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ABSTRACT

The time measurement of star occultations is one of several
modes of obtaining navigation data in cis-lunar space. Using
statistical methods of optimization of data, the feasibility
of navigation using the measurement of star occultations as
a method in itself and in combination with angle measure-
ments is investigated using digital computation techniques.
The real star field is approximated by a statistical star back-
ground for the purpose of this study. An "average occultation
frequency" is calculated based on a reference trajectory and
the statistical star background. The occurrence or non-
occurrence of occultations along the trajectory is determined
by a random number operation which utilizes the "average
occultation frequency". The measurements obtained are
introduced into a navigation routine which simulates the
circumlunar voyage. The results indicate that navigation
based on occultation measurements alone is not practical.
However, when occultation measurements are used in conjunction
with angle measurements, it is shown that the- total velocity
correction required is reduced and other navigational
parameters are similarly reduced. This study indicates that
further investigation using actual star data would be
appropriate.
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CHAPTER I

INTRODUCTION

As seen from a vehicle traveling in earth-moon

space, stars will disappear behind the earth or the moon

due to the relative movement of those bodies with

respect to the vehicle. In a like manner stars will

appear from behind the earth and the moon. The word

occultation will be used in this study to include both

phenomena, although in the strict sense this word

applies only to the disappearance of one celestial body

due to the intervention of a second celestial body.

By noting the time that an occultation of a known

star takes place, an astronaut may gain information

about the vehicle's position and velocity. The same

kind of information may be gained by other types of

measurements0 1  One family of measurements available

is comprised entirely of angular measurements. In-

cluded in this category are measurements of the angle

between the moon horizon and the earth horizon, the moon

horizon and a star, an earth landmark and a star and

other obvious combinations. Also included in this

family is the measurement of the apparent diameter of
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either the earth or the moon. A second family is com-

prised entirely of measurements utilizing electromagnetic

radiation.

All of the angular measurements require some sort

of space sextant and possibly some maneuvering of the

space vehicle. The electromagnetic techniques would

also involve additional equipment and perhaps some

maneuvering. In contrast the occultation measurements

would require no equipment other than a precision time

source which would already be included in any self

contained navigation system. Assuming that omni-

directional vision would be provided by periscopes,

occultation measurements would require no maneuvering

of the space vehicle. The observer would simply

record the instant of occultation. Thus the measurement

would cost nothing in the way of propellant to maneuver

the vehicle and would require no extra equipment in the

vehicle. There is one other important difference between

occultation measurements and the other measurements

mentioned. The angular measurements and the electro-

magnetic measurements are available over some continuous

time interval, whereas occultations are discrete events.

To be of real use occultations must meet two

criteria. They must occur frequently enough to provide

more than sporadic information, and the information they
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provide must be of usable quality. Both of these factors

will be investigated in the work that follows.

Several possibilities for the use of occultation

measurements in space navigation present themselves.

Perhaps a successful voyage could be made using only

occultation data for navigation. More probably

occultation measurements could be used to supplement

other techniques. In connection with the latter idea,

it is interesting to note that angular measurements

are more easily made from an illuminated horizon while

occultations are most accurately observed when they

take place at a non-illuminated portion of the

occulting body. Thus it appears that angular measure-

ments and occultation measurements complement one

another. Finally it is possible that occultation

measurements could provide an emergency navigation

technique in the event of failure of a more sophisti-

cated system.

The purpose of this thesis is to study the use-

fulness of star occultation data for navigational purposes

during a circum-lunar voyage. There are several logical

steps that must be taken before any conclusions can be

drawn. First, it must be established that occultations

occur frequently enough to be useful. Here, the authors

have drawn heavily from an unpublished study on star



occultation frequency by Dr. J. H. Laning Jr. 2  This

study indicated that occultations do occur frequently

enough to warrant investigation into their useful-

ness as an aid to navigation. This result motivated

the work that is the main body of the present study.

A control program, utilizing existing subroutines

and an existing trajectory,was written to simhulate a

circum-lunar flight. Options were written into the

control program so that the use of two navigational

modes could be simulated. In one case the navigation

is based entirely on occultation measurements. In

the second case navigation is based on a combination of

angle and occultation measurements.

It should be noted here that the entire study is

a statistical simulation of the actual problem. The

frequency with which occultations would occur is com-

puted on the basis of a statistical star background.

A random number process based on this frequency

determines whether an occultation actually occurs, and

a similar process determines where on the body the

occultation takes place.

A simulated flight is begun by estimating injection

errors in position and velocity. These initial errors

are chosen on the basis of a statistical knowledge of

the launch guidance capabilities. Upon completion of
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a simulated flight, the effectiveness of the navigation

technique employed can be evaluated on the basis of the

resulting errors in position and velocity at the target,

the accuracy with which these errors are known and the

required velocity corrections.



CHAPTER 2

NAVIGATION THEORY

2.1 Introduction

For the past several years there has been consider-

able thought and effort devoted to the ways and means

of midcourse navigation of both manned and un-manned

space flight vehicles. This study will concern itself

with the work of Dr. R. H. Battin and his method for

optimum utilization of space navigation data.1

For the purposes of clarity and cohesiveness a

summary of Dr. Battin's approach to this problem of

optimum utilization of navigation data will be included

here, but the reader is directed to the above reference

for a more comprehensive study.

This summary will be further limited to the applica-

tion of Dr. Battin's work to star occultation measurement

data in earth-moon space in accordance with the area of

this study and with the fact that other measurement modes

are utilized in an entirely analogous manner.

-6-
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2.2 General

Star occultation navigation is founded on small per-

turbation theory in which only small deviations from the

referenced times of occultation and the corresponding

small deviations in position and velocity from a reference

trajectory are utilized. Data are obtained by an astro-

naut using a timer device to obtain the time difference

between the actual and referenced times of an occultation,

where an on-board clock will serve as a time reference.

These data will be processed by an on-board computer and

will provide the calculations for any small changes in

the vehicle velocity.

Problems to be solved by using this method of

statistical optimization of star occultation data are:

(1) definition and derivation of the optimum linear

operations for processing the star occultation data in

a manner consistent with the mission objectives; (2)

optimization of the number of corrective maneuveurs re-

quired in terms of mission accuracy; and (3) expression

of the mean-squared velocity correction directly in terms

of the errors associated with initial orbital injection,

star occultation measurements and establishment of the

desired velocity corrections.

It will be assumed throughout this study that the

cross-correlation effects of random measurement errors

is negligible and will therefore be ignored. This
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assumption is not true in general but was utilized here

for the sake of convenience, Also, launch guidance is

not considered so that the guidance problem is confined

to the time between injection into and return from a

trans-lunar orbit.

Errors arising from lunar orbit injection will be

considered small and the corresponding deviations in

position will be detected and corrected in the normal

course of the star occultation navigation program.

Navigationally the outbound and return portions of the

trip are basically the same,

Star occultation measurements and velocity correc-

tions will be made at specific points along a specified

trajectory, where the time interval and selection of

these points is arbitrary with consideration being given

to proximity of the vehicle to the target body. That is,

the nearer the vehicle is to the reference body, the

smaller the integration interval of the equations of motion

should be for greater accuracy of trajectory determination.

The time limits of these intervals define the location of

decision points along the trajectory. For an actual

mission the decision points will be those pre-calculated

reference times of desired real star occultations. The

trajectory is based on a three-dimensional model of the

solar system.
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In the star occultation mode one of two events can

occur at each decision point: (1) either a velocity cor-

rection is implemented; or (2) an occultation measurement

is initiated if available. This procedure differs from

that when using angular measurements only in that it costs

nothing but a few seconds of the astronaut's time to make

an occultation measurement so that for the sake of better

reduction of data uncertainties the occultation measure-

ment should be made at every available opportunity.

Notation conventions utilized are as follows: (1) a

column vector of any dimension is represented by an under-

scored letter with the absolute value identified by

omitting the underscore; (2) matrices are denoted by

capital letters; (3) the transpose of a vector or a

matrix will be denoted by a superscript T; (4) the scalar

product of two vectors a and b will be written as aTb; and

(5) the average value of any quantity will be indicated by

an overscore.

2.3 The Star Occultation Measurement

The reference time T is defined as that time when a

predetermined occultation should occur. At this reference

time T for an occultation measurement there exists a refer-

ence position vector r for the vehicle, and it is assumed

that we know the exact position and velocity of the earth
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and moon at time T. Time T will correspond to those times

establishing decision points along the reference trajectory.

If a position deviation br exists, then a specified

occultation will not occur at the reference time T so

that a time increment br is defined as that interval be-

tween the referenced and actual occultation times. br

can be an interval either before or after the reference

time T since the probabilities of an occultation occurring

before or after the reference time are the same.

It is assumed that there is no clock error present

in these measurements and calculations since clocks are

currently available with accuracies such that the resultant

navigation errors induced in a typical sixty-hour lunar

mission is negligible.

To obtain the deviation in time br with respect to

the position deviation br of the vehicle from its reference

position, let the relative positions of the sun, occulting

body and vehicle be as shown in Fig. 2.1. Let r be the

vector from the sun to the vehicle SO and z the vector

from SO to the center of the occulting body OB. The unit

vector n is in the direction of the star to be occulted

while m is the unit vector corresponding to z. p is a

unit vector associated with the vector x defined as normal

to m and in the plane of occultation defined by m_ and n_

As shown, y is the angle between the vehicle-star and the
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vehicle-occulting body center lines.

SUN

v -p--p

z + bz

v -s
-S

FIG. 2.1 Star occultation geometry
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Factors affecting the relationship between b6 and

br are (1) motion of the occulting body during the

interval 6b; (2) the initial displacement br of the

vehicle position with respect to SO at the time T when

the occultation should occur; and (3) the vector distance

,fr traveled by the vehicle with velocity vector v s from

the start to finish of the occultation measurement.

At the instant of occultation we have

n-z - z cos y (2.2)

where

z2  z.z (2.3)

Treating changes as first order differentials there results

n_.z = cos y bz - z sin y by

= cos m_-z.- z sin y 5y (2.4)

where

bz = m_.z (2.5)

The angle y is also defined by the relation

sin y = D (2.6)2z

Again taking first order differentials to compute the
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angle deviation by, there results

2 sin y bz + 2z cos y by = 0 (2.7)

from which

sin y bz
z cos y

= - 2D bz
2z cos y

(2.8)

D= - D m.bz
2z 2 cosy

with the aid of Eq. (2.5).

With vp and v defining the velocity vectors of the

occulting body and vehicle respectively and Zvr defining

the velocity of the vehicle with respect to the occulting

body, we have

v = V + v
S-p (2.9)

From Fig. 2.1 summing vectors

Z z -Z bb z + 6 r + v sbt =O (2.10)

from which

bz= (vp - v)5- r

(2.11)
= -r 6V - br
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The vector x normal to the unit vector m is defined as

X = (m x n) x m

- n_(m.m_) - m(n_.m_)
(2.12)

= n - m(n.m)

= n - cos y m

with magnitude

x = 1 - cos 2 y

(2.13)
= Isin yI

The unit vector corresponding to x is defined as

- x

(2. 14)
n - cos y m

Isin yI

using Eqs. (2.12) and (2.13).

Solving Eq. (2 .4) for the angular deviation by and

using Eqs. (2.8) and (2.14), we have

(cosy _m - n)* 6 z
z sin y

p zt
D m _

2z2Cos Ay

(2.15)
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Eqs. (2.6) and (2.15) then give us

1 D m.oz
2z 2 cos 

(2.16(2.16

= 7 m.•z
z 

M -6A

Finally, using Eqs. (2.11) and (2.16) there results

1 (-tan2 m. (-r-vr =) (2.17and solving or we have

and solving for 6T, we have

(I - tan y m)
S- tan Y m) vr * br

where the vector h is defined as

A - tan ym

S( - tan y m) * Vr

enabling us to rewrite Eq. (2.18) as

6, = hr_

= hTbr

)

)

(2.18)

(2.19)

(2.20)

Therefore, the vector h is dependent upon the geometrical

configuration of the vehicle and occulting body combina-

tion with respect to the star background on the celestial

sphere at the time of measurement.



2.4 Correlation of Deviation Vectors

To relate the results of measurements at times Tnn
and Tn+1 a six-dimensional deviation vector 5• is

introduced and is defined as

In
- n

br
br2n (2.21)

byInb•ln
bV2n

av3n

where brn is the position deviation vector from the

reference path, bvn is the velocity deviation vector

from the reference value and b6n defines the "state" of

the vehicle dynamics at time Tn .

bx at times Tn and Tn+ 1 respectively is related by a

"transition" matrix such that

6xýn = n,n-1 Xn-I (2.22)

and

(2.23)n+1 = n+l,n -n

Ir
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from which

6n = n+ln •n+ (2.24)

By defining the rectangular matrix K as

K 0 (2.25)

where I and 0 represent respectively the three dimen-

sional identity and zero matrices, the position

deviation vector brn can be related to 2n as

1br l n

br= Kr 2 n

br 2n
1 0 0 0 0 0 r3n3n [

= 0 0 0 0 3n (2.26)
0 0 1 00 0 ln

6V2n

bV3n

KT

where KT and nx derive from Eqs. (2.21) and (2.25).

Eqs. (2.24) and (2.26) enable us to rewrite Eq. (2.20)

as

bn hn ' n

ShT bZrn-n -n
(2.27)

_T  T

-n K -n

= h T KT -l X
-n nf+l,n -n+l
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which now relates the effect at time T of an occulta-n-1
tion measurement at time T . The vector h KT ~-i ofn -n+l,n

T-1Eq. (2.27) may be rewritten as Tn+l,n Khn and each

occultation measurement will yield one component of this

six dimensional deviation vector so that if six occulta-

tions were recorded and no two components were parallel,

the deviation vector could be obtained.

2.5 The Statistical Parameters

Combining additional observations with linear least

squares estimation techniques of analysis, it is possible

to arrive at a more accurate estimate of position and

velocity; and as an added benefit, avoid inverting sixth

order matrices as would be required for a solution above.

In order to explore this technique, several quantities

must be defined. They are (1) the measured deviation in

time 6b; (2) the true deviation in time 6r'; (3) the

associated error in the occultation measurement an which

will be regarded as a random variable; (4) the predicted

value of the position deviation vector r, ; (5) the

actual position deviation vector br ; (6) the error in

the position prediction vector En (7) the predicted devia-

tion in velocity bn; (8) the true velocity deviation byn

In
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and (9) the error in the velocity prediction .n"

These definitions combine to form the expressions

S= br + an (2.28)

n : -n n+  (2.29)

and

-n - n -n (2.30)

where an' In and Ln are all considered to be random

variables. For example, the average value of an is

a and the variance isn

2 2 2 (2.31)
n n n

In a manner analogous to Eqs. (2.28) through

(2.30), the optimal linear estimate of bin denoted by

61n can be written as

S= ~x + (2.32)

where e is the associated six-dimensional estimation-n

error vector defined as

e = (2.33)

I and n are respectively the position and velocity

estimation errors as defined in Eqs. (2.29) and (2.30)
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The optimal linear estimate 6bn can be updated by

a simple recursive formula (cf. Section 2.6). The cor-

relation matrix of the estimation error can be defined as

T
En = e -n

n T T

T T (2"34+)

T
L-n.n n n n-

E(1) E(2 )

EE E

E(3) (4)
n n

The quantity bx' defines an estimate simply extra-
S-n

polated from a previous estimate as opposed to the estimate

bxn obtained by incorporating an observation at time tn .

Therefore, using the "transition" matrix, b6i is defined

as

h'e= rn,n-1 n-1 (2.35)

where

(2.36)-_n-1 = -an-1 + n-1
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from Eq. (2.32). Combining Eqs. (2.35) and (2.36), we

have

-n n,n-1 -n-1+  n,n-1 n-I

Defining- an extrapolated error vector as

~- 'n,n-1 -n-1

(2.37)

(2.38)

and using Eq. (2.22), Eq. (2.37) can be rewritten as

A =  +
6x'= 6 n + el (2.39)

The associated extrapolated correlation matrix is

defined as

En = en-T (2.40)

Using Eq. (2.38) and its transpose, this can be re-

written as

E'.T T
n n,n-1 en-2l-n- n,n-1

where

(2.41)

Tnn-1 n-i n,n-1

_ _n-1 -l (2.42)

from Eq. (2.34).
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An estimate of the deviation in the occultation time

6b to be measured at time T may be obtained from the

extrapolated estimate of _n_1 giving us

S n KT x (2.43)

This relation, when compared to the measured deviation

6nn, is used in arriving at a revised extimate of 6 Xn

2.6 Navigation and Guidance Equations

Time tL corresponds to time of completion of

launch and the associated correlation matrix

i E = E(tL) (2.44)

is specified initially from a statistical knowledge of

injection guidance errors. The initial estimate of

position and velocity deviation

i x= a(t L )  (2.45)

is zero since the best unbiased estimate in the absence

of any observation is that the vehicle is on course.

A revised estimate ~i(t) of the deviation vector

bx(t) is made at each decision point---the form of the

revision dependent upon the nature of the decision of

which there are two possibilities: (1) a measurement; or



F
-23-

(2) a velocity correction; so that bin may be written as

,_ + ann1 h ( n - n) (measurement)
^Ix + a-E1 En n - 6^1) (measurement)-i n n nhn(6n T

(I + JBn ) 6:ýn

(2.46)

(correction)

The scalar coefficient an is computed from

a = h KT E' K h + a 2
n --n n -n n (2.47)

The rectangular matrix J is just the reverse of the K

matrix so that

J = Ii (2.48)

The matrix 3n is also rectangular and is defined as

l = iC -Ijn * (2.49)

where Cn is one of the fundamental navigation matrices

described in Ref. 1.

At each decision point the correlation matrix En

must be updated. Thus

En - a(E'Kh )(E'Kh )Tn n n -n n -n

E + J T J
n-n

(measurement)

(2-50)
(correction)

where r denotes the uncertainty in the velocity correction.

E
n
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Eqs. (2.46) and (2.50) represent the recursive

relation used in obtaining improved estimates of position

and velocity deviation at each of the measurement times

tl' t2..*o"""4

2.7 Solution of the Trajectory Equations

SLet rs(t) and vs(t) denote the position and velocity

vectors of the vehicle in an inertial coordinate system,

and let g(rs,t) denote the gravitational acceleration at

position rs and time t. Now let r (t) and vo(t) denote

the position and velocity at time t associated with the

prescribed reference trajectory. With this information

we have

br(t) = rs(t) - r0(t) (2.51)

and

b x(t) s(t) - o(t) (2.52)

so that

d(Zr)
dt = v (2.53)

and

d(v_) --v G(ro,t) r_ (2.54)
dt

where G

(g0,

) t is a matrix whose elements are the partial

derivatives of the components of g(g0,t) with respect to



the components of EO. Define tL and tA as the time of

launch and the time of arrival at the target.

To solve Eqs. (2.53) and (2.54) define the matrices

dR
dt

dV
dt = GR,

dR*
dt

dV *d- - GRdt

R(tL) = 0 , R*(t A ) = 0

V(tL) = I , V*(tA) = I

br(t) = R(t)c + R*(t)c*

bv(t) = V(t)c + V*(t)c* (2.58)

where c and c* are arbitrary constant vectors.

2.8 Vector Velocity Corrections

Associated with the position rs and the time t is--S

the vector velocity required by the vehicle to travel in

free fall from r (t) to the target point r (tA) in the

time interval (t A-t).

Solving Eqs. (2.57) and (2.58), it can be shown that

where

(2.55)

so that

(2.56)

and

(2.57)
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the required velocity deviations at time t can be written

as

6v (t) = V*(t) R*(t) -1 6r(t)

b5-(t) = V(t) R(t) -l br(t)

where the superscripts - and + denote the velocity

(2.59)

(2.60)

just

prior to or immediately following the

respectively.

From Eq.

correction Av*

correction

(2.59) and (2.60) the required velocity

is given as

Av*(t) = C*(t) br(t) - 5v-(t)

= C*(t) - C(t) r_(t) (2.61)

= -A(t) bv(tL)

where

C*(t) = V*(t) R*(t) - 1

C(t) = V(t) R(t)- 1

A(t) = V(t) - C*(t) R(t)

A*(t) = V*(t) - C(t) R*(t)

(2.62)

(2.63)

(2.64)

(2.65)

denotes an injection velocity error.

and

and •v(t L )
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Finally it can be shown that

R(t) R*(t) c
x(t) t) *(t)

V(t) V*(t) 2

and from Eq. (2.23)

can be computed as

the six-dimensional transition matrix

-1
n+l n+lA n

n+l ,n

V Vn 0n+l n+l

0

A'n

C* -I
n

C -In

(2.67)

Using Eqs. (2.30) and (2.49), an estimate of the velocity

correction vector by may be determined from
-n

A-n n -n (2.68)

This process is necessary in that injection, measurement,

and rocket instrumentation errors give rise to a series

of velocity corrections to be implemented along the

trajectory.

To distinguish times of velocity correction from

decision point times, tc,n will be used to denote the

time of the n-th correction maneuver. A commanded

velocity change will be denoted as A-cnl while Av-cn

and r~cn will denote the actual velocity change

(2.66)
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experienced and the uncertainty in applying the correction

respectively. Therefore, we can write

L = LV-c,n i- (2.69)

from which the actual velocity change may be expressed as

av = 3 (,x' e ) - n-c,n c,n -c,n -c,n c,n (2.70)

At the correction point

e = e-c,n -c,n

0

+-

-cn

(2.71)

so that Eq. (2.70) becomes

aLc,n =Bc,n6 c,n SC,n ) (2.72)

Also the correlation matrix of the deviation errors must

be updated at the correction point. It follows from

Eq. (2.71) that

E = E'c,n c,n
0 0

T
0 -c,nIlc,n

(2.73)

Eq. (2.72) may be rewritten as

-1AV = B e -A A 1  B e-c,n c,n -c,n c,n c,n-l c,n-1 -c,n-l

(2.74)

I ,n
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or we may write

L• =3 e'-c,n c,n -c,n -A A- ec,n c,n-l c,n-l -c,n-1

(2.75)

and it is one of these two latter forms that we

shall use,

The correlation matrix of the estimated velocity

correction vector is found by computing the mathematical

expectation of the product of Av
-- C, •F

and its transpose. 'This

matrix is written as av nv from whose trace is de-
-c,n -c,n

fined the mean-squared estimate of the velocity correction.

The uncertainty associated with a velocity correction

is defined as

d L An
-C,n -c,n

-c,n -cn

(2.76)

c,n -c,n

from which the mean-squared uncertainty is determined as

the trace of the matrix

d dT
-c,n-c , n = E' 3 T

c,n c,n c,n

Since the inaccuracy in establishing a commanded velocity

correction Anv is due to errors in both magnitude and

orientation, it is necessary to examine more carefully the

vector uncertainty I in the velocity correction. Both

(2.77)
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sources of error will be assumed independently random with

zero means.

It can be shown that the uncertainty vector is

expressible as

cos 0

0 1

(2.78)

and the corresponding correlation matrix of the velocity

correction uncertainty is

1 0 0
2 2

n•T = k2 a£T ÷ 6÷ M 0 1 0 MT  (2.79)

T
k v L2I + 2 1 >v (2.80)

where I is the three-dimensional identity matrix, K is a

random variable, M is a transformation matrix, y is a

random angle between A~- and Lnv y is a polar angle

defining the rotation of Av with respect to AZ and K, y,

and p are all statistically .independent random variables

with zero means.

I
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2.9 Target Miss Distance

Denoting tN as the time of the last velocity correction

and 5XA as the deviation vector at the time of arrival tA'

it can be shown that

-A 'RAn'36X

(2.81)
-1= RAA N 'B

which relates the target position error to the error vector

eN. The mean-squared position error at the target is then

the trace of the matrix TbA 6A .

-I~.



CHAPTER 3

OCCULTATION THEORY

3.1 Trajeetory

The reference trajectory used in this study is the

outbound half of a close approach, free fall, circum-lunar

trajectory with departure on May 20, 1968.3 The trajectory

starts from an earth parking orbit at 114 miles. The

distance to the moon's surface at the closest point of

approach is 60 miles. The time from departure of the

parking orbit to arrival at the closest point of approach

is 62.5 hours.

3.2 Statistical Star Background

In order to base this study on actual occultations that

would occur along the reference trajectory, a great quantity

of star data would have to be compiled. Considering only

stars of magnitude six or greater, it would be necessary to

tabulate unit vectors for approximately 10,000 stars. Even

with this information, the computation necessary to determine

when occultations occur would be lengthy.

To avoid these difficulties a statistical star background

-32-
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is employed. The stars are assumed to be distributed

isotropically and at random. The star density is assumed

to be a function of visual magnitude. The star densities

used in this study are tabulated as a function of visual

magnitude for magnitudes four through nine in Table 3.1.

In each case the density is given for stars brighter than

the corresponding magnitude.

TABLE 3.1

STATISTICAL STAR DENSITY AS A FUNCTION OF
VISUAL MAGNITUDE

Magnitude Star Density*
(Mag) (CFI) logl 0 d

40.0129 -1.89

5 0.0398 -1.40

6 0.1175 -0.93

7 0.3467 -0.46

8 1.000 0.00

9 2.818 0.45
de sit o.. st rs bri htr.ha

*density of stars brighter than
corresponding magnitude

3.3 Occultation Frequency Assumptions

the

For an actual flight occultation times would normally

be precalculated so that the approximate time of each useful

occultation would be known in advance. Measurements would
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then be made as the useful occultations occur. To simulate

this procedure accurately on the basis of a statistical star

background it would be necessary to determine a specific time

of occurrence for every occultation. Since trajectory data

is given at intervals along the trajectory known as "decision

points", it is advantageous to make all calculations at these

decision points. For this reason the frequency of occultation

will be determined at each decision point, and the assumption

will be made that the frequency of occultation remains

constant until the next decision point is reached at which

time a new occultation frequency will be computed. This

approximation is entirely satisfactory for the purpose of

this study since the interval between decision points ranges

from 1,2 to 30 minutes corresponding to portions of the

trajectory that are near either body or far from both bodies

respectively*

In determining the frequency of occultations the earth

and the moon are assumed to be perfect spheres, and the

periphery of either body is assumed to be illuminated or not

illuminated with no gradation. The state of illumination is

based on light from the sun only. Reflected light is not

considered.

3.4 Determination of Occultation Freauency

The following derivation is taken largely from an
2

unpublished study by Dr. J. H. Laning Jr.
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CO

Fig. 3.1 Star occultation geometry

In the work that follows an underscore will be used to

indicate a vector quantity. When the underscore is omitted

from a previously defined vector quantity, it will be

understood that the magnitude is meant.

Let A be a unit vector with x, y, z components cosp, 0,

sinp. Let B be a unit vector having x', y', z' components
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cosp, 03 sinp. From Fig. 3.1 it can be seen that

X = XI

y = y' cos - z' sin = - sinp sinji

z = y' sin*+ z' cosy = - sinp cos4

(3.1)

so that B has components in the x, y, z frame of cosp, -sin p

sin }, sin p cos *.

As seen from the spacecraft, stars are occulted by a body

due to two effects: the apparent angular velocity of the

line of sight from the spacecraft to the body and the apparent

expansion and contraction of the body due to a velocity

component toward or away from it. Since the angular velocity

of the line of sight is given by

= z (3.2)

the motion of B due to the angular velocity of the line of

sight is

co x B = c (z x x cosp - z x Z sinp sin4)

= o Z cos p + co x sin p sin * (3.3)

The motion of B due to radial motion of the spacecraft with
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respect to the body is

- p (*' x B) = - p (Z cos * + z sin *)x B

cos *

-sin p sin *

sin *

sin p cos

=- (cos 2 * sin p + sin2 2 sin p)

+ y (sin 4 cos p) + z (-cos 4 cos p)]

S p x sin p - p I sin * cos p + p z cos sin p

(3.4)

Adding the motion of B due to each of the 'effects mentioned

will yield the total motion of B.

v = x (- p sin p + m sin 9 sin p) + x (- p sin cos

+ W cos p + z (p cos * cos p) (3.5)

The total motion of B can now be broken into two

components: (1) the component along the line of sight to

B which does not contribute to the sweeping out of star

background; and (2) the radial component (radial with

respect to the occulting body) which does sweep out an area

of the star background. To facilitate the separation of

= - p 0

cos p
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the radial component it is convenient to define a unit

vector in the direction of radial motion.

u = - x sin p

= - sin p

+ x' sin p

+ cos p (- * sin 4z cos 4)

(3.6)

Body

Fig. 3.2 Unit vector in direction of radial motion

The radial component of motion of B is given by

VR= vB u = (- p sin p + o sin * sin p)(- sin p)

+ (- p sin 4 cos p + C cos p)(- sin 4 cos p)

+ (p cos * cos p)(cos * cos p)

a s 2  2 2 2
Sp sin p cos p (sin g + cos 4)

+ o (- sin * sin2 p - sin 4 cos p)

=p - (c sin 4 (3.7)

Thus the rate at which an element d* along the visible
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periphery of the body sweeps out the star background is

i = (J - a sin J) sinp d)r (3.8)

It is necessary to express A in terms of parameters that

will be available at each decision point. The following

quantities are available:

R - the vector from the center of the reference body

to the spacecraft

_ - the velocity of the spacecraft with respect to the

reference body

REM - the vector from the center of the earth to the center

of the moon

VEM - the velocity of the moon with respect to the earth

Knowledge of these quantities, along with the radius of the

occulting body, is sufficient for the computation of all the

quantities shown in Fig. 3.3.

S

S
0

O.

Fig. 3.3 Star occultation geometry

•F



With the aid of Fig. 3.3 the following relations are

readily developed:

sin r (3.9)sinp RVBRVB

S. RVB
cosp= -r 2

RVB

.RVBR= -tanp (3.10o)

RVB = - V cos (3.11)

R ýCan y cos y (3.12)RVB

S VB sin y (3.13)

Therefore

A =RVB n tanp cos y- sin* sin d# (3.14)

The portion of a body that occults a star may be

illuminated or dark. In addition the body may be covering

or uncovering the star. The accuracy with which the time

of occultation can be observed is dependent upon both these

conditions. For this reason it would be convenient to sort

occultations into four categories, covering all combinations

of the above conditions. This can be accomplished during

the integration around the periphery of the occulting body

with respect to dr. The integration will be separated
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into four parts corresponding to the four conditions:

Ni+ non-illuminated, covering previously visible sky

NI- non-illuminated, uncovering previously hidden sky

I+ illuminated, covering previously visible sky

I- illuminated, covering previously hidden sky

The covering or uncovering category is determined by the sign

of A. In order to determine the illumination condition the

direction from the occulting body to the sun must be

established. The vector from the sun to the earth RSE is

part of the information available at each decision point.

Depending on which body is the occulting body, the unit

vector from the occulting body to the sun US can be

established.

Now define a unit vector _UoB along the direction from

the center of the occulting body to a point on the visible

periphery determined by the value of * as shown in Fig. 3 .1+

where

UOB = - sin p x - cos p sin Z y + cos p cos t z (3.15)

Thus

UoB U > O (3.16).2B * G

indicates that the periphery in the direction U0B from the
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Y

Fig. 3.4 Occulting body illumination

center of the occulting body is illuminated and

U•B s < 0 (3.17)

indicates a non-illuminated condition. Integrating A over

the visible periphery, keeping track of four categories of

occultations, results in four corresponding values for the

rate at which the statistical star background is being

swept out. If QO, Q1 1 Q2 and Q3 correspond to NI +, NI -,



I +, and I - respectively, the frequency of occultation in

each category may be found by

FREQ0 = CFI QO (3.18)

FREQ1 = CF Q1  (3.19)

FREQ2 = CFI Q2  (3.20)

FREQ3 = CFI Q3  (3.21)

where CFI is a conversion factor dependent on the magnitude

of stars being considered and the units of Q. See Table 3.1.

It should be noted that the preceding calculations are gone

through twice at each decision point, once for the earth as

the occulting body and once for the moon as the occulting

body.

3.5 Random Number Method for Determining Whether an
Occultation Occurs

FREQ0 through FREQ3 represent the average frequency with

which occultations of the corresponding category are taking

place during the time interval between two decision points.

Based on this average frequency and the time interval

involved, the number of occultations in each of the four

categories can be determined. However, for the purpose of

this study a simpler computation is adequate. It is assumed

that only one observation will be made between decision

points, regardless of the number of occultations that occur.



The navigational value of an occultation depends chiefly

on the orientation of the bodies involved and the category

of the occultation. Since the orientation of the bodies

remains essentially constant during the time interval between

two decision points, all observations subsequent to the first

one would provide essentially redundant information.

The probability that a specific number of occultations

occurs between two decision points is given by a Poisson

distribution. For example, the probability that two

occultations of type NI + occur in the interval t2 - t1 is

given by

2

P2 =  f  e_-  (3.22)

where

= (FREQ0)(t2 - t )  (3.23)

Since only one measurement will be made regardless of

the number of occultations that occur it is necessary only

to compute the probability, Pnz, that one or more occultations

occur. This is accomplished by finding the probability that

no occultations occur and subtracting this result from one.

Pnz = 0 - e =  - e (3.24)

The occurrence or non-occurrence of an occultation is

then determined in the following manner.



A random number with rectangular distribution and an

interval of zero to one is generated. Pnz is subtracted

from this random number. A negative or zero result is

interpreted as meaning that one or more occultations occur

in the time interval under consideration.

This computation is made eight times at each decision

point. It is performed for each of eight values of FREQ,

corresponding to two occulting bodies with four categories

of occultations each. The result is

OCCE = 0 or 1

OCCEl = 0 or 1

(3.25)

OCCM, 3 = 0 or 1

where subscripts E and M represent the earth and moon

respectively, and the zero or one represent the non-

occurrence or occurrence of one or more occultations. In

the event that no occultations occur at a decisionopoint,

the next decision point is examined. If one or more

categories of occultation occur it is necessary to select

the best one.

3.6 Selection of the Best Occultation

From the eight possible occultations the best two can

be selected a priori. That is, the best occultation for
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each body can be determined with no further calculation.

By "'best occultation"• is meant the occulation which yields

the most navigational information. It is obvious that a

NI + occultation is better than a I - occultation. The

choice between NI - and I + is not so obvious, but the

illumination condition is assumed to be the more important

for the purpose of this study. Thus the best occultation

for each body is the first type that occurs in the following

order of preference: NI +, NI -, I +, I -.

If both the earth and the moon provide occultations at

a particular decision point the choice between them is based

on the quantity ý, defined as the mean squared reduction in

position error at the target if a velocity correction were

made following the measurement. The "best occultation" is

the one giving the largest 4. This "best occultation" is .the

occultation upon which further navigational computations

are based.

3.7 Determination of the Unit Vector from the Spacecraft
to the Point of Occultation

Having identified the "'best occultation" at a particular

decision point it is now necessary to determine the direction

from the spacecraft to the point of occultation. Since the

star field is being simulated by a statistical star

background it will be necessary to locate the point of

occultation by a random number process.



The angular velocity of the line of sight to the

occulting body is given by

(RVB x VOB)
-OB 2 (3.26)

VB

where -VB is the vector from the spacecraft to the center of

the occulting body, and VOB is the velocity of the occulting

body with respect to the spacecraft. The direction

orthogonal to O0B and RVB is defined as A where

A = -coO x RVB (3.27)

A and RVB lie in the plane of Fig. 3.5

S

S
o

Fig. 3.5 Apparent semi-diameter of the occulting body
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The apparent semi-diameter of the occulting body, C,

is given by

C = r cos p (3.28)

and the vector C, shown in Fig. 3.5 is given by

CA
- A (3.29)

A cross section of the occulting body containing C and w

is shown in Fig. 3.6.

t1

Fig. 3.6 Geometry for determining the point of occultation

F

V_ -



-49-

From Fig. 3.5 it can be seen that

RLB = cos2 P RVB (3.30)

where .4B is the vector from the spacecraft to the center of

the visible disk.

A rectangularly distributed random number T is now

generated with width - C to + C. Thus T determines the

magnitude and direction of E in accordance with the original

hypothesis that the stars are isotropically and randomly

distributed.

E = T -- (3.31)

F is found from the relation

F = sin* C

and G is given by

G = E + F

This leads to

Rs = R + G-STAR RB

and finally

-STARS STAR

(3,32)

(3.33)

(3.34)

(3,35)



5.8 Visibility of Occultations

There are two limitations on the visibility of an

occultation which must be taken into consideration. An

occultation will not be observable if the line of sight

to the occultation is too close to the line of sight to the

sun. A limit of 15 degrees was used in this study. The

computation

TEST = n S U - cos 150 (3.36)

where n and USUN are unit vectors to the occulted star and

the sun, is used to determine if the lines of sight are

within 15 degrees of each other. If TEST is positive the

occultation is considered not visible.

The second condition affecting the visibility of an

occultation is the position of the non-occulting body

relative to the line of sight from the spacecraft to the

point of occultation on the occulting body as shown in

Fig. 3.7. R is the vector from the spacecraft to the
-n

center of the non-occulting body. The apparent radius of

the non-occulting body 0 is determined in the following

manner

8 = arcsin rn (337)
ne

Let U be the unit vector in the R direction. From
-n -n

-50-
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S
o

Fig. 3.7 Visibility of occultation

Section 3.7 the direction to the star being oculted is given

by the vector n. Then

TEST = n • U - cos e (3.38)-n

From Fig. 3.7 it can be seen that TEST will be positive when

the occultation is not visible.

3.9 Variance

The variance is a measure of the accuracy with which an

occultation can be observed. There are three factors which

influence the variance. The first, tr, is the response time

of the person making the observation. This parameter is one
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of the variable inputs to the program so that the effect of

of varying t can be studied. A nominal value for this

parameter is 0.2 seconds.

The second factor, t , compensates for the greater

difficulty in accurately observing occultations of the

NI-, I+ and I- types.

The third factor takes into consideration the deviation

of the occulting bodies from perfect spheres. The variation

from the assumed radius is given by

br RVB cos p bp (3.39)

or

= r (3.4o)
P VB cos p

Relating bp to the variation in time,

RVB cos P bp RVB P
VI cos p co sin 4 vr sin )

Substituting Eq. (3.40) into Eq. (3.41)

br

vr cos p sin 4

It should be noted that br will depend on the occulting

body. bre and brm are used to represent the variation of the
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earth's surface and the moon's surface respectively from

their assumed radii.

The total variance is the sum of the squares of the

three contributions. For the earth

2

2 2V = t + (K t ) +r c (3.43)

and for the moon

F br] 2rr
V = t2 + (X t )2 mr c vr cos p sin

where K has values 0, 1, 2 or 3 corresponding to the types

of occultations NI +, NI -, I + and I -.

3.10 Determination of "h'~" Vector

From Chapter 2 the 'h" vector for a star occultation is

given by

h tan 1 r ( - tan y m) (3.45)
( - tan y m) "_vr

where m is the unit vector directed from the spacecraft to

the center of the occulting body; y is the angle between m

and n, the unit vector directed toward the point of

occultation; p is the unit vector perpendicular to m and in

the plane determined by m and n and vr is the velocity of

the spacecraft relative to the occulting body.



In terms of quantities derived up to this point the "h"

fector is found as follows.

*

aR-S TARI

S
o

Fig. 3.8 "h" vector geometry

R
-VBm VB
RVB

(3.46)

-54-
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The unit vector j is given by

mxn
J sin (3.47)

and the unit vector 2, equivalent to L in Eq. 3.45 is then

2 = j x m (3.48)

Rewriting Eq.(3.45) in terms of the quantities shown in

Fig. 3.8 we have

I-

h = -

( - tan 
9) * v

(2

(3.49)\~V / --

- tan p m)



CHAPTER 4

PRESENTATION AND DISCUSSION OF RESULTS

4.1 Introduction

The results obtained from the computations described in

Chapters 2 and 3 are strongly dependent on a number of

parameters, some of which could not be specified exactly by

the authors. For example, the value of 6re (the contribution

to the variance in earth occultation measurements due to the

effect of the atmosphere and the departure of the earth's

surface from a regular geometry) was assumed to be eight

miles in all computations but one. In order to establish

this parameter more accurately a study of the optics

involved would have to be undertaken. In addition it would

be appropriate to determine to what extent this contribution

to the variance can be predicted, since any predictable

contribution could be compensated for in the calculations

and would not detract from the accuracy of an observation.

The results also depend on input conditions such as the

magnitude of stars used and the position of the sun. And

finally, the results vary with the mode of navigation

employed.
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In the interest of both time and economy it was

necessary to make a limited number of computer runs. The

input conditions were varied over reasonable limits, and

the results are presented here in both tabular and

graphical form. Sufficient data is presented so that the

relative sensitivity or insensitivity of the results to

various input conditions can be determined. Thus, with

care, the data can be extrapolated to some degree to

cover cases for which computations were not made.

The results obtained by navigation schemes such as

the ones employed here, are highly dependent upon the

number and magnitudes of the velocity corrections and

the times at which they are implemented. No attempt was

made to optimize the application of velocity corrections.

Rather, the same decision rules were used for all runs

so that the results can be compared independent of the

method of determining when to make velocity corrections.

In all runs a velocity correction was made whenever the

ratio of the uncertainty in the computed velocity

correction to the computed velocity correction became

less than 0.2.

The results are also dependent on the injection

errors. These errors are specified by the value of the

initial "E matrix." The following value was assumed
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for all runs.

E =
O

This corresponds to a RMS positron error of

and a RMS velocity error of 11.3 miles.

3.55 miles

4.2 Dependence of Results on the Random Number Sequence

As was explained in Chapter 3, there can be as many

as four computations at each decision point which use

the computer's random number function. Thus, the results

of each run depend to some extent on the starting point in

the random number sequence. It would be desirable to show

that this dependence is such that the results are

essentially independent of the starting point in the

random number sequence. Table 4.1 shows the results of

three runs in which all parameters were held constant

with the exception of the starting point in the random

number sequence.

.980

.063

.203

0

0

0

.063

-1.86

0

0

0

.203

-1.86

7.04

0

0

0

0

0

0

7.73

4.672

2.72

0

0

0

4.65
83.8

36.0

0

0

0

2.72

36.0

36.1
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TABLE 4.1

EFFECT OF VARYING THE STARTING POINT IN THE RANDOM
NUMBER SEQUENCE

Sun rotation 70
Magnitude < 4
Occultations and angle measurements

4.3 Navigation Modes

A number of navigation modes were considered in this

study. Navigation by angle measurements only, mode 1,

will be used as a basis for comparison, since this mode

of navigation has been studied extensively at the M.I.T.

Instrumentation Laboratory by the Space Guidance Analysis

Group. In order to obtain a more accurate comparison,

the best and worst cases of navigation by angle

measurements only are presented. These best and worst

cases result from values for sun rotation of 250 and 70

degrees respectively. The input parameter "sun

Total Final Final Final
Velocity Velocity Position Miss
Correction Uncertainty- Uncertainty Distance

Run (mph) (mph) (miles) (miles)

1 48.6 3.80 1.77 4.09

2 47.8 2.57 1.25 3.83

3 50.7 2.27 1.13 3.03
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rotation" is used to vary the direction of the sun as

viewed from earth. This device serves to simulate the

illumination conditions that would be encountered at

various times during the year without generating a new

trajectory for each new time. The inaccuracies introduced

by this device are not significant in this type of

analysis. Navigation by occultations only, mode 2,

will also be considered. The remaining mode, mode 3,

involves using both occultation and angle measurements.

All three basic modes are considered for a sun rotation

of 70 and 250 degrees.

Two variations to the basic modes were introduced:

(1) In two mode 3 runs the variance associated with

occultation measurements was reduced in order to

determine the sensitivity of the results to the accuracy

with which occultation measurements can be made. In this

case the astronaut's response time was reduced from 0.2

to 0.1 seconds. tc, a factor which compensates for the

difficulty in accurately observing occultations of types

NI-, I+ and I-, was reduced from 0.2 to 0.1 seconds.

bre was reduced from eight miles to one mile, and brm was

reduced from three to 0.5 miles. (2) In an effort to

simulate a realizable navigation technique more closely,

modes 2 and 3 were varied in one case to consider

occultations of all types by the moon only and in a

second case to consider only occultations of type

NI+ by the moon.
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4.4 Occultation Frequency

The frequency with which stars of magnitude less

than six are occulted by the earth and the moon is shown

in Fig. 4.1. The corresponding data for stars of magnitude

less than four are shown in Fig. 4.2. In both cases the

frequencies were computed for the first half of a

circumlunar voyage using the trajectory described in

Chapter 3 and shown in Fig. 4.3. The frequencies shown

in Figs. 4.1 and 4.2 are the total frequencies of

occultation. These total frequencies were obtained by

summing the results of Eqs. (3.18). through (3.21),.

In Fig. 4.1 the influence of the spacecraft's position and

motion relative to the occulting bodies is shown quite

clearly. The initial occultation frequency for stars

of magnitude less than six occulted by the earth is

3102 occultations per hour. This extreme value, too

large to be shown in Fig. 4.1, is due to two factors:

(1) the nearness of the spacecraft to the earth; and

(2) the high rate at which the earth's periphery is

moving relative to the star background. The same effect

is noted when the spacecraft is at its closest point of

approach to the moon, the extreme lunar occultation

frequency being 4361 occultations per hour.

As the spacecraft starts around the far side of

the moon the frequency of occultations by the earth

"'t~"
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approaches zero as would be expected. The corresponding

effect on occultations by the moon is noted during the

initial portion of the trajectory.

Fig. 4.2 would show the same trends as described in

the preceding paragraph if the ordinate were extended to

include smaller values of frequency. The maximum

occultation frequencies for stars of magnitude less than

four are 339 and 471 occultations per hour for the earth

and moon respectively.

4.5 The Number of Occultation Measurements Along the
Trajectory

Fig. 4.4 is a plot vs. time of the occultations that

were measured during two simulated voyages. In one case

stars of magnitude less than four were considered and

in the other case stars of magnitude less than six were

considered. In both cases measurements of occultations

by the earth and by the moon are shown separately.

One of the principal disadvantages of star occultation

measurements is illustrated in Fig. 4.4. Occultations

occur so frequencly during the initial and moon approach

phases of the voyage that it would only be practical to

-measure a fraction of the occultations that occur.

However, during a considerable portion of the voyage,

when the spacecraft is far from both bodies, the
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probability that an occultation will occur is negligibly

small unless stars of magnitudes considerably larger

than six are considered.

4.6 Tabulation of Results

The results obtained from computer simulations of

the navigation modes and variations thereto described in

Section 4.3 are presented in Tables 4.2 and 4.3. The

results in 2able 4.2 were obtained using a sun rotation

of 70 degrees. The applicable value of sun rotation is

specified in Fig. 4.3.

The authors will not attempt to discuss the implica-

tions of all the data presented in Tables 4.2 and 4.3.

Rather, several trends will be pointed out as examples

of the correlations that can be established between the

various results. The first two runs in Table 4.2

involve the use of occultation measurements only. The

first run uses only stars of magnitude less than four,

whereas the second run uses stars of magnitude less

than six. The results show that roughly the same

navigational accuracy is obtained in each case but at

the expense of almost five times the total velocity

correction when stars of magnitude less than four

are used. This result would be expected since Fig. 4.4

shows that the period during which no occultations
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occur is considerably longer in the case where stars of

magnitude less than four are used than it is when stars

of magnitude less than six are used. Thus, with no

measurements available, the errors build up to the

point where a large velocity correction must be made

relatively close to the moon.

From Table 4.3 it is interesting to compare, for both

values of sun rotation, the run where navigation is

accomplished by angle measurements alone, and the run

where the angle measurements are supplimented by star

occultation measurements of type NI+ by the moon. In

both cases the addition of occultation measurements

improves the results, but it is interesting to note that

the same parameters are not improved in both cases. When

the value of sun rotation is 70 degrees, the total

velocity correction and final miss distance are unaffected

while the final velocity and position uncertainties are

improved substantially. When the value of sun rotation

is 250 degrees the addition of occultation measurements

reduces the total velocity correction by a factor of two

and the final miss distance by a factor of five while

the final position uncertainty and the final velocity

uncertainty show little change.
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Table 4.3 also shows the results of the simulations

made with a reduced value of variance as described in

Section 4.3 (1). In both cases the mode 3 results show

a marked improvement over the mode 1 results. These

results emphasize the need for accurately determining the

values of the parameters that contribute to the variance.

4.7 Position Uncertainty

In addition to the end results of the various

navigation modes presented in Section 4.6 it is informative

to look at the time histories of the various navigation

modes. In order to do this, a representative parameter

must be selected. The authors chose Up, the root mean

squared position uncertainty at the destination if no

more observations were made, for this purpose.

Fig. 4.5 shows the effect on this time history of

changing the magnitude of stars used when the navigation

is based on occultations alone. A large negative slope

is desirable and is indicative of a large number of

observations. In this case the large negative slope

exists while the spacecraft is near the earth and again

when it approaches the moon. The discontinuities

following a portion of curve with a near zero slope

correspond to the first occultation that occurs following
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a period during which no measurements were available.

The discontinuity in the magnitude less than six curve at

34 hours can be traced to an early occultation by the

moon that is shown to occur in Fig. 4.4. The other

discontinuities can be traced in a similar manner.

With the exception of Fig. 4.5 all graphs of

position uncertainty vs. time are for stars of magnitude

less than four. This value was chosen as a compromise

between a manageable number of stars and the quantity

of stars necessary to provide a reasonable number of

occultations. There are approximately 500 stars in

this category.

Fig. 4.6 shows the time history of Up for naviga-

tion modes 1, 2 and 3 with a sun rotation of 70 degrees.

This is the case where most of the moon as seen from the

approaching spacecraft is non-illuminated. Since this

condition is favorable for occultation measurements

and unfavorable for angle measurements, the improvement

in Up shown in Fig. 4.6 when occultation measurements

are used in conjunction with angle measurements is as

would be expected.

The results shown in Fig. 4.7 are obtained in the

same manner as those shown in Fig. 4.6 with the

exception that the value of sun rotation is changed to

250 degrees. This is the condition most favorable to angle
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measurements and least favorable to occultation measure-

ments. The results here are also as would be expected.

The addition of occultation measurements does not improve

the time history of Up to a great extent.

It should be pointed out at this point that the

extreme decrease in Up that occurs, starting at

approximately 60 hours, is a somewhat unrealistic result

of the computer simulation used. As was stated in

Chapter 3 the program was written so that a measurement

would be made at each decision point at which one or more

occultations occur. Since the last three decision points

are 1.2 minutes apart it is clear that observations could

not be made as frequently on a real mission as they were

during the final portion of this simulation. Thus, the

mode 2 results in Fig. 4.6 are somewhat optimistic. By

a careful analysis of Tables 4.2 and 4.3 this weakness

in the simulation can be compensated for to some extent.

In most cases a velocity correction was not made during

this portion of the simulation so that the values of

"total velocity correction" and "final miss distance"

are not affected by this discrepancy.

Since the effect of earth occultation measurements

is slight due to the large variance associated with them,

two runs were made using only occultations by the moon.

The results of these runs are shown in Fig. 4.8.
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The variation to modes 2 and 3 described in Section

4.3 (2) resulted in the curves shown in Figs. 4.9 and

4.10. By using only NI+ occultations the number of

measurements was reduced to an amount that might realistically

be made. The number of measurements made is listed in

Table 4.3.

4.8 Occultations of the 40 Brightest Stars

Since the results of the computer simulations indicated

that occultation measurements would increase navigational

accuracy and reduce the total velocity correction required,

the authors wrote a program to determined how many actual

occultations involving the 40 brightest stars could be

observed by an astronaut aboard a spacecraft traveling

along the first half of the circumlunar trajectory shown

in Fig. 4.3. The results of this program appear in

Table. 4.+4.
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TABLE 4.4

OCCULTATIONS OF THE 40 BRIGHTEST STARS

Time Occulting
(Approx) Body Immersion Emersion

.30 earth 498*

.30 earth 380

.70 earth 498

.75 earth 498
2.20 moon 509

3.00 moon 526

3.40 moon 483

24.00 moon 417

62.38 moon 417

62.42 moon 483

62.44 moon 509

62.52 moon 526

380 - Regulus 498 - Spica

417 - Dubhe 509 - r Ursae Majoris

483 - i Ursae Majoris 526 - Arcturus

behind the earth at the beginning of

the trajectory



CHAPTER 5

CONCLUSIONS

The simulations of various circumlunar navigation

techniques which were made during the course of this study

show that the inclusion of occultation measurements tends

to improve navigational accuracy and reduce the total

velocity correction required.

The accuracy with which occultations by the earth

can be observed was not accurately established. Therefore

more emphasis was placed on studying the effect of lunar

occultation measurements.

The value of utilizing occultation measurements in

addition to angle measurements is heavily dependent on

two factors: (1) the number of occultations that occur;

and (2) the accuracy with which occultations can be measured.

The number of occultations that occur is obviously

dependent on the magnitude of the stars considered.

There are several practical limits on the number of stars

that can be considered. The astronaut must identify each

star on which a measurement is based. As more stars are

considered this would become increasingly difficult. In

addition, data must be available on each star considered.

-82-
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This too, would provide a limit on the number of stars

that can'be considered. The values used in this study

for the variance associated with a lunar occultation were

chosen conservatively. It was shown that a reduction in

the parameters that determine the value of variance for

an occultation results in a marked improvement in the

quality of the navigation obtained.

The results obtained in this study indicate that

angle measurements and occultation measurements might

best be used in a complementary fashion, taking advantage

of the favorable aspects of both types of measurements.

Since the initial occultation measurements are not

very accurate due to the large variance associated with

earth occultation measurements and since occultation

measurements are practically non-existent during the

mid-portion of the trajectory, angle measurements alone

might be used until approximately 55 hours have passed.

At this time the navigator would switch over to

occultation measurements entirely, since it is reasonable

to assume that more occultation measurements than angle

measurements can be made in a given amount of time.

The quality of both types of measurements is comparable

in this region. Thus, by virtue of the greator quantity

of measurements made, this scheme should improve the
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navigational accuracy.

Since this study was based on a statistical star

background rather than an actual star field, no final

conclusions concerning the advisability of using star

occultation measurements can be reached. However, based

on the results of this study the authors feel that

further investigation using actual star data would be

appropriate.
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