents and solvents were of the highest grade available and used

without further purification, unless noted otherwise.

2.3 Methods

All spectra of samples were acquired at MIT, using the chemistry

department's NMR, FTIR, and MS instruments and the Orme-Johnson Hewlett

Packard diode-array uv-vis spectrophotometer. All NMR samples were prepared in

deuterochloroform with tetramethylsilane as an internal standard. NMR spectra

were acquired on either the XL-series or Unity 300 MHz Varian spectrometers or on

a Briiker 250 MHz spectrometer. Mass spectra were taken using a Finnegan System

quadrupole mass spectrometer in electron ionization mode. Infrared samples were

prepared by dissolving them in methylene chloride and allowing them to dry as

thin films on NaCl plates. FTIR spectra were obtained from a Perkin Elmer 1600

spectrometer.

Purification of reaction products was performed using silica gel

chromatography. The first stages of chromatography were generally performed on a

Florisil (60-100 mesh; Fisher Scientific) preparatory size flash column. Finer

purifications were then performed on a Chromatotron system (Harrison Research;

Palo Alto, California).



2.4. Protection of the C-3 and C-20 Carbonyls of Corticosterone

The protection of the C-3 and C-20 carbonyls of corticosterone utilized the

strategy of forming cyclic ketals, with ethylene glycol. This was achieved in a single

step (see step a of Figure 2.1). This reaction was performed several times; a

description of an average synthesis follows. One equivalent of corticosterone (1) and

30 equivalents of anhydrous ethylene glycol were refluxed in benzene (420 mL for

every 5 grams of 1) with a catalytic amount (0.02 equivalents) of p-toluenesulfonic

acid. The removal of water, by means of a Dean-Stark apparatus, effected the

formation of the first ketal [absorbing in the long uv (as does corticosterone), with a

molecular ion peak, by MS, of 390; the 5.668 ppm NMR signal of C-4 vinyl proton

still present; strong IR C=O stretch at 1657.8 cm -1 still present; this corresponds to the

C-20 ketal] and then the other, giving the final product 2 (non-absorbing in the long

uv). The reaction was monitored by silica gel TLC in a solvent mixture of ethyl

acetate:hexane (6:1) - the C-20 mono-protected compound traveling slower than 1,

but 2 traveling slightly faster than 1. The total reaction time was generally 8 hours.

The reaction was then quenched with the addition of a saturated NaHCO 3

aqueous solution (400 mL for a 5 g reaction with 1), followed by a work up. The

lower aqueous layer was removed using a separatory funnel. The organic layer was

then treated with another NaHCO wash (200 mL for a 5 g reaction with 1), followed

by removal of the aqueous layer once again. The organic layer was then dried over

anhydrous sodium sulfate, after which it was evaporated down to an oil (rotary

evaporator, over a -60'C water bath). This oil was then dissolved in ethyl

acetate:hexane (1:1) and applied to a flash column (5 X 40 cm; column material

Florisil), equilibrated with the same solvent system. The column was eluted in

three stages, using different solvent proportions of ethyl acetate:hexane: 1:1, 3:1, and

then 6:1. The best fractions were then pooled and further purified on a

Chromatotron plate, using two stages of elution with ethyl acetate:hexane - first

with a 6:1 solvent
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Figure 2.1: Synthesis of the 11-keto version of the C-3 and C-20 protected
corticosterone. (a) 30-fold excess of anhydrous ethylene glycol, catalytic amount of p-
toluenesulfonic acid, benzene, reflux under anhydrous conditions with the
additional removal of water; (b) tert-butyldiphenyl-chlorosilane, 5 eq. of imidazole
(base), methylene chloride:DMF (4:1.3), room temperature; (c) 5 eq. of CrO3, 12 eq. of
pyridine, methylene chloride, room temperature; (d) tert-butylammonium fluoride,
THF, room temperature.

mixture, followed by a 12:1 mixture. IR (cm-1): 3488.0 (s, O-H stretch), 2941.1 and

2891.5 (s, aliphatic C-H stretches), no C=O stretch seen. 1H NMR (ppm): 5.234 (t,

J=2.25 Hz, C-6 vinyl proton). MS showed a molecular ion peak of 434.
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2.5. Protection of the C-21 Hydroxyl Group

The protection the C-21 hydroxy group was performed using the silating

reagent tert-butyldiphenyl silyl chloride [11] (see step b of Figure 2.1). This reagent

was chosen due to its bulkiness - which was expected to selectively protect the C-21

primary, over the C-11 secondary, hydroxyl group. The eventual C-21 silyl ether was

also expected to be stable to the conditions used for the subsequent oxidation of the

C-11 hydroxy to the ketone.

The initial steroid (2) (1.97 X 10 -2 moles) was combined with 530 mL of

methylene chloride:DMF (4:1.3) and imidazole base (0.101 moles). Once, the steroid

dissolved, the tert-butyldiphenyl silyl chloride (2.36 X 10 -2 moles) liquid was added.

The reaction was stirred at room temperature, under a water condenser and drying

tube. The reaction was monitored by silica gel TLC in a solvent mixture of ethyl

acetate:hexane (6:1) - with compound 3, traveling the fastest.

The reaction was stopped (after 10 hours) with the addition of 500 mL of

saturated aqueous solution of NaCO 3. The mixture was placed in a separatory

funnel, after which the lower organic layer was recovered. The aqueous phase was

extracted with 200 mL of ether; the upper organic layer, from this separation, was

added to the first organic layer. The pooled organic layers were then dried over

anhydrous sodium sulfate, filtered, and evaporated to dryness. The evaporation

was performed using a high vacuum rotary evaporator over warm (-600 C) water.

Compound 3 was purified from a Florisil column, using a solvent system of ethyl

acetate:hexane (6:1). Pure fractions from this column were used in subsequent

reactions; less pure fractions were purified further using a Chromatotron. A uv

absorbance spectrum of 3 demonstrated the presence of the protecting group; its

extinction coefficient at 264 nm was estimated at 0.79 cm'-g-'L. IR (cm-1): 3509.9

(a diminished O-H band, compared to 2), 3067.9 and 3048.5 (w, aromatic C-H stretch),

2932.5 and 2892.8 (s, aliphatic C-H stretches), 1111.5 (s, Si-O-C band). 1H NMR (ppm):

7.67 (m, possible ortho protons of the phenyl rings), 7.36 (m, possible meta and para

protons of the phenyl rings), 5.227 (C-6 vinyl proton). MS: molecular ion peak at

673.



2.6. Formation of the C-11 Carbonyl

The 11-ketosteroid was formed using the reagent dipyridine-chromium(VI)

oxide [12, 13] (see step c of Figure 2.1). Chromium trioxide (0.106 moles), pyridine

(0.211 moles) and methylene chloride (500 mL) were combined and stirred at room

temperature for 20 minutes. This resulted in the development of a maroon color.

The steroid reactant (3) (1.76X 10 -2 moles) was then added. The mixture was stirred

at room temperature and the reaction monitored by silica gel TLC [solvent mixture

ethyl acetate:hexane (6:1)] - the fasted moving spot corresponding to the desired

product.

The reaction was quenched with the addition of 500 mL of a saturated

aqueous solution of NaHCO3. After the organic layer was recovered, the aqueous

layer was back- extracted three times with methylene chloride. The pooled organic

layer was washed with NaHCO3 once more. This new aqueous layer was then back-

extracted with methylene chloride, as before, and pooled with the organic layer. The

recovered organic solution was evaporated down to an oil, using a rotary

evaporator. The oil was then dissolved in ~30 mL of methylene chloride and

filtered to remove particulate material. The brown solution was then twice passed

through minimal amounts of silica (eluting with methylene chloride), making the

solution less dark. This was evaporated down to an oil once more, after which it

was purified on a Florisil flash column, using a solvent system of ethyl

acetate:hexaxe (6:1). IR (cm-1): 1759.4 (s, C=O stretch). MS showed a molecular ion

peak of 670.

2.7. Removal of the C-21 Silyl Group

Before the incorporation of deuteriums into the target 11-keto steroid, the C-

21 silyl group was removed (see step d of Figure 2.1). Compound 4 (1.56 X 10-2

moles) was dissolved in -200 mL of THF, in a small vial. Tetrabutyl ammonium

fluoride (3.13 X 10-2 moles) was then added to the solution. The mixture was stirred

at room temperature and stopped after five hours.

The reaction was quenched with saturated aqueous NaHCO 3. After

recovering the organic layer, the aqueous layer was back-extracted three times with



diethyl ether and pooled with the first organic layer. This new organic layer was

then washed with distilled water. After removal of the aqueous phase, the organic

layer was evaporated to dryness. The product was then recrystallized by heating it in

ethyl acetate and a small amount of hexane; upon cooling crystals formed. IR (cm-1):

3501.4 (s, O-H stretch), no aromatic C-H stretch visible, 2930.3 (s, C-H stretch) 1696.4

(s, C=O stretch). 1H NMR: no aromatic protons detected. MS showed a molecular

ion peak of 432.

2.8 Perdeuteration of C-9 and C-12 of Compound 5

Exchange of the protons on the carbons (which are) 0a to the C-11 keto carbon

of 5, was performed using sodium deuteroxide in deuterated methanol. Compound

5 (2.77 X 10-3 moles) was combined with NaOD (6.85 X 10-2 moles, dissolved in 7.0

mL of D20) and deuterated methanol (60 mL). This mixture was refluxed for 4 days,

under a water condenser connected to a drying tube. Cooling then gave rise to

crystals which were analyzed by MS. The perdeuterated- (at carbons 9 and 12)

compound 5 is designated as compound 6 (molecular weight 436.27 g/mole, when

the C-21 hydroxyl is deuterated). MS demonstrated a steroid with the parent ion

peak of 436 g/mole. Further verification of these positions of deuteration (by NMR)

has yet to be performed.

2.9. Deuteration of Compound 5 at the C-9 and C-12oa Positions

The x face of the steroid is more accessible and axial protons (on a carbons)

are more acidic [14]. As a result, the exchange of the C-9 and C-12oa protons was

achieved under similar conditions, described in section 2.8, with the exception that

the reaction was refluxed for less time. Compound 5 (1.79 X 10-3 moles) was

combined with NaOD (4.41 X 10-2 moles) and 60 mL of deuterated methanol and

refluxed for four hours. The mixture was then cooled, forming crystals. The 9-

deutero,12a-deutero version of compound 5 is designated as compound 7

(molecular weight of 435.26 g/mole when the C-21 hydroxyl is deuterated).



MS demonstrated a parent ion peak of 435 g/mole. Further verification of these

positions of deuteration (by NMR) has yet to be performed.

2.10. Back-protonation of Compound 6, Making 120-Deutero Compound 5

Back-protonation of the (C-9 and C-12) perdeuterated steroid 6 was achieved

utilizing similar conditions as was used to make compound 6 itself. Compound 6

(4.59 X 10-4 moles) was combined with NaOH (0.035 moles) and ~100 mL of 70%

methanol (in H20). This was heated to reflux conditions. Refluxing was continued

for 65 minutes, after which the mixture was allowed to cool. The 120-deutero-

compound 5 is designated as compound 8 (molecular weight 433.26 g/mole, when

the C-21 hydroxyl is protonated). MS demonstrated a steroid with the parent ion

peak of 433 g/mole. Further verification of 123-position of deuteration of

compound 8 (by NMR) has yet to be performed.
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CHAPTER 3

Purification of Proteins
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Spectroscopic and mechanistic studies of cytochrome P450 111 hydroxylase

(P450 11,) requires this P450 enzyme itself and its two electron transfer companion

proteins - adrenodoxin (Adx) and adrenodoxin reductase (AdR). All of these

proteins are found in the adrenal cortex of mammals. The proteins described in this

thesis are from bovine. Conveniently, these adrenal glands can be obtained from

beef slaughter houses. Since all of the desired proteins are found in the outer tissue

(the cortex) of the gland, an immediate purification can be achieved by dissecting out

the inner medullar tissue (which is lighter in color than the cortex). Once the cortex

is isolated, the soluble (and highly acidic) Adx can be significantly purified from this

homogenated tissue, using an ion exchange resin as a first step. However, since

P45011, and AdR lack as strong a distinction from other cellular proteins, it is

necessary to first isolate the mitochondria, where they are all found.

3.1. Materials and Methods

3.1.1. Materials

Bovine adrenal glands were obtained within 24 hours of slaughtering from

Green Bay Dressed Beef (Green Bay, Wisconsin); these glands arrived on wet ice and

were never frozen. Protease inhibitors were obtained from Boehringer Mannheim.

Cyanogen bromide-activated Sepharose 4B was obtained either from Pharmacia LKB

or from Sigma Chemical Company. Octyl-Sepharose 4B, 2'5' ADP-Sepharose 4B, and

mono-Q ion exchange columns was acquired from Pharmacia. Nicotinamide

adenine dinucleotide phosphate (in the oxidized form) was purchased from Sigma

Chemical Company. Ethanolamine was purchased from Aldrich. Bovine serum

albumin was obtained from Sigma Chemical Company.

3.1.2. Methods

All uv-vis absorption spectra were acquired on a Hewlett Packard diode array

spectrophotometer. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS

PAGE) was performed on a Pharmacia PhastgelTM system, using homogeneous 20%

acrylamide gels, and stained using silver nitrate-based staining procedures. Mono-Q

column chromatography was performed on a Pharmacia FPLC automated
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chromatography unit. Quantitation of Adx solutions were made based on a 414 nm

extinction coefficient of 10' M -cm-' [1] and an assumed molecular weight of 14.2

kdal (this is the molecular weight of an C-terminal-intact version of Adx).

Quantitation of AdR solutions were based on a 450 nm extinction coefficient of 11.3

X 103 M-'cm -1 and an assumed molecular weight of 52.5 kdal [2]. Protein assays of

Adx and AdR employed either the Coomassie blue-based Bio-Rad Protein Reagent

or the Lowry method [3], using bovine serum albumin as a standard. Protein assays

of cytochrome P450 1,, were based on a so-called modified Lowry method [4], also

using bovine serum albumin as a standard. P450 content was determined by the

carbon monoxide binding assay [5].

3.2. Isolation of Bovine Adrenocortical Mitochondria (BACM)

Isolation of the bovine adrenocortical mitochondria (BACM) is performed

according the method of Omura et al. [6] (See Figure 3.1). All steps are performed at

5 'C, unless otherwise noted. Once the medulla has been removed, the cortex is

homogenized in a buffer of 0.25 M sucrose and 10 mM Potassium phosphate (pH 7.4,

40 C) using a blender (approximately 2 liters for every 2.5 kg of cortical tissue). The

resulting homogenate is centrifuged at 2,200 RPM in a Sorval (Dupont Instruments)

centrifuge (using a GSA rotor) for 10 minutes. The supernatant is decanted through

cheese cloth, after which the pellets are resuspended with 70% of the original

volume of buffer used for the original homogenization. This resuspended pellet is

then homogenized again - the resulting homogenate centrifuged as before). The

supernatant from this centrifugation is decanted through cheese cloth as well,

pooling it with the first supernatant. The pellet is discarded.
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Adrenal Cortex

Precipitate
(discard)

Homogenize with 4 volumes of
10 mM Potassium phosphate (pH 7.4),
0.25 M Sucrose. Centrifuge at 900 g
for 20 minutes.

[Supernatant)

Centrifuge at 9,000 g

Precipitate Supernatant
(Mitochondria) (discard)

Resuspend in 10 mM Potassium
Supernatant phosphate (pH 7.4). Sonicate and

(used as a source centrifuge at 150,000 g for 1 hour.
of Adx and AdR)

Pellet
(Containing P450s,, and P45011p)

Figure 3.1: The general breakdown of the process of isolating either the soluble
interior mitochondrial proteins (Adx and AdR) or the membrane-bound
mitochondrial P450 proteins.

The pooled supernatants are further centrifuged at 10,000 RPM (same rotor

and centrifuged as before) for 30 minutes. The supernatant is discarded. The pellet

contains the adrenocortical mitochondria - predominantly unbroken.

3.3. Isolation of BACM Membranes

The isolated bovine adrenocortical mitochondria are predominantly intact.

Disruption of these organelles allows the soluble Adx and AdR proteins to be

separated from the membrane-bound P450 11, and P450sec proteins.

Disruption of the BACM was performed using sonication. BACM was

resuspended in 10 mM potassium phosphate (7.4) (-1 liter for every 2 kg of original

cortex material). This homogenate was then sonicated in ~100 mL aliquots in an ice-
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chilled metal beaker (3 times 20 seconds, duty cycle of 60%, allowing for cooling on

ice between sonications), using a Sonics & Materials Vibra Cell; the sonicator probe

had the dimensions of 1.9 cm X 6.5 cm.

The sonicated mixture was then centrifuged at high speed to pellet the

membranes. Centrifugation was performed using a Beckman ultracentrifuge at

28,000 RPM for 1 hour (type 30 rotor, 4°C). The resulting supernatant contained the

Adx and AdR proteins. The pellet contained the P450 membrane proteins.

3.4. Purification of the Specific Proteins

3.4.1. Purification of Adrenodoxin

Due to the fact that adrenodoxin (Adx) is highly acidic and that it is found in

high concentrations in the adrenal cortex, it can be directly purified from whole

adrenocortical tissue, without further isolation of the mitochondria. Since Adx has

been isolated with some degree of heterogeneity at its C-terminal [7] (differential C-

terminal truncation), it is possible that endogenous proteases partially degrade this

protein upon normal isolation. As a result of this observation, the standard

methods of purification of adrenodoxin [8, 9] were revised with the use of protease

inhibitor-supplemented buffers, in the early stages of the purification

After the excision of the medulla, the adrenocortical tissue was sliced into

smaller sizes and immediately frozen in liquid nitrogen. The frozen tissue (1 kg)

was then ground to a powder in liquid nitrogen, using a blender. The frozen

powder was then allowed to thaw in 1.75 liters of low salt detergent buffer,

containing protease inhibitors (10 mM Tris*HC1 (pH 7.5), 10 mM KC1, 0.5% Tween

20, 0.1 mM PMSF, 0.5 gg/mL leupeptin, and 0.7 gg/mL pepstatin).

The cellular debris was removed. The thawed homogenate was centrifuged at

4,300 RPM (Sorval centrifuge, GSA rotor) for 20 minutes. The supernatant was

decanted through cheese cloth and saved; the pellet was then extracted with 1 liter of

the same buffer, blended again, and centrifuged as above. The supernatants from

both centrifugations were pooled and combined with 170 mL of settled DE-52

(equilibrated 10 mM Tris*HCl (pH 7.5), 10 mM KC1, 0.5% Tween 20). The mixture

was then mechanically stirred (by propeller, making sure that this not shear the DE-
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52 into smaller particles) for 4 hours. The mixture was then centrifuged at 10,000

RPM (Sorval centrifuge, GSA rotor) for 20 minutes. The supernatant was then

discarded. The pellet was then resuspended two more times in low salt detergent

buffer (10 mM Tris*HCI (pH 7.5), 10 mM KC1, 0.5% Tween 20), centrifuging and

discarding the supernatants each time. The pellet was extracted three times with

medium salt buffer (10 mM TriseHCI (pH 7.5), 330 mM KC1) - centrifuging at 10,000

RPM for 30 minutes and saving the supernatants each time. A higher salt

concentration could be used (and effects a better elution of Adx from the DE-52), but

interferes with the solubility of ammonium sulfate in the next purification step and

may also elute a sizable amount of unwanted nucleic acids from the DE-52.

Ammonium sulfate is useful in concentrating Adx solutions. Since Adx is

highly soluble, it precipitates only when the concentration of ammonium sulfate is

quite high.

Per 100 mL of the DE-52-eluted Adx solution, 29.1 g of ammonium sulfate was

slowly added; this rendered the solution 50% saturated in ammonium sulfate.

Minimal amounts of 6 M ammonium hydroxide was added to maintain the pH at

7.5. This was then centrifuged at 10,000 RPM (Sorval centrifuge, GSA rotor) for 60

minutes, after which the pellet was discarded. The recovered supernatant was then

brought to 95% saturation with ammonium sulfate by adding 30.8 g of the salt for

every 100 mL of supernatant. This was centrifuged as above after which the

supernatant was discarded.

The pellet (from the 50% through 95% ammonium sulfate fractionation) was

then dissolved in a minimal amount of low salt buffer (10 mM Tris*HC1 (pH 7.5),

100 mM KC1). This was then chromatographed on a Sephadex G-100 (5 cm X -90

cm), equilibrated with the same low salt buffer. The sample was applied to the

bottom of the column and chased with the same low salt buffer, all with an upward

flow. The flow rate used was -20 mL/hour. 10 mL Fractions were collected and

those which were brown in color were examined by uv-vis spectroscopy. Fractions

giving rise to spectra that resembled the characteristic absorption pattern of Adx (see

Figure 3.2) were kept.
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The G-100 Adx-containing fractions were then pooled and concentrated by

either ammonium sulfate precipitation (50%-95% saturated (NH4)2SO 4 fraction),

described above, or by DE-52 adsorption and elution. Concentration by DE-52 was

effected by applying the pooled G-100 fractions to a DE-52 column (equilibrated with

10 mM Tris*HC1 (pH 7.5), 100 mM KC1). Once all of the Adx was adsorbed onto the

top of the column, the brown colored band was removed and placed into a smaller

column cylinder. This brown DE-52 column, with a saturated amount of Adx was

then eluted with a minimal amount of high salt buffer (10 mM Tris*HC1 (pH 7.5),

500 mM KC1).

The concentrated Adx solution was then applied to a Sephadex G-50 column

(2.5 cm X -90 cm), equilibrated with high salt buffer (10 mM Tris*HCl (pH 7.5), 500

mM KC1). As in the case of the G-100 column, the sample was also applied from the

bottom and chased with buffer (this time high salt buffer) in the upward flow mode.

The column was eluted at a flow rate of -20 mL/hour; 5 mL fractions were collected.

Fractions were analyzed by uv-vis spectroscopy; fractions of similar purity were

pooled and reprocessed on the G-50 column until the ratio of the absorbance at 414

nm to that at 280 nm was greater than 0.8. SDS PAGE revealed a single band with a

molecular weight of -13 kdal. A sample of this quality was used to make an Adx-

Sepharose affinity column (see section 3.4.2.).

When adrenodoxin was to be used for XAFS and EPR spectroscopy, it was

purified still further using mono-Q ion exchange chromatography (Pharmacia LKB).

The electrophoretically pure adrenodoxin (equilibrated in 20 mM Tris*HC1 (pH 7.5),

100 mM KCl; buffer A) was applied to a mono-Q column (also equilibrated with

buffer A). Adx was then eluted with a linear gradient of buffer A and buffer B (100

mM Tris*HCI (pH 7.5), 500 mM KC1). Fractions with absorbance ratios (414 nm to

280 nm) over 0.9 were achieved with this purification step.
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Figure 3.2: The absorption spectrum for pure adrenodoxin. The ratio of the
absorbance at 414 nm to 280 nm, for this sample, is 0.97.

3.4.2. The Making of an Adrenodoxin-Sepharose Affinity Matrix

Since AdR and P450 11, are both able to bind to Adx (see Figure 1.9A), an Adx-

based affinity column can be used to significantly purify these two proteins.

Cyanogen bromide activated Sepharose, commercially available, offers a convenient

means of coupling Adx to an insoluble matrix.

Purified Adx was first exchanged with coupling buffer (0.1 M NaHCO 3 (pH

8.1), 0.5 NaC1), to remove the Tris buffer used in its purification; tris (being a

primary amine) would compete with Adx in coupling to CN-Br-activated

Sepharose. This was performed either by passing it through a Sephadex G-15

column (equilibrated with coupling buffer) or by dialyzing it against coupling buffer.

A typical coupling procedure follows: Cyanogen bromide-activated Sepharose

4B was swelled in 1 mM HC1 for 30 minutes. This was then filtered through a coarse

glass filter funnel. It was then washed 3 times with 20 mL of coupling buffer and

then quickly transferred to a 25 mL sample of Adx (-40 mg, in coupling buffer). This

mixture was gently shaken at room temperature for 3 hours. The suspension was

then filtered to give a brown resin and a clear flow-through solution. The excess
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coupling sites on the brown Adx-Sepharose material were blocked with a blocking

buffer [1 M ethanolamine in coupling buffer (pH 8.2)] and gently shaken at room

temperature for 3 hours. The affinity-matrix was filtered and then washed - first

with three times 20 mL of blocking buffer and then three times 20 mL of 1 M

potassium phosphate (pH 7.4). This material was then stored at 5 oC.

3.4.3. Purification of Adrenodoxin Reductase

The supernatant from centrifuging the sonicated BACM contains both Adx

and AdR. AdR can be separated Adx (as well as purified from other contaminating

protein) by ammonium sulfate fractionation, size exclusion chromatography,

affinity chromatography, and ion exchange chromatography. In the case of affinity

chromatography, 2'5' ADP-Sepharose can be used to selectively bind NADPH-

binding proteins; alternatively, Adx-Sepharose can be used to selectively bind AdR.

An AdR purification procedure follows. The BACM supernatant was brought

to 30% saturation of ammonium sulfate by adding 16.4 g of (NH4)2SO4 for every 100

mL of protein solution. This was then centrifuged at 10,000 RPM (Sorval centrifuge,

GSA rotor) for 60 minutes. The pellet was discarded, but the supernatant was then

brought to 60% saturation of (NH4)2SO 4 by adding 18.1 g of (NH4)2SO4 for every 100

mL of supernatant. This was then centrifuged as before, after which the pellet was

used for further AdR purification; the supernatant was brought to 95% of (NH4)2SO 4,
saturation (23.9 g of (NH4)2SO 4 per 100 mL of supernatant), after which Adx was

purified from it (see section 3.4.1.).

The AdR (NH4)2 SO 4 fraction was then dialyzed against 10 mM potassium

phosphate (pH 7.4), 70 mM KC1. This solution was then centrifuged at 17,000 RPM

(Sorval centrifuge, SS-34 rotor) after which it was filtered through a 0.22 gm

(Millipore low protein binding) filter. This clarified solution was then applied to an

Adx-Sepharose column (equilibrated with 10 mM potassium phosphate (pH 7.4), 70

mM KC1). AdR was then eluted with 10 mM potassium phosphate (pH 7.4), 400 mM

KC1.

Adx-Sepharose eluted yellow fractions were pooled and precipitated by

bringing the solution up to 60% (NH4 )2SO4 saturation by adding 36.1 g of (NH4)2 SO 4
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per 100 mL of sample. This AdR precipitate was dissolved in a minimal amount of

10 mM potassium phosphate (pH 7.4), 400 mM KC1. This concentrated AdR sample

was then purified on Sephadex G-100 column (2.5 cm X 100 cm, equilibrated in 10

mM potassium phosphate (pH 7.4), 400 mM KC1). The sample was applied at the

bottom of the column and chased with the 400 mM KCl phosphate buffer, running

the column in the upward flow manner at -20 mL/hour.

The most yellow Sephadex G-100 fractions were then pooled and dialyzed

against 10 mM potassium phosphate (pH 7.4). This was then applied to a 2'5' ADP-

Sepharose 4B column (equilibrated with same buffer). The AdR-loaded column was

washed with 50 mM potassium phosphate (pH 7.4). AdR was then eluted with 50

mM potassium phosphate (pH 7.4), 0.5 mM NADP (sodium salt). SDS PAGE of this

sample gave a single band at a molecular weight of -50 kdal. An absorption

spectrum of AdR is given in Figure 3.3.
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Figure 3.3: The uv-vis absorption spectrum for
The ratio of absorbances at 450 nm to 272 nm is

purified adrenodoxin reductase.
0.188, for this sample.
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3.4.4. Purification of P450 11,

The isolated BACM membranes contain both P45011, and P450scc. These

proteins can be separated based on their differences in solubility. Since P45011, is

more lipophilic than P450scc, it is found predominantly in the 0%-33% (NH4)2SO 4

fraction, whereas P450sec can be found in the 33%-45% (NH4)2SO 4 fraction [10-12]. In

addition P45011, precipitates when it is dialyzed against buffers containing no

detergents, whereas P450,,c is considerably more soluble. A purification procedure

for P45011, (based on the method of Tsubaki et al. [13]) is given below.

BACM membranes were homogenized with standard buffer (50 mM

potassium phosphate pH 7.4, 0.1 mM dithiothreitol, 0.1 mM EDTA, 20 mM 11-

deoxycorticosterone) to a protein concentration of ~20 mg/mL (as determined by a

Bio-Rad assay). This mixture was then brought up to 1% (w/v) in sodium cholate,

in order to solubilize the proteins. This was then centrifuged at 28,000 RPM

(Beckman ultracentrifuge, type 30 rotor) to removed any insoluble material. The

supernatant was then brought to 33% saturation with (NH4)2SO 4 (by adding 18.20 g

of (NH4)2SO 4 per 100 mL of solution). The protein suspension was then centrifuged

at 10,000 RPM (Sorval centrifuge, GSA rotor) for 60 minutes. The pellet was then

processed further.

The 0%-33% (NH4)2SO, fraction was homogenized in standard buffer and

dialyzed against the same buffer. This step allowed contaminating P450s,, to dissolve

and for P45011, to remain in precipitated form. The dialysate suspension was then

centrifuged at 10,000 RPM (Sorval centrifuge, GSA rotor) for 60 minutes. The pellet

was homogenized with standard buffer containing 1% (w/v) sodium cholate. The

protein mixture was centrifuged at 28,000 RPM (Beckman ultracentrifuge, type 30

rotor) to remove any insoluble material. The supernatant was then diluted with

standard buffer to render the solution 0.7% (w/v) in sodium cholate. This was then

applied to an octyl-Sepharose 4B column, equilibrated with standard buffer

containing 0.7% (w/v/) sodium cholate, creating a brown band. After washing the

column with the same buffer, the brown band was scooped out and placed into

another column cylinder. P45011, was then eluted, from the brown octyl-Sepharose
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column material, with standard buffer containing 300 mM KCl and 1% (w/v)

sodium cholate. Dark colored fractions with absorbance ratios (of 390 nm to 280 nm)

greater than 0.2 were pooled.

The pooled octyl-Sepharose-eluted sample was dialyzed against standard

buffer. This caused P45011, to precipitate. The dialysate-suspension was then

centrifuged at 28,000 RPM (Beckman ultracentrifuge, type 30 rotor) for 60 minutes.

The pellet was dissolved in 5-fold diluted standard buffer, containing 0.5 % (v/v)

Tween 20 and 1% potassium cholate. This was applied to an Adx-Sepharose affinity

column (equilibrated with the same buffer). After washing the column with the

same buffer, P45011, was eluted with standard buffer containing 0.5% (v/v) Tween 20

and 0.2 % (w/v) potassium cholate. The eluted sample (8.3 nmole of P450 per mg of

protein) gave a single band on SDS PAGE and gave a P45011n-specific EPR signal

(with no contaminating P450,sc). This sample was used for EXAFS experiments. Its

uv-vis absorption spectrum is given in Figure 3.4.
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CHAPTER 4

EPR and ESEEM Experiments on Heme Model Compounds
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4.1. Background and Significance of These Studies

Until the crystal structure of P450cam was determined in 1985 [1], the nature of

its heme axial ligands were an issue of some controversy. From spectroscopic

studies on model compounds, it was clear that one of the ligands was a thiolate [2-4].

Carbon monoxide, bound to model ferrous (thiolato) hemes reproduced the

characteristic 450 nm absorption peak [5]. The remaining axial ligand of P450cam is

displaced when substrate binds - causing the ferric heme iron to adopt a five-

coordinate structure [3]. Speculation of the displaced ligand's identity ranged from

an oxygen [6] (from either water or an endogenous hydroxy side chain from an

active site amino acid) to nitrogen [7] (from an active site residue). The crystal

structure revealed that ligand to be oxygen from either water or hydroxide.

However, Peisach et al. [7] reported 'definitive' proof that one of the axial ligands

was indeed a nitrogen; they even went so far as to say that it was most likely an

imidazole. Evidence for this putative imidazole was acquired using the

spectroscopic technique of electron spin echo envelope modulation (ESEEM).

Further ESEEM studies on P450cam were performed by Zuo [8] (in collaboration

with Prof. John Dawson of the University of South Carolina). Zuo found no 14N

modulations when performing ESEEM studies while exciting gz transitions.

However, when exciting gy and g,x transitions, Zuo found similar low frequency

peaks that Peisach et al. [7] reported. Zuo reported that these signals had large Fermi

contact terms and suggested that they were caused by porphyrin pyrrole nitrogens.

115



Z

900 Pulse

(i)
x Y x

Z

time x

(ii)

A

X·

-4

Y

B

. _ . .. .. _ _ . .

time T

(iv)

I II F
I

C

It II

- --- I--
E ---

t

Figure 4.1: A. The generation of an electron spin echo, generated by two microwave
pulses: (i) the bulk net magnetization is deflected from its orientation along the
positive z-axis to the positive y-axis with a 90' pulse, (ii) a period of time ' is
permitted to go by, which gives rise to a dephasing of individual spin packets from
the bulk, (iii) a 180' pulse causes the y-coordinate to change sign, (iv) after a period
of time t (same value as before) passes, the individual spin packets refocus on the
negative y-axis. B. Measuring echo amplitudes (for a series of different ' values), of
magnetically isolated electron spins, reveals a smoothly decaying function. C. The
echo amplitude decay has a noticeable modulation when nearby nuclei are close
enough to affect the paramagnet's relaxation rate.
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4.2. The ESEEM Technique

ESEEM is an ideal technique for measuring the interaction of relatively

weakly coupled nuclei to paramagnets ; electron nuclear double resonance (ENDOR)

spectroscopy is the complementary technique which is used for studying strongly

coupled nuclei. ESEEM and ENDOR, in essence, provide the nuclear magnetic

resonance (NMR) spectrum of only nuclei which are interacting with the

paramagnetic. Therefore, the paramagnet serves as an "NMR flashlight" within a

limited volume around itself. Electron spin echoes are (in a sense) the 'carrier

wave' that enables us to observe the nuclear signal.

Electron spin echoes are generated by subjecting a paramagnetic sample to a

sequence of microwave pulses (see Figure 4.1). Although almost any sequence of

multiple pulses can generate spin echoes, echoes created by a 900 and 1800 can be

explained with the simple vector notation. However, despite their pedagogical

simplicity, two-pulse echoes suffer from two limitations: (1) the echo decay

envelope diminishes quickly and (2) its modulated decay contains (in addition to

the frequencies of the interacting nuclei) the sums and differences of the nuclear

frequencies. The rate of decay of two-pulse echoes are a result of the T2

paramagnetic relaxation time. However, two-pulse echoes have the advantage that

they can detect all interacting nuclei; this will be explained below, when describing

three-pulse echoes and the experimental results.

The three-pulse method entails a series of three 900 pulses (see Figure 4.2),

where the spacing between the first and second (t) is fixed while that between the

second and third pulse (T) is varied. Vector diagrams depicting this method of echo

generation are complicated and do not easily lend themselves to a visual

understanding of what causes the echo. Suffice it to say that the first two echoes

(along with its intervening time delay t) stimulate a population difference in the +z

and -z components in the bulk magnetization [9]. The third pulse (which by itself

would simply cause a free induction decay of the z component of the bulk

magnetization) causes the population difference to manifest itself into an echo at a

time z later. This stimulated population difference has prompted the nick name for
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the three-pulse echo as the 'stimulated' echo. If paramagnetics are magnetically

isolated, stimulated echo envelopes give rise to a smoothly decaying function,

depending on the T1 relaxation time. But, as in the case of the two-pulse technique,

if a nuclear spin interacts with the electron spin, a modulation is observed.

Figure 4.2: Three-pulse sequence for electron spin echo formation. Pulses I and II
stimulate the z-polarized population difference; they also give rise to a two-pulse
echo (E) at time I later. Pulse III gives rise to a stimulated echo (SE) at time t later. A
series of other unwanted two-pulse echoes are also generated (A, B, and C); these can
be eliminated by sampling the data in a repetitive cycle, using specific phases of the
applied pulses [10]. Echoes A, B, and C are the two pulse echoes arising from a
combination of pulse III with either echo E, pulse II, or pulse I, respectively. This
figure was adapted from reference [9].

Three-pulse sequences have a variety of advantages over two-pulse

experiments. One can measure decay modulations at longer times; this permits the

resolution of low frequency components. It is also possible (with a judicious choice

for 'r) to suppress specific frequency components. As a result, this method provides a

means for two-dimensional spin echo spectroscopy. In addition, this technique

gives only the unique nuclear frequencies, without their sums and differences. The

durability of the echo decay envelope relates to the fact that the nuclear spins affect

the paramagnet's T1 relaxation time, which is always longer than it T2 time.

After the echo envelope is acquired, there are some preliminary steps that

must be performed on the data before it can be accurately interpreted. The spectrum

must usually be either reconstructed at low time points or it must truncated.

Additionally, the decaying background must be removed.

The problem arising from low time points of the spectrum result from the

spectrometer dead time. Since the instrument pulses high intensity microwave
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bursts into the ESEEM cavity, this energy must dissipate before the detectors can

observe any refocussed echo. The time required to dissipate the microwaves from

the cavity is called the ring down time. One can alter the ring down time by

adjusting the impedance-matching of the cavity to the wave guide (connecting it to

the amplified microwave source); however, no matter how much this 'bleeding'

time is shortened, it will still be large enough to be noticeable on the final spectrum.

Another source of low time artifacts is a result of the choice of spectrometer

design and components. In some electron spin echo spectrometers (e.g. the one

present in the Orme-Johnson laboratory), the downstream detector is permanently

unshielded from cavity. Consequently, when the microwave amplifier pulses the

cavity, the detector amplifier (in a sense) gets blinded. This blinding of the detector

introduces another factor affecting low acquisition times - the detector 'wake-up'

time. This problem has been corrected in some laboratories (e.g. that of Prof. Jack

Peisach of Albert Einstein College of Medicine) by the use of a microwave intensity

limiter between the cavity and the detector, in tandem with a high speed (timer

controlled) switch, between the limiter and the detector. However, the high cost of

such components has inhibited their implementation into the Orme-Johnson

spectrometer.

Dead time artifacts are dealt with by either reconstructing these data points

from the periodicity of the remaining data points [ 11] or by removing them entirely.

Since the technique of dead time reconstruction requires data from the remainder of

the spectrum, it adds no new information. The reason why it is performed at all is

to be able to perform a cosine fourier transform on the time domain data - without

changing the phase of the resulting (complex) frequency-domain version of the data.

If this dead time region is simply removed, one must perform additional

manipulations of the data. The remaining ("dead-time-less") data can be left

justified , after which the background must be removed - followed with a filling of a

sufficient number of zeros at the right of the new shorter spectrum. This zero filling

enables one to use the fast fourier transform procedure. Alternatively, the original

spectrum can be multiplied by an extended cosine bell window function and zero

filled before performing the fourier transform.
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The decay background of an ESEEM spectrum needs to be removed before a

fourier transform can be performed. The consequence of not doing so is frequency-

domain data possessing a significant sloping background; this can hide (especially)

low frequency peaks. However, the nature of this background is often more

complicated than a simple exponential decay [12]. A high-order polynomial can

often be used without adversely affecting the data. However, one should check the

fourier transform of the fitted background function to determine whether or not it

removes frequency intensity in region of interest.

4.3. Materials and Methods

4.3.1. Materials

Irradiated sucrose was a gift from Dr. Ralph Weber of Brtiker. "5N Heme (15N

imidazole)2, 14N Heme (14N imidazole) 2, 15N Heme (14N imidazole)2, 14N Heme (15N

imidazole) 2, 14N Heme (SCH 2COOCH 2CH 3) 2, and "'N Heme (SCH 2COOCH 2CH 3)2

were provided by the laboratory of Prof. John Dawson of the University of South

Carolina. Horse heart myoglobin was purchased from Sigma Chemical Company.

4.3.2. Methods

EPR spectra were acquired on the MIT Chemistry Department's Brtiker ER

series X-band CW spectrometer (at 9.44 GHz), using a commercial liquid helium

circulating Oxford cryostat. Concentrations of the heme iron for each model

compound was determined by spin quantitation [13] using a standard 0.363 mM

(low spin) myoglobin azide standard. ESEEM spectra were taken on the home-made

electron spin echo spectrometer of the laboratory of prof. W. H. Orme-Johnson. Its

design [14, 15] and modifications [8] are described elsewhere. Cryogenic ESEEM

temperatures were achieved with cold helium gas by heating liquid helium, forcing

it through a transfer line that delivered it to the ESEEM cavity. A calibrated 100 Q2

carbon resistor thermocouple (in close proximity with the cavity) was used to

determine the temperature of each ESEEM experiment.

The spectrometer is controlled by a program called ANLESE (Argon National

Laboratories Electron Spin Echo), running on a Nicolet 1180E computer. This
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program was written by Dr. Mike Bowman, by partially modifying an NMR

acquisition program. Due to the incompleteness of the program, it was necessary to

verify that ANLESE was providing the requested spectra. A discrepancy between the

requested spectral width (50 MHz) and that resulting from the actual data (25 MHz)

was discovered by using the standard y-irradiated sucrose (see Appendix 4.1 of this

chapter).

Data files were then downloaded (using the kermit transfer protocol) to an

Apple Macintosh (SE) computer, directly wired (via RS232 cable) to the Nicolet

computer. Data files (consisting of 20 bit integer numbers) was converted to 32 bit

integers with the use of a program given in Appendix 4.2 of this chapter.

Dead time regions of the acquired spectra were excised. This was followed by

fitting the background of each spectra to fifth-order polynomials (performed using

Kaleidagraph version 3.0). The "background-removed" spectra were then left

justified and a sufficient number of zeros (enough for a fast fourier transform)

placed at the far right. Fourier transforms and power spectra were computed using

Matlab 4.2d (for the Power Macintosh).
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4.4. Results

4.4.1. EPR Spectra

EPR spectra of 15N Heme (15N imidazole) 2, 14N Heme (14N imidazole) 2, 15N

Heme (14N imidazole) 2, 14N Heme (15N imidazole)2, 14N Heme (SCH 2COOCH 2CH 3)2,
and "'N Heme (SCH 2COOCH 2CH 3)2 were acquired (see Figure 4.3 through Figure 4.8,

respectively). Estimated concentrations of these species is given in Table 4.1.

Sample Concentration (mM)

"sN Heme ("1 N imidazole) 2  0.0687
14N Heme (14N imidazole) 2  0.143
15N Heme (14N imidazole) 2  0.204
14N Heme ("5N imidazole) 2  0.0889

1 N Heme (SCH 2COOCH 2CH 3)2  0.0735
1 N Heme (SCH 2COOCH 2CH 3)2  0.0170

Table 4.1: Concentration of the heme model compounds, determined by spin
quantitation, using myoglobin as a standard. The concentrations here depict that of
the low spin signal of each sample.

From Figures 4.7, and 4.8, it is apparent that there are some high spin

components to these spectra. This has most likely resulted from sample

decomposition over time. However, since these high spin components relax much

more quickly, they should be relatively silent during ESEEM acquisition. The worst

effect of the high spin regions is that they lower the effective concentration of the

species giving rise to the ESEEM.
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Figure 4.3: CW EPR spectrum of 15N Heme (15N imidazole) 2 at 10 K and 9.44 GHz.
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Figure 4.4: CW EPR spectrum of 14N Heme ("4N imidazole) 2 at 10 K and 9.44 GHz.
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Figure 4.5: CW EPR spectrum of 15N Heme (14N imidazole) 2 at 10 K and 9.44 GHz.
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Figure 4.6: CW EPR spectrum of 14N Heme (15N imidazole), at 10 K and 9.44 GHz.

124

200 -

100 -

00 -

-200 SI I i I I I

i.



3.5 102

-i 1.5
r-

n"

-2.5 102

-4.5 102

1.1 10 3 1.6 103 2 103 2.5 103 3 103 3.5 103 4 103 4.5 103 5 103

Field (Gauss)

Figure 4.7: CW EPR spectrum of 14N Heme (SCH 2COOCH 2CH 3)2 at 10 K and 9.44 GHz.
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Figure 4.8: CW EPR spectrum of 15N Heme (SCH 2COOCH 2CH 3)2 at 10 K and 9.44 GHz.

125



4.4.2. The ESEEM Spectra

4.4.2.1. The Time Domain Data

ESEEM data is first acquired in the time domain form. As illustrated on

Figure 4.1, the period(s) of modulation in the spin echo decay envelope provides the

nuclear frequencies that are modulating the electron spin relaxation. Data was

acquired with the three-pulse method in these experiments. As stated above, this

procedure benefits from long acquisition times and simplified frequencies of

modulation. It also offers the ability to suppress specific frequencies, by choosing an

appropriate value for t. However, this last advantage also reveals a limitation.

Since the three-pulse technique is a two-dimensional experiment, certain

modulations may inadvertently be passed over due to certain choices of t.

All of the experiments described in this chapter were performed at a single t

value. Spin echoes were found to be weak in these compounds - even at very low

temperatures. Consequently, the t value which gave the strongest echoes (250 nsec)

was used for all acquisitions; all acquired spectra were composites of numerous

scans. Another limitation on the number of spectra acquired was the time and

expense (in terms of liquid helium). The spectrometer is designed such that only

rigid cryogenic transfer lines can deliver the coolant; additionally, there is a

geometric constraint in the spectrometer area, limiting the experimenter to shallow

liquid helium tanks. This dictated a maximum of 25 liters of liquid helium per

spectral series - imposing a four hour limit on an average experiment at 9 K.

Apart from changing the value of t, it is beneficial to measure ESEEM data at

different g values and frequencies. The excitation at different g values effects a

selection of (coupled) nuclear spins at specific orientations relative to the

paramagnet. The examination of ESEEM at different frequencies (but at the same g

value) allows one to solve for many of the components in the spin Hamiltonian

that contribute to the ESEEM at a certain g value. All ESEEM spectra described in

this chapter were acquired at g=2.25 (2900 Gauss) and a frequency of 9.14 GHz. Note

that the times on the x-axes (of Figures 4.9 through 4.14) should be twice of what is

shown (see Appendix 4.1 for the explanation).
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Figure 4.12: ESEEM spectrum of 14N Heme (1 5N imidazole) 2 with its fifth order
polynomial background overlaid on top. This spectrum is the summation of 404
acquisitions measured at 8.3 K.
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Figure 4.13: ESEEM spectrum of 14N Heme (SCH 2COOCH 2CH 3)2 with its fifth order
polynomial background overlaid on top. This spectrum is the summation of 202
acquisitions measured at 7.6 K.

-5.5 106

-6 105

-6.5 105

-7 10s

-7.5 105

-8 105
0 510 1 10.6 1.5 10.6

Time (sec)

2 10.6 2.5 10-6 3 10.6

Figure 4.14: ESEEM spectrum of '5N Heme (SCH 2COOCH 2CH 3)2 with its fifth order
polynomial background overlaid on top. This spectrum is the summation of 110
acquisitions measured at 8.4 K.
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4.4.2.2. The Frequency Domain Data

Solving for the Hamiltonian parameters that give rise to the ESEEM is

facilitated if the experimental data is transformed to the frequency domain. The

overlay of simulations and experimental data in frequency space allows for a quick

evaluation of the goodness of fit by inspection. It also permits one to observe

distinct shifts in frequency peaks as conditions are changed.

In the experiments described in this chapter, all spectra were processed in

similar ways before performing the fourier transform. Instead of reconstructing the

dead time, the data points corresponding to this area were removed, after which the

spectra were all fit to fifth order polynomials. The fitted polynomial functions were

then subtracted from the spectra. The time domain data points were then left-

shifted over to the y-axis. Since the removal of the dead time data points for each

sample gave rise to a spectrum lacking the number of points corresponding to a

multiple of two (a requirement for the fast fourier transform), each spectrum was

zero filled at the right, restoring it to the same number of points that it originally

had.

The shifting of the time data points to earlier times resulted in a hiding of

spectral information in the imaginary component of the fourier transformed data.

This hidden information was retrieved by calculating the modulus squared of the

fourier transform. This is called a power spectrum. Therefore, the frequency

domain spectra of the heme model compound (shown in Figure 4.15 through

Figure 4.26) are power spectra from their respective time domain points.
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Figure 4.17: Wide ESEEM frequency spectrum of 14N Heme ('4N imidazole)2.
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Figure 4.18: Narrow ESEEM spectrum of 14N Heme (14N imidazole)2.

132



1.5 109

1 109

5 108

0
5106 1 107

Frequency (Hz)

Figure 4.19: Wide ESEEM frequency spectrum of "N Heme (14N imidazole)2.
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Figure 4.20: Narrow ESEEM spectrum of 15N Heme (14N imidazole)2.
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Figure 4.23: ESEEM frequency spectrum of 14N Heme (SCH 2COOCH 2CH 3)2.
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Figure 4.24: ESEEM spectrum (expanded) of 14N Heme (SCH 2COOCH 2CH 3)2'
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Figure 4.25: Wide ESEEM spectrum of 15N Heme (SCH 2COOCH 2CH 3)2.
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Figure 4.26: Narrow ESEEM spectrum of 15N Heme (SCH 2COOCH 2CH 3)2.
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4.5. Discussion

As stated at the beginning of this chapter, the P450cam ESEEM studies

'revealing' imidazole axial coordination [7] did not agree with P450cam crystal

structure. This result motivated a collaboration between the laboratories of

professors Orme-Johnson and Dawson to design a series of ESEEM experiments that

are hoped to assign the individual contributions of the nitrogens from axial

imidazole and equatorial porphyrin as well as the effect of thiolate ligation. The six

model compounds, provided for the work described in this chapter, serve to address

this issue. This chapter summarizes the state of this project to date.

The factors influencing the modulation frequencies of the electron spin echo

envelope are: (1) the nuclear larmor frequency, (2) the electron-nuclear hyperfine

interaction (A), and (3) the nuclear quadrupole interaction. These parameters have

been incorporated in derived ESEEM equations, described elsewhere [8, 9, 16-18]. Of

all of these factors, the most complex is that of A. This parameter is influenced the

by Fermi constant term, the distance between the nucleus and the paramagnet, and

the relative orientation of the nuclear-spin and electron-spin natural axes systems.

The relative orientation of the nuclear-quadrupolar and electron-spin natural axes

systems also plays an influence in the nuclear quadrupole interaction. Suffice it to

say, that all of these different parameters can only be uniquely solved for by

acquiring ESEEM spectra under a variety of conditions - which (in combination) can

'tease' out the values of each of these components.

Although it is often difficult to see the influence of one of the modulating

factors on an ESEEM spectrum, two of them can be directly identified on the data

acquired. The larmor frequencies for 15N and '4N (at 2900 Gauss) are 1.25 MHz and

0.88 MHz, respectively. In the frequency domain ESEEM spectrum of s'N Heme (s5N

imidazole) 2 (Figures 4.15 and 4.16), one can see a peak (-1.27 MHz) corresponding to

the larmor frequency of "'N. The 12.31 MHz signal of Figures 4.15, 4.17, and 4.19 and

the 12.40 MHz signal of Figure 4.24 resembles the expected 12.35 MHz larmor

frequency of interacting 'H nuclei. Clear identification of the 14N larmor frequency

of 14N-containing samples was not possible on the data acquired; however, all 14N

Heme-containing samples gave rise to a consistent 0.5 MHz frequency signal (see
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Figures 4.18, 4.22, and 4.23). The lack of a clear 14N larmor frequency peak could be

due to the influence of the '4N nuclear quadrupole interaction and/or the masking

of this signal by latent low frequency background factors; the Fermi contact term

does not appear to be responsible for this lack of 0.88 MHz signal since it did not

impede the detection of the "'N larmor frequency of "'N Heme (15N imidazole) 2.

Since the s'N Heme ('5N imidazole)2 sample gave rise to an "N larmor

frequency signal, the question of whether this arose from the porphyrin or

imidazole nitrogens (or both) immediately arises. In principle this could be

addressed by examining the ESEEM spectra of 5N Heme (14N imidazole)2, and '4N

Heme (15N imidazole)2. However, the interaction of 14N from either the imidazole

(see Figure 4.20) or the porphyrin (see Figure 4.22) gives rise to frequency

components which mask out the "'N larmor frequency of the porphyrin or

imidazole, respectively. Examination of the ESEEM of '5N Heme

(SCH 2COOCH 2CH 3)2 (see Figure 4.26) reveals the lack of an "'N larmor frequency

signal. This may argue for the case that the "'N larmor frequency signal from s5N

Heme (15N imidazole) 2 arose from the axial imidazoles, but the presence of the

thioglycolate axial ligands of '5N Heme (SCH 2COOCH2CH 3)2 may have given rise to

an altered the Fermi term of the porphyrin '5N nuclei, which would change their

modulation effect. The report by Zuo [8] that gparauei ESEEM experiments of P450cam

reveal large nitrogen Fermi terms argues that unperturbed nuclear larmor

frequency modulations on electron spin echoes arise most likely from axial ligands.

Therefore, from the available data, it appears that the 1.27 MHz signal of Figure 4.16

is due to the axial imidazole ligands.
14N-derived spectral features could be identified by generating difference

spectra with 15N-containing samples. Such an operation would require a common

(sample-derived) feature in the corresponding spectra, needed for normalization of

the two data sets. Although most spectra have a prominent 12.50 MHz signal, this is

believed to arise from the spectrometer itself - since it is also found in a sample of 7-

irradiated sucrose (see Appendix 4.1). The 'H-derived signal is inappropriate as well

since this may reflect the different levels of protonation of the solvents for each
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sample (note that bulk nuclei which are distant from the electron spin can create a

cumulative modulation effect on the electron spin echo).

The best normalization factor would be the spin echo amplitude at zero time.

Unfortunately, the absolute value of the time domain spectra are not accurately

transferred when converting the data from the 20-bit Nicolet format to the 32-bit

Macintosh format (as can be seen by some negative y-coordinates on the Figures 4.10

through 4.14). This artifact is a result of the conversion algorithm used in the

program of Appendix 4.2. This algorithm was obtain from the laboratory of prof.

Larry Kevan (University of Texas) where their ESEEM spectrometer is also

controlled by a similar Nicolet computer. This problem can therefore be corrected by

running a program on the Nicolet computer itself which would print out the actual

integer values of its stored files. The author did not have time to write such a

program due to the effort required to learn how to program this unsupported

computer system. However, given enough time, this task relatively straightforward

for any future analysis.

Although the samples used in the above experiments offer the opportunity of

assigning ESEEM influences from all of the different nuclear spins, all of the

necessary experiments have not yet been performed. In addition, some of the

acquired ESEEM spectra should be acquired again due to the low signal to noise in

some of the acquisitions (see Figures 4.10, 4.12, and 4.14). From the spin quantitation

of the paramagnetic centers (see Table 4.1), it appears that the low concentration of

these samples may be at fault. Therefore, the synthesis of new (more concentrated

samples of) model compounds is recommended.

The acquisition of ESEEM at different g values and at different microwave

frequencies also remains to be performed before all modulating parameters can be

fully assigned. Performing ESEEM studies at different frequencies requires a

microwave generator of sufficient band width. The klystron microwave/power

source unit, presently installed on the Orme-Johnson spectrometer, has a band

width ranging from 8.8 to 9.6 GHz. This range is insufficient; a frequency difference

of 2 GHz would be preferable. ESEEM experiments at different frequencies also

requires the use of cavities which resonate at each of those frequencies. A Britt-
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Klein style cavity [19] would offer this flexibility and would also provide a lower

ring down time than the uncoupled EPR cavity used in the experiments described in

this chapter; such a cavity could also be used with an insulated liquid helium

immersion dewar which would permit data acquisition series which could last

longer and could proceed at lower temperatures. Alternatively, these experiments

could be performed at another laboratory equipped with such hardware necessities.
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Appendix 4.1
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Appendix 4.2

'This program was written by Normand J. Cloutier, for use in manipulating
'ESEEM data acquired on the electron spin echo spectrometer of the
'laboratory of prof. W.H. Orme-Johnson of the MIT chemistry department.
'The present form of this program has bugs in the fourier transform and
'inverse fourier transform routines; other programs should therefore be
'used for these functions. The language of the program is FutureBASIC (by
'Zedcor, Inc.) which runs on an Apple Macintosh.

----------------------------- Header
'RESOURCES
COMPILE 0, _caseInsensitive
--------------------------- Constant,
_no = 0
_yes = 1
JumpJudger = 800000
JumpValue = 1048580

'Menu constants

_mFile = 1
_iOpen = 1
_iConvert = 2

iSaveR = 3
_iSaveC = 4
_iQuit = 5

_mEdit = 2
_iUndo = 1
_iCut = 3
_iCopy = 4
_iPaste = 5
_iClear = 6
_iSelectAll = 8

---------------------------------
'open the resource file

'optional (might be useful)s -------------------------------

'define the File menu as id 1
'define the open item as item 1

'define the Convert item as item 2
'define the save Real item as 3
'define the save Complex item as 4

'define the quit item as item 5

'define the Edit menu as id 2
'define the Undo item as item 1

'define the Cut item as item 3
'define the Copy item as item 4
'define the Paste item as item 5
'define the Clear item as item 6

'define the Select All item as item 8

_mCommands = 3 'define the Commands menu as id 3
_iMakeReal = 1 'define the "Delete Imaginary Points" item as 1
_iFourierTransform = 2 'define the "Fourier Transform" item as item 2
'define the "Inverse Fourier Transform" item as 3
_iInverseFourierTransform = 3
_iFitLongTimes = 4 'define the "Fit Ending Tail" item as item 4
_iZeroPoints = 5 'define the "Zero A Spectrum Portion" item as 5
_iAddPortion = 6 'define the "Append New Values" item as 6
_iSelectRegions = 7 'define the "Select Regions" item as 7
_iZoom = 8 'define the "Zoom In" item as item 8
_iExpand = 9 'define the "Expand Out" item as item 9
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'define the "Approximate Short Times" item as 10

Globals
DIM plotFlag
DIM regionsSelected
DIM windowOpen
DIM mousePnt.4

DIM tValue&(10241)
DIM fValue#(10241)
DIM xValue#(10241)
DIM tempArray#(10241)

DIM maxTValue&
DIM minTValue&
DIM tSpread&
DIM maxFValue#
DIM minFValue#
DIM fSpread#
DIM xValueJump
DIM tValueJump
DIM fValueJump

DIM
DIM
DIM
DIM
DIM

lowerBoundView
upperBoundView
yCoordinate(513)
xCoordinate#(513)
baseYCoordinate

DIM numOfData&
DIM numOfPoints&

DIM dataSpread
DIM xInterval#
DIM xCoordSpacInt#

DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM

32 inFileName$
32 outFileName$
32 curFileName$
40 xAxis$
40 yAxis$
suml#
sum2#
sum3#
sum4#
slope#
meanX#

'Flag to indicate if a cross-hair has been drawn
'Flag to indicate a region has been selected
'Flag to indicate if a window has been drawn

'Structure to store the coordinates of the cursor

'4 * 10 K of space for time domain values
'8 * 5 K of space for frequency values
'4 * 10 K space for x coordinate data

'Array to do transforms in

'Maximum ordinate in the current time view
'Minimum ordinate in the current time view

'Difference in maxTValue& and minTValue&
'Maximum ordinate in the current freq. view

'Minimum ordinate in the current freq. view
'Difference in maxFValue# and minFValue#

'skipping factor for index of yCoordinate
'skipping factor for index of tValue&()
'skipping factor for index of fValue#()

'Data index of lower bound of the current view
'Data index of the upper bound of the current view

'array for pixel values of the current plot
'array for values of abscissas of current plot

'the pixel ordinate of the x-axis of plot

'The number of real+imaginary data in the file
'The number of data points in the file

'Number of points used for plot

'32 character filename
'32 character filename
'32 character name of current file

'Label for x-Axis
'Label for y-Axis
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DIM meanY#
DIM yIntercept#
DIM expAmplitude#
DIM pi#
DIM iSign
END GLOBALS

---------- ----------- Functions --------------------------
LOCAL FN fitExponentialDecay

numOfFittedPoints# = INT((upperBoundView - lowerBoundView)/2 + 1)
suml# = 0
sum2# = 0
sum3# = 0
sum4# = 0

counter = lowerBoundView - 2
DO

counter = counter + 2
tempY# = LOG(tValue&(counter))
suml# = suml# + ( xValue#(counter) * tempY#)
sum2# = sum2# + xValue#(counter)
sum3# = sum3# + tempY#
sum4# = sum4# + xValue#(counter)A2

UNTIL counter = upperBoundView - 1

numerator# = suml# - ((sum2#)*(sum3#)/numOfFittedPoints#)
denominator# = sum4# - (((sum2#)A2) /numOfFittedPoints#)
slope# = numerator#/denominator#
meanX# = sum2#/numOfFittedPoints#
meanY# = sum3#/numOfFittedPoints#
yIntercept# = meanY# - ( (slope#) * meanX#)
expAmplitude# = EXP(yIntercept#)

END FN
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LOCAL FN drawData
'This function plots a graph with a labelled x-axis and draws the graph
'represented by the pixel coordinates stored in array yCoordinate(). If there
'were orinally less data points than the 512 available pixel positions, this
'function only plots the points representing the horizontally scaled graph.
'This sparseness of points is compensated by drawing a line connecting the
'spaced out points.

windowOpen = _yes
WINDOW CLOSE #1
WINDOW #1, curFileName$, (0,0)-(570,355), _docNoGrow
COORDINATE WINDOW
CALL MOVETO(33,10)
CALL LINETO(33,310)
CALL LINETO(547,310)
CALL TEXTSIZE(10)
FOR hTick = 10 TO 500 STEP 10
LONG IF hTick MOD 50 = 0

CALL MOVETO(33+hTick,306)
CALL LINETO(33+hTick,314)
valueTemp# = INT( (xCoordinate#(hTick) +_

xCoordSpacInt# )/xCoordSpacInt#)
tickValue& = INT(valueTemp#)

tickFlag = 0
numberOfDigits& = 0
WHILE tickFlag = 0

numberOfDigits& = numberOfDigits& + 1
digitTemp& = INT(tickValue&/10)

IF digitTemp& = 0 THEN tickFlag = 1
tickValue& = digitTemp&

WEND

xTick = (33+hTick) - (numberOfDigits& * 4)
tick$ = STR$(valueTemp#)
PRINT% (xTick,324) tick$

XELSE
CALL MOVETO(33+hTick,308)
CALL LINETO(33+hTick,312)

END IF
NEXT hTick
whole$ = xAxis$ + "( X " + STR$(xCoordSpacInt#) + " )"
PRINT% (250,340) whole$
counter = 0
CALL MOVETO (33+counter,yCoordinate(counter+1))
firstCounter = counter + (2 * xValueJump)
FOR counter = firstCounter TO 1022 STEP (2 * xValueJump)
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position = ((counter)/2+1)
CALL LINETO (33+position,yCoordinate(position))

NEXT counter
whole$ = STR$(dataSpread) + " + "data points"
EDIT FIELD #1, whole$, (400,40)-(550,50), _statFramed, _leftJust

END FN

LOCAL FN generateY
'This function fills the array yCoordinate() with the correct pixel coordinates
'needed to draw an autoscaled plot between data indexes lowerBoundView
'and upperBoundView by the function drawData

dataSpread = upperBoundView - lowerBoundView +1
LONG IF UCASE$(LEFT$(xAxis$,1)) = "T"

minTValue& = tValue&(lowerBoundView)
maxTValue& = minTValue&
FOR counter = lowerBoundView TO upperBoundView-1 STEP 2

IF minTValue& > tValue&(counter) THEN minTValue& = _

tValue&(counter)
IF maxTValue& < tValue&(counter) THEN maxTValue& = _

tValue&(counter)
NEXT counter
tSpread& = maxTValue& - minTValue&

LONG IF dataSpread < 1024
xValueJump = (1024/dataSpread)

XELSE
xValueJump = 1

END IF
LONG IF dataSpread > 1024

tValueJump = (dataSpread/1024)
XELSE

tValueJump = 1
END IF
FOR counter = 1 TO 512

yCoordinate(counter) = 310
NEXT counter
tData = lowerBoundView
FOR counter = 0 TO 1022 STEP 2 * xValueJump

height = (250 * (tValue&(tData)-minTValue&))/tSpread&
yCoordinate((counter)/2+1) = 310 - (baseYCoordinate + height)
tData = tData + (tValueJump * 2)

NEXT counter

xCoordInterval# = xValue#(upperBoundView) - xValue#(lowerBoundView)
numOfViewedPoints = (upperBoundView - lowerBoundView) / 2
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xCoordSpacInt# = xCoordInterval# / numOfViewedPoints
baseXCoord# = xValue#(lowerBoundView)
FOR counter = 0 TO 511

xCoordinate#(counter + 1) = baseXCoord# + (counter * xCoordSpacInt#)
NEXT counter

XELSE
minFValue# = fValue#(lowerBoundView)
maxFValue# = minFValue#
FOR counter = lowerBoundView TO upperBoundView

IF minFValue# > fValue#(counter) THEN minFValue# = fValue#(counter)
IF maxFValue# < fValue#(counter) THEN maxFValue# = fValue#(counter)

NEXT counter

fSpread# = maxFValue# - minFValue#
LONG IF dataSpread < 2048

xValueJump = (2048/dataSpread)
XELSE

xValueJump = 1
END IF
LONG IF dataSpread > 1024

fValueJump = (dataSpread/1024)
XELSE

fValueJump = 1
END IF
FOR counter = 1 TO 512

yCoordinate(counter) = 310
NEXT counter
tData = lowerBoundView
FOR counter = 0 TO 1022 STEP 2 * xValueJump

height = (250 * (fValue#(tData)-minFValue#))/fSpread#
yCoordinate((counter)/2+1) = 310 - (baseYCoordinate + height)
tData = tData + (fValueJump * 2)

NEXT counter

xCoordInterval# = xValue#(upperBoundView/2 + 2) -
xValue#(lowerBoundView)

numOfViewedPoints = (upperBoundView - lowerBoundView) / 2
xCoordSpacInt# = xCoordInterval# / numOfViewedPoints
baseXCoord# = xValue#(lowerBoundView)
FOR counter = 0 TO 511

xCoordinate#(counter + 1) = baseXCoord# + (counter * xCoordSpacInt#)
NEXT counter

END IF

END FN
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LOCAL FN openFile
'This function opens an ASCII data file, containing values for both the
'abscissa and ordinate values of a data file. It fills up two arrays - an xValue#()
'array and either a tValue&() integer array or an fValue#() double precision
'real array - with both real and imaginary data points. The tValue&() array is
'chosen if the first line data file starts with the character "t" or "T",
'corresponding to x-axis label. If successive data pairs have the same abscissa
'value, then the data file is judged to contain a complex data set and the two
'arrays are filled up with the exact corresponding values found in the data
'file. If successive data pairs have different abscissa values, then the file is
'judged to contain a real data set; this causes the xValue#() array and either
'the tValue&() or fValue#() array to be filled with paired duplicate values
'(i.e. x-1,x-1; x-2,x-2; x-3,x-3;...;x-n,x-n where n is the number of paired data
'points in the file).

'Show TEXT files only
inFileName$=FILES$(_fOpen,"TEXT",,volRefNum%)

LONG IF LEN(inFileName$) 'if len=O then Cancel open
OPEN "I", 1, inFileName$,,volRefNum%

'Note: volRefNum%=folder of inFileName$
curFileName$ = inFileName$

LINE INPUT #1,firstLine$ 'Read in the labels for the axes
tabPosition = 0
flag=0
lenOfLine = LEN(firstLine$)
WHILE tabPosition <= (lenOfLine - 1) AND flag=0
tabPosition = tabPosition + 1
LONG IF MID$(firstLine$,tabPosition,1) = CHR$(9)
flag = 1

END IF
WEND
xAxis$ = LEFT$(firstLine$,tabPosition-1)
yAxis$ = RIGHT$(firstLine$,lenOfLine-tabPosition)
numOfData& = 0
realFlag = 0
LONG IF UCASE$(LEFT$(xAxis$,1)) = "T"
WHILE NOT EOF(1)

numOfData& = numOfData& + 1
'read in a line with 2 numbers separated by a TAB
LINE INPUT #1, aLine$
tabPosition = 0
flag=0
lenOfLine = LEN(aLine$)
WHILE tabPosition <= (lenOfLine - 1) AND flag=0
tabPosition = tabPosition + 1
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LONG IF MID$(aLine$,tabPosition,1) = CHR$(9)
flag = 1

END IF
WEND
xString$ = LEFT$(aline$,tabPosition-1)
yString$ = RIGHT$(aLine$,lenOfLine-tabPosition)
xValue#(numOfData&) = VAL(xString$)
tValue&(numOfData&) = VAL(yString$)

LONG IF numOfData& MOD 2 = 0
LONG IF xValue#(numOfData&) <> lastXValue#
tempX# = xValue#(numOfData&)
tempT& = tValue&(numOfData&)
xValue#(numOfData&) = lastXValue#
tValue&(numOfData&) = 0
numOfData& = numOfData& + 1
xValue#(numOfData&) = tempX#
tValue&(numOfData&) = tempT&

realFlag = 1
END IF

END IF
lastXValue# = xValue#(numOfData&)
lastTValue& = tValue&(numOfData&)

WEND
LONG IF realFlag = 1

numOfData& = numOfData& + 1
xValue#(numOfData&) = xValue#(numOfData& - 1)

END IF

lowerBoundView = 1
upperBoundView = numOfData&
FN generateY

XELSE
WHILE NOT EOF(1)

numOfData& = numOfData& + 1
'read in a line with 2 numbers separated by a TAB
LINE INPUT #1, aLine$
tabPosition = 0
flag=0
lenOfLine = LEN(aLine$)
WHILE tabPosition <= (lenOfLine - 1) AND flag=0
tabPosition = tabPosition + 1
LONG IF MID$(aLine$,tabPosition,1) = CHR$(9)
flag = 1

END IF
WEND
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xString$ = LEFT$(firsLine$,tabPosition-1)
yString$ = RIGHT$(firstLine$,lenOfLine-tabPosition)
xValue#(numOfData&) = VAL(xString$)
fValue#(numOfData&) = VAL(yString$)

LONG IF numOfData& MOD 2 = 0
LONG IF xValue#(numOfData&) <> lastXValue#
tempX# = xValue#(numOfData&)
tempF# = fValue#(numOfData&)
xValue#(numOfData&) = lastXValue#
fValue#(numOfData&) = 0
numOfData& = numOfData& + 1
xValue#(numOfData&) = tempX#
fValue#(numOfData&) = tempF#

realFlag = 1
END IF

END IF
lastXValue# = xValue#(numOfData&)
lastFValue# = fValue#(numOfData&)

WEND

LONG IF realFlag = 1
numOfData& = numOfData& + 1
xValue#(numOfData&) = xValue#(numOfData& - 1)

END IF

lowerBoundView = 1
upperBoundView = numOfData&/2
FN generateY

END IF
CLOSE #1
numOfPoints& = numOfData&/2
xInterval# = xValue#(3) - xValue#(1)
FN drawData 'graph out the data in a window
MENU _mCommands, _iSelectRegions, _enable, "Select Regions"
MENU _mCommands, _iZoom, _enable, "Zoom In"
MENU _mCommands, _iMakeReal, _enable, "Delete Imaginary Points"
MENU _mFile, _iSaveR, _enable, "Save..."
MENU _mFile, _iSaveC, _enable, "Save Complex..."
MENU _mCommands, _iFitLongTimes, _enable, "Fit Ending Tail"
MENU _mCommands, _iZeroPoints, _enable, "Zero A Spectrum Portion"
MENU _mCommands, _iFitShortTimes, _enable, "Approximate Short Times"
MENU _mCommands, _iFourierTransform, _enable, "Fourier Transform"
MENU _mCommands, _ilnverseFourierTransform, _enable, "Inverse Fourier

Transform"
XELSE

BEEP
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END IF
END FN

LOCAL FN saveComplexFile 'saves both the real and imagi
LONG IF UCASE$(LEFT$(xAxis$,1)) = "T" 'data points of the current dat

ext$="-time"
XELSE

ext$="-freq"
END IF
default$ = inFileName$ + ext$
outFileName$ = FILES$(_fSave,"Save File As:",default$,volRefNum%)
DEF OPEN "TEXTTTXT"
OPEN "O",1,outFileName$,,volRefNum%
curFileName$ = outFileName$
PRINT #1, xAxis$ + CHR$(9) + yAxis$
LONG IF ext$="-time"
FOR counter = 1 TO numOfData&

PRINT #1, STR$(xValue#(counter)) + CHR$(9) + STR$(tValue&(couni
NEXT counter

XELSE
FOR counter = 1 TO numOfData&

PRINT #1, STR$(xValue#(counter)) + CHR$(9) + STR$(fValue#(count
NEXT counter

END IF
CLOSE #1
CURSOR _arrowCursor
FN drawData

END FN

inary
ta set

ter))

er))

LOCAL FN saveRealFile 'saves only the real data points
LONG IF UCASE$(LEFT$(xAxis$,1)) = "T" 'of the current data set

ext$="-time"
XELSE

ext$="-freq"
END IF
default$ = inFileName$ + ext$
outFileName$ = FILES$(_fSave,"Save File As:",default$,volRefNum%)
DEF OPEN "TEXTTTXT"
OPEN "O",1,outFileName$,,volRefNum%
curFileName$ = outFileName$
PRINT #1, xAxis$ + CHR$(9) + yAxis$
LONG IF ext$="-time"
FOR counter = 1 TO numOfData& STEP 2

PRINT #1, STR$(xValue#(counter)) + CHR$(9) + STR$(tValue&(counter))
NEXT counter
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XELSE
FOR counter = 1 TO numOfData& STEP 2

PRINT #1, STR$(xValue#(counter)) + CHR$(9) + STR$(fValue#(counter))
NEXT counter

END IF
CLOSE #1
CURSOR _arrowCursor
FN drawData

END FN

LOCAL FN getXValues 'Function to fill in xValues array
'This function should be eventually replaced with one which can access this
'parameter from the header information of the KERMITted ANLESE data file,
'being converted.

INPUT "What is the interval between data points? "; xInterval#
counter = 0
factor = 0
WHILE counter <= numOfData&

counter = counter + 1
xValue#(counter) = (factor) * (xInterval#)
counter = counter + 1
xValue#(counter) = (factor) * (xInterval#)
factor = factor + 1

WEND
END FN

LOCAL FN convert 'Function to read in and convert ANLESE files

'The Nicolet files can be transferred to a Macintosh computer if there is a
'connection from the serial port of the Macintosh to the channel B serial port
'of the Nicolet computer. Once the Nicolet computer is booted up (with a
'dumb terminal connected to its channel A serial port) under the DEXTER/2
'operating system, and the Macintosh has an "opened connection" (with a
'terminal emulator program such as VersaTermPro) to the Nicolet, the files
'can be transferred using the KERMIT protocol. The KERMIT protocol on the
'Nicolet is accessed by simply typing the RUN KERMIT command at the
'DEXTER/2 prompt. The KERMIT protocol on the Macintosh can be accessed
'as described in the manual for the terminal emulator.

inFileName$=FILES$(_fOpen,"TEXT",,volRefNum%) 'Show TEXT files only
LONG IF LEN(inFileName$) 'if len=0 then Cancel open

OPEN "I", 1, inFileName$,,volRefNum% 'volRefNum%=folder of
inFileName$

curFileName$ = inFileName$
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'Loop to read in the header information. This will bring the file pointer to
'the location (location 881) of the first byte of the first unconverted ANLESE
'data value. This could not be read in as a huge string of 880 characters since
'there is a limit of 255 for character strings in FutureBASIC.

FOR counter = 1 TO 88
READ #1, aLine$;10

NEXT counter

'The following while loop was adapted from a program written by
'Xinhua Chen and Chris Stenland (when they were part of Dr. Larry Kevan's
'Laboratory at the Department of Chemistry at the University of Houston in
'Houston, Texas 77204-5641. Their original program was written in Microsoft
'QuickBASIC for MS DOS. This original program was emailed to
'Normand Cloutier (from Chris Stenland at stenland&hydrogen.ucsc.edu on
'December 17, 1993.

'This while loop is the algorithm to convert data files acquired from the
'ANLESE program of a Nicolet 1180E or Nicolet 1280 computer. The Nicolet
'computer stores this data in 20-bit integer format. The first part of every data
'file is header information containing parameters used in the ANLESE scan.
'The routine in Chen and Stenland's program to read the comment string of
'this header was found to not work and they made no provision to read any
'of the other parameters in the header part. However, their program correctly
'translates the orginal 20-bit integer data into 32-bit integer data, readable by
'this program and can then be saved in ASCII format.

numOfData& = 0 'Reset the number of data values to zero

WHILE NOT EOF(1)
READ #1, D$;5
A& = CVI(LEFT$(D$,4))
B& = CVI(RIGHT$(D$,4))
D12& = (A& AND &HFF) * &H1000
Al& = A& AND &HFFFF0000&
Al& = A& - A1&
D3& = (Al& AND &HF000)/&H10
D4& = (A& AND &HF00)/&H10
D5& = (A& AND &HF00000&)\&H100000&
numOfData& = numOfData& + 1
tValue&(numOfData&) = D12& + D3& + D4& + D5&
numOfData& = numOfData& + 1
B1& = (B& AND &HFOO) * &H100
B23& = (B& AND &HFF0000&) / &H100
B45& = ((B& AND &HFF000000&) / &H1000000&) AND &HFF
tValue&(numOfData&) = B1& + B23& + B45&
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WEND
CLOSE #1
numOfPoints& = numOfData&/2

FOR counter& = 3 TO numOfData&
difference& = tValue&(counter&) - tValue&(counter&-2)

LONG IF difference& > 0
LONG IF difference& > JumpJudger

tValue&(counter&) = tValue&(counter&) -
(INT(difference& /JumpJudger)*(_JumpValue))

END IF
XELSE

LONG IF difference& < ((-1)*(JumpJudger))
tValue&(counter&) = tValue&(counter&) +

(INT(difference&/_JumpJudger) *(_JumpValue))
END IF

END IF
NEXT counter&

FN getXValues
xAxis$ = "Time (sec)"
yAxis$ = "Counts"

lowerBoundView = 1
upperBoundView = numOfData&
FN generateY
xInterval# = xValue#(2) - xValue#(1)

FN drawData
MENU _mCommands, _iSelectRegions, _enable, "Select Regions"
MENU _mCommands, _iZoom, _enable, "Zoom In"
MENU _mCommands, _iMakeReal, _enable, "Delete Imaginary Points"
MENU _mFile, _iSaveR, _enable, "Save..."
MENU _mFile, _iSaveC, _enable, "Save Complex..."
MENU _mCommands, _iFitLongTimes, _enable, "Fit Ending Tail"
MENU _mCommands, _iZeroPoints, _enable, "Zero A Spectrum Portion"
MENU _mCommands, _iFitShortTimes, _enable, "Approximate Short Times"
MENU _mCommands, _iFourierTransform, _enable, "Fourier Transform"
MENU _mCommands, _ilnverseFourierTransform, _enable, "Inverse Fourier

Transform"
XELSE

BEEP
END IF

END FN

LOCAL FN makeReal
FOR counter=1 TO numOfData& STEP 2

tvalue&(counter+1) = 0
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NEXT counter
END FN

LOCAL FN addPortion
END FN

LOCAL FN doDialog
evnt = DIALOG(0) 'this returns the event
id = DIALOG(evnt) 'this tells us more about the event
SELECT evnt
END SELECT

END FN

LOCAL FN selectRegions
FOR pointsSelected = 1 TO 2
DO

LONG IF windowOpen = _yes
CALL GETMOUSE(mousePnt)
X = (mousePnt.h)
Y = (mousePnt.v)
LONG IF X >= 33 AND Y > = 10

LONG IF X <= 547 AND Y <= 310

dataIndex = ((((X-33)/xValueJump)*tValueJump) + 1) * 2 - 2 +_

lowerBoundView

xDataValue# = xValue#(datalndex)
yDataValue& = ( (tSpread&) * (Y - 310 + baseYCoordinate) / (-250)) +

minTValue&
xDataValue$ = STR$(xDataValue#)
yDataValue$ = STR$(yDataValue&)
whole$ = xDataValue$ + "," + yDataValue$
EDIT FIELD #1, whole$, (400,40)-(550,50), _statFramed, _leftJust
CURSOR _crossCursor

PEN 1,1,1,2,0
LONG IF plotFlag
PLOT 33,lastY TO 547,lastY
PLOT lastX,10 TO lastX,310

END IF
PLOT 33,Y TO 547,Y
PLOT X,10 TO X,310
plotFlag = 1
lastX = X
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lastY = Y
XELSE

CURSOR _arrowCursor
LONG IF plotFlag
PLOT 33,lastY TO 547,lastY
PLOT lastX,10 TO lastX,310
plotFlag = 0

END IF
CALL PENNORMAL

END IF
XELSE

CURSOR _arrowCursor
LONG IF plotFlag
PLOT 33,lastY TO 547,lastY
PLOT lastX,10 TO lastX,310
plotFlag = 0

END IF
CALL PENNORMAL

END IF
XELSE

CURSOR _arrowCursor
END IF
UNTIL FN BUTTON
LONG IF pointsSelected = 1

EDIT FIELD #2, whole$, (400,6(
boundaryl = dataIndex

XELSE
EDIT FIELD #3, whole$, (400,80)-

boundary2 = dataIndex
END IF
DELAY _secQuarter

NEXT pointsSelected
CURSOR _arrowCursor
PLOT 33,lastY TO 547,lastY
PLOT lastX,10 TO lastX,310
plotFlag = 0
CALL PENNORMAL
LONG IF boundaryl <> boundary2
LONG IF boundary 1 < boundary2

lowerBoundView
upperBoundView

XELSE
lowerBoundView
upperBoundView

END IF

(550,75), _statFramed, _leftJust

(550,95), _statFramed, _leftJust

= boundaryl
= boundary2 + 1

= boundary2
= boundaryl + 1

regionsSelected = _yes
XELSE
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BEEP
END IF

END FN

LOCAL FN zoomIn
FN selectRegions
FN generateY
FN drawData
MENU _mCommands, _iExpand, _enable, "Expand Out"
regionsSelected = _no

END FN

LOCAL FN ExpandOut
lowerBoundView = 1
LONG IF UCASE$(LEFT$(xAxis$,1)) = "T"

upperBoundView = numOfData&
FN generateY

XELSE
upperBoundView = numOfData&/2
FN generateY

END IF
FN drawData 'graph out the data in a window
MENU _mCommands, _iZoom, _enable, "Zoom In"
MENU _mCommands, _iExpand, _disable, "Expand Out"

END FN

LOCAL FN fitLongTimes
FN selectRegions
FN fitExponentialDecay
FOR counter = (numOfData& + 1) TO (5 * numOfData& - 1) STEP 2

xValue#(counter) = xValue#(counter - 1) + xInterval#
xValue#(counter + 1) = xValue#(counter)
tValue&(counter) = INT( expAmplitude# * EXP(slope# * xValue#(counter)))
tValue&(counter + 1) = 0

NEXT counter
numOfData& = counter - 1
numOfPoints& = numOfData&/2
lowerBoundView = 1
upperBoundView = numOfData&
FN expandOut

END FN

LOCAL FN replaceWithZeros
FOR counter = lowerBoundView TO upperBoundView - 2 STEP 2

LONG IF UCASE$(LEFT$(xAxis$,1)) = "T"
tValue&(counter) = 0
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XELSE
fValue#(counter) = 0

END IF
NEXT counter

END FN

LOCAL FN zeroPoints
FN selectRegions
FN replaceWithZeros
FN expandOut

END FN

LOCAL FN fitShortTimes
FN selectRegions
FN replaceWithZeros
finished = _no
fCounter = -1
DO

fCounter = fCounter + 2
IF tValue&(fCounter) <> 0 THEN finished = _yes

UNTIL finished
lowerBoundView = fCounter
upperBoundView = lowerBoundView + 61
FN fitExponentialDecay
fGoodPoint& = tValue&(fCounter)
estInitPoint& = INT(expAmplitude#)
dTime# = xValue#(fCounter)
finished = _no
sCounter = -1
DO

sCounter = sCounter + 2
angle# = (pi# * xValue#(sCounter)) / (2 * dTime#)
loss# = estInitPoint& * SIN(pi# * xValue#(sCounter)) / (2 * dTime#)
tempGain# = fGoodPoint& * SIN(pi# * xValue#(sCounter)) / (2 * dTime#)
'tempY# = (estInitPoint&)-(estInitPoint&-fGoodPoint&)*SIN((pi# *

xValue#(sCounter)) /(2*dTime#))
tempY# = (estInitPoint&) - loss# + tempGain#
tValue&(sCounter) = INT(tempY#)

IF sCounter = fCounter-2 THEN finished = _yes
UNTIL finished
FN expandOut

END FN

LOCAL FN fastFourierTransform
'This subroutine was adapted from pp. 394-395 of _Numerical Recipes_
'(FORTRAN version) by William H. Press, Brian P. Flannery, Saul A.
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'Teukolsky, and William T. Vetterling (1986) published by Cambridge
'University Press, 818 pages

'This function replaces the contents of the array tempArray#() with its
'discrete Fourier transform (if iSign = 1) or its inverse discrete Fourier
'transform (if iSign = -1). tempArray#() is a complex array of length
'numOfPoints& - the entries are ordered as (point[1] - real,imaginary;
'point2 - real, imaginary .... point[numOfPoints&] - real,imaginary)
'Therefore, a data set that only had real data entries was padded with
'alternating zeros, so that it can still be treated as a complex array by this
'function.

LONG IF UCASE$(LEFT$(xAxis$,1)) = "T"
FOR counter = 1 TO numOfData&

tempArray#(counter) = tValue&(counter)
NEXT counter

XELSE
FOR counter = 1 TO numOfData&

tempArray#(counter) = fValue#(counter)
NEXT counter

END IF

firstPointer=1
FOR secondPointer = 1 TO numOfData& STEP 2

LONG IF firstPointer > secondPointer
tempReal# = tempArray#(firstPointer)
templmaginary# = tempArray#(firstPointer+ 1)
tempArray#(firstPointer) = tempArray#(secondPointer)
tempArray#(firstPointer+1) = tempArray#(secondPointer+1)
tempArray#(secondPointer) = tempReal#
tempArray#(secondPointer+1) = tempImaginary#

END IF
mValue = numOfData&/2
WHILE mValue > 2 AND firstPointer > mValue

firstPointer = firstPointer-mValue
mValue = mValue/2

WEND
firstPointer = firstPointer + mValue

NEXT secondPointer
mMax = 2

WHILE numOfData& > mMax
iStep = 2 * mMax
theta# = (6.28318530717959#) / (iSign*mMax)
wPr# = (-2#) * (SIN(.5# * theta#)A2)
wPi# = SIN(theta#)
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wR# =1#
wI#=O#
FOR mValue = 1 TO mMax STEP 2

FOR secondPointer = mValue TO numOfData& STEP iStep
firstPointer = secondPointer + mMax
tempReal# = (wR# * tempArray#(firstPointer)) - (wI# *

tempArray#(firstPointer+ 1))
templmaginary# = (wR# * tempArray#(firstPointer+l)) + (wI# *_

tempArray#(firstPointer))
tempArray#(firstPointer) = tempArray#(secondPointer) - tempReal#
tempArray#(firstPointer+1) = tempArray#(secondPointer+1) - _

templmaginary#
tempArray#(secondPointer) = tempArray#(secondPointer) + tempReal#
tempArray#(secondPointer+1) = tempArray#(secondPointer+l) + _

templmaginary#
NEXT secondPointer
wTemp# = wR#
wR# = (wR# * wPr#) - (wI# * wPi#) + wR#
wI# = (wI# * wPr#) + (wTemp# * wPi#) + wI#

NEXT mValue
mMax = iStep

WEND

LONG IF UCASE$(LEFT$(xAxis$,1)) = "T"
FOR counter = 1 TO numOfData&

fValue#(counter) = tempArray#(counter)
NEXT counter

'Filling up the xValue#() array with the frequency values. For a description
'of how this algorithm was derived, look at Figure 12.2.2b on p. 394 of
'_Numerical Recipes_

'Filling up the xValue#() array with the positive frequency values

freq# = 0#
counter = 1

'this is needed to use numOfPoints& as a real
tempNumOfPoints# = numOfPoints&

DO
xValue#(counter) = freq#

'PRINT counter,freq#,xValue#(counter)

counter = counter + 1
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xValue#(counter) = freq#

'PRINT counter,freq#,xValue#(counter)

counter = counter + 1
'freq# = freq# + (1 / ((xInterval#)*numOfPoints&))
freq# = freq# + (1# / ((xInterval#)*tempNumOfPoints#))

UNTIL counter >= numOfPoints& + 3

'Filling up the xValue#() array with the negative frequency values
freq# = (-1) * (freq# - 2 * (1# / ((xInterval#)*tempNumOfPoints#)) )

DO
xValue#(counter) = freq#
counter = counter + 1
xValue#(counter) = freq#
counter = counter + 1
freq# = freq# + (1# / ((xInterval#)*tempNumOfPoints#))

UNTIL counter = numOfData& +1

xInterval# = xValue#(3) - xValue#(1)
xAxis$ = "Frequency (Hz)"
lowerBoundView = 3
upperBoundView = numOfData&
FN generateY
FN drawData

XELSE
xInterval# = (1# / (numOfPoints& * (xValue#(3) - xValue#(1))))
timeValue# = 0
counter = 1
DO

xValue#(counter) = timeValue#
counter = counter + 1
xValue#(counter) = timeValue#
counter = counter + 1
timeValue# = timeValue# + xInterval#

UNTIL counter = numOfData& + 1

FOR counter = 1 TO numOfData&
tValue&(counter) = INT(tempArray#(counter))

NEXT counter
xAxis$ = "Time (sec)"
FN expandOut

END IF
END FN

LOCAL FN fourierTransform
iSign = 1
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FN fastFourierTransform
END FN

LOCAL FN inverseFourierTransform
iSign = -1
FN fastFourierTransform

END FN

LOCAL FN doMenu
menuid = MENU(_menuID)
itemid = MENU(_itemID)
SELECT menuid
CASE _mFile

SELECT itemid
CASE _iOpen

FN openFile
CASE _iConvert

FN convert
CASE _iSaveR

FN saveRealFile
CASE _iSaveC

FN saveComplexFile
CASE _iQuit
END

END SELECT
CASE _mEdit
SELECT itemid

CASE _iUndo
CASE _iCut
CASE _iPaste
CASE _iClear
CASE _iSelectAll

END SELECT
CASE _mCommands
SELECT itemid

CASE _iMakeReal
FN makeReal

CASE _iFourierTransform
FN fourierTransform

CASE _ilnverseFourierTransf
FN inverseFourierTransforrr

CASE _iFitLongTimes
FN fitLongTimes

CASE _iZeroPoints
FN zeroPoints

CASE _iAddPortion
FN addPortion

'which menu was chosen?
'which item in the menu was chosen?

'was the file menu selected?
'which item in the file menu?

'the Open item

'the Convert item

'the Save Real item

'the Save Complex item

'the Quit item
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CASE _iSelectRegions
FN selectRegions

CASE _iZoom
FN zoomIn

CASE _iExpand
FN expandOut
CASE _iFitShortTimes
FN fitShortTimes

END SELECT
END SELECT
MENU

END FN

LOCAL FN initialize
MENU _mFile, 0, _enable, "File" 'create file menu
'an open item to open a data file
MENU _mFile, _iOpen, _enable, "Open.../O"
'an item to convert a data file
MENU _mFile, _iConvert, _enable, "Convert... /K"
'an item to save a real data file
MENU _mFile, _iSaveR, _disable, "Save... /S"
'an item to save a complex data file
MENU _mFile, _iSaveC,_disable,"Save Complex..."
'need a way to quit the program
MENU _mFile, _iQuit, _enable,"Quit/Q"

MENU _mEdit, 0, _disable, "Edit" 'create edit menu
MENU _mEdit, _iUndo, _disable, "Undo/Z" 'an undo item
MENU _mEdit, 2, _disable, ";" 'a separator
MENU _mEdit, _iCut, _disable, "Cut/X" 'a cut item
MENU _mEdit, _iCopy, _disable, "Copy/C" 'a copy item
MENU _mEdit, _iPaste, _disable, "Paste/V" 'a paste item
MENU _mEdit, _iClear, _disable, "Clear" 'a clear item
MENU _mEdit, 7, _disable, ";" 'a separator
MENU _mEdit, _iSelectAll, _disable, "Select All/A"
'create a Commands menu
MENU _mCommands, 0, _enable, "Commands"
MENU _mCommands, _iMakeReal, _disable, "Delete Imaginary Points/D"
MENU _mCommands, _iFourierTransform, _disable, "Fourier Transform/F"
MENU _mCommands, _ilnverseFourierTransform, _disable, "Inverse Fourier

Transform/I"
MENU _mCommands, _iFitLongTimes, _disable, "Fit Ending Tail/T"
MENU _mCommands, _iZeroPoints, _disable, "Zero A Spectrum Portion/Z"
MENU _mCommands, _iAddPortion, _disable, "Append New Values"
MENU _mCommands, _iSelectRegions, _disable, "Select Regions"
MENU _mCommands, _iZoom, _disable, "Zoom In"
MENU _mCommands, _iExpand, _disable, "Expand Out"
MENU _mCommands, _iFitShortTimes, _disable, "Approximate Short Times"
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baseYCoordinate = 15
windowOpen = _no
plotFlag = 0
regionsSelected = _no
pi# = (ATN(1) << 2)

END FN

------------------------------ Main ----------------------------------
FN initialize
ON MENU FN doMenu
ON DIALOG FN doDialog

DO
HANDLEEVENTS

UNTIL programEnds
END

'put up menus and set up vars
'routine to handle menu selection

'routine to handle window update events

'round and round until the program ends
'if event happens call a routine
'if programEnds = true then loop ends

'program ends
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CHAPTER 5

EXAFS Studies on Cytochrome P450,p1
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5.1. Background and Significance

X-ray absorption spectroscopy (XAFS) has played a major role in

characterizing cytochrome P450 systems. Extended x-ray absorption fine structure

(EXAFS) spectroscopy was one of the techniques that helped to confirm that the

proximal axial ligand of cytochrome P450 enzymes was a sulfur [1]; it even revealed

that this sulfur was a thiolate [2]. X-ray absorption near edge spectroscopy (XANES)

and EXAFS has also given support for porphyrin cation radicals and short iron-

oxygen bonds in compounds I and II of horseradish peroxidase [3, 4]; these reports

helped implicate the presence of an oxenoid species in the P450 catalytic cycle (see

section 1.1 of this thesis). In addition, recently XANES has shown that axial thiolate

ligation to heme proteins affects the electronic properties of the iron [5], consistent

with it role in facilitating the breaking the 0-0 bond in oxygen [6].

EXAFS has also been used as a tool in the partial mapping of the active site of

P450scc. Joardar [7] used a sulfoxide analog of 22(R)-hydroxycholesterol - having the

sulfur replace the C-22 atom and a sulfoxide oxygen in place for the 22(R) hydroxy

group - to determine heme iron to substrate distances. Such distances are obtained

by examining the modulations of the X-ray absorption by the central iron, caused by

surrounding atoms. This effect is more sensitive for larger neighbors; therefore the

sulfur containing substrate analog used in Joardar's studies [7] enabled the relatively

rare incident of second shell ligand characterization.

The principle behind the EXAFS phenomenon is that of the photoelectric

effect. When metal atoms are exposed to X-rays of a particular energy range, the

absorption of the x-ray photon gives rise to the ejection of an inner shell electron.

This electron then propagates outward as a spherical wave (a photoelectron), with a

corresponding de Brogli wavelength. Surrounding atoms are then able to

backscatter this wave toward the central atom (see Figure 5.1). This backscattered

wave alters the electron energy levels of the central atom, which in turn affects its

absorption coefficient, relative to that of the same atom in an isolated state. As the

absorption (or fluorescence) is measured over a range of energies, modulations in

the absorption coefficient arise due to the changing photoelectron wavelength.
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Figure 5.1: A pictorial description of the origin of EXAFS phenomenon which is
caused by the ejection from the central atom and the backscattering back from
surrounding ligands, of photoelectrons.

The absorption modulation can be used to determine the distance between

the central and backscattering atom. By converting the post edge (see Figure 5.2)

absorption (or fluorescence) curve from energy space to momentum space (k-space),

more easily defined periodicities and beat patterns become apparent. Fourier

transforming the k-space data into distance space (r-space), gives a curve which

resembles the radial distribution function of ligands around the absorbing atom.
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Figure 5.2: Fluorescence EXAFS of tetraphenylporphine iron (III) chloride.

Ligand distances cannot be directly read off of the r-space EXAFS data. A

variety of ligand and absorber properties must be factored in before definitive

distance assignments can be made. These are: the phase changes (of the

photoelectron wave) caused by the central absorber and the individual

backscatterers, the atomic (static and thermal) disorder in the system, and the

electron mean free path. As a result, geometric assignments are usually performed

by simulating the k-space data, while varying the all of the possible parameters. The

r-space data (although not an accurate representation of the distances) reliably

separates the EXAFS modulations from atoms of different coordination shells.

Taking advantage of this, the spectroscopist uses this representation of the data to

"window" on certain shells, back transforming them into k-space - where each shell

is individually fitted.

The existence of numerous factors, influencing the EXAFS, would seem to

give rise to ambiguous ligand distances. This problem can be addressed by

incorporating theoretically derived values for these parameters or by incorporating

information from (structurally characterized) model compound EXAFS data. In

principle either approach could be used, but there is a strong preference for

empirically derived values. This has to do with extensive approximations that were
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made with early versions of these tables [8] and with the problem of background

removal.

All EXAFS spectra have backgrounds with some degree of non-linearity.

These primarily arise from the effects of the absorbing atom being imbedded in a

molecule (apart from near-neighbor backscattering) and from detector non-

linearities. Apart from the intrinsic background from the sample and the detection

system, the amplitude of the EXAFS modulations are dependent on the geometry of

the experiment. When EXAFS is measured for model compounds, one need not

bother with the absorption of X-rays from the intervening air between detectors and

the sample. Unfortunately suitable model compounds are not always available; the

use of theoretical values, in such cases, is preferable to using data from

inappropriate models. However, this adds to the level of noted experimental detail

and increases the data processing time while fitting the data.

The basic geometry of heme system of cytochrome P450 proteins has

previously been worked out with EXAFS and x-ray crystallography. However, fine

adjustments to heme structure and cysteine coordination, caused by the binding of

specific substrates or inhibitors, remains a largely unexplored area. Among

individual P450 proteins, particular compounds can bind in the active site of the

enzyme and enable the system (in the presence of reducing equivalents and electron

transfer proteins) to reduce oxygen without oxidizing an organic substrate; such

compounds are called pseudosubstrates (see section 1.1 of this thesis).

Differences in the polarity of the active sites (caused by mutations or the

binding of pseudosubstrates) has been proposed for causing P450-dependent futile

oxygen reduction [9-12]. The x-ray crystal structure of one of these mutants has been

determined [9]. If small differences in iron coordination were at play, these may not

be apparent from an x-ray crystal structure. EXAFS, however, is ideally suited for

measuring small distances; although backscattering effects are normally limited to a

maximum distance of 4.0 A, small distances can often be measured to within 0.02 A
[13].

Early EXAFS studies on P450cam demonstrated a difference in iron

coordination between high and low spin versions of the enzyme [2]. Such
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differences presumably exist in other P450 enzymes. This chapter describes EXAFS

experiments on bovine P450 11, - either bound with 11-deoxycorticosterone (high

spin form) or with the relatively specific inhibitor metyrapone (low spin form). The

goal of these studies is to determine the differences in iron coordination between

P45011,-DOC and P450 1,p-metyrapone.

5.2 Materials and Methods

5.2.1. Materials

5.2.1.1. Model Compounds and Sample Holders

Two heme model compounds - (protoporphyrin IX)-iron (III) bis (1-

methylimidazole) and iron(III) tris (N,N-diethyldithiocarbamate) - were made

according to published procedures. (Tetraphenylporphine)-iron (III) chloride and

metyrapone was purchased from Aldrich Chemical Co. Aluminum-iron sample

holders were made by the MIT chemistry department machine shop according to the

specifications shown in Figure 5.3. All heme model compounds were

dissolved/dispersed in benzene (at concentrations of approximately 10 mM) and

frozen as glasses in liquid nitrogen.

5.2.1.2. Sample Preparation and Characterization

Cytochrome P45011, was purified as described in section 3.4.4 of this thesis.

P45011,, with bound 11-deoxycorticosterone had the uv-vis absorption and EPR

spectra shown in Figures 3.4 and 5.4, respectively. This sample was concentrated

(using ultrafiltration against an Amicon YM30 membrane) to the point of creating a

suspension. The protein slurry was then placed in an EXAFS sample holder and

frozen in liquid nitrogen. The integrity of the P45011, protein was confirmed by EPR

spectroscopy.

Cytochrome P45011,, with bound metyrapone was prepared by combining a 10-

fold excess (with respect to cytochrome heme) of metyrapone with

deoxycorticosterone-bound P45011, and incubated at room temperature for 1 hour.
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Figure 5.3: Design for EXAFS sample holders. The slot in the middle of the
aluminum object is a bored out hole. This opening can be covered with (x-ray
transparent) mylar tape; the injection holes on the side then allow one to enter the
sample.

An aliquot of this sample was monitored by uv-vis absorption spectroscopy;

measurement of a growing peak at 420 nm was taken as an indication that

metyrapone was displacing deoxycorticosterone in the active site of the protein.

When the 420 nm (low spin) signal stopped increasing, the sample was immediately

subjected to ultrafiltration (at 5 oC) as described above. The uv-vis absorption

spectrum of the unconcentrated sample is shown in Figure 5.5.

5.2.2. Methods

5.2.2.1. EPR and UV-VIS Spectroscopy

EPR spectra were acquired on the MIT Chemistry Department's Briiker ER

series X-band CW spectrometer (at 9.44 GHz), using a commercial liquid helium

circulating Oxford cryostat. Uv-vis absorption spectra were acquired on a Hewlett

Packard diode array spectrophotometer.
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Figure 5.4: EPR spectrum of P4501,, with bound 11-deoxycorticosterone. The
spectrum was taken at 10 K at a microwave frequency of 9.44 GHz.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
250 300 350 400 450 500 550

Wavelength (nm)
600

Figure 5.5: The uv-vis absorption spectrum of purified P45011, , bound with
metyrapone.

173



5.2.2.2. EXAFS Data Acquisition

X-ray absorption spectra were collect at beamline X9B of the National

Synchrotron Light Source (Brookhaven National Laboratories). The X-rays were

tuned with a Si(111) double crystal monochrometer. Throughout the data

acquisition, samples were kept at 20 K with the use of a closed-cycle refrigerated

displex. The sample was placed at a 450 angle from the incident x-rays. Incident

intensities were measured using a nitrogen gas ionization chamber detector.

Fluorescence data was measured perpendicular to the incident beam, using an

enery-resolving Canberra 13-element germanium detector . Data were recorded at

the following energy resolutions (relative to the 7.113 keV edge): 10 eV steps from -

200 eV to -25 eV, a 1.0 eV steps from -25 eV to +25 eV, 2.0 eV steps from +25 eV to

+150 eV, 3.0 eV steps from +150 eV to +400 eV, and 6.0 eV steps from +400 eV to 800

eV. The duration that monochrometer remained at an individual energy value was

approximately scaled to the beam current in the electron ring; a dwell time of 1.5

second (per energy step) for a beam current of 200 mA was used as the standard.

5.2.2.3. Data Acquisition For Determination of Detector Dead Times

Saturation data for the 13-element detector was acquired while maintaining

the monochrometer at 7.2 keV (a nominal energy above the edge). Once the beam

was centered on the sample, the vertical shutter aperture was varied from 0.0 mm to

2.0 mm in size, in increments of 0.05 mm while acquiring fluorescence counts for

1.0 second at each step. The total internal counts for each of the detectors was also

measured for each of these steps in incident intensity. Although the detectors'

fluorescence counts were found to saturate at high incident intensities, the total

internal counts (for each element of the detector; see Figure 5.6) responded linearly

at all times. As a result, the total internal counts were taken as a measure of total

impingement of photons on the detector.
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5.2.2.4. Software Utilized

Curve fitting for detector dead times was performed using Kaleidagraph 3.0

(for the Macintosh). Formatting the EXAFS data and correcting the measured

fluorescence counts (as dictated by the detector dead times) was performed by

Microsoft Excel 5.0, running tailored programs written in Visual Basic For

Applications.

5.3. Results and Discussion

5.3.1. Determination of Fluorescence Detector Dead Times

Data from the energy resolving 13-element fluorescence detector (see Figure

5.6) deviates from linearity at high photon count rates. However, the total internal

counts (for each of the 13 sub detectors; i.e. icx, where x is the element number) was

found to remain linear at all incident intensities examined. The fact that the

internal count measurement did not saturate provided an internal gauge of the total

photon impingement on each of the 13 elements of the detector.

Figure 5.6: The circular array of the 13 individual detectors in the Canberra
fluorescence detector. During data acquisition, the face of this array was centered
toward the sample - making detector 3 receive the most photons.

By correlating the energy-windowed fluorescence counts for each detector

element (i.e. gex, where x is the element number), detector element dead times were

obtained. This was performed by plotting gex versus icr x (i.e., the internal count rate

of element x) and fitting this to the function given in equation (1) below:
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= 3 -ccr *gemesedý- = P0ICr * & x (1)

where 03 is the slope of the curve at icr=0 and rx is the fitted dead time for detector x.

This equation was fitted to fluorescence data acquired for both P450 11•-

deoxycorticosterone and P450n11 -metyrapone, when measured at an x-ray beam

energy of 7.2 keV at a series of different intensities. The dead times for each

element, from each series, were pair-wise averaged as shown in Table 5.1. These

averaged dead times were used in the correction of measured fluorescence counts.

Detector P450 115 R P45011  R Value Average Dead
Element (DOC) Value (MET) Time r (gsec)

S(grsec) r (gLsec)
1 0.2516 0.997 1.7772 0.999 1.0144

2 2.6644 0.998 2.0388 0.999 2.3516

3 0.6348 0.999 1.4068 0.999 1.0208

4 5.5034 1.000 2.0950 0.999 3.7992

5 3.6781 1.000 2.0427 0.999 2.8604

6 2.2497 0.999 2.2380 1.000 2.2439

7 4.3293 0.999 2.9062 0.998 3.6178

8 3.1591 1.000 2.1979 0.999 2.6785

9 1.0334 0.999 2.5695 0.999 1.8015

10 4.5182 0.999 1.9646 0.999 3.2414

11 1.5557 0.999 1.2339 0.999 1.3948

12 3.9911 0.999 1.9089 0.999 2.9500

13 2.4113 0.999 2.1276 0.999 2.2694

Table 5.1: Tabulation of dead times for each of the elements of the Canberra
fluorescence detector.
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Correction of the fluorescence counts was based on the notion that if the dead

times were all zero, then the gex vs. icrx relations would all be straight lines, passing

through the origin. The expected counts, in such a situation would follow the trend

in equation (2).

exp ectedx  (2)

Making the corrected equal to the expected counts, results in:

'measure
gecorrectedx xCr'x (3)

Since every measured fluorescence counts (for each detector element) had a

companion icr that was also stored (for each scan), the counts for each data point was

augmented by using equation (3).

5.3.2. Summing Up the Individual Scans

In the inspection of the fluorescence vs. energy EXAFS spectra for the

individual detectors (i.e. gex/I o vs. Energy), it was found that the 13 different spectra

had noticeably different backgrounds. These backgrounds were found to be endemic

to the individual detectors of the Canberra unit. As a result, the summation of data

was performed by adding up the scans from the same detector for each of the scans

(see Figures 5.7 through 5.19) , producing 13 final summed spectra for each sample.

Before these 13 spectra can be combined to form the final EXAFS spectrum for the

sample, the individual backgrounds from each must be removed. Only afterwards

should these 13 data sets be combined. Fitting the post edge region to a polynomial

spline background of the 13 summed spectra for P450,1•-deoxycorticosterone and

P45011,-metyrapone has not yet been performed. As a result, the analysis of P450,1 ,-

deoxycorticosterone and P45011•-metyrapone samples is incomplete.

This individuality of detector background was not found in the scans of the

heme model compounds, which were at least one order of magnitude more

concentrated that the P45011, samples. As a result, the summed data for the model
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compounds were performed by adding the individual ge x, producing a final gesum/I o

vs. energy plots (see Figures 5.2, 5.20, and 5.21).
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Figure 5.7: 75 Summed P450,1p-metyrapone EXAFS spectra from ge1.
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Figure 5.8: 75 Summed P45011-metyrapone EXAFS spectra from ge2.
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Figure 5.9: 75 Summed P450 110-metyrapone EXAFS spectra from ge3.
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Figure 5.10: 75 Summed P4501 10-metyrapone EXAFS spectra from ge4.
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Figure 5.11: 75 Summed P450,11,-metyrapone EXAFS spectra from ge s.
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Figure 5.12: 75 Summed P45011n-metyrapone EXAFS spectra from ge6.
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Figure 5.13: 75 Summed P450 11-metyrapone EXAFS spectra from ge7.
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Figure 5.14: 75 Summed P45011,-metyrapone EXAFS spectra from ge8.
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Figure 5.16: 75 Summed P45011,-metyrapone EXAFS spectra from geo0.
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Figure 5.18: 75 Summed P45011,-metyrapone EXAFS spectra from gel2.
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Figure 5.19: 75 Summed P45011,-metyrapone EXAFS spectra from gel3.
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Figure 5.20: Summed EXAFS of heme bis (imidazole).
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Figure 5.21: Summed EXAFS of Fe3+ tris (N,N-diethyldithiocarbamate).

Preliminary analysis of the summed model compound data has been

performed (data not shown). After removing the pre-edge region of the spectra, the

energy-space data were converted to k-space. Fourier transforming the k-space data

to r-space gave a radial distribution function. Analysis beyond this point was not

performed. Nevertheless, it was found that the radial distribution for each of the

model compounds had a low distance peak corresponding to approximately 1.6 A.
This low distance peak appears identical to the troublesome 1.6 A peak that

Joardar could not explain in his EXAFS data of P450,cc - bound with either 22(R)-

aminocholesterol or 20(S),22(R)-thiacholesterol-S-oxide [7]. When measuring the

EXAFS of the same model compounds described in this chapter, Joardar used a gas

ionization Lytle detector [14] rather than the Canberra unit used for his protein

samples. One result of this was that the 1.6 A peak did not appear in the scans for

the model compounds, leaving Joardar to believe that this low distance peak was a

property of the protein samples. The EXAFS measured on the model compounds

for the work described in this chapter was acquired using the Canberra detector.

Therefore, it appears that the -1.6 A peak is an artifact of detector background.
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The creation of an artificial peak, resulting from a particular detector,

illustrates an important point. One of the major uses of model compounds is to

eliminate (as much as possible) the problems associated with systematic errors in

data acquisition. Model compound EXAFS data in this laboratory has, in the past,

been acquired exclusively using gas ionization or scintillation detectors. The reason

behind this decision was based on the fact that these detectors did not saturate easily

and EXAFS could be acquired at high count rates. However, because these detectors

are not energy-resolving, an N-1 filter (i.e. a filter made of an element 1 atomic

number less than the absorbing species of the experiment) was placed between the

sample and the fluorescence detector. Although more photons were counted, the

quality of spectra were not as high as when an energy-resolving detector is used.

This is most probably because the N-1 filter was absorbing both fluorescence photons

as well as background photons. Nevertheless, the attention paid to acquiring a large

number of counts ignores that the value to optimize is the number of effective

counts. In most cases, the number of effective counts for concentrated compounds

is similar or higher when measured with the Canberra unit, as compared to the

Lytle detector.

The systematic error of the sample self-absorption of fluorescence photons

can also be taken into account by measuring EXAFS of model compounds on the

same detector as the unknown sample. However, in order for this to be done

properly, the model compound should be of similar concentration (and preferably

in the same solvent) as that of the unknown. This was not the case for the model

compounds used in the experiments described in this chapter.

5.4.3. The Next Steps in Data Analysis

Having summed up the EXAFS data for the model compounds, a full analysis

of this data may now proceed. This work is will be performed in the near future.

Previous analyses in this laboratory have utilized programs based on the algorithms

described by Teo [15]. These programs require the use of VAX computers and offer

very little flexibility in the way data is handled; spectra that were acquired under

different detector gains can only be properly weighted (in the final sum) in a file by
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file manner. When hundreds of files are being dealt with, this offers a large chance

for human error in the data analysis. In addition, the algorithms used in these

programs utilize the plane wave approximation of x-rays, which is now considered

(in the general field of EXAFS) to introduce unnecessary approximations. The

current standard is to utilize spherical wave formulations of x-rays. Many software

packages are now available that implement this.

Future analysis of the EXAFS data described in this chapter will rely on the

programs developed by the University of Washington - the famous UWXAFS

package [16]. This package is continually updated and runs on either UNIX, MS

DOS, or Macintosh systems. It uses the most current versions of accepted data

analysis algorithms and is designed to facilitate the incorporation of theoretical

parameters when needed. It also uses common (ASCII) file formats. All of its

components are executed by first writing out a script. This enables long procedures

to be executed in an unattended fashion. The combination of these features should

aid in the completion of the P45011, EXAFS analysis started in this chapter. The final

result will offer a significant contribution of our limited knowledge of this neglected

but important enzyme.
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