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ABSTRACT

The time measurement of star occultations is one of several
modes of obtaining navigation data in cis-lunar space. Using
statistical methods of optimization of data, the feasibility
of navigation using the measurement of star occultations as
a method in itself and in combination with angle measure-
ments is investigated using digital computation techniques.
The real star field is approximated by a statistical star back-
ground for the purpose of this study. An Yaverage occultation
frequency" is calculated based on a reference trajectory and
the statistical star background. The occurrence or non-
occurrence of occultations along the trajectory is determined
by a random number operation which utilizes the “average
occultation frequency". The measurements obtained are
introduced into a navigation routine which simulates the
circumlunar voyage. The results indicate that navigation
based on occultation measurements alone 1s not practical.
However, when occultation measurements are used in conjunction
with angle measurements, it is shown that the total velocity
correction required is reduced and other navigational
parameters are similarly reduced. This study indicates that
further investigation using actual star data would be
appropriate.
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CHAPTER I

INTRODUCTION

As seen from a vehicle traveling in earth-moon
space, stars will disappear behind the earth or the moon
due to the relative movement of those bodies with
respect to the vehicle. In a like manner stars will
appear from behind the earth and the moon. The word
occultation will be used in this study to include both
phenomena, although in the strict sense this word
applies only to the disappearance of one celestial body
due to the intervention of a second celestial body.

By noting the time that an occultation of a known
star takes place, an astronaut may gain information
about the vehicle's position and velocity. The same
kind of information may be gained by other types of

measurementsol

One family of measurements available

is comprised entirely of angular measurements. In-
cluded in this category are measurements of the angle
petween the moon horizon and the earth horizon, the moon
horizon and a star, an earth landmark and a star and

other obvious combinations. Also included in this

family is the measurement of the apparent diameter of
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either the earth or the moon. A second family is com-
prised entirely of measurements utilizing electromagnetic
radiation.
All of the angular measurements require some sort
of space sextant and possibly some maneuvering of the
space vehicle. The electromagnetic techniques would
also involve additional equipment and perhaps some
maneuvering. In contrast the occultation measurements
would require no equipment other than a precision time
source which would already be included in any self
contained navigation system. Assuming that omni-
directional vision would be provided by periscopes,
occultation measurements would require no maneuvering
of the space vehicle., The observer would simply
record the instant of occultation. Thus the measurement
would cost nothing in the way of propellant to maneuver
the vehicle and would require no extra equipment in the
vehicle. There is one other important difference between
occultation measurements and the other measurements
mentioned. The angular measurements and the electro-
magnetic measurements are available over some continuous
time interval, whereas occultations are discrete events.
To be of real use occultations must meet two
criteria. They must occur frequently enough to provide

more than sporadic information, and the information they
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provide must be of usable quality. Both of these factors
will be investigated in the work that follows.

Several possibilities for the use of occultation
measurements in space navigation present themselves.
Perhaps a successful voyage could be made using only
occultation data for navigation. More probably
occultation measurements could be used to supplement
other techniques. In connection with the latter idea,
it is Interesting to note that angular measurements
are more easily made from an illuminated horizon while
occultations are most accurately observed when they
take place at a non-illuminated portion of the
occulting body. Thus it appears that angular measure-
ments and occultation measurements complement one
another., Finally it is possible that occultation
measurements could provide an emergency navigation
technique in the event of failure of a more sophisti-
cated system.

The purpose of this thesis is to study the use-
fulness of star occultation data for navigational purposes
during a circum-lunar voyage. There are several logical
steps that must be taken before any conclusions can be
drawn. First, it must be established that occultations
occur frequently enough to be useful. Here, the authors

have drawn heavily from an unpublished study on star
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occultation frequency by Dr. J. H. Laning Jr.2 This
study indicated that occultations do occur frequently
enough to warrant investigation into their useful-
ness as an aid to navigation. This result motivated
the work that is the main body of the present study.

A control program, utilizing existing subroutines
and an existing trajectory,was written to simulate a
circum-lunar flight. Options were written into the
control program so that the use of two navigational
medes could be simulated. In one case the navigation
is based entirely on occultation measurements. In
the second case navigation is based on a combination of
angle and occultation measurements.

It should be noted here that the entire study is
a statistical simulation of the actual problem. The
frequency with which occultations would occur is com-
puted on the basis of a statistical star background.
A random number process based on this frequency
determines whether an occultation actually occurs, and
a similar process determines where on the body the
occultation takes place.

A simulated flight is begun by estimating injection
errors in position and velocity. These initial errors
are chosen on the basis of a statistical knowledge of

the launch guidance capabilities. Upon completion of
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a simulated flight, the effectiveness of the navigation
technique employed can be evaluated on the basis of the
resulting errors in position and velocity at the target,
the accuracy with which these errors are known and the

required velocity corrections.



CHAPTER 2

NAVIGATION THEORY

2.1 Introduction

For the past several years there has been consider-
able thought and effort devoted to the ways and means
of midcourse navigation of both manned and un-mamned
space flight vehicles. This study will concern itself
with the work of Dr. R. H. Battin and his method for
optimum utilization of space navigation data.l

For the purposes of clarity and cohesiveness a
summary of Dr. Battin's approach to this problem of
optimum utilization of navigation data will be included
here, but the reader 1s directed to the above reference
for a more comprehensive study.

This summary will be further limited to the applica-
tion of Dr. Battin's work to star occultation measurement
data in earth-moon space in accordance with the area of
this study and with the fact that other measurement modes

are utilized in an entirely analogous manner.

-6-



2.2 General

Star occultation navigation is founded on small per-
turbation theory in which only small deviations from the
referenced times of occultation and the corresponding
small deviations in position and velocity from a reference
trajectory are utilized. Data are obtained by an astro-
naut using a timer device to obtain the time difference
between the actual and referenced times of an occultation,
where an on-board clock will serve as a time reference.
These data will be processed by an on-board computer and
will provide the calculations for any small changes in
the vehicle velocity.

Problems to be solved by using this method of
statistical optimization of star occultation data are:
(1) definition and derivation of the optimum linear
operations for processing the star occultation data in
a manner consistent with the mission objectives; (2)
optimization of the number of corrective maneuveurs re-
quired in terms of mission accuracys; and (3) expression
of the mean-squared velocity correction directly in terms
of the errors associated with initial orbital injection,
star occultation measurements and establishment of the
desired velocity corrections.

It will be assumed throughout this study that the
cross-correlation effects of random measurement errors

is negligible and will therefore be ignored. This
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assumption is not true in general but was utilized here

for the sake of convenience, Also, launch guidance is

not considered so that the guidance problem is confined

to the time between injection into and return from a
trans-lunar orbit.

Errors arising from lunar orbit injection will be
considered small and the corresponding deviations in
position will be detected and corrected in the normal
course of the star occultation navigation program.
Navigationally the outbound and return portions of the
trip are basically the same.

Star occultation measurements and velocity correc-
tions will be made at specific points along a specified
trajectory, where the time interval and selection of
these points is arbitrary with consideraﬁion being given
to proximity of the vehicle to the target body. That is,
the nearer the vehicle 1s to the reference body, the
smaller the integration interval of the equations of motion
should be for greater accuracy of trajectory determination.
The time limits of these intervals define the location of
decision points along the trajectory. For an actual
mission the decision points will be those pre-calculated
reference times of desired real star occultations. The
trajectory 1is based on a three-dimensional model of the

solar system.
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In the star occultation mode one of two events can
occur at each decision point: (1) either a velocity cor-
rection is implemented; or (2) an occultation measurement
is initiated if available. This procedure differs from
that when using angular measurements only in that it costs
nothing but a few seconds of the astronaut's time to make
an occultation measurement so that for the sake of better
reduction of data uncertainties the occultation measure-
ment should be made at every available opportunity.
Notation conventions utilized are as follows: (1) a
column vector of any dimension is represented bj an under-
scored letter with the absolute wvalue identified by
omitting the underscore; (2) matrices are denoted by
capital letters; (3) the transpose of a vector or a
matrix will be dencted by a superscript T; (4) the scalar
product of two vectors a and b will be written as aTb; and
(5) the average value of any quantity will be indicated by

an overscore.

2.3 The Star Occultation Measurement

The reference time T is defined as that time when a
predetermined occultation should occur. At this reference
time T for an occultation measurement there exists a refer-
ence position vector r for the vehicle, and it is assumed

that we know the exact position and velocity of the earth
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and moon at time T. Time T will correspond to those times
establishing decision points along thé reference trajectory.

If a position deviation &r exists, then a specified
occultation will not occur at the reference time T so
that a time increment ot is defined as that interval be-
tween the referenced and actual occultation times,' ot
can be an interval either before or after the reference
time T since the probabilities of én occultation occurring
before or after the reference time are the same.

It is assumed that there is no ciock error present
in these measurements and calculations since clocks are
currently availlable with accuracies such that the resultant
navigation errors induced in a typical sixty-hour lunar
mission 1is negligible.

To obtain the deviation in time &t with respect to
the position deviation &r of the vehicle from its reference
position, let the relative positions of the sun, occulting
body and vehicle be as shown in Fig. 2.1. Let r be the
vector from the sun to the vehicle SO and z the vector
from SO to the center of the occulting body OB. The unit
vector o is in the direction of the star to be occulted
while m is the unit vector corresponding to z. p is a
unit vector associated with the vector x defined as normal
to m and in the plane of occultation defined by m and n.

As shown,; ¥y is the angle between the vehicle-star and the
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vehicle-occulting body center lines.

SUN

L p/2

Xz

N

FIG. 2.1 Star occultation geometry
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Factors affecting the relationship between &+ and
d5r are (1) motion of the occulting body during the
interval &<3 (2) the initial di splacement dr of the

vehicle position with respect to S, at the time T when

0
the occultation should occur; and (3) the vector distance-

ot traveled by the vehicle with velocity vector v from
the start to finish of the occultation measurement.

At the instant of occultation we have
Nez = 2 CcOS ¥y (2.2)
where
22 = z.z (2.3)

Treating changes as first order differentials there results

ned2 = CcOs y %2 - 2 sin vy %y
= cOS Yy med52 - 2z sin v 3y (2.4)
where
82 = Med2 (2.5)

The angle ¥ is also defined by the relation

sin vy = g% (2.6)

Again taking first order differentials to compute the
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angle deviation %y, there results
2 siny %z + 2z cos y by = O (2.7)

from which

- 5 %z (2.8)

with the aid of Eq. (2.5).

With zp and Y defining the velocity vectors of the

occulting body and vehicle respectively and v, defining
the velocity of the vehicle with respect to the occulting
body, we have

=V, + Vv (2-9)
From Fig. 2.1 summing vectors
Z+3%Z - Kpr -2+ 5L % !Sét = 0 (2.10)

from which

o4
]
1]

(y.p - ¥ )T - 3L

(2.11)
= ~L.3T - L
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The vector x normal to the unit vector m is defined as

x=(mxn)xmn
= n(m.m) - m(n.m)
(2.12)
= n - n(n.m)
=N - Ccosynm
with magnitude
x= 1-cos Y
(2.13)
= |sin v|
The unit vector corresponding to X is defined as
X
e = x
(2.14%)

using Egs. (2.12) and (2.13).
Solving Eg. (2.4) for the angular deviation &y and
using Egs. (2.8) and (2.1%), we have

(cosym - n)* bz

"

dY

z sin vy
- 1 . '
= - -2 2 6_% (2'15)
Dm 52
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Eqs. (2.6) and (2.15) then give us

1 Dm-52
Z 2132 = 3
2z7cos ¥
(2.16)
= ———'xta;l gob_z_

Finally, using Egs. (2.11) and (2.16) there results

% L-(-3r-v 57) = §%g1 me (=32~¥.57) (2.17)

and solving for 87T, we have

(g - tan y m)

T = - @ -tan ¥ m - v, °F (2.18)

where the vector h is defined as

g -tanym

enabling us to rewrite Eq. (2.18) as

5T = h-d2
(2.20)

nlsr

Therefore, the vector h is dependent upon the geometrical
configuration of the wvehicle and occulting body combina-
tion with respect to the star background on the celestial

sphere at the time of measurement.
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2.4 Correlation of Deviation Vectors

To relate the results of measurements at times Tn
and Tn+l a six-dimensional deviation vector bzn is

introduced and is defined as

brln
®Ton (2.21)
6r3n

\/

5Viy
5Von

dv
L 3n

where dL, is the position deviation vector from the
reference path, dY, is the velocity deviation vector
from the reference value and 5%, defines the 'state' of
the vehicle dynamics at time Tn.

X at times Tn and Tn+1 respectively is related by a

"transition'" matrix such that

3%y = ®pn-1 ¥ (2.22)
and
ézn+l <I)m-l,n P-4 (2.23)
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from which

d%, = @ 5X

n+l,n “=n+l (2.24)

By defining the rectangular matrix K as

< I3

where I and O represent respectively the three dimen-
sional identity and zero matrices, the position

deviation vector dr, can be related to 5%, as

/5rlni
Z)*I-'-n = ;5r2nz’
{ar3ni 5T,
ér2n ! .
10000 sry
= 010000]) . (2.26)
001000 ®n.
5V,
5V3n
= T
K™ 5%,

where K- and 5%, derive from Egs. (2.21) and (2.25).
Eqs. (2.24%) and (2.26) enable us to rewrite Eq. (2.20)

as

(2.27)
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which now relates the effect at time Tn—l of an occulta-

. . T T 5-1
tion measurement at time T . The vector h K §n+l,n of

. T-1
Eq. (2.27) may be rewritten as ®n+l,n Kgn and each

occultation measurement will yield one component of this
six dimensional deviation vector so that if six occulta-
tions were recorded and no two components were parallel,

the deviation vector coculd be obtained.

2.5 The Statistical Parameters

Combining additional observations with linear least
squares estimation techniques of analysis, it is possible
to arrive at a more accurate estimate of position and
velocity; and as an added benefit, avoid inverting sixth
order matrices as would be required for a solution above.

In order to explore this technique, several quantities
must be defined. They are (1) the measured deviation in
time 8T; (2) the true deviation in time &t; (3) the
associated error in the occultation measurement ¢n which
will be regarded as a random variable; (%) the predicted
value of the position deviation vector »f ; (5) the
actual position deviation vector 5L, (6) the error in
the position prediction vector £,
tion in velocity bin; (8) the true velocity deviation A

; (7) the predicted devia-
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and (9) the error in the velocity prediction p .

These definitions combine to form the expressions

5T, = b, + (2.28)
pl = er, * g, (2.29)
and
8%, = 8¥, + &, (2.30)

where a s &, and &y, are all considered to be random
variables. For example, the average value of an is

Gn and the variance is

(o3 =

2 - 4% - 4% (2.31)
n n n

In a manner analogous to Egs. (2.28) through
(2,30), the optimal linear estimate of dX, denoted by

dX, can be written as

35X, T X, * g (2.32)

where gn is the associated six~-dimensional estimation

error vector defined as

(2.33)

ﬁn and Qn are respectively the position and velocity

estimation errors as defined in Egs. (2.29) and (2.30)
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The optimal linear estimate ézn can be updated by
a simple recursive formula (cf. Section 2.6). The cor-

relation matrix of the estimation error can be defined as

By, o= EnEg
£n T T
) on !L—n Qn;f
) éngg gnég (2.34)
Qnég 2ndn
Eél) Eé2)

i}

(3) ()
El’l El’l

The quantity 52& defines an estimate simply extra-
polated from a previous estimate as opposed to the estimate
6in obtained by incorporating an observation at time tn’
Therefore, using the "transition" matrix, 8% 1is defined

as

5X'= ®n,n~l 5%, (2.35)

where

63{ = -+ (2036)
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from Eq. (2.32). Combining Egqs. (2.35) and (2.36), we

have

¥n = P no1 %21 * ¥yno1 G (2.37)

Defining  an extrapolated error vector as

(2.38)

and using Eq. (2.22), Eq. (2.37) can be rewritten as

oX'= 5x_ +

X, + & (2.39)

The associated extrapolated correlation matrix is

defined as

H
E_ = gﬁgﬁT (2.40)

Using Eq. (2.38) and its transpose, this can be re-

written as

- T 5T
By Qn,n—l &n-18n-1 @n,n~l

Qn,n—l En-l ®n,n-l

where

fn-1 T &n-18na (2.42)

from Eq. (2.34%).
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An estimate of the deviation in the occultation time
bt to be measured at time T, may be obtained from the

extrapolated estimate of 5§n~l giving us

(2.43)

oy
n -n -1

This relation, when compared to the measured deviation

6%n, is used in arriving at a revised extimate of 5%, o

2.6 Navigation and Guidance Eguations

Time tL corresponds to time of completion of

launch and the associated correlation matrix
(2.44)

1s specified initially from a statistical knowledge of
injection guidance errors., The initial estimate of

position and velocity deviation

X = ai(tL) (2.45)

>SN
is zero since the best unbiased estimate in the absence
of any observation is that the vehicle is on course.

A revised estimate 3X(t) of the deviation vector
5x(t) is made at each decision point~--the form of the

revision dependent upon the nature of the decision of

which there are two possibilities: (1) a measurement; or
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(2) a velocity correction; so that bﬁn may be written as

S ol | -l 1 ~ - "‘
?5§n +a “E Kn, (6Tn érn) (measurement)
0k, = / (2.46)
(I + JBn) 5% (correction)

The scalar coefficient a, is computed from
2
+ag (2.47)

The rectangular matrix J 1s just the reverse of the K

matrix so that

7= 3] (2.48)
The matrix Bn is also rectangular and is defined as

(2.49)

where C; is one of the fundamental navigation matrices
described in Ref. 1.
At each decision point the correlation matrix En

must be updated. Thus

En i - "-L (_?l 1@?' T
n T ep (uann)(unKQn) (measurement)
En = (2050)
| +T (correction)
En + J _U 'ﬂT J
mn

where n denotes the uncertainty in the velocity correction.
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Eqs. (2.46) and (2.50) represent the recursive
relation used in obtaining improved estimates of position
and velocity deviation at each of the measurement times

tl, t2°°..8l.9"

2. Solution of the Trajectory Egquations

Let gs(t) and zs(t) denote the position and velocity
vectors of the vehicle in an inertial coordinate system,
and let g(gs,t) denote the gravitational acceleration at
position r . and time t. Now let go(t) and zo(t) denote
the position and velocity at time t associated with the

prescribed reference trajectory. With this information

we have
dr(t) = r (t) - £ () (2.51)
and
s (t) = ¥ (£) - ¥ (%) (2.52)
so that
d(dr)
at = dV (2.53)
and
d(sv) -
d% = u(go,t) dr (2.54%)

where G(ry,t) is a matrix whose elements are the partial

derivatives of the components of g(zo,t) with respect to
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the components of Ige Define tL and tA as the time of
launch and the time of arrival at the target.

To solve Egs. (2.53) and (2.54%) define the matrices

dR _ dR* _
it = g =
. (2.59)
av av  _ *
it = GR, gt~ = GR
where
R(t;) = 0 , R¥(t,) = 0
(2.56)
V(tp) = I, V(t,) = I
so that
5r(t) = R(t)g + R*(t)cg* (2.57)
and
du(t) = V(t)g + V*(t)e* (2.58)

where ¢ and ¢* are arbitrary constant vectors.

2.8 Vector Velocity Corrections

Associated with the position I and the time t is
the vector velocity required by the vehicle to travel in
free fall from gs(t) to the target point go(tA) in the
time interval (tA—t),

Solving Egqs. (2.57) and (2.58), it can be shown that
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the required velocity deviations at time t can be written

as

sy (t) = VH(t) R*(£)7T sr(t)  (2.59)

and

sy (t) = V(t) R(t)™T sr(t) (2.60)

where the superscripts - and + denote the velocity just
prior to or immediately following the correction
respectively.

From Eq. (2.59) and (2.60) the required velocity

correction Av* is given as

Av*(t) = C*(t) »sr(t) - sy (%)
= C*(t) - C(t) ar(t) (2.61)
= -A(t) bz(tL)
where
C*(t) = V*(t) R*(t)™ T (2.62)
c(t) = V(t) R(t)™T (2.63)
Alt) = V(L) - C*(t) R(t) (2.64)
A*(t) = V*(t) - C(t) R*(t) (2.65)

and bz(tL) denotes an injection velocity error.
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Finglly it can be shown that
R(t) R*(t)

5x(t) = (2.66)
V(t) V*(%) c*

{e]

and from Eg. (2.23) the six-dimensional transition matrix

can be computed as

A -1
fne1 Fhe1 e G I
®rs1i,n T
v Vo 0 ot c. -I
n+1 n+1 An n
(2.67)

Using Egs. (2.30) and (2.49), an estimate of the velocity

correction vector 5§n may be determined from
AV, = B 85X (2.68)

This process 1s necessary in that injection, measurement,
and rocket instrumentation errors give rise to a series
of velocity corrections to be implemented along the
trajectory.

To distinguish times of velocity correction from

decision point times, tc n will be used to denote the
H

time of the n-th correction maneuver. A commanded

, while Ay

velocity change will be denoted as Azc’ Ye,n

n

and gc,n will denote the actual velocity change
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experienced and the uncertainty in applying the correction

respectively. Therefore, we can write

Azc,n = Azc,n * Ec,n (2.69)

from which the actual velocity change may be expressed as

- ! -
Ay-c,n - Bc,n (5§c,n —c,n) 11c,n (2.70)
At the correction point
0
- !
gc,n - gc,n * (2.71)
n
—c,n
so that Eq. (2.70) becomes
AV n = Bc,n(bgc,n * g'c,n) (2.72)

Also the correlation matrix of the deviation errors must
be updated at the correction point. It follows from

Eq. (2.71) that

0] 0
- 1
Beon=%,n * n ol (2.73)
0 —c,n-c,n
Eq. (2.72) may be rewritten as
- - -1
Azc,n - 3c,n gc,n Ac,n Ac,n-—l Bc,n-l gc,n-l

(2.74%)
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or we may write

A : -1
v = e ! -1\ B
A—-c,n Bc,n =c,n cyn “cyn=-1 “cyn-1 gc,n--l

(2.75)

and it is one of these two latter forms that we
shall uéev

The correlation matrix of the estimated velocity
correction vector is found by computing the mathematical
expectation of the product of AV n and its transpose. ‘This

K

matrix is written as Aio nAzg n from whose trace is de-
3 ?

fined the mean-squared estimate of the velocity correction.

The uncertainty associated with a velocity correction

is defined as

d = B X
=c,n ~c,n c,n 6-c,n

]

>

<
1

(2.76)

= B3 e
c,n =c,n

from which the mean-squared uncertainty is determined as
the trace of the matrix

4 4 =3 _E' 3

T
=¢c,nc,n  Cc,n “Cc,n "¢

s (2.77)
Since the inaccuracy in establishing a commanded velocity
correction AV is due to errors in both magnitude and
orientation,‘it is necessary to examine more carefully the

vector uncertainty 1 in the velocity correction. Both
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sources of error will be assumed independently random with
Zero means.

It can be shown that the uncertainty vector p is

expressible as

cos B 0
n =A% -Av = AT M \(1 + k) v sin Bl{+ K || ©
0 Ho1

(2.78)

and the corresponding correlation matrix of the velocity

correction uncertainty is

_ 1 0 0
—_— = 2 2
an® = k? agast + % o% v |jo 1 of o (2.79)
0 0 0
‘—é. ~ AT -—2- AT ~ ~ AT
= k% A%AT +3’—2— AT AT I - AT AT (2.80)

where 1 1s the three-dimensional identity matrix, K is a
random variable, M is a transformation matrix, y is a
random angle between A¥ and Av, B is a polar angle
defining the rotation of Ay with respect to Ay and K, v,
and B are all statistically independent random variables

with zero means.
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2.9 Target Miss Distance

Denoting tN as the time of the last velocity correction

and 5K,

it can be shown that

as the deviation vector at the time of arrival tA’

i

-1 +
8Ly = ~Ryly " Bydxy

(2.81)

]

-1
Ryl Byey

which relates the target position error to the error vector

gy The mean-squared position error at the target is then

the trace of the matrix 5L, 6§AT.



CHAPTER 3

OCCULTATION THEORY

» T jeeto

The reference trajectory used in this study is the
outbound half of a close approach, free fall, circum-lunar
trajectory with departure on May 20, 1968.3 The trajectory
starts from an earth parking orbit at 114 miles. The
distance to the moon's surface at the closest point of
approach is 60 miles. The time from departure of the
parking orbit to arrival at the closest point of approach
is 62.5 hours.

2.2 Statistical Star Background

In order to base this study on actual occultations that
would occur along the reference trajectory, a great quantity
of star data would have to be compiled. Considering only
stars of magnitude six or greater, it would be necessary to
tabulate unit vectors for approximately 10,000 stars. Even
with this information, the computation necessary to determine
when occultations occur would be lengthy.

To avoid these difficulties a statistical star background

-32-
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is employed. The stars are assumed to be distributed
isotropically and at random. The star density is assumed
to be a function of visual magnitude. The star densities
used in this study are tabulated as a function of visual
magnitude for magnitudes four through nine in Table 3.1.
In each case the density 1s given for stars brighter than

the corresponding magnitude.

TABLE 3.1

STATISTICAL STAR DENSITY AS A FUNCTION OF

VISUAL MAGNITUDE

Ma%ﬁi;?de Stafcge?sitj* log o
I 10

L 0.0129 -1.89

5 0.0398 - -l.ko0

6 0.1175 -0.93

7 0.3467 -0.46

8 1,000 0.00

9 2,818 0.45

*density of stars brighter than the
corresponding magnitude

. Occultation Frequency Assumptions

For an actual flight occultation times would normally
be precalculated so that the approximate time of each useful

occultation would be known in advance. Measurements would
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then be made as the useful occultations occur. To simulaﬁe
this procedure accurately on the basis of a statistical star
background it would be necessary to determine a specific time
of occurrence for every occultation. Since trajectory data
is given at intervals along the trajectory known as "decision
points", it is advantageous to make all calculations at thesé
decision points. For this reason the frequency of occultation
will be determined at each decision point, and the assumption
will be made that the frequency of occultation remains
constant until the next decision point is reached at which
time a new occultation frequency will be computed. This
approximation is entirely satisfactory for the purpose of
this study since the interval between decision points ranges
from 1.2 to 30 minutes corresponding to portions of the
trajectory that are near either body or far from both bodies
respectively.

In determining the frequency of occultations the earth
and the moon afe assumed to be perfect spheres, and the
periphery of either body is assumed to be i1lluminated or not
illuminated with no gradation. The state of illumination is
based on light from the sun only. Reflected light is not

considered.
o mination of QOccultation Freguenc

The following derivation is taken largely from an
o]
unpublished study by Dr. J. He Laning Jr.-
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Fig. 3.1 ©Star occultation geometry

In the work that follows an underscore will be used to
indicate a vector quantity. When the underscore is omitted
from a previously defined vector guantity, 1t will be
understood that the magnitude is meant.

Let A be a unit vector with x, y, z components cosp, O,

sinp. Let B be a unit vector having x', y', 2z' components
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cospy Oy sinp. From Fig. 3.1 it can be seen that

i

X =X
y =y' cos¥y~- z' sin¥y = - sinp siny (3.1)
z = y' sinVy+ z2' cosy= - sinp cosV

so that B has components in the x, vy, 2z frame of cosp, -sinp
sin ¥, sin p cos V.

As seen from the spacecraft, stars are occulted by a body
due to two effectst the apparent angular velocity of the
line of sight from the spacecraft to the body and the apparent
expansion and contraction of the body due to a velocity
component toward or away from it. Since the angular velocity

of the line of sight is given by

(3.2)

w=wz

the motion of B due to the angular velocity of the line of

sight is

wxB=ow(z xxcosp-2xy sinp sin¥)

= wycosp+wx sinpsiny (3.3)

The motion of B due to radial motion of the spacecraft with
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respect to the body is

-p (g xB) =-p (ycos¥y+zsinPx B
X A 2
= - é 0 cos ¥ sin V¥
cos p -sin p sin ¥ sin p cos ¥

i

- é [5 (c032 ¥ sin p + sin2 ¥ sin p)

+ y (sin ¥ cos p) + 2z (-cos V¥ cos p)]

= - é X sin p - é Yy sin ¥ cos p + é z cos V¥ sin p
(3.%)
Adding the motion of B due to each of the effects mentioned

will yield the total motion of B.
vy = x (- p sin p + w sin ¥ sin p) + ¥ (- p sin ¥ cos p

+ wcos p+ 2z (p cos ¥ cos p) (3.5)

The total motion of B can now be broken into two
components: (1) the component along the line of sight to
B which does not contribute to the sweeping out of star
background; and (2) the radial component (radial with
respect to the occulting body) which does sweep out an area

of the star background. To facilitate the separation of
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the radial component it is convenient to define a unit

vector in the direction of radial motion.

u=-xsinp + x' sin p

= - x sin p + cos p (-~ y sin ¥ z cos V)

(3.€)

Occulting Body
P

S » X

Fig. 3.2 Unit vector in direction of radial motion

I'he radial component of motion of B is given by

Ve =v. +u=(-p sinp +w sin ¥ sin p)(- sin p)

BR —-B
+ (- é sin ¥ cos p + w cos p)(- sin ¥ cos p)
+ (é cos ¥ cos p)(cos ¥ cos p)
= p [sin2 o cos? o (sin® V o+ cos® W>]
+w (- sin ¥ sin® p - sin V¥ cos® p)

= p - w sin V¥ (3.7)

Thus the rate at which an element d¥ along the visible
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periphery of the body sweeps out the star background is

A=(p -wsiny) sinp ak (3.8)

It is necessary to express A in terms of parameters that

will be available at each decision point. The following

quantities are available:

R

<<

EM

VEM

the vector from the center of the reference body

to the spacecraft

the velocity of the spacecraft with respect to the
reference body

the vector from the center of the earth to the center
of the moon

the velocity of the moon with respect to the earth

Knowledge of these quantities, along with the radius of the

occulting body, is sufficient for the computation of all the

quantities shown in Fig. 3.3.

y!

Fig. 3.3 Star occultation geometry
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With the aid of Fig. 3.3 the following relations are

readily developed:

sinp = §£~ (3.9)
VB
v R
P CoOsSp = -r *'%B‘
Ryg
. R
VB
P = -tanp = .
Ryg (3.10)
Ryg = - Vcosy (3.11)
-V , .
p = g— tan y cos ¥y (3.12)
VB
- _V .
w =g siny (3.13)
VB
Therefore
A= Eﬁgig_g {}anp cos ¥~ sinV sin ﬂ ay (3.14)
VB :

The portion of a body that occults a star may be
illuminated or dark. In addition the body may be covering
or uncovering the star. The accuracy with which the time
of occultation can be observed is dependent upon both these
conditions. For this reason it would be convenient to sort
occultations into four categories, covering all combinations
of the above conditions. This can be accomplished during
the integration around the periphery of the occulting body

with respect to dF. The integration will be separated
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into four parts corresponding to the four conditions:

N1+ non-illuminated, covering previously visible sky
NI- non-illuminated, uncovering previously hidden sky
I+ illuminated, covering previously visible sky

I- illuminated, covering previously hidden sky

The covering or uncovering category is determined by the sign
of A. In order to determine the illumination condition the
direction from the occulting body to the sun must be
established. The vector from the sun to the earth Bgg 1s
part of the information available at each decision point.
Depending on which body is the occulting body, the unit
vector from the occulting body to the sun Ug can be
established.

Now define a unit vector go along the direction from

B
the center of the occulting body to a point on the visible
periphery determined by the value of ¥ as shown in Fig. 3.4

where

Ugg = - sinp x - cos p sin ¥ y + cos pcos ¥ z (3.15)

Upg * Uy > O (3.16)

indicates that the periphery in the direction U from the

0B
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Fig. 3.4 Occulting body illumination

center of the occulting body is illuminated and

Ugg * Ug <O (3.17)

indicates a non-illuminated condition. Integrating A over
the visible periphery, keeping track of four categories of
occultations, results in four corresponding values for the
rate at which the statistical star background is being

swept out. If Qy Qpy Q, and Qz correspond to NI +, NI -,
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I +, and I - respectively, the frequency of occultation in

each category may be found by

FREQ, = CF; Q, (3.18)
FREQ, = CF; Q; - (3.19)
FREQ, = CF; Q, (3.20)
FREQz = CF; Q3 (3.21)

where CFI is a conversion factor dependent on the magnitude
of stars being considered and the units of Q. See Table 3.l.
It should be noted that the preceding calculations are gone
through twice at each decision point, once for the earth as
the occulting body and once for the moon as the occulting
body .

3.5 Random Number Method for Determining Whether an

Occultation Occurs

FREQO through FBEQ3 represent the average frequency with
which occultations of the corresponding category are taking
Place during the time interval between two decision points.
Based on this average frequency and the time interval
involved, the number of occultations in each of the four
categories can be determined. However, for the purpose of
this study a simpler computation is adequate. It is assumed
that only one observation will be made between decision

points, regardless of the number of occultations that occur.
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The navigational value of an occultation depends chiefly
on the orientation of the bodies involved and the category
of the occultation. Since the orientation of the bodies
remains essentially constant during the time interval between
two decision points, all observations subsequent to the first
one would provide essentially redundant information.

The probability that a specific number of occultations
occurs between two decision points is given by a Poisson
distribution. For example, the probability that two

occultations of type NI + occur in the interval t, - tl is

given by
2
where
k= (FREQy) (ty - tq) (3.23)

Since only one measurement will be made regardless of
the number of occultations that occur it is necessary only

to compute the probability, P__, that one or more occultations

nz
occur. This is accomplished by finding the probability that

no occultations occur and subtracting this result from one.

o)
P, =1l -fret=1-¢F (3.24)

The occurrence or non-occurrence of an occultation is

then determined in the following manner.
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A random number with rectangular distribution and an
interval of zero to one is generated. Pnz is subtracted
from this random number. A negative or zero result is
interpreted as meaning that one or more occultations occur
in the time interval under consideration.

This computation is made eight times at each decision
point. It is performed for each of eight values of FREQ,

corresponding to two occulting bodies with four categories

of occultations each. The result is

OCCE,O =0QDorl
OCCE,l =0 or 1

° (3‘25)
OCCM,3 = Q0orl

where subscripts E and M represent the earth and moon
respectively, and the zero or one represent the non-
occurrence or occurrence of one or more occultations. In
the event that no occultations occur at a decision point,
the next decision point is examined. If one or more
categories of occultation occur it is necessary to select

the best one.

3.6 Selection of the Best Occultation

From the eight possible occultations the best two can

be selected a priori. That is, the best occultation for
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each body can be determined with no further calculation.
By "best occultation™ is meant the occulation which yields
the most navigational information. It is obvious that a
NI + occultation is better than a I - occultation. The
choice between NI - and I + is not so obvious, but the
illumination condition is assumed to be the more important
for the purpose of this study. Thus the best occultation
for each body is the first type that occurs in the following
order of preference: NI +, NI -, I +, I ~.

If both the earth and the moon provide occultatiéns at
a particular decision point the choice between them is based
on the quantity %, defined as the mean squared reduction in
position error at the target if a velocity correction were
made following the measurement. The “"best occultation™ is
the one giving the largest &. This “best occultation" is the
occultation upon which further navigational computations
are based.

3.7 Determination of the Unit Vector from the Spacecraft
to the Point of Occultation

Having identified the "best occultation™ at a particular
decision point it is now necessary to determine the direction
from the spacecraft to the point of occultation. Since the
star field is being simulated by a statistical star
background it will be necessary to locate the point of

occultation by a random number process.
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The angular velocity of the line of sight to the

occulting body is given by

(Byg x ¥

m =
Qo 5
Ryp

)
oF (3.26)

where BVB is the vector from the spacecraft to the center of
the occulting body, and EOB is the velocity of the occulting
body with respect to the spacecraft. The direction

orthogonal to wyy and Ryp 1s defined as A where

VB
A= wop X Byg (3.27)
A and BVB lie in the plane of Fig. 3.5

4

Fig. 3.5 Apparent semi-diameter of the occulting body
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The apparent semi-diameter of the occulting body, C,
is given by

C =1 cosp (3.28)

and the vector C, shown in Fig. 3.5 is given by
Ci
=7 (3.29)
4 cross section of the occulting body containing C and w

is shown in Fig. 3.6.

P IE

Fig. 3.6 Geometry for determining the point of occultation
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From Fig. 3.5 it can be seen that

- 2

where 3&B is the vector from the spacecraft to the center of
the visible disk.

A rectangularly distributed random number T is now
generated with width - C to + C. Thus T determines the
magnitude and direction of E in accordance with the original

hypothesis that the stars are isotropically and randomly

distributed.
E=T = (3.31)

F is found from the relation

F = sin V¥ C (3.32)
and G is given by

G=E+L (3.33)
This leads to

Boran = Fys * & (3.34)
and finally

n = %W_S_T_éﬂi (3.35)
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3.8 Visibility of Occultations

There are two limitations on the visibility of an
occultation which must be taken into consideration. An
occultation will not be observable if the line of sight
to the occultation is too close to the line of sight to the
sun. A limit of 15 degrees was used in this study. The

computation

TEST =n " U - cos 15° (3-%6)

SUN

where n and ESUN are unit vectors to the occulted star and
the sun, is used to determine if the lines of sight are
within 15 degrees of each other. If TEST is positive the
occultation is considered not visible.

The second condition affecting the visibility of an
occultation is the position of the non-occulting body
relative to the line of sight from the spacecraft to the
point of occultation on the occulting body as shown in
Fig. 3.7. Bn is the vector from the spacecraft to the
center of the non-occulting body. The apparent radius of
the non-occulting body 6 1s determined in the following
manner

T
8 = arcsin {ﬁg} (3.37)

n

Let En be the unit vector in the Bn direction. From
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Fig. 3.7 Visibility of occultation

Section 3.7 the direction to the star being oculted is given

by the vector n. Then

TEST = n - Qn - cos 6 (3.38)

From Fig. 3.7 it can be seen that TEST will be positive when

the occultation is not visible.

3.9 Varlance

The variance is a measure of the accuracy with which an
occultation can be observed. There are three factors which
influence the variance. The first, tr, is the response time

of the person making the observation. This parameter 1s one
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of the variable inputs to the program so that the effect of
of varying tr can be studied. A nominal value for this
parameter is 0.2 seconds.

The second factor, tc’ compensates for the greater
difficulty in accurately observing occultations of the
NI-, I+ and I- types.

The third factor takes into consideration the deviation
of the occulting bodies from perfect spheres. The variation

from the assumed radius is given by

dr = Ryp coS p dp (3.39)
or
- dr
p = Ryp ©0S p (3.40)

Relating &p to the variation in time,

Ryn cos p 3 R b
vB_ " P f_ - BT (3.40)

R i ~ v_ sin
Ry cosp o sin ¥ r v

bt =

Substituting Eq. (3.40) into Egq. (3.41)

dr

v, cos p sin ¥

dt =

It should be noted that &r will depend on the occulting

body. 6re and 6rm are used to represent the variation of the
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earth's surface and the moon's surface respectively from
their assumed radii.
The total variance is the sum of the squares of the

three contributions. For the earth

N

2 > or
V= tr * (K tc) * v, cos psin V¥ (3.43)
and for the moon
2 2 oty °
LA (K tc) * ¥ Gos psin V¥ (3.44)

r

where K has values Oy, 1, 2 or 3 corresponding to the types

of occultations NI +4 NI -y I + and I -.

3,10 Determination of "h™ Vector

From Chapter 2 the "h™ vector for a star occultation is
given by

1

ho=- (g - tan vy m) * ¥

(g - tan y m)  (3.45)
T

where m is the unit vector directed from the spacecraft to
the center of the occulting bodys vy is the angle between m
and n, the unit vector directed toward the point of
occultation;_g is the unit vector perpendicular to m and in

the plane determined by m and n and Y. is the velocity of

the spacecraft relative to the occulting body.
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In terms of quantities derived up to this point the "h"

fector is found as follows.

*

L

R
mall (3.46)
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The unit vector Jj is given by

o xn

(3.%7)

4= sin p

and the unit vector p, equivalent to g in Eg. 3.45 is then

p=]xm (3.48)

Rewriting Eq.(3.4%) in terms of the quantities shown in

Fig. 3.8 we have

- 1
b TR v, 2 Rem (B9



CHAPTER 4

PRESENTATION AND DISCUSSION OF RESULTS

4.1 Introduction

The results obtained from the computations described in
Chapters 2 and 3 are strongly dependent on a number of
parameters, some of which could not be specified exactly by
the authors. For example, the value of bre (the contribution
to the variance in earth occultation measurements due to the
effect of the atmosphere and the departure of the earth's
surface from a regular geometry) was assumed to be eight
miles in all computations but one. In order to establish
this parameter more accurately a study of the optics
involved would have to be undertaken. In addition it would
be appropriate to determine to what extent this contribution
to the variance can be predicted, since any predictable
contribution could be compensated for in the calculations
and would not detract from the accuracy of an observation.
The results also depend on input conditions such as the
magnitude of stars used and the position of the sun. And
finally, the results vary with the mode of navigation

employed.

-56-
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In the interest of both time and economy it was
necessary to make a limited number of computer runs. The
input conditions were varied over reasonable limits, and
the results are presented here in both tabular and
graphical form. Sufficient data is presented so that the
relative sensitivity or insensitivity of the results to
various input conditions can be determined. Thus, with
care, the data can be extrapolated to some degree to
cover cases for which computations were not made.

The results obtained by navigation schemes such as
the ones employed here, are highly dependent upon the
number and magnitudes of the velocity corrections and
the times at which they are implemented. No attempt was
made to optimize the application of velocity corrections.
Rather, the same decision rules were used for all runs
so that the results can be compared independent of the
method of determining when to make velocity corrections.
" In all runs a velocity correction was made whenever the
ratio of the uncertainty in the computed velocity
correction to the computed velocity correction became
less than 0.2.

The results are also dependent on the injection
errors. These errors are specified by the value of the

initial "E matrix." The following value was assumed



-58-

for all runs.

.980 .063 .203 0 0 0

063 L4.58 -1.8¢ 0 0 0

.203 -1.3¢ 7.0k 0 0 0
Ey =

0 0 o 7.73 k.65 2.72
0 0 0 4.65 83.8 3¢.0
0 0 0 2.72 3.0 3¢.1

This corresponds to a RMS positron error of 3.55 miles

and a RMS velocity error of 11.3 miles.

4.2 Dependence of Results on the Random Number Sequence

As was explained in Chapter 3, there can be as many
as four computations at each decision point which use
the computer's random number function. Thus, the results
of each run depend to some extent on the starting point in
the random number sequence. It would be desirable to show
that this dependence 1is such that the results are
essentially independent of the starting point in the
random number sequence. Table 4.1 shows the results of
three runs in which all parameters were held constant
with the exception of the starting point in the random

number segquence.
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TABLE 4.1

EFFECT OF VARYING THE STARTING POINT IN THE RANDOM
NUMBER SEQUENCE

Sun rotation 70
Magnitude < 4
Occultations and angle measurements

Total Final Final Final
Velocity Velocity Position Miss
Correction | Uncertainty | Uncertainty |Distancs
Run (mph) (mph) (miles) (miles)
48.6 3.80 1.77 4.09
47.8 2.57 1.25 3.83
50.7 2.27 1.13 3.03

4.3 Navigation Modes

A number of navigation modes were considered in this
study. Navigation by angle measurements only, mode 1,
will be used as a basis for comparison, since this mode
of navigation has been studied extensively at the M.I.T.
Instrumentation Laboratory by the Space Guidance Analysis
Group. In order to obtain a more accurate comparison,
the best and worst cases of navigation by angle
measurements only are presented. These best and worst
cases result from values for sun rotation of 250 and 70

degrees respectively. The input parameter "sun
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rotation™ is used to vary the direction of the sun as
viewed from earth. This device serves to simulate the
illumination conditions that would be encountered at
various times during the year without generating a new
trajectory for each new time. The inaccuracies introduced
by this device are not significant in this type of
analysis. ©Navigation by occultations only, mode 2,
will also be considered. The remaining mode, mode 3,
involves using both occultation and angle measurements.
All three basic modes are considered for a sun rotation
of 70 and 250 degrees.

Two variations to the basic modes were introduced:
(1) In two mode 3 runs the variance associated with
occultation measurements was reduced in order to
determine the sensitivity of the results to the accuracy
with which occultation measurements can be made. In this
case the astronaut's response time was reduced from 0.2
to 0.1 seconds. tc, a factor which compensates for the
difficulty in accurately observing occultations of types
NI-, I+ and I-, was reduced from 0.2 to 0.1l seconds.
6re was reduced from eight miles to one mile, and brm was
reduced from three to 0.9 miles.5 (2) In an effort to
simulate a realizable navigation technique more closely,
modes 2 and 3 were varied in one case to consider
occultations of all types by the moon only and in a
second case to consider only occultations of type

NI+ by the moon.
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4.4 Occultation Freguency

The frequency with which stars of magnitude less
than six are occulted by the earth and the moon is shown
in Fig. %.1. The corresponding data for stars of magnitude
less than four are shown in Fig. 4.2. In both cases the
frequencies were computed for the first half of a
circumlunar voyage using the trajectory described in
Chapter 3 and shown in Fig. 4.3. The frequencies shown
in Figs. 4.1 and 4.2 are the total frequencies of
occultation. These total frequencies were obtained by
summing the results of Egs. (3.18) through (3.21).

In Fig. 4.1 the influence of the spacecraft's position and
motion relative to the occulting bodies is shown quite
clearly. The.initial occultation frequency for stars

of magnitude less than six occulted by the earth is

3102 occultations per hour. This extreme value, too
large to be shown in Fig. 4.1, is due to two factors:
(1) the nearness of the spacecraft to the earth; and

(2) the high rate at which the earth's periphery is
moving relative to the star background. The same effect
is noted when the spacecraft is at its closest point of
approach to the moon, the extreme lunar occultation
frequency being 4361 occultations per hour.

As the spacecraft starts around the far side of

the moon the frequency of occultations by the earth
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approaches zero as would be expected. The corresponding
effect on occultations by the moon is noted during the
initial portion of the trajectory.

Fig. 4.2 would show the same trends as described in
the preceding paragraph if the ordinate were extended to
include smaller values of frequency. The maximum
occultation frequencies for stars of magnitude less than
four are 339 and 471 occultations per hour for the earth
and moon respectively.

4.5 The Number of Occultation Measurements Along the
Trajectory

Fig. 4.4 is a plot vs. time of the occultations that
were measured during two simulated voyages. In one case
stars of magnitude less than four were considered and
in the other case stars of magnitude less than six were
considered. In both cases measurements of occultations
by the earth and by the moon are shown separately.

One of the principal disadvantages of star occultation
measurements is illustrated in Fig. %.4%. Occultations
occur so frequencly during the initial and moon approach
phases of the voyage that it would only be practical to
-measure a fraction of the occultations that occur.
However, during a considerable portion of the voyage,

when the spacecraft is far from both bodies, the
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probability that an occultation will occur is negligibly
small unless stars of magnitudes considerably larger

Than six are considered.

4.6 Tabulation of Results

The results obtained from computer simulations of
the navigation modes and variations thereto described in
Section 4.3 are presented in Tables 4.2 and 4.3. The
results in lable 4.2 were obtained using a sun rotation
of 70 degrees. TIhe applicable value of sun rotation is
specified in Fig. &.3.

The authors will not attempt to discuss the implica-
tions of all the data presented in Tables 4.2 and 4%.3.
Rather, several trends will be pointed out as examples
of the correlations that can pbe established between the
various results. The first two runs in Table 4.2
involve the use of occultation measurements only. The
first run uses only stars of magnitude less than four,
whereas the second run uses stars of magnitude less
than six. The results show that roughly the same
navigational accuracy is obtained in each case but at
the expense of almost five times the total velocity
correction when stars of magnitude less than four
are used. This result would be expected since Fig. h.4

shows that the period during which no occultations
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occur 1is considerably longer in the case where stars of
magnitude less than four are used than it is when stars
of magnitude less than six are used. Thus, with no
measurements available, the errors build up to the
point where a large velocity correction must be made
relatively close to the moon.

From Table 4.3 it is interesting to compare, for both
values of sun rotation, the run where navigation is
accomplished by angle measurements alone, and the run
where the angle measurements are supplimented by star
occultation measurements of type NI+ by the moon. In
both cases the addition of occultation measurements
improves the results, but it is interesting to note that
the same parameters are not improved in both cases. When
the value of sun rotation is 70 degrees, the total
velocity correction and final miss distance are unaffected
while the final velocity and position uncertainties are
improved substantially. When the value of sun rotation
is 250 degrees the addition of occultation measurements
reduces the total velocity correction by a factor of two
and the final miss distance by a factor of five while
the final position uncertainty and the final velocity

uncertainty show little change.
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Table 4.3 also shows the results of the simulations
made with a reduced value of variance as described in
Section 4.3 (1). In both cases the mode 3 results show
a marked improvement over the mode 1 results. These
results emphasize the need for accurately determining the

values of the parameters that contribute to the variance.

4.7 Position Uncertainty

In addition to the end results of the various
navigation modes presented in Section 4.6 it is informative
to look at the time histories of the various navigation
modes. In order to do this, a representative parameter
must be selected. The authors chose Up, the root mean
squared position uncertainty at the destination if no
more observations were made, for this purpose.

Fig. 4.5 shows the effect on this time history of
changing the magnitude of stars used when the navigation
is based on occultations alone. A large negative slope
is desirabie and 1s indicative of a large number of
observations. In this case the large negative slope
exists while the spacecraft is near the earth and again
when 1t approaches the moon. The discontinuities
following a portion of curve with a near zero slope

correspond to the first occultation that occurs following
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a period during which no measurements were available.
The discontinuity in the magnitude less than six curve at
3% hours can be traced to an early occultation by the
moon that is shown to occur in Fig. 4.4%. The other
discontinuities can be traced in a similar manner.

With the exception of Fig. 4.5 all graphs of
position uncertainty vs. time are for stars of magnitude
less than four. This value was chosen as a compromise
between a manageable number of stars and the quantity
of stars necessary to provide a reasonable number of
occultations. There are approximately 500 stars in
this category.

Fig. 4.6 shows the time history of U_ for naviga-

P
tion modes 1, 2 and 3 with a sun rotation of 70 degrees.
This is the case where most of the moon as seen from the
approaching spacecraft is non-illuminated. Since this
condition is favorable for occultation measurements
and unfavorable for angle measurements, the improvement
in Up shown in Fig. 4.6 when occultation measurements
are used in conjunction with angle measurements 1is as
would be expected.

The results shown in Fig. 4.7 are obtained in the
same manner as those shown in Fig. 4.6 with the

exception that the value of sun rotation is changed to

250 degrees. This is the condition most favorable to angle
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measurements and least favorable to occultation measure-
ments. The results here are also as would be expected.
The addition of occultation measurements does not improve
the time history of Up to a great extent.

It should be pointed out at this point that the
extreme decrease in Up that occurs, starting at
approximately 60 hours, is a somewhat unrealistic result
of the computer simulation used. As was stated in
Chapter 3 the program was written so that a measurement
would be made at each decision point at which one or more
occultations occur. Since the last three decision points
are 1.2 minutes apart it is clear that observations could
not be made as frequently on a real mission as they were
during the final portion of this simulation. Thus, the
mode 2 results in Fig. 4.6 are somewhat optimistic. By
a careful analysis of Tables 4.2 and 4.3 this weakness
in the simulation can be compensated for to some extent.
In most cases a velocity correction was not made during
this portion of the simulation so that the values of
"total velocity correction" and “final miss distance™
are not affected by this discrepancy.

Since the effect of earth occultation measurements
is slight due to the large variance associated with them,
two runs were made using only occultations by the moon.

The results of these runs are shown in Fig. 4.8.
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The variation to modes 2 and 3 described in Section
4.3 (2) resulted in the curves shown in Figs. 4.9 and
4.10. By using only NI+ occultations the number of
measurements was reduced to an amount that might realistically
be made. The number of measurements made is listed in

Table 4.3.

4.8 Occultations of the 40O Brightest Stars

Since the results of the computer simulations indicated
that occultation measurements would increase navigational
accuracy and reduce the total velocity correction required,
the authors wrote a program to determined how many actual
occultations involving the 40 brightest stars could be
observed by an astronaut aboard a spacecraft traveling
along the first half of the circumlunar trajectory shown
in Fig. %.3. The results of this program appear in

Table. Y4.4%.
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TABLE 4.4

OCCULTATIONS OF THE 40 BRIGHTEST STARS

Time Occulting
(Approx) Body Immersion | Emersion
.30 earth 4og™
.30 earth 380"
.70 earth 498
.75 earth 498
2.20 moon 509
3.00 moon 52¢
3.40 moon 433
24.00 moon 417
£2.36 moon L17
€2.42 moon 483
62.44 moon 509
€2.52 moon 52¢€
380 - Regulus 498 - Spica

417 - Dubhe

4383 - & Ursae Majoris

509 - n Ursae Majoris

52€ ~ Arcturus

* .
behind the earth at

the traj

ectory

the beginning of




CHAPTER §

CONCLUSIONS

The simulations of various circumlunar navigation
techniques which were made during the course of this study
show that the inclusion of occultation measurements tends
to improve navigational accuracy and reduce the total
velocity correction required.

The accuracy with which occultations by the earth
can be observed was not accurately established. Therefore
more emphasis was placed on studying the effect of lunar
occultation measurements.

The wvalue of utilizing occultation measurements in
addition to angle measurements is heavily dependent on
two factors: (1) the number of occultations that occur;
and (2) the accuracy with which occultations can be measured.
The number of occultations that occur is obviously
dependent on the magnitude of the stars considered.

There are several practical limits on the number of stars
that can be considered. The astronaut must identify each
star on which a measurement is based. As more stars are
considered this would become increasingly difficult. 1In

addition, data must be available on each star considered.

~-82-
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This too, would provide a limit on the number of stars
that can be considered. The values used in this study
for the variance associated with a lunar occultation were
chosen conservatively. 1t was shown that a reduction in
the parameters that determine the value of variance for
an occultation results in a marked improvement 1in the
quality of the navigation obtained.

The results obtained in this study indicate that
angle measurements and occultation measurements might
best be used in a complementary fashion, taking advantage
of the favorable aspects of both types of measurements.

Since the initial occultation measurements are not
very accurate due to the large variance associlated with
earth occultation measurements and since occultation
measurements are practically non-existent during the
mid-portion of the trajectory, angle measurements alone
might be used until approximately 955 hours have passed.
At this time the navigator would switch over to
occultation measurements entirely, since it 1s reasonable
to assume that more occultation measurements than angle
measurements can be made in a given amount of time.

The quality of both types of measurements 1s comparable
in this region. Thus, by virtue of the greator quantity

of measurements made, this scheme should improve the
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navigational accuracy.

Since this study was based on a statistical star
background rather than an actual star field, no final
conclusions concerning the advisability of using star
occultation measurements can be reached. However, based
on the results of this study the authors feel that
further investigation using actual star data would be

appropriate.
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