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Abstract

This thesis presents the research performed on applying motion-based detection to the
removal of film degradations. This tool, when applied to noise-reduction algorithms, aids
in minimizing added distortions and allows significant degradation reduction and detail
preservation in the processed image.

Motion compensation is initially applied to each frame in the film sequence to generate a
backward and forward estimated image. The pixel intensities in these estimated images
are strongly correlated in the temporal direction. A spatial-temporal filter may be applied
to these images. The processed image will contain fewer degradations and less distortions
than the correspondingly processed non-motion compensated sequence.

Distortions may be further reduced by filtering the image only at the locations determined
to be degradations. A detector that searches out the image for degradations can be used to
trigger the noise-reduction algorithm. A novel degradation detector which, for a given
level of detection produces lower false alarms than previous detectors, is presented.

Thesis Supervisor: Jae S. Lim
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Motion picture film is commonly used as a medium for storing motion image
sequences for entertainment purposes. Motion picture film may be degraded for a variety
of reasons. For example, it may be inadvertently scratched due to mishandling or as it is
fed through the film processor and/or the projector. In addition, particles (e.g., dust and
dirt) caught in various equipment, such as a film digitizer, may lead to point and line
defects which manifest themselves as blotches and scratches. Deterioration of the film
material over time may cause additional defects. Figure 1.1 shows a frame taken from a

film sequence degraded with defects which commonly appear in film.

These defects are often noticeable because they significantly reduce the image quality
and distract the viewer. Furthermore, such defects may reduce the efficiency of the subse-
quent image compression algorithms applied to digitized motion picture film for storage
and transmission purposes. Specifically, valuable bits are wasted representing these
defects rather than being used for relevant image information. By appropriate processing,
these defects can be removed, resulting in increased visual quality and compression effi-
ciency. Defect removal is expected to be rather important in the very near future since
older movies are likely to be broadcast over some of the hundreds of TV channels. More-
over, restoration of old movies will always be in demand as the public’s desire for viewing
movie classics with high visual quality will increase as they witness the current success of
digital video processing. This thesis is concerned with methods for detection and removal
of defects in motion picture film, using digital motion analysis and image sequence pro-

cessing.
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Initially, processing for defect removal was performed in the spatial domain on a
frame by frame basis. Dirt and blotches, as well as thin line scratches, were modeled as
impulsive noise and spatial median filtering was used. The median filter was effective in
removing single pixel point degradations without introducing distortions in the image. In
addition, much of the image detail was maintained. The ability of the median filter to pre-
serve edges is a very desirable feature. According to psychophysical experiments, a dis-
torted image with sharpened edges can be preferable to the original image [1]. Therefore,
the spatial median filter was the first logical step for removing film defects.

To process an image sequence with the spatial median filter, we apply the filter to each
frame on an individual basis. The acquisition of each frame in an image sequence, how-
ever, usually occurred much more rapidly than the change in information from one frame
to the next. Therefore, frames are usually temporally correlated and it may be advanta-
geous to utilize this correlation in defect detection as well as defect removal. For instance,
a thick point defect that is present in one frame but not in the neighboring frames can be
effectively removed by a temporal median filter. This is because such a defect does not
have an impulsive character in the spatial domain. It, however, appears as impulsive noise

to a filter operating in the temporal domain.

The temporal median filter (e.g., a 3-tap filter) removes impulsive degradations of any
spatial size very effectively. When the current degraded pixel corresponds to a stationary
region of the image, the corresponding pixels in the previous and following frames are
likely to contain the correct value for the current pixel (ignoring the film grain for a
moment). The median of three values when two of them are very close to each other, rela-
tive to the third, is equal to one of these values. Thus, the median filter will produce a good
estimate. For pixels lying in the moving regions, however, the temporal median filter pro-

duces an unacceptable amount of distortion. This is because the temporal correlation
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between co-located image values is rather weak due to motion. In other words, changing
image information may appear to the filter as temporal impulses, resulting in the undesir-
able blurring of moving regions.

To utilize the strong temporal correlations in stationary image areas without introduc-
ing distortion caused by temporally filtering moving areas of the image, Alp [1] and Arce
[2] have introduced several multilevel, spatiotemporal (3-D) median filters. These filters
effectively reduce to spatial filters in image areas undergoing motion. However, the sub-
filter windows in the multilevel filters use most of the values from the current degraded
frame. Therefore, these multilevel median filters are limited in their ability to remove
multi-pixel degradations. Another multilevel median filter proposed by Kokaram [5], the
ML3Dex, uses more pixel values from the previous and following frames in the sub-filter
windows. Kokaram’s filter performs very well in removing a wide range of impulsive deg-

radations. However, in moving areas, significant distortion is introduced.

Temporal correlations are best utilized by motion compensation. If motion can be esti-
mated with sufficient accuracy, any of the previous median filters, including the temporal
1-D filter or Kokaram’s 3-D filter, will be effective in reducing the defects. Motion com-
pensation is not only useful in defect removal; it can also be used in detecting certain
kinds of defects. Detection of defects results in selective processing (i.e., engaging of the
filter) which in turn results in decreased processing time and the decreased possibility of

processing a defect-free area and introducing unnecessary distortion.

Defects that do not persist in time (i.e. those defects that occur in the current frame but
not in the previous and the following frames), give rise to inaccurate motion estimation.
This inaccuracy can be utilized to detect them. For instance, dirt and blotches can often be
effectively detected in this manner. Line scratches that do not persist in time can be simi-

larly detected. Sufficiently thin processing scratches that persist in time (they are almost
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co-located in successive frames) but are located in moving areas can also be detected
using the motion information. Motion-based detection methods fail when the motion esti-
mation algorithm successfully tracks a persistent defect through time. Kokaram was first
to introduce the concept of motion-based defect detection [S]. Kokaram introduced the
spike detection index and proposed a fixed detector as tools which search out the image
for the degradations. Recently, Morris [9] has proposed a unified Bayesian framework for

simultaneous motion estimation and scratch detection using Gibbs random field models.

This thesis evaluates the performance of motion-based detectors and subsequent
motion-compensated median filter structures in restoring both simulated and real-life
degraded image sequences. Comparisons with spatial and temporal (non-compensated)
median filter structures are made. The test sequences used contained dirt, blotches and
line/curve scratches. An extension to the fixed detector is also proposed. In addition, the
advantage of operator assistance in roughly specifying a region with significant defect

concentration and limiting detection to that region is demonstrated.

This thesis is organized as follows. Chapter two starts with a discussion of common
film defects. Several motion estimation and compensation algorithms, which will be used
to increase the temporal correlations (and thus allow the filter to output significantly less
distortions, remove more degradations, and introduce less blurring than the corresponding
non-motion compensated filter), are discussed. The concept of defect detection, particu-
larly from the perspective of an automatic index-based detector, is then discussed. Finally,

several median-based filters which are effective in removing film defects are reviewed.

In chapter three, a novel degradation detector (the extended Fixed detector) is pre-
sented. In addition, operator assisted detection is discussed. In chapter four numeric and

visual performance evaluations of the motion compensator, defect detector, and several
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noise-reduction filters are given. An artificial and two natural sequences were used. Chap-
ter five summarizes the achievements of the thesis with respect to removing film degrada-
tions. The performance of the extended Fixed detector is briefly covered. Several

unaddressed problems are discussed that could lead to further research in this field.
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Chapter 2

Background

In this chapter, we first discuss the type of defects that are common in motion picture
film. We then discuss motion estimation and compensation since it plays a critical role in

defect detection and removal.

2.1 Film Defects

To effectively reduce film degradations by image processing techniques, an under-
standing of film degradation types is important. For example, algorithms which may effec-
tively reduce additive Gaussian noise may not be suited for removal of defects that have

impulsive character.

In motion picture film, two major types of defects occur: blotches and scratches. Dirt
and dust attached to the film surface result in blotches that usually do not persist in time.
In other words, they do not necessarily occur at the same spatial region from one frame to
another--they appear and disappear. As we shall see, such defects can be conveniently
detected on the basis of their temporal discontinuity using motion information. Scratches
manifest themselves as thin lines or curves of high contrast. They occur when the film sur-
face contacts an abrasive surface, for instance during its transfer through the film proces-
sor or the projector. Scratches may or may not persist in time. Processing scratches are
usually straight-lines that span a significant portion of the frame height and persist in time.
They are almost co-located from one frame to another. Motion information can be effec-
tively used to detect them provided that the regions containing the scratches are suffi-

ciently thin. Otherwise, their spatial characteristics, such as their long, near-vertical
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structure, in addition to motion information, must be utilized in their detection. Other
scratches that persist in time are often short and curved, and their movement is uncorre-
lated to the movement of their immediate surroundings. This property can be utilized in
their detection. Other types of scratches do not persist in time and can be effectively

detected on the basis of motion information.

2.2 Motion Estimation and Compensation

A motion compensator may be used to find motion vectors from the current frame to
the previous frame and from the current frame to the following frame. These displacement
vectors are then used to align the previous frame and the following frame with the current
frame. The resulting images are called estimated images. By processing the estimated
images instead of the non-motion compensated sequence, a filter may output significantly
less distortions, remove more degradations, and introduce less blurring than spatial filter-
ing or non-motion compensated spatial-temporal filtering. Therefore, motion estimation is
a very important tool in degradation reduction.

The three commonly occurring motion forms in image sequences are translation, rota-
tion, and zoom. Motion estimation algorithms perform well for translational motion by
searching for displacement vectors that map a region in the current frame to one in the pre-
vious frame and to one in the following frame. If the motion speed is slow enough

between frames, rotation and zoom may be approximated by translational motion.

Estimated images are generated by aligning the previous and following frames with
the current frame using the vectors found from the motion-estimation algorithm. Motion

vectors emerging from the current frame and pointing at the previous and the following
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frames are estimated. In other words, two separate motion estimation processes are carried
out; one between the current frame and the previous frame and the other between the cur-
rent frame and the following frame. Estimated images generated from Figure 2.1 by align-
ing the previous frame and following frame with the current frame are shown in Figure
2.2. The motion-compensated estimate of the current frame from the previous frame is
referred to as “backward estimate” of the current frame. The motion-compensated esti-
mate obtained from the following frame is called the “forward estimate” of the current

frame. Processing is then done in the usual manner, using these estimated images.

previous current following

Figure 2.1: A three frame sequence

backward estimate current frame forward estimate

Figure 2.2: Estimated images

Two main forms of motion estimation employed in the literature are the gradient based

method and the block matching (BM) method. The gradient based motion estimation
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method takes less computation time than the block matching method. Two popular exten-
sions are the Pel-recursive approach and the Weiner Based Motion Estimator. In general,
the gradient based algorithms cannot estimate large displacements and will sometimes
find the local minimum of the matching criterion. Therefore, the gradient based method
will not be considered in this thesis.

In block matching, pixel intensities within a window in the current frame are matched
directly to a block of intensities in the corresponding frame. A match occurs when a spec-
ified error criterion, usually the mean absolute or mean square displaced frame difference

(DFD), is minimized for a certain displacement vector.

The block matching window is usually a N by N square block. Let W, and W, repre-
sent the maximum horizontal and vertical search displacement per frame respectively. For
a mean absolute DFD minimization, the displacement vector mapping the current frame to
the following frame, [d,,d,], is found from the value of d, and dy which minimizes the fol-

lowing equation over Id,l<=W, and Id,l<=W,:

s+ (N-1)/2  y+ (N-1)/2

Y Y, PV -If(X+dx, Y+dy)|

X=x-(N=1)/2Y=y- (N-1)/2

where I(x,y) and Ig(x,y) denote the pixel intensity at position [x,y] in the current and fol-
lowing frames, respectively. For subpixel accuracy motion estimation, bilinear interpola-
tion is used to find the pixel values between locations on the image grid.

In general, the block matching technique is a robust motion estimator since the noise
effects tend to be averaged out over the block operation. A variation of the block matching
method that is even more robust to noise is the Boyce Block Matching (BBM) method. In
the BBM method, the error from the best match is compared to the error from the no

motion match. If the error at no motion is greater than ry, (called the Boyce ratio) times the
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error at the best match, the motion flag is set to on and motion is assumed to have
occurred. This algorithm verifies true motion.

A trade-off exists between having a large and small measurement window. As the win-
dow size is decreased, the probability of a similar intensity pattern at a corresponding
block centered at an incorrect displacement position is increased. This will result in a low
DFD and thus a false displacement vector for the current pixel. However, if a large win-
dow size is used and the displacement vector field within the window is not constant, the

estimate will again be inaccurate.

Bierling [4] developed a BM approach that deals with these two conflicting require-
ments by using a hierarchical structure. In the first level, large displacements are estimated
by using a large window. In subsequent levels, the measurement window is reduced and
the displacement vector found from the previous level is used as an initial estimate for the
current level. Lowpass filtering is used to decrease the risk of converging to a side lobe of
the matching criterion. The hierarchical block matching (HBM) technique generally leads
to homogeneous displacement vectors that more accurately reflect the true motion of

objects.

For color sequences, we estimate the motion using the luminance data only. The esti-

mated vectors are then used for processing the red, green, and blue channels.

2.3 Defect Detection: Kokaram’s SDI and Fixed Detectors

Traditional median filtering algorithms process an entire image without regard to the
location of the degradation. A median filter may be effective in removing impulsive noise,

scratches, and blotches. However, it may also distort areas of the image that are not
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degraded. To lessen the distortion of these undegraded areas of the image, it is useful to
locate and filter only at the locations identified as degradations.

Degradation detectors search out the image to find these degraded pixels. Some detec-
tors operate by using a mathematical formula to calculate an index value. This value is
compared against a threshold and a spike is detected if it is greater than the threshold.
Detectors, in general, use temporal or spatial information.

The Spike Detection Index (SDI), designed by Kokaram, was the first index created
for degradation detection. Define p to be the intensity at the current pixel, f to be the inten-
sity at the pixel in the following frame along the motion trajectory, and b to be the inten-

sity at the pixel in the previous frame along the motion trajectory. Also, define D(x,y,n) to

be
D(x,y,n) = 1 if a degradation is detected
D(x,y,n) =0 otherwise 2.1
and
dl =Ip-fl
d2 =Ip-bl. 2.2

Then, the SDI is calculated as,

SDI=1- |d1-dz|/|dl+d2| for d1>t1 or d2>t1

SDI=0 otherwise. 2.3)

where

D(x,yn)=1 if SDI>t,

D(x,y,n) =0 otherwise. 2.4)
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The threshold t, is used to fix problems associated with small values of d; and d,. The SDI
takes on values from zero to one. If the SDI value is greater than t;, then a spike is
detected.

To see how this detector performs, consider a few cases. Under perfect motion com-
pensation and no degradation, dy=d,=0. The detector correctly identifies no degradation.
Under perfect motion compensation and a degradation at the current pixel, d; and d, are
large and approximately equal to each other. In this case, the SDI is large and the degrada-
tion is correctly detected. Under occlusion, uncovering, or inaccurate motion estimation
going forward or backward, either d; or d, will be small if the current pixel is undegraded.
In this case, the SDI will be small and the detector will correctly identify no degradation.
If the current pixel is degraded and if occlusion, uncovering, or inaccurate motion estima-
tion going forward or backward occurs at the current pixel, then this detector may or may

not correctly identify the degraded pixel.

The Fixed detector is the other detector created by Kokaram. For the Fixed detector,

D(x,y,n) =1 if (d1>threshold) AND (d2>threshold)

D(x,y,n) =0 otherwise. 2.5)

A degradation is detected by the Fixed detector at the current pixel if d;>t and d,>t. Under
perfect motion compensation (and no occlusion or uncovering), the Fixed detector will
correctly identify all degradations and non-degraded pixels. Under inaccurate motion
compensation, this detector will tend to produce a large probability of false alarm.

Kokaram claims that the Fixed detector performs much better than the SDI detector [6].
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2.4 Removal of Defects

2.4.1 Removing Impulsive Noise

Impulsive noise is commonly found in a film sequence. The use of 3-D linear FIR, IIR,
and Kalman filters to remove this type of degradation has had only limited success [2].
Details are unavoidably lost and the impulsive noise is smeared through the image. Since
detail preservation is a very important element of perceived image quality, linear filters are
unsatisfactory for removing film degradations; Non-linear filters are generally more suc-

cessful.

One class of non-linear filters is based on the median operation and attenuates noise
without significantly blurring the image. The median filter, first introduced in 1977 by
Tukey, replaces the current pixel value by the median value of all pixels within an input
window of fixed size and shape centered around the current pixel. In processing a single
image frame, this window moves in a raster scan fashion, from left to right at each line and
from top to bottom for line advances. To allow processing at the image boundaries, sam-

ples are commonly appended to the borders with identical values to the pixel next to it.

For an odd number of pixels, 2N+1, in the window, the median value is the Nth value
in the ranked array. If we denote the 2N+1 samples within the window as X{,Xs,....Xon4 15

then the median filter output, Y, is found by

Y= median[Xl,Xz,...,XZNH]. (26)

When the number of pixel intensities within the mask is even, 2N, the median output is
defined as the mean of the ordered values at the two middle positions N and N+1. For a
five point median operation, for example, if the pixel values within a window are 5, 10,

15, 25, and 50, the current pixel intensity will be replaced by 15. For a four point median
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operation with values of 3, 35, 45, and 75 within a window, the median output is 40. Each
output pixel is found in this way.

Median filters vary by window size and shape. By using a large window size, the prob-
ability of removing a degradation is increased. However, a large window size translates
into more smearing and detail loss in the image. A good balance between degradation
removal and detail preservation is obtained by choosing a window size which is three pix-

els wide in both horizontal and vertical directions.

A median filter tends to preserve image features along the directions spanned by the
window. We could use a plus as a window shape, for example, and expect to see less detail
loss in the processed image along the vertical and horizontal directions. This filter with a
plus-shaped window is the 2-D star-shaped median filter. The square filter is a basic 2-D
filter with an M-by-M window. Since the 2-D star window is smaller than the square win-
dow, the detail loss in the 2-D star-processed image will, in general, be less than the square
filter processed image. The increased detail preservation will come at the expense of less
degradation removal.

Efforts to improve upon detail preservation have led to more complicated median-
based algorithms. The multi-level median filter (MMF), introduced by Nieminen et al,
uses a hierarchy of median operations to preserve more image details than the basic
median filter. Subfilter windows in the multi-level 2-D (ML2D) filter are shown in Figure
2.3. Because these windows span different directions, the ML2D is able to preserve more

details than the 2-D star filter.
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median median median

Figure 2.3: 2-D MMF using three first-level windows

2.4.2 Removing Scratches and Blotches

Two very common forms of film degradations are scratches and blotches. These dis-
tortions are not limited to single pixels. Because 2-D median filters take in many distorted
pixels relative to their window size in processing these multi-pixel degradations, 2-D
median filters perform poorly in removing scratches and blotches. Figure 2.4 shows an
example of a blotch on the left and post-processing results with a square and a 2-D star

shaped median filter. Notice how these filters fail to remove the blotch.

output of the tput of th
blotch S(l;lltlpa?e filter 811 ‘sltag ﬁltgr

Figure 2.4: Results of processing blotch with 2-D median filters.
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With scratches and blotches in the current frame, spatially neighboring pixels in
degraded regions are likely to be degraded. Pixel intensities in the previous and following
frames at these locations, however, are not likely to be degraded. A spatial-temporal
median filter which uses values in the previous and following frame can, therefore,
remove these multi-pixel degradations by increasing the relative number of undegraded
values in the median operation. In addition, when these values are strongly correlated to
the undegraded signal values in the present frame, no noticeable distortions will be added
to the output image.

A natural spatial-temporal extension of the basic square shaped median filter is the
cube filter. The window for a cube filter is M pixels wide in the horizontal, vertical, and
temporal directions. Thus with M equal to three, the output of a cube filter is the thirteenth

value in the ranked array of values within the cube shaped window.

A A
AYAYA )
- previous frame
B 3
present frame
|__
C1/Cp/C
C ,
following frame

Figure 2.5: 3-D window.

Another commonly used 3-D filter is the temporal median filter. Here the output, for

any given horizontal and vertical position, is defined as the median of three pixel values:
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the current pixel, the previous pixel, and the forward pixel. Using Figure 2.5, we can write

the output of the temporal filter, Yy, as:

Yiemp = median[A5,B5,C5]. 2.7

Both the cube and temporal median filters will effectively remove the blotch shown in
Figure 2.4 by taking in more undistorted pixels from the previous and following frames.
Even though the cube and temporal median filters remove degradations efficiently,
they tend to heavily distort an image undergoing motion. Under motion, pixel values are
no longer strongly correlated along the temporal direction. A filter window which takes
relatively many values from the pixels in the previous and forward frames is more likely

to introduce uncorrelated values into the window.

The 3-D star shaped median window uses less values from the previous and following

frames. The output of a 3-D star-shaped median filter, Y3_p gnp iS:

Y3.p star = median[A5,B2,B4,B5,86,88,C5]. 2.8)

This filter is robust to motion. When motion occurs, the pixel values A5 and C5 will bear
little relation to the pixel values in the current frame: B2, B4, BS, B6, and B8. Conse-
quently, the median output value will tend to be one of the pixels in that frame. We would
expect to see much less distortion from using the 3-D star-shaped median filter than from
using either the cube or temporal median filters.

3-D multi-level median filters have gained a lot of popularity as a method of removing
a significant amount of degradations while maintaining details in the moving regions of an
image. Each of the subfilter windows spans different directions. Therefore, we would

expect to see more detail preservation in different directions with the 3-D multi-level

median filter than with basic 3-D median filters.
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Two 3-D multi-level median filters were developed by Alp: the 3-D planar filter (P3D)
and the 3-D multi-level filter (ML3D). Both algorithms use three median operations on the

first level and one median operation on the second level. The three median outputs in the

first level of the P3D are:
Y1 = median[B2,B4,B5,B6,B8]
Y2 = median[A5,B4,B5,B6,C5]
Y3 = median[A5,B2,B5,B8,C5] 2.9)
and the final output is:
Ypsp = median[Y1,Y2,Y3]. (2.10)

In order to understand the operation of this filter, we must refer to threshold
decomposition, an important tool in the analysis of median filters. Threshold decomposi-
tion, which is a superposition property, states that stack filtering a grey-level image is the
same as first decomposing the input image into a set of binary images by thresholding,
then filtering each binary image with the same stack filter, and finally adding up the results
from these operations.

To view the performance of the filter under motion, let us view how the filter will
perform for differing levels of motion. With no motion and no degradations, A5S=B5=CS5.
In this case, the output of the P3D becomes BS. Therefore, details will be preserved in sta-
tionary noise-free regions. In the case where two of three frames have equal value, thresh-
old decomposition shows that the filter reduces to a two-dimensional median filter of the
points B2, B4, BS, B6, and B8 [1]. Thus, the P3D performs well under slow motion. The

filter also preserves all vertical and horizontal lines under fast motion [1].

The other filter proposed by Alp is the ML3D. The output of the ML3D is given by:
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Yymap = median[Y1,Y2,B5), @.11)

where

Y1 =median[AS5,B2,B4,B5,B6,B8,C5]

Y2 = median[A5,B1,B3,B5,B7,B9,C5]. (2.12)

Since the filter takes more input pixels into the median operation, the resulting operation

will attenuate more noise at the cost of detail preservation.

Two different multi-level median filters have been proposed by Arce. The output of

Arce’s unidirectional multi-stage median filter is given by

Yyni = median[Z,,.,Z:,BS] (2.13)
where
Z ax = maximum([Y1,Y2,Y3,Y4,Y5]
Z nin = minimum[Y1,Y2,Y3,Y4,Y5] (2.14)
and

Y1 = median[B4,B5,B6]

Y2 = median[B1,B5,B9]

Y3 = median[B2,B5,B8]

Y4 = median[B3,B5,B7]

Y5 = median[AS5,B5,C5]. (2.15)
The bidirectional multi-stage median filter is the other filter proposed by Arce. The output

of the bidirectional multi-stage median filter is defined by

Yy; = median[Z,,,,Z, . .BS] (2.16)

where

Z nax = maximum[Y1,Y2,Y3,Y4]

Z nin = minimum[Y1,Y2,Y3,Y4] @2.17)
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and

Y1 =median[AS5,B4,B5,B6,C5]
Y2 =median[A5,B1,B5,B9,C5]
Y3 =median[AS5,B2,B5,B8,C5]

Y4 = median[AS,B3,B5,B7,C5]. (2.18)

The usage of the minimum and maximum function constrains the output to lie between the
minimum value and the maximum value. For example, if the value of BS is smaller than
Z in> the unidirectional multi-stage median filter will output Z ;.. The bidirectional and
unidirectional multi-level median filters are robust to motion.

The ML3D window contains 7 input samples, 5 of which are in the current frame. If 4
pixels in the current frame window are corrupted, the output of the ML3D filter will be the
corrupted pixel. Near the center of a blotch, the window will be filled with degraded pixels
and the ML3D will not remove the degradation. Near the edges of the blotch, where there
are fewer degraded pixels and there is more image information, the ML3D will be more
likely to remove the degradation. Figure 2.6 shows the post-processing results with Alp’s
3-D multi-level median filters. Notice how the ML3D filter fails to remove the degrada-

tions near the center of the blotch.

median filtered median filtered
blotch Alp’s P3D Alp’s ML3D

Figure 2.6: Results of processing blotch with Alp’s 3-D multi-level median filters.
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This problem may be corrected by using a multi-level median filter which uses more
pixels from the previous and following frames. This is what Kokaram had in mind when
he designed the ML3Dex multi-level median filter. The output of the MLL3Dex filter is

defined below.

Yumi3pex = median[Y1,Y2,Y3,Y4,Y5] 2.19)

where

Y1 = median[A2,A4,A5,A6,A8,B5,C2,C4,C5,C6,C8]
Y2 = median[A1,A3,A5,A7,A9,B5,C1,C3,C5,C7,C9]
Y3 = median[AS5,B2,B4,B5,B6,B8,C5]
Y4 = median[A5,B1,B3,B5,B7,B9,C5]
Y5 = median[A5,B5,C5]. (2.20)
This filter successfully removes blotches and scratches. The cost of this increased degra-

dation removal is added distortions in moving image regions. If we apply the ML3Dex fil-

ter to the blotch in Figure 2.6, the resulting output will contain no trace of the degradation.
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Chapter 3

Improved Degradation Detectors

3.1 Problems with the SDI and Fixed Detectors

In the previous chapter, Kokaram’s SDI and Fixed detectors were reviewed. These
degradation detectors search the image for defects. Pixels detected to be degradations are
then filtered using any median-based filter to remove the film defects. When the detector
correctly identifies all degraded pixels and does not falsely detect undegraded pixels, the
resulting processed image has, in general, less distortion and detail loss as well as fewer

degradations than the globally processed image.

The SDI and Fixed detectors perform well for sequences preprocessed with accurate
motion estimation. Using the notation presented in the previous chapter, p, f, and b are
approximately equal to each other if these pixels are undegraded. In this case d; and d,
will be small and therefore less than the SDI threshold t; and less than the Fixed detector
threshold. The SDI and Fixed detector will correctly identify the current pixel as unde-

graded.

If pixel p is degraded and f and b are not degraded, d; and d, will be large and approx-
imately equal to each other. The values of d; and d, will thus be larger than the threshold
t; used in the SDI. The difference of d; and d,, however, will be small compared to the
sum of d; and d,. Consequently, the index value will be large and greater than the SDI
threshold t5. The SDI will, therefore, correctly identify the defect. Since the values of d;
and d, are large, they will be greater than the Fixed detector threshold. Thus, the Fixed

detector will also correctly detect the degradation.
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If p is undegraded and either b or f is degraded, d; or d, will be large and greater than
the SDI threshold t;. With one value of d; or d, large and the other value small, the differ-
ence of d; and d, will be large. The calculated SDI index will thus be smaller than the t,
threshold. The SDI detector correctly identifies the current pixel as undegraded. Since
either d; or d, is small, the Fixed detector will also correctly classify the current pixel.

Under inaccurate motion estimation, the SDI and Fixed detectors tend to generate false
detections. To understand this, assume that the b pixel is accurately estimated and the f
pixel is not accurately estimated. If there are no degradations at pixels p and b, d; will be
large and d, will be small. The SDI index value will be small and this detector will cor-
rectly identify no degradation. Since d, is small, the Fixed detector will correctly classify

the current pixel as undegraded.

With the f pixel inaccurately estimated, p degraded and b not degraded, d; and d, will
be large and significantly different from each other. The SDI detector will register a false
miss or a correct alarm and the Fixed detector will correctly identify the degradation.

With the f pixel inaccurately estimated, p not degraded and b degraded, d; and d, will
be large and significantly different from each other. The SDI detector will register a cor-

rect miss or a false alarm and the Fixed detector will register a false alarm.

When motion estimates are inaccurate going forward and backward, d; and d, will be
large and the detectors will generate a detection at the current pixel. If the current pixel is
degraded, the detectors will correctly identify the degradation. However, if a defect does
not exist at the current location, the detector generates a false alarm. The first entry in

Table 3.1 summarizes the Fixed detector results.
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3.2 Extensions of the SDI and Fixed Detectors

In general, the SDI and Fixed Detectors generate a large number of false alarms when
detecting film defects. These problems generally arise from inaccurate motion estimation.
If the detectors falsely identify the current pixel as degraded because of inaccurate motion
estimation, the spatial-temporal median filter windows will contain values that are highly
uncorrelated to the undegraded signal value. Therefore, the filter may severely distort the
current pixel being processed. Thus lowering the false alarms in regions with inaccurate

motion estimation will lead to significant improvement in output distortion level.

When motion estimation is inaccurate, both d; and d, will be large and the Fixed
detector will trigger a detection. With inaccurate motion estimation, d3=abs(f-b) will tend
to be large as well. Therefore, it may be helpful to introduce a third constraint to the Fixed
detector, di<t,. This detector will be called the extended Fixed detector. Under the

extended Fixed detector,

D(x,y,n) =1 if (d]>t1) AND (d2>t1) AND (d3<t2)
D(x,y,n) =0 otherwise. 3.1

To illustrate the performance of the extended Fixed detector, consider the performance
of the detector when the f pixel is not accurately estimated, b is degraded and p is not
degraded. In this case, d3 will be large and the extended Fixed detector will correctly iden-
tify the current pixel as undegraded. Recall that the Fixed detector incorrectly classified

the current pixel as degraded.

When f is inaccurately estimated, p is degraded, and b not degraded, the extended
Fixed detector tends to give a false non-detection. With pixels f and b inaccurately esti-
mated, the extended Fixed detector will give a non-detection. If the current pixel is

degraded, this will result in a false non-detection. If the current pixel is not degraded, this
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is a correct non-detection. All other cases result in correct classification by the extended

Fixed detector. The results of the Fixed detector and Extended Fixed detector are summa-

rized in Table 3.1 below.

Perfect Motion Forward Pixel Not | F and B Pixels Not
Compensation Compensated Compensated
Fixed/Extended Fixed/Extended Fixed/Extended

No degradation +/+ +/+ -/+

p degraded +/+ +/- +/-

b degraded +/+ -+ -/+

f degraded +/+ +/+ -/+

+ = Correct Detection or Non-detection

- = False Detection or Non-detection

Table 3.1: A comparison of the Fixed and extended Fixed Detectors

Notice that the Fixed detector tends to give more false alarms and the extended Fixed

detector tends to give more false non-detections. For a given low value of Pr(false alarm),

the Pr(detection) will tend to be greater for the extended Fixed detector than for the Fixed

detector.

3.3 Operator Assistance

Filtering algorithms triggered by automatic detection algorithms are limited in their

ability to remove significant degradations. By using a strong filter, we may introduce sig-

nificant distortions to the image where a pixel was falsely detected to be a degradation.

But using a weak filter may not remove enough degradations to go unnoticed by a human.



The key to removing degradations is to filter the image with a strong filter at points
detected to be degradations by a very good degradation detector. Currently, the Fixed
detector and extended Fixed detector are limited in their ability to detect degradations and
keep the number of falsely detected degradations low at the same time. Therefore, to pro-
duce a well processed image, we will have to resort to human intervention.

We may do this by filtering the image in areas detected to be degradations by the SDI
algorithms and by the user. The human operator can identify the four coordinates within
which to search for a degradation. Any detected degradations within this region can then

be filtered by a strong filter without severely distorting other areas of the image.
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Chapter 4

Performance Evaluations

An artificial and two natural sequences were processed to examine and illustrate the
performance of motion compensation and detection triggered filtering. Mean absolute
error (MAE), mean squared error (MSE), and visual comparisons are given. The visual
comparison will be used to form a judgement for the best filter. The MSE, because of its
high penalty given to impulsive degradations, and the MAE, because of its high penalty

given to added distortions, will be used to support the findings.

4.1 Filtering Results on the Artificial Sequence

The horizontal and vertical dimensions of each frame in the artificial three frame
sequence used for testing were 135 pixels. Each pixel used 8 bits of grey scale resolution
per color channel. The background intensity was set to a constant 50. Figure 4.1a shows
the middle frame from this sequence, which contained a shape that was displaced by 5
pixels per frame in the horizontal and vertical directions. The shape, which was limited to

a radius of 64 pixels, was created using the formula:

I[x,y,2] = 250 cos (15® - (dist) /(2 - radius))
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(a) Undegraded

(b) Low degradation

(¢) High degradation

Figure 4.1: The middle frame of the artificial sequencc
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where radius is the shape radius, dist is the pixel distance from the current spatial position
to the shape center in the current frame, and I[x,y,z] is the intensity at the current pixel
position. The intensity was thresholded to be between 0 and 240.

Film degradations which occur in the impulsive form of dirt and sparkle, blotches, and
scratches, were simulated by introducing single pixel impulsive degradations into the
image. The probability that the current pixel was replaced by a uniformly distributed grey
level, Pr(noise), was set to 0.002 in the low-degradation sequence and 0.010 in the high-
degradation sequence. Figures 4.1b and 4.1c show the center frame from the low-degrada-
tion sequence and the high-degradation sequence.

Two different motion compensation algorithms were used. The first, a block matching
algorithm, used a 5 by 5 window and minimized the mean absolute difference. The sec-
ond, a hierarchical block matching algorithm, used a 3 by 3 window and had five levels in
its hierarchy.

The three 2-D median filters used for processing the degraded sequence were the 2-D
star, square, and ML2D filters. 3-D median filters included the P3D, ML3D, bidirectional,
unidirectional, cube, temporal, and 3-D star filters. The experiments used the SDI with a
threshold t; set to 5 and threshold t; set to 50% and the Fixed detector with a threshold of
5. Tables 4.1 through 4.7 show the MAE, MSE, and visual comparisons resulting from

processing the artificial sequence with various algorithms.

4.1.1 Non-Motion Compensated Filtering Results

Spatial filters performed better than the spatial-temporal filters in processing the non-
motion compensated sequence by reducing more degradations while introducing no

noticeable distortions. In processing the highly degraded sequence the square filter per-

41



formed the best of the spatial filters by removing all noticeable degradations, while intro-
ducing no noticeable distortions. The low MSE shown in Table 4.5 supports this.
However, the square filter, with its larger mask size, tended to distort more undegraded
pixels than the other spatial filters. This resulted in the larger MAE value for the square
processed image than for the 2-D star or the ML2D processed image. The 2-D star and
ML2D removed most degradations and did not introduce noticeable distortions.

The ML2D followed by the 2-D star resulted in the lowest MSE and MAE in the pro-
cessed lowly degradéd sequence. In the highly degraded case, the large number of degra-
dations removed by the square filter lowered the MSE more than the added distortions
raised the MSE. However, with a low level of degradations, the effect of the added distor-
tions was greater on the MSE than the amount of degradations removed. Therefore, the
square filter produced the highest MSE level out of the three spatial filters.

The shape in the sequence is a large high spatial frequency object that underwent fast
translational motion. Without motion compensation, pixels in this sequence along the tem-
poral direction were highly uncorrelated. Spatial-temporal filters which introduced pixel
values from the previous and following frames into the median window, therefore, occa-
sionally outputted a value which had no relation to its undegraded signal value. This
resulted in image distortion as well as high MAE and MSE values for the spatial-tempo-
rally processed images.

Of the seven spatial-temporal filters applied to the highly degraded sequence the
ML3D performed the best visually by removing a significant amount of degradations
while introducing only slight distortion near the shape center. The low MSE supports this
result. This is expected, since the ML3D used relatively fewer pixels from the previous
and following frames than the other spatial-temporal filters. The 3-D star filter, which has

a similar window to two of the three ML3D subfilter windows, distorted more of the
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image details than the ML3D and removed the same amount of degradations. This sup-
ports the detail preservation ability of the ML3D. The P3D, the other filter designed by
Alp, removed less degradations than the ML3D, but maintained the same distortion level.

The unidirectional filter resulted in the lowest MAE value of the spatial-temporally
processed highly degraded images. The added distortions from the unidirectional filter is
unnoticeable. However, the unidirectional filter removed no noticeable degradations and
the resulting MSE and MAE were only slightly lower than for the unprocessed sequence.
The bidirectional filter removed no noticeable degradations. However, the bidirectional

filter slightly distorted the eye center.

The probability of the median output being from the previous or following frame
increased with the relative number of pixel intensities from the previous and following
frames in the median mask. Therefore, the use of median masks which heavily relied on
values from the previous or following frame, caused processed images to be unacceptably
distorted. This was the case with the cube and temporal filters. Tables 4.2, 4.3, 4.4, and 4.5
show the high MAE and MSE resulting from processing the eye sequence with these fil-

ters.

4.1.2 Motion Compensated Filtering Results

For the block matching category, the ML3D, cube, and 3-D star filters all seemed to do
a good job preserving image form while removing degradations. With a high degradation
level, the 3-D star processed image had the lowest MSE of 0.386. In the hierarchical block
matching category, the P3D, ML3D, bidirectional, and 3-D star filters did a great job pre-
serving image form while removing degradations. The lowest MSE of 0.592 belongs to
the ML3D filter. Every motion compensated spatial-temporal filter removed more degra-

dations and introduced less distortion than the equivalent non-motion compensated filter.
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In this category, some filters performed better with block matching and others with hierar-

chical block matching.

4.1.3 Results of Filtering Triggered by a Degradation Detector

Using the SDI and Fixed detectors with the parameters discussed above gave worse
results for both the block matching and hierarchical block matching cases. Since motion
compensation was very good, there was little penalty given to distorting an undegraded
pixel by processing. This is seen in Table 4.7, where in every case but one, global motion
compensated filtering resulted in no noticeable post-processing distortions. However, by
not filtering a degraded pixel, which resulted when the detector incorrectly missed degra-
dations, the resulting high intensity difference that resulted from impulsive degradation
created a large MSE value. Hierarchical block matching led to better visual, MSE, and

MAE results in this category than block matching.

Pr(noise) Used in Eye Sequence MAE MSE
0.002 0.104 14.950
0.010 0.659 102.234

Table 4.1: MAE and MSE for unprocessed degraded eye sequence



Comp. t=5, 50% t=5 t=5, 50% t=5
2-D Star 0.047 - - - - . .
Square 0.109 - - - - . -
ML2D 0.021 - - - - - -
P3D 3.080 0.002 0.016 0.016 0.003 0.006 0.006
ML3D 1.795 0.008 0.016 0.016 0.003 0.006 0.006
Bidirectional 1.748 0.012 0.020 0.020 0.006 0.006 0.006
Unidirectional 0.069 0.047 0.047 0.047 0.037 0.037 0.037
Cube 34.577 0.401 0.014 0.014 0.595 0.013 0.013
Temporal 32.750 0.024 0.024 0.023 0.018 0.018 0.018
Star 3.111 0.003 0.016 0.016 0.004 0.006 0.006
Table 4.2: MAE after processing eye sequence w/ Pr(noise) = 0.002
Modian Fiter | Motion o oI Fined v ‘S | Fined
Comp. t=5, 50% t= t=5, 50% t=5

2-D Star 1.083 - - - - - .
Square 1.463 - - - - - -
ML2D 1.056 - - - - - -
P3D 102.588 0.059 0.765 0.016 0.142 0.283 0.283
ML3D 33.767 0.344 0.765 0.016 0.144 0.283 0.283
Bidirectional 37.491 0.778 1.202 0.020 0.288 0.288 0.288
Unidirectional 9.568 3.020 3.020 0.047 2376 2376 2.376
Cube 5552970 | 16.424 0.708 0.014 23.271 0.540 0.540
Temporal 5621.410 1.558 1.558 0.023 0.716 0.716 0.716
Star 99.646 0.062 0.765 0.016 0.144 0.283 0.283

Table 4.3: MSE after processing eye sequence w/ Pr(noise) = 0.002
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Mesmrier | woton | EM | opi | omes | HEMO| G Rl
Comp. t=5, 50% t=5 t=5, 50% t=5
2-D Star 0.214 - - - - . .
Square 0.287 - - - - - -
ML2D 0.128 - - - . - .
P3D 3.450 0.053 0.175 0.174 0.042 0.087 0.083
ML3D 2.046 0.020 0.176 0.175 0.028 0.080 0.077
Bidirectional 2.118 0.067 0.180 0.179 0.036 0.082 0.078
Unidirectional 0.504 0.412 0.412 0.412 0.309 0.309 0.309
Cube 34.739 0.462 0.181 0.180 0.653 0.106 0.102
Temporal 33.047 0.186 0.185 0.184 0.116 0.115 0.112
Star 3.409 0.016 0.175 0.174 0.042 0.087 0.083
Table 4.4: MAE after processing eye sequence w/ Pr(noise) = 0.010
Median Filter Mlcjt(i)on 1]\3/11\3 SBII; F?)?:d }ﬁé‘d I‘é?)l}'l Il;llliel\g
Comp. t=5, 50% =5 t=5, 50% t=5

2-D Star 7.072 . - - ; - -
Square 5.723 - - - - - -
ML2D 6.228 - - . . . .
P3D 145.301 4.804 16.248 16.245 1.062 8.776 8.743
ML3D 49.599 0.662 16.251 16.248 0.592 8.461 8.428
Bidirectional 87.399 5.787 16.692 16.688 1.041 8.471 8.437
Unidirectional 80.954 40.715 40.715 40.715 32.738 32.738 32.738
Cube 5570.286 17.568 16.440 16.436 24.879 9.712 9.671
Temporal 5667.358 17.184 17.181 17.178 9.929 9.926 9.893
Star 116.847 0.386 16.247 16.244 1.063 8.775 8.742

Table 4.5: MSE after processing eye sequence w/ Pr(noise) = 0.010
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Median Filer | Moton e pie Fived o ‘SOl | Fined

Comp. t=5, 50% t=5 t=5, 50% t=
2-D Star 2 - - - - - -
Square 1 - - - - - -
ML2D 2 - - - - - -
P3D 4 2 2 2 1 2 2
ML3D 3 1 2 2 1 2 2
Bidirectional 4 2 2 2 1 2 2
Unidirectional 4 3 3 3 3 3 3
Cube 1 1 2 2 1 2 2
Temporal 3 2 2 2 2 2 2
Star 3 1 2 2 1 2 2

Noise Reduction
1. Excellent -- No noticeable degradations remain after processing
2. Good -- Some noticeable degradations remain after processing
3. OK -- Noticeable degradations remain after processing
4. Terrible -- Few/no degradations removed after processing

Table 4.6: Visual noise reduction after processing sequence w/ Pr(noise) = 0.010
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Comp. t=5, 50% t=5 t=5, 50% t=5
2-D Star 1 - - - - - -
Square 1 - - - - - -
ML2D 1 - - - - - -
P3D 2 1 1 1 1 1 1
ML3D 2 1 1 1 1 1 1
Bidirectional 2 1 1 1 1 1 1
Unidirectional 1 1 1 1 1 1 1
Cube 4 1 1 1 2 1 1
Temporal 4 1 1 1 1 1 1
Star 3 1 1 1 1 1 1
Distortion Level

1. Excellent -- No noticeable distortions in image after processing

2. Good -- Distortion in eye center or slight distortion in outer rings of eye
3. OK -- Distortion in outer rings of the eye.

4. Terrible -- Great distortions in image after processing

Table 4.7: Distortion results after processing sequence w/ Pr(noise) = 0.010
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4.2 Results on the Real Sequences

The two natural sequences were filmed at an amusement park. Both were color
sequences digitized to 10 bit resolution per pixel per color channel. Each frame was 914
pixels wide and 666 pixels long. In the boat sequence, which is shown in Figure 4.2, the
boat underwent simple translational motion. The camera slowly panned, uncovering the
left image side and occluding the right. Figure 4.3 shows the same sequence naturally
degraded. Natural degradations were obtained by physically introducing blotches and
scratches to the original film prior to digitization for the second time. Numerous scratches
in the center frame are visible around the boat. Blotches appear in the upper right of this

frame.

The second sequence, shown in Figure 4.4, was a ride sequence. The corresponding
degraded sequence is shown in Figure 4.5. Four long line scratches, the small scratch near
the bottom left, and the center snake-shaped scratch are clearly visible in the center frame.
This sequence contains camera panning and very fast motion across a nonuniform back-
ground. Motion estimation will invariably fail in many places, and different detector trig-
gered filters will yield varying results. This case will be examined and explained in detail.
In the following, we report results for removing the defects from the center frames of both

test sequences using three frames.
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(a) Previous frame

(b) Current Frame

(c) Next frame

Figure 4.2: The undegraded boat sequence
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(a) Previous frame

(b) Current Frame

(c) Next frame

Figure 4.3: The degraded boat sequence
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(a) Previous frame

(b) Current Frame

— (c) Next frame
Figure 4.4: The undegraded ride sequence
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(a) Previous frame

(b) Current Frame

- - , (c) Next frame
Figure 4.5: The degraded ride sequence
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4.2.1 Hierarchical Block Matching Results on the Real Sequences

The hierarchical block matching algorithm was used to find the displacement vectors
for each pixel. The mean absolute DFD was used as the error criterion. These vectors were
cleaned up by finding the eight most popular displacement vectors in the image. At each
pixel these vectors, together with the original displacement vector, were tested. The vector
resulting in the lowest DFD replaced the original. These vectors were then used to calcu-
late the mean and standard deviation of the displaced frame difference in the image. If a
DFD resulting from any displacement vector was greater than the mean plus two standard

deviations, a neighboring displacement vector was selected to replace the original.

4.2.1.1 HBM Results on the Boat Sequence

A four-level hierarchical block matching algorithm with a quarter pixel accuracy and
log-based search was applied to the boat sequence to generate a forward and backward
estimated image. The maximum translational displacement per frame was found to be 10.
In the first level of the HBM algorithm, the maximum displacement was set to 15 to
account for this motion. In the next level, this parameter was set to 7. This allowed the
algorithm some flexibility in searching for a displacement in the event that two motion
fields simultaneously existed in the larger first-level HBM window. In subsequent levels,
the maximum displacement parameter was set to 3 and 1. A summary of the parameters

used in the boat sequence is shown in Table 4.8.
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Parameter Level 1 | Level2 | Level 3 | Level 4
Maximum Displacement 15 7 3 1
Block Size 64 64 28 12
Blur Size 9 5 5 3
Step Size 16 8 4 2
Subsampling Factor 10 8 4 2

Table 4.8: HBM parameters for the boat sequence

Figures 4.6¢ and 4.6d show estimated boat images generated by aligning the previous
frame and the following frame with the current frame of the degraded boat sequence. Due
to the larger windows in the hierarchical structure, the HBM algorithm was successful in
finding the correct displacement vectors in degraded regions and in not tracking the
scratches and blotches.

Discounting the effect of the camera panning, the upper background of the boat
sequence is stationary. The HBM algorithm does well in compensating for camera motion
by correctly aligning the upper background in the previous and following frames with the
current frame. The lower background is moving water, and there is some difficulty in
tracking it. The boat is the only moving object in this sequence and its motion is compen-
sated well by the HBM algorithm.

Figures 4.6a and 4.6b show the corresponding displaced frame difference. The image
intensities have been scaled up by a factor of fifteen. The DFD was largest along the

boundary of objects and in degraded and water regions.
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4.2.1.2 HBM Results on the Ride Sequence

A five-level hierarchical block matching algorithm with a quarter pixel accuracy and
log-based search was applied to the ride sequence to generate a forward and backward
estimated image. The maximum displacement per frame was found to be 45 pixels. The

parameters used in the ride sequence are shown in Table 4.9

Parameter Level 1 | Level2 | Level3 | Level4 | Level 5
Maximum Displacement 45 22 11 6 2
Block Size 64 64 64 28 12
Blur Size 11 8 5 5 3
Step Size 32 16 8 4 2
Subsampling Factor 10 10 8 4 2

Table 4.9: HBM parameters for the ride sequence

Figures 4.7c and 4.7d are estimated images generated by using the HBM displacement
vectors to align the previous and the following frames with the current frame of the
degraded ride sequence. Again, the motion compensation algorithm was successful in

finding the correct displacement vectors in degraded regions.

The plant in the lower left of the estimated images is aligned with the current frame.
This demonstrates the ability of the motion estimation algorithm to correct for camera
panning. The panning uncovered the left image side and occluded the right image side.
Figure 4.7c shows the effect of uncovering on motion compensation. Since no identical
steel structure along the left side of Figure 4.5b exists in Figure 4.5a, the motion estima-
tion algorithm failed in finding a displacement vector for this region. Another large uncov-
ered area in the ride sequence occurs with the child in the back of the plane. Again, the

motion estimation failed in this region.
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Motion along the nonuniform background created difficulty in the estimation. For
example, the lower plane wing and plane shadow moving against the stationary fence area
created distortion in the estimated image. Near the center of the plane-shadow region, the
shadow is uniform and was tracked well. The pipes supporting the right plane wing were
tracked poorly. This is because the DFD in the larger windows was minimized by tracking
the red metal structure instead of the thin pipes.

Figures 4.7a and 4.7b show the corresponding displaced frame difference that results
from applying the motion estimation algorithm to the previous and following frames of
the degraded ride sequence. The DFD was largest in degraded regions and in regions

where the motion estimation algorithm failed in finding the correct displacement vector.

4.2.2 Detection Results on the Test Sequences

The SDI, Fixed, extended Fixed, and Fixed with user specified search regions were

applied to each test sequence.

4.2.2.1 Detection Results on the Boat Sequence

Figure 4.8a shows the best SDI detection result on the degraded boat sequence.
Threshold values of 30 and 50% were used to generate this image. The scratches and
blotches have all been successfully detected. Degradations along the motion trajectory in
the previous or following frame, however, resulted in false detection in the current frame.
This occurred because of the resulting high SDI value. Other false positives occurred
when the motion estimation performed poorly. This is seen when Figure 4.8a is compared
with Figures 4.6a and 4.6b. Figure 4.9a illustrates false detections generated by the SDI

when it is applied to the original undegraded boat sequence. Notice how most of the false
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(a) SDI with t;=30, t,2=50%

(b) Fixed detector with t;=13

(c) Extended Fixed detector
with ty=15, 1,=30

Figure 4.9: Detected degradations in undegraded boat sequence
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detections occur in figure boundary regions and in the water, where accurate motion esti-
mation is difficult.

The best Fixed detection result on the degraded boat sequence is shown in Figure 4.8b.
The threshold parameter of 15 was used to generate this image. Again, all degradations
have been successfully detected. By checking to see if the absolute differences between
the current pixel and the corresponding estimated pixels in the previous and following
frames were larger than the threshold, this detector avoided falsely detecting degradations
due to scratches in the previous or following frame. False alarms due to inaccurate estima-
tion arose only if the motion estimator performed poorly in estimating the pixel in the pre-
vious and following frames. Therefore, this detector is much better in general and created
significantly less false positives than the SDI detector for this sequence. Figure 4.9b shows
the same Fixed detector applied to the undegraded boat sequence. Figures 4.10a and 4.10c
were created to illustrate the effects of changing the threshold parameter in the Fixed
detector. If the threshold is too low, as in Figure 4.10a where a threshold of 5 was used, the
false positives increase without a noticeable further increase in the probability of detec-
tion. If the threshold is increased to 30, the probability of detection decreases to a level

where the detector fails to fully detect scratches and blotches.

Figure 4.8c shows the extended Fixed detection result on the degraded boat sequence.
The first threshold was set to 15 and the second to 30. False alarms due to inaccurate
motion estimation in the water region were significantly reduced by using the extended
Fixed detector over the Fixed detector. By comparing Figure 4.8c with Figure 4.10b, we
see that for the same level of false alarms, the modified Fixed detector completely
detected more scratches than the Fixed detector. Figure 4.9c shows the same extended

Fixed detector applied to the original undegraded sequence.
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Further improvement in detector performance is difficult. Automatic detectors are lim-
ited in their ability to detect a high level of degradations while keeping the probability of
false alarm low due to motion estimation errors. By allowing a user to select degradation
search regions (see Table 4.10 for regions selected for the boat sequence), we may signifi-
cantly decrease the probability of false alarm. Figure 4.8d shows the result of applying the
Fixed detector with a threshold of 15 along with a user specified search region. The main

degradations were detected and the probability of false alarm was kept very

Upper Left (x,y) | Upper Right (x,y) | Lower Left (x,y) | Lower Right (x,y)
91,303 177,235 129,373 211,245
263,303 329,309 251,337 277,335
225,191 261,169 301,260 334,238
361,190 459,206 320,415 338,420
429,323 442,324 421,358 435,360
567,423 582,412 567,444 589,418
638,177 674,225 572,289 597,304
597,47 655,53 615,128 697,170
742,105 913,58 713,305 887,306
518,47 535,27 520,56 542,46
98,108 114,109 85,131 98,176
835,369 844,365 839,376 845,372
888,368 895,367 894,376 899,372
567,423 582,414 567,445 586,419

Table 4.10: User specified search regions used in the boat sequence
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(b) Fixed detector with ;=20

(c) Fixed detector with t;=30

Figure 4.10: Detected degradations with different Fixed detector thresholds in the boat sequence
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4.2.2.2 Detection Results on the Ride Sequence

Figure 4.11a shows the best SDI detection result on the degraded ride sequence.
Threshold values of 30 and 50% were used to generate this image. The four long line
scratches, the small scratch near the bottom left, and the center snake-shaped scratch have
been successfully detected. As in the boat sequence, degradations in the previous and fol-
lowing frames falsely triggered a detection. By comparing Figure 4.11a with Figure 4.7a
and Figure 4.7b, we can see many false positives that occurred because of inaccurate
motion estimation. Figure 4.12a illustrates false detections generated by the SDI when it
was applied to the original undegraded ride sequence. Many false detections occurred in
regions with inaccurate motion estimation.

The best Fixed detection result on the degraded ride sequence is shown in Figure
4.11b. The threshold parameter of 15 was used to generate this image. Again, the scratches
have been successfully detected. Degradations in the previous or following frames were
not falsely detected. This detector created significantly less false alarms over the SDI for
the same level of correct detection. Figure 4.12b shows the same Fixed detector applied to
the original undegraded sequence. Some of the support pipes in the moving plane were
falsely detected because the hierarchical block matching algorithm failed in tracking the
support pipe in the moving plane.

Figures 4.13a and 4.13c were created to illustrate the effects of changing the threshold
parameter in the Fixed detector. If the threshold was too low, as in Figure 4.13a where a
threshold of 5 was used, the false positives increased without a noticeable further increase
in the probability of detection. If the threshold is increased to 30, the probability of detec-
tion decreased to a level where the two center line scratches were not successfully

detected.
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(b) Fixed detector with t;=15
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(¢) Extended Fixed detector

A with t;=15, 1,=30
Figure 4.12: Detected degradations in undegraded ride sequence
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(a) Fixed detector with t;=5

(b) Fixed detector with t;=15

(c) Fixed detector with =30

Figure 4.13: Detected degradations with different Fixed detector thresholds in the ride sequence
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Figure 4.11c shows the extended Fixed detection result on the degraded ride sequence.
The first threshold was set to 15 and the second to 30. If the motion estimator performed
poorly in estimating the pixel in the previous and following frames, this detector tended to
give a negative. If a degradation existed at the current pixel, this was a missed detection.
Otherwise, this was a correct miss. Therefore, this detector produced less false positives
and detected degradations when motion estimation performed well. However, the modi-
fied Fixed detector did not detect scratches in image areas with inaccurate motion estima-
tion. The false alarms were significantly lower compared to those of the Fixed detector.
However, in the plane area, where there was difficulty in motion estimation, scratches
were not detected. By comparing Figure 4.11c with Figure 4.13c, we see that for the same
level of probability of false alarm, the modified Fixed detector detected more scratches.
Figure 4.12c shows the same modified Fixed detector applied to the original undegraded

sequence.

Figure 4.11d shows the result of applying the Fixed detector with a threshold of 15
along with a user specified search region (see Table 4.11 for user specified coordinates
used in the ride sequence). The scratches were detected and the probability of false alarm

was kept very low.

Upper Left (x,y) | Upper Right (x,y) | Lower Left (x,y) | Lower Right (x,y)
189,592 198,591 198,665 208,665
295,634 305,634 299,665 310,665
4470 467,0 382,665 406,665
557,0 : 579,0 484,665 519,665
656,0 682,0 595,665 623,665
751,146 806,133 731,501 756,502
524,352 551,355 499,401 522,410

Table 4.11: User specified search regions used in the ride sequence
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4.2.3 Non-Motion Compensated Filtering Results

The ML2D, ML3D, ML3Dex, and temporal filters were applied to the test sequences
without motion compensation. The ML2D and ML3D filters retained much of the image
detail and introduced no noticeable distortions in the output image. However, the ML2D
only slightly thinned the scratches. The ML3D removed thin scratches and thinned thick
scratches. Most degradations were removed by the ML3Dex and temporal filters, however

the amount of distortion introduced was significant.

4.2.3.1 Non-Motion Compensated Filtering Results on the Boat Sequence

Figure 4.14a shows the result of processing the boat sequence with the ML2D multi-
level median filter. Because the scratches and blotches in this sequence are multi-pixel, the
2-D multi-level median filter had difficulty removing the degradations. This filter intro-

duced no noticeable distortion and kept image details intact.

The output of the ML3D multi-level spatial-temporal median filter applied to the non-
motion compensated boat sequence is shown in Figure 4.14b. The thicker scratches
thinned more compared to the ML2D and the smaller scratches were removed. Since the
ML3D used relatively more pixel intensities from the current frame than from the previ-
ous and following frames, this filter was unable to remove the thick scratches completely.
The fact that most pixel intensities came from the current frame, however, allowed the fil-

ter to retain image details and introduce no noticeable distortions in the output image.
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Figure 4.14c is the output of the ML.3Dex multi-level spatial-temporal median filter
applied to the non-motion compensated boat sequence. By using a relatively large number
of pixel values from the previous and following frames, the ML3Dex was able to com-
pletely remove all scratches and blotches. The ML3Dex blurred the boat and person. This
resulted because the ML3Dex windows used many pixel intensities from the previous and
following frames which were uncorrelated to the undegraded image intensity due to large
motion.

The result of the temporal filter applied to the non-motion compensated boat
sequence is shown in Figure 4.14d. The results are very similar to those of the ML3Dex.
Again, all scratches and blotches were removed. The detail preservation is slightly higher
after processing with the temporal filter than with the ML3Dex filter. This resulted
because the pixel intensities used in the temporal filter were more highly correlated to the

undegraded image intensity than their neighboring spatial intensities.

4.2.3.2 Non-Motion Compensated Filtering Results on the Ride Sequence

Figure 4.15a shows the result of processing the ride sequence with the ML2D multi-
level median filter. The spatial multi-level median filter had difficulty removing the
scratches. This filter introduced no noticeable distortion and kept image details intact.

The output of the ML3D multi-level spatial-temporal median filter applied to the non-
motion compensated ride sequence is shown in Figure 4.15b. The scratches thinned more
than with the ML2D and the resulting scratch intensity decreased. This filter was unable to
remove the thick scratches completely, but retained image details and introduced no

noticeable distortions in the output image.
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Figure 4.15c is the output of the ML3Dex multi-level spatial-temporal median filter
applied to the non-motion compensated ride sequence. The ML3Dex removed many more
scratches than the ML2D or ML3D filters. Three of the four long scratches and the small
scratch near the bottom left have been successfully removed by this filter. Figures 4.5a and
4.5c reveal that the intensity of the area occupied by the rightmost scratch is lower in the
previous frame and higher in the following frame. Therefore, the scratch is not removed
by the median operation. In the snake-shaped scratch area, similar lower and higher inten-
sities in the other frames prevented the ML3Dex from removing this scratch. Without
motion compensation, the ML3Dex introduced an unacceptable amount of distortion.

The result of the temporal filter applied to the non-motion compensated ride sequence
is shown in Figure 4.15d. The results are very similar to those of the ML3Dex. Again,
three of the four long scratches and the small scratch near the bottom left have been suc-
cessfully removed by the filter. The output image is unacceptably distorted. The only
noticeable difference between the ML3Dex and temporal filters is in the white line that
appears in the upper wing of the plane. The temporal filter, by using only temporal infor-
mation, grabbed the high intensity values that existed at that location from the previous

and following frames and outputted the smaller of these values as the median output.

4.2.4 Motion Compensated and Detected Filtering Results

Since the noise reduction ability of the ML3D filter is low and will not improve much
by motion compensated (MC) filtering, the focus of the motion compensated and detect-
ing results will be on the ML3Dex and temporal median filters, where there is much to be

gained.
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4.2.4.1 MC and Detected Filtering Results on the Boat Sequence

Figures 4.16a and 4.16b show the processed boat sequences which resulted from trig-
gering the ML3Dex and temporal filters by the Fixed detector applied on the HBM esti-
mated images with a threshold of 15. The two outputs appear very similar. Because the
motion estimation is very good and distortion is not visible in the water region the tempo-
ral filter introduced no noticeable distortions in the output image and kept image details
intact. The MLL3Dex, by using spatial values, slightly smeared the image. Both filters com-

pletely removed all scratches and blotches.

The ML3Dex and temporally processed boat sequences which resulted from applying
the extended Fixed detector on the HBM estimated images, with t; set to 15 and t, set to
30, are shown in Figures 4.16¢c and 4.16d. The two outputs look very similar. All notice-
able degradations were removed. Although this detector did not falsely detect as many
degradations as the Fixed detector, noticeable improvement in distortion is not seen when
fewer undegraded pixels in the water regions were filtered. The only noticeable difference
appears in the water dots near the bottom of the boat. In the case of Fixed detector trig-
gered filtering, they were removed. In the case of the modified Fixed detector, they were

correctly identified not to be a degradation, and therefore were not removed.

Figures 4.17a and 4.17b show the processed boat sequences which resulted from trig-
gering the ML3Dex and temporal filters by the Fixed detector applied on the HBM esti-
mated images with a threshold of 15 and an user specified search region. The two outputs
are very similar. All noticeable degradations are removed, and no noticeable distortions

are added to these outputs.
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4.2.4.2 MC and Detected Filtering Results on the Ride Sequence

Figures 4.18a and 4.18b show the processed ride sequences which resulted from trig-
gering the ML3Dex and temporal filters by the Fixed detector applied on the HBM esti-
mated images with a threshold of 15. The two outputs look very similar. The motion
compensation algorithm aligned the area occupied by the rightmost scratch in the previous
and following frame with the current frame. When the temporal filter was applied, two
undegraded correct values entered into the median window. Therefore, with the help of the
motion estimation, this scratch was removed. For similar reasons, both filters completely
removed all visible degradations. Noticeable distortions occurred in the child sitting in the
back seat of the airplane. There, motion estimation failed because of uncovering, and the
detector signaled a false detection. Notice how the support structures in the airplane have
been filtered away. Because of inaccurate motion estimation, the support structures were
not correctly estimated in the previous and following frames. Therefore, the Fixed detec-
tor mistakenly detected the pipe as a degradation (see Figure 7.11b).

The ML3Dex and temporally processed ride sequences, which resulted from applying
the extended Fixed detector on the HBM estimated images with t; set to 15 and t, set to 30
are shown in Figures 4.18c and 4.18d. The two outputs appear very similar. All noticeable
scratches were removed. The temporal or ML3Dex filters, significantly distort image
regions where inaccurate motion compensation triggered a false detection. Since this
occurred much less frequently with the extended Fixed detector than with the Fixed detec-
tor, noticeable improvement in output distortion is seen with the extended Fixed detector
triggered filtering. For example, the child and the plane’s structure and wings are less dis-
torted. Some of the plane’s support structure is inevitably filtered away due to false alarms
in the extended Fixed detector. The extended Fixed detector was unable to catch these

false alarms because inaccurate motion estimation caused the estimated pixels in this area
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in the previous and following frames to be the same. Therefore, the third constraint, that
the absolute difference between estimated pixels in the following and previous frames is
less than t,, was satisfied.

Figures 4.19a and 4.19b show the processed ride sequence which resulted from trig-
gering the ML3Dex and temporal filters by the Fixed detector with a threshold of 15 and a
user specified search region. The two outputs are very similar. All noticeable degradations
are removed, and few noticeable distortions are added to these outputs. The plane’s sup-

port structure was not distorted by processing.

4.2.5 MAE and MSE Results for the Processed Sequences

Table 4.12 shows the calculated MAE and MSE values by comparing the degraded
and the processed test sequences with the originals. Table 4.13 and Table 4.14 show the
MAE and MSE resulting from processing the boat sequence with a ML2D, ML3D,
ML3Dex, and the temporal filter. The MAE and MSE for the unprocessed degraded boat
sequence were 1.884 and 53.567, respectively. The filters were applied globally to a non-
motion compensated sequence and a motion compensated sequence. In addition, the filters
were triggered by the Fixed detector, the extended Fixed detector, and the Fixed detector
with a human specified search. The MAE and MSE results from processing the ride
sequence are shown in Table 4.15 and Table 4.16. The MAE and MSE for the unprocessed
degraded ride sequence were 2.921 and 80.497, respectively.

The MSE was larger for the degraded images globally processed with any of the four
non-motion compensated filters than with the degraded image. This occurs because many
undegraded pixels were replaced by neighboring pixels, while only a few degraded pixels

were replaced by a better signal value. The boat sequence processed with a temporal filter
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which drew more pixel values from the previous and following frames resulted in a higher
MSE than the ML2D or ML3D filter. This resulted because the motion in the sequence
caused neighboring pixels along the temporal direction to be less correlated. This is more
apparent in the ride sequence, where fast object motion and camera panning caused the
temporal pixel values to be much less correlated. Thus, the MSE for the ML3Dex or tem-
poral median filter applied to the ride sequence without motion compensation is very
large.

Application of any detector resulted in better MSE values because less undegraded
pixels were distorted by processing. The image processed with a Fixed detector applied
with human intervention resulted in the lowest MSE. This MSE is lower than that of the
unprocessed degraded frame. This resulted from the ability of the Fixed detector applied

with user specified search regions to produce a very small probability of false alarm

Unprocessed MAE MSE
Sequence

Boat 1.884 53.567

Ride 2921 80.497

Table 4.12: MAE and MSE of unprocessed boat and ride sequence

. . . Extended Fixed w/
earie | Mot | Mo | et | S
il t=15
ML2D 5.164 A A ] -
ML3D 7.146 - - - -
ML3Dex 10.973 8.674 4.023 3.241 1.674
Temporal 9.216 6.949 3.862 3.318 1.670

Table 4.13: MAE results from processing the boat sequence
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Fixed w/
Mediaa Fier| Mot | Yot | et | T |t
T t=15
ML2D 115.418 —g- - - -
ML3D 167.262 - - - -
ML3Dex 431.519 241.826 159.304 119.482 17.605
Temporal 393.080 259.180 214.756 187.104 17.443
Table 4.14: MSE results from processing the boat sequence
Fixed w/
Mo Fier | Mo | Yoiem | ot | T |t
t1=15, 12=30 =15
ML2D 4.551 - - - -
ML3D 6.618 - - - -
ML3Dex 33.053 9.531 5.951 4.424 3.136
temporal 32.896 8.671 5.944 4.540 3.156
Table 4.15: MSE results from processing the ride sequence
Fixed w/
Modian i | Ngyoion | Mot | Tl | P |t
T t=15
ML2D 96.685 - - - -
ML3D 144.108 - - - -
ML3Dex 3599.220 356.369 281.934 170.687 72.202
temporal 3649.865 373.926 318.532 209.610 83.923

Table 4.16: MSE results from processing the ride sequence
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Chapter 5

Conclusions

Motion compensated preprocessing of a sequence and the use of a detector to trigger
noise-reduction algorithms were clearly seen as methods which minimized added distor-
tions and yielded improvements in degradation reduction and detail preservation in a film
sequence. Previous non-motion compensated use of the temporal, cube, or ML3Dex filters
which effectively remove film degradation, produced an unacceptable amount of distor-
tion and detail smearing. Other spatial-temporal median filters which did not distort the

image were unable to remove the multi-pixel degradations that commonly appear on film.

This thesis presented a novel degradation detector (extended Fixed detector) which
yielded better results than previous detectors by adding a constraint which verified
whether or not the motion compensator performed reasonably well for the pixel under
consideration. Under inaccurate motion compensation, the previous and following pixels
along the motion trajectory were found to be different. Therefore, the absolute difference
between the pixels in the previous and following frames along the motion trajectory, if less

than the threshold, was used to switch the Fixed detector from off to on.

If a false detection in the Fixed detector was caused by inaccurate motion compensa-
tion, uncorrelated pixel intensities would enter into the median mask and therefore the
median filter would severely distort the current pixel being processed. Therefore, the
extended Fixed detector triggered the filter to output many fewer distortions than the cor-
respondingly processed Fixed detector triggered filtering. In the ride sequence, where
motion compensation failed in many places, the improvements in distortion were very

clear.
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Automatic detectors are limited in their ability to produce a high level of detection for
a very low level of false alarm. In film where a high quality output is important, and when
degradations are limited in number, a user specified search region may be effectively used
to search for the degradation. A frame processed using the ML3Dex filter triggered by a
Fixed detector with a user specified search region was shown to yield excellent results.

The detectors considered in this thesis used temporal information. Thus the perfor-
mance of the detectors were highly sensitive to the accuracy of the motion compensation
algorithm. Film degradations may have certain spatial characteristics which can be used to

improve upon detection performance. This is left as potential future research in the field.
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‘man_for_motion_median.txt - - 177
‘/space/motiont/carit/finalf 95/03/31

MOTICN _MEDIAN(L) JSER CCMMANDS MOTICH MEDIAN(L;
NAME
moticn _median - rerrorm :-J median filtering
SYNOPSIS
moticn_median infile
CESCRIPTICMN
infile contains the following parameters used by mction_median.
frame p_iniile : input filename of estimated image going
- from current frame to the pravicus frame
frame p infile : input filename of original saquence to
T process excluding the first znd last frame
frame r infile : input filename of estimated -mage going
T from current frame to the next frame
frame outfile : output filename of filtered :mage
numrrames : number of input frames in frame _p_infile
filter_type : 2 == multi-stage median
3 == ALP P3D
4 == ALP ML3D
5 == ARCE bi-directicnal
6 == ARCE uni-directional
7 == Cube median
8 == Temporal median
9 == Kokaram’s ML3Dex
use_spike : 0 == Don’t use any degradaticn detectors
1 == Use SDI detector
2 == Use Fixed detector
3 == Use modified Fixed detector
The detectors are defined as...
dl=abs (p-£f) d2=abs(p-b) d3=abs (b-f)
1 : spike if (d1>tl || d2>t2) &&
(1-1dl-d2|/(d1+d2))>deczsion_threshold
2 : spike if (d1>tl && d2>z2)
3 spike if (d1>tl && d2>tl i& d3<t2)
human 0 == Don’t use human detectzcrz
1 == Use human detector
output 0 == Only output filter prccessed image
1 == Only output detection map
2 == Qutput filter processecd image and
detection map
thresholdl : (look at tl in use_spike)
threshold2 : (look at t2 in use_spike)
decision_threshold: (look at use_spike -- enter zs
decimal*100, e.g. 50% --> 30)
human_infile : input filename of coordinate data file
weight_infile : input filename of weight data file

detection_cutfile : output filename cf detecticn map

motion_median outputs a detection map of degraded ctixels and/or
an output image processed by a 3-D median filter srecified by
filter type.

By using the multi-stage median option for the filter type,
orogram will access the file weight_infile. This is a file
containing a.i the mask weights used within the f_rsc level
of the multi-stage median filter.

the

The first parameter, N,
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‘man_for_motion: median.tx o
/space/motiont/carltffinall ~ 95/03/31

represents the number of masks to use in the first level.
7 must te odd (1, 3, or 5). The following :*27 parameters
~hat fcllow are the weights for each mask. Zach weight
appears c¢n a separate line. The following mask shows the
srdering of the input in weight_infile.

~

y
01 02 03 10 11 12 19 20 21
04 05 06 13 14 15 22 23 24 --—--- > x
07 08 09 16 17 18 25 26 27 |
previous current next

3y setting human = 1, we engage filtering in regions only
specified by the user. For each region within which we
wish to process, the user should input 4 cocrdinates: upper
left, upper right, lower left, and lower right. These
should be stored in the human infile in the following order:

upper left, x coordinate

upper left, y coordinate

upper right, x coordinate

upper right, y coordinate

lower left, x coordinate

lower left, y coordinate

lower right, x coordinate

lower right, y coordinate
For each region that we wish to process, we should enter in
eight coordinate values. When we are finished for the
particular frame, we enter a period. Thus, if the input image
data files contain 8 frames, we must have 8 periods.

Detection may be automatic, human, or both. For example, if
use_spike is set to 2 and human is set to 1, motion_median will

search for degraded pixels by using the Fixed detector only in
regions specified by the user.

All parameters within the motion_median infile must te filled
even if they are not used.

EXAMPLES
motion median /space/motionl/motion_median.dat

example of infile:
% motion_median.dat
% parameter file to be used with motion_median

$ frame b_infile: input file of backward estimated image
/space/motionl/boat_dirty/motion0_####.isl

$ frame p_infile: input file where original image is stored
/space/motioni/boat_dirty/motionl ####.isl

% frame_f infile: input file of forward estimated image
/space/motionl/boat_dirty/motion2_####.isl

% frame_outfile: ocutput file where prccessed image is stored
/space/motionl/boat_dirty/output_multistage_t15_human_####.is1

% numframes: number of input frames
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space/motiont/carit/finall

‘motion. median.txt

filter type

= multi-stage median
ALP P3D

ALP ML3D

ARCE bi-directional
ARCE uni-directional
Cube median
Temporal median
Kokaram’s ML3Dex

WU A WD
[}
[

use_spike 0 == Don’t use any degradation detectors
1 == Use SDI detector

2 == Use Fixed detector
3

== Use modified Fixed detector

%

%

%

%

% The detectors are defined as...

% dl=abs (p-f) d2=abs(p-b) d3=abs (b-f)

% 1 : spike if (d1>tl || d2>t2) &&

% (1-1d1-d21/ (d1+d2))>decision_threshold
% 2 : spike if (d1>tl && d2>t1)

% 3 : spike if (d1>tl && d2>tl && d3<t2)
2

% human : 0 == Don’t use human detector
% 1 == Use human detector
0
output : 0 == Only output filter processed image
1 =

= Only output detection map

2 == Qutput filter processed image and

%
%
%
% detection map
1

% thresholdl: (look at tl in use_spike)
15

% threshold2: ({(look at t2 in use_spike)

15

% decision_threshold: (look at use_spike -- enter as
% decimal*100, e.g. 50%-->50)

150

% human_infile: file where coordinates are stored
/space/motionl/boat_dirty/spike_detect_user.dat

% weight_infile: file where weights are stored
/space/motionl/boat_dirty/weights.dat

% detection_outfile: file where detected pixels are stored
/space/motionl/boat_dirty/spike_tl15.isl
% END OF PARAMETER FILE

example of human_infile for a 3 frame sequence:

% spike_detect_user.dat
% Data file to be used wisil motion_median
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‘man_for_motion_median.txt _ =
//space/motiont/carlt/final/ . - -95/0

225
191
261
169
301
260
334
238

% Frame two
361
190
459
206
320
415
338
420

% Frame three
429
323
442
324
421
358
435
360

S67
423
582
412
567
444
S89
418
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‘man_for_motion med:an txt
//space/motiont/carltffinall :

~?%:5[Z
95/03/31

)

% END OF HUMAN_ INFILE

example of weight infile:
% Data file to be used with moticn median

Number of stages

w e

lst stage

OO OO OOOCO RO O O O o

O

O OO

2nd stage

%
0
0
0
0
1
0
0
o]
0

O F ke O O
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man_for _motion medlan txt

/space/motioni/carlt/final/

67

' 95/03/31

o

OO0 OHOOOOo

3rd stage

OO O0OOKHOOOOo OCOOCOHOOOOR

R OOOOHOOOO

END OF WEIGHT INFILE
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NOMOTION MEDIAN (1) JSER CCMMANDS NOMOTION MEDIAN(1)

NAME

nomotion_median - performs 3-D median filtering of
sequences

SYNOPSIS
nomotion_median infile

DESCRIPTION
infile contains the following parameters used by
nomotion_median.
frame infile: sequence we wish to process
frame outfile: processed sequence
filter_type : 2 == multi-stage median
== ALP P3D
== ALP ML3D
== ARCE bi-directional
ARCE uni-directional
== Cube median
== Temporal median
== Kokaram’s ML3Dex
10 == 2-D Star
11 == 2-D Square
12 == 2-p Multi-level
numframes: number of input frames
weight_infile: file where weights are stored

VoSO e W
[]
]

nomotion_median outputs an image processed by a median
filter specified by filter_type.

By using the multi-stage median for the filter_type, the
program will access the file weight_infile. This is a file
containing all the mask weights used within the first level
of the multi-stage median filter. The first parameter, N,
represents the number of masks to use in the first level.
N must be odd (1, 3, or 5). The following N*27 parameters
that follow are the weights for each mask. Each weight
appears on a separate line. The following mask shows the
ordering of the input in weight_infile.
Y

01 02 03 10 11 12 19 20 21 |

04 05 06 13 14 15 22 23 24 ----- > x

07 08 09 i6 17 18 25 26 27 |

previous current next

The weight_infile filename parameter must be filled even if
it is not used.

EXAMPLES
nomotion _median /space/motionl/nomotion_median.dat

example of infile:
% nomotion_median.dat
% parameter file to be used with nomotion_median

% frame_infile: sequence we wish to process
/space/motionl/carit/final/eye_ sequence_degraded####.isl
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% frame_outfile: processed sequence
/space/motionl/carit/final/cutput_multilevel ####.isl

% filter_type 2 == multi-stage median
% 3 == ALP P23D

% 4 == ALP ML3D

% 5 == ARCE bi-directional
% 6 == ARCE uni-directional
% 7 == Cube median

% 8 == Temporal median

% 9 == Kokaram’s ML3Dex

% 10 == 2-D Star

% 11 == 2-D Square

% 12 == 2-D Multi-level

2

% numframes: number of input frames

4

% weight_infile: file where weights are stored
/space/motionl/carit/final/weights.dat
% END OF PARAMETER FILE

example of weight_infile
% /space/motionl/carlt/final/weights.dat
% Data file to be used with motion_median

% Number of stages
3

lst stage

HOPRPOFHOKOR K

cooooOoOrRrOO0OO0

O OoOPror
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man_for_nomation_median.tx
/space/motiont/caritfinaly =

o 3R
_ 95/03/31

2nd stage

O ORKHMHORFO

[vRoN ool e lo el

3rd stage

OO OO HOOOORK

QOO OoOH OO OO

o O
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‘man_for_nomotion_median.txt a/a
/space/motion 1/cariv/final/ 95/03/31

° Co K (D ot s

% END OF WEIGHT INFILE
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A note about the use of islmotion

This document describes the usage of the Hierarchical Block Matching (HBM) software,
“islmotion”, authored by J. Riek, Eastman Kodak Company. An example of inputs and
outputs for islmotion for computing the images needed for subsequent motion-compen-
sated median filter structure is given below. In the example, we input 5 degraded frames
(sx.img; x=1,2,3,4,5). It is assumed that the filter uses 3 frames. In this case, the filter uses
the motion compensated versions of s1.img and s3.img to filter s2.img, motion compen-
sated versions of s2.img and s4.img to filter s3.img, and motion compensated versions of
s3.img and s5.img to filter s2.img. The motion compensated versions are motion-compen-
sated estimates of the input frames. For instance, the forward motion-compensated esti-
mate of s2.img is obtained from s1.img by warping s1.img with respect to motion vector
field emerging from the pixels of s2.img and pointing at locations at s1.img

For the example below the input images are
/space/motionl/sx.img; x=1,2,3,4,5.

Note: The software accepts images in FiDO input format as well.

/packages/video/bin/islmotion

Current directory:

Enter the input image file name => /space/motion1/s#.img
(Input sequence)

Output 1

Current directory: /space/motion1

Enter the output image file name => sfor#.img

(Output filename for forward MC images)

Output 2

Current directory: /space/motionl

Enter the output image file name => sorig#.img
(Output filename for duplicates)

Output 3

Current directory: /space/motion1

Enter the output image file name => sback#.img
(Output filename for backward MC images)

Should I tell you what I’'m doing (be verbose) (y/n)? =>y
Enter the number of images in the sequence (3) => 5

(No. of images in input sequence)

Enter the starting frame number (1) =>

Save DFD images (y/n)? =>y

Forward compensated DFD:

Current directory: /space/motion1
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Enter the output image file name => DFDfor#.img

Backward compensated DFD:

Current directory: /space/motion1

Enter the output image file name => DFDback#.img

Enter the file containing the block matching parameters

Enter an input file name =>
/home/riek/source-c++/motion/tanaguchi/carl/faster4.dat
Loaded 4 parameters from
/home/riek/source-c++/motion/tanaguchi/carl/faster4.dat.
(Input parameter file specifying HBM (4-level) parameters....)
Enter the number of standard deviations to use

when thresholding the SAD values (2) =>

(When checking to see if a motion vector is valid, how many standard deviations above
the mean for an SAD will you consider?)

Enter the number of popular vectors to compare (8) =>

(Every motion vector is compared with the N most prominent vectors. Choose N with
care. If there are going to be a lot of vectors then maybe you should make this a little
larger. If you know that there are only a few different vectors, you can make this smaller.
N>9 will take longer than one level of block-matching.)

Enter the number of levels of sub-pixel accuracy (0.5)n (1) =>
(This controls how accurate a motion vector you want -- amplitude resolution of fractional
vectors. 1 = half pixel, 2 = quarter pixel, 3 = 1/8th pixel, etc.)

Loading image 1

/space/motion1/s1.img is a 256x256 32 plane grayscale image.
Loading image 2

/space/motion1/s2.img is a 256x256 32 plane grayscale image.
/space/motion1/s3.img is a 256x256 32 plane grayscale image.
Block Matching Forward

Saving forward compensated image 1
/space/motion1/sforl.img has been written.

(This is the forward MC estimate of s2.img from s1.img)
Saving forward DFD image 1

/space/motion1/DFDforl.img has been written.

(This is the forward DFD computed between s2.img and MC s1.img)
Saving image 1

/space/motion1/sorigl.img has been written.

(This is s2.img -- unprocessed)

Block Matching Backward

Saving backward compensated image 1
/space/motion1/sback1.img has been written.

(This is the backward MC estimate of s2.img from s3.img)
Saving backward DFD image 1
/space/motion1/DFDback1.img has been written.
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(This is the backward DFD computed between s2.img and MC s3.img)
/space/motion1/s4.img is a 256x256 32 plane grayscale image.
Block Matching Forward

Saving forward compensated image 2

/space/motion1/sfor2.img has been written.

(This is the forward MC estimate of s3.img from s2.img)

Saving forward DFD image 2

/space/motion1/DFDfor2.img has been written.

(This is the forward DFD computed between s3.img and MC s2.img)
Saving image 2

/space/motion1/sorig2.img has been written.

(This is s3.img -- unprocessed)

Block Matching Backward

Saving backward compensated image 2

/space/motion1/sback2.img has been written.

(This is the backward MC estimate of s3.img from s4.img)

Saving backward DFD image 2

/space/motion1/DFDback2.img has been written.

(This is the backward DFD computed between s3.img and MC s4.img)
/space/motion1/s5.img is a 256x256 32 plane grayscale image.
Block Matching Forward

Saving forward compensated image 3

(This is the forward MC estimate of s4.img from s3.img)
/space/motion1/sfor3.img has been written.

Saving forward DFD image 3

/space/motion1/DFDfor3.img has been written.

(This is the forward DFD computed between s4.img and MC s3.img)
Saving image 3

/space/motion1/sorig3.img has been written.

(This is s4.img -- unprocessed)

Block Matching Backward

Saving backward compensated image 3

/space/motion1/sback3.img has been written.

(This is the backward MC estimate of s4.img from s5.img)

Saving backward DFD image 3

/space/motion1/DFDback3.img has been written.

(This is the backward DFD computed between s4.img and MC s5.img)
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