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Florfenicol is widely used to control respiratory diseases and intestinal infections in food
animals. However, there are increasing reports about florfenicol resistance of various
clinical pathogens. floR is a key resistance gene that mediates resistance to florfenicol and
could spread among different bacteria. Here, we investigated the prevalence of floR in 430
Pseudomonas aeruginosa isolates from human clinical samples and identified three types
of floR genes (designated floR, floR-T1 and floR-T2) in these isolates, with floR-T1 the
most prevalent (5.3%, 23/430). FloR-T2 was a novel floR variant identified in this study,
and exhibited less identity with other FloR proteins than FloRv. Moreover, floR-T1 and
floR-T2 identified in P. aeruginosa strain TL1285 were functionally active and located on
multi-drug resistance region of a novel incomplete Tn4371-like integrative and conjugative
elements (ICE) in the chromosome. The expression of the two floR variants could be
induced by florfenicol or chloramphenicol. These results indicated that the two floR
variants played an essential role in the host’s resistance to amphenicol and the spreading
of these floR variants might be related with the Tn4371 family ICE.
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INTRODUCTION

Florfenicol is a fluorinated synthetic analog of thiamphenicol
(Syriopoulou et al., 1981), mainly used to control respiratory tract
diseases and enteric infections in food-producing animals (Zhao
et al., 2016). However, due to inappropriate medication use,
florfenicol resistance has become increasingly serious in veterinary
medicine (Chang et al., 2014). Although florfenicol is not approved
for use in humans, an increasing number of studies have reported
dramatic and serious florfenicol resistance in various clinical strains,
such as Pasteurella multocida, Salmonella, and Klebsiella
pneumoniae (Lu et al., 2018; Ujvari et al., 2019; Zhan et al., 2019).

To date, seven florfenicol resistance genes (excluding variants),
floR, fexA, fexB, cfr, optrA, pexA and estDL136, have been reported
(Arcangioli et al., 1999; Schwarz et al., 2000; Kehrenberg and
Schwarz, 2004; Schwarz et al., 2004; Lang et al., 2010; Liu et al.,
2012; Tao et al., 2012; Wang et al., 2015). Among them, floR is one
of the main florfenicol resistance genes in Gram-negative bacteria
(He et al., 2015). Several variants of the floR gene, including pp-flo,
cmlA-like, floRv and floSt, have been documented, andmost of them
encode 404 aa proteins. These floR variants are closely related to
each other, and floRv from Stenotrophomonas maltophilia shares
the lowest amino acid identity (88.4%-91.8%) with the others
excluding pp-flo (He et al., 2015). The floR gene has been
identified either on chromosomes or plasmids of various bacteria
and has often been associated with mobile genetic elements and
genomic islands (Lai et al., 2013; Gabida et al., 2015; da Silva
et al., 2017).

Pseudomonas aeruginosa is an opportunistic pathogen that
can cause numerous acute or chronic infections, and is notorious
for its intrinsic and acquired resistance to numerous antibiotics
(Breidenstein et al., 2011; Domalaon et al., 2018). Generally, P.
aeruginosa chromosomes do not carry the floR gene. Although P.
aeruginosa is clinically resistant to chloramphenicol (Morita
et al., 2014), rifampicin-tobramycin conjugates could break the
intrinsic resistance of P. aeruginosa to chloramphenicol in vitro
and in vivo, making it suitable for clinical treatment (Idowu et al.,
2019). However, the floR gene carried by this pathogen may
cause this strategy to fail when chloramphenicol is used. The
prevalence of the floR gene in P. aeruginosa hasn’t been
previously investigated. In this study, we determined the
prevalence of floR gene among 430 clinical P. aeruginosa
isolates collected from Wenzhou, China in the years 2008-2009
and 2015-2017. The combination of whole-genome sequencing,
genotyping and gene expression methods was used to
characterize the floR variants. A novel Tn4371-like integrative
and conjugative element (ICE) carrying floR-T1 and floR-T2 was
identified, which indicated that the Tn4371-like ICE might play
an important role in the dissemination of floR-T2.
MATERIALS AND METHODS

Bacterial Isolation
A total of 430 clinical P. aeruginosa strains isolated from sputum,
urine or blood samples of patients were collected from a teaching
hospital of Wenzhou Medical University. Among these isolates,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
200 strains were isolated during 2008-2009, and 230 strains were
isolated in 2015-2017. The strains were identified using the
Vitek-60 microorganism auto-analysis system (BioMerieux
Corporate, Craponne, France).

Antimicrobial Susceptibility Testing
Minimum inhibitory concentrations (MICs) of 17 antimicrobial
agents were determined using an agar dilution method with
Mueller-Hinton agar recommended by the Clinical and
Laboratory Standards Institute (CLSI document M100-S27,
2017). Broad range concentrations of 0.125-1024 mg/mL were
used for all the agents. MICs were interpreted according to CLSI
breakpoints for P. aeruginosa.

DNA Extraction and Sequencing
Each purified isolate was incubated overnight in 5 ml of Luria-
Bertani (LB) broth at 37°C for 16 hours, and genomic DNA was
extracted using an AxyPrep Bacterial Genomic DNA Miniprep
kit (Axygen Scientific, Union City, CA, USA). According to the
time period of isolation, two mixed DNA collections consisting
of equal amounts of genomic DNA of each strain were obtained.
One collection (designated TL0809) contained the bacteria
isolated from 2008-2009 and the other (designated TL151617)
contained those isolated among 2015-2017. The library with an
average insert size of 400 bp was prepared using NEBNext Ultra
II DNA library preparation kit, and subsequently high-
throughput sequenced by the Illumina Novaseq (paired-end
run; 2×150 bp). In addition, a 10- to 20-kb insert library was
obtained from the genomic DNA of P. aeruginosa TL1285 and
sequenced by Pacific Bioscience RSII sequencers at Annoroad
Gene Technology Co., Ltd. (Beijing, China).

Genome Assembly, Annotation, and
Bioinformatics Analysis
Genome assembly of pooled DNA sequencing data was
performed using megahit (Li et al., 2015), and contigs less than
400 bp were discarded. The complete genome of P. aeruginosa
TL1285 was assembled using Canu (Koren et al., 2017) with long
reads obtained from PacBio sequencing. Error correction of
tentative complete circular sequence was performed using
Pilon (Walker et al., 2014) with short read sets derived from
Illumina sequencing. Open reading frames (ORFs) of pooled
DNA sequences were predicted using Prodigal (Hyatt et al.,
2010) with default parameters. Using the antibiotic resistance
genes of the CARD (Jia et al., 2017) and ResFinder (Ea et al.,
2012) databases as a query, a BLASTN search was performed
against the two assembled sequences of the pooled DNA with
thresholds of >70% nucleotide identity and >80% alignment
coverage. Gene prediction and annotation of TL1285 were
initially performed with RAST (Aziz et al., 2008) and then
verified by BLASTP searches against the UniProtKB/Swiss-Prot
(Boutet et al., 2016) and RefSeq (O’Leary et al., 2016) databases.
Annotation of mobile genetic elements was carried out using
online databases including ISfinder (Siguier et al., 2006),
INTEGRALL (Moura et al., 2009), and the Tn Number
Registry (Roberts et al., 2008). Comparison of the TL1285
genome with the other six genomes was performed using
June 2021 | Volume 11 | Article 685068
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BLAST Ring Image Generator (Alikhan et al., 2011). Gene
organization diagrams were generated using R script and
modified with Inkscape 1.0 (https://inkscape.org/en/).

PCR Amplification and Cloning
of the floR Gene
Genomic DNA of each of the 430 isolates was screened for the
floR gene using PCR with primers listed in Table 1. PCR
amplification was carried out under the following conditions:
initial denaturation for 10 min at 94°C; 35 cycles of denaturation
(30 s at 94°C), annealing (30 s at 58°C) and extension (90 s at
72°C) and a final extension for 10 min at 72°C. The floR-T1 and
floR-T2 gene sequences with promoter regions were amplified
from P. aeruginosa TL1285 and cloned into pUCP24.
Electroporation transformation was used to introduce the
recombinant plasmids into P. aeruginosa PAO1 by Bio-rad
MicroPulser with a voltage at 2.6 kv, resistance at 200 W and
pulse time of 5 ms (Dennis and Sokol, 1995).

Comparison of the Expression of floR-T1
and floR-T2
Quantitative reverse transcription PCR (qRT-PCR) was used to
investigate the expression of the floR variants of TL1285 and
transformants in the presence or absence of 2 mg/L florfenicol or
chloramphenicol. In brief, RNA was extracted from 3 mL of LB
broth culture (OD600 = 1) of P. aeruginosa TL1285 and the
transformants using TRIzol Reagent (Invitrogen, USA) following
the manufacturer’s instructions. RNA (1 mg) was used as the
template for cDNA synthesis using HiScript II Reverse
Transcriptase (Vazyme, Nanjing, China) following the
manufacturer’s instructions. qRT-PCR was used to quantify the
amount of floR-T1 and floR-T2 in cDNAs using ChamQ Universal
SYBR qPCR Master Mix (Vazyme, Nanjing, China) following the
manufacturer’s instructions with the qPCR primers (Table 1).
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Detection of the Extrachromosomal
Intermediate
Inverse PCR using the primers beside the attL and attR sites
could be utilized for the rapid identification of the
extrachromosomal intermediate of Tn4371 (Ryan et al., 2009).
PCR product was obtained only when integrative and
conjugative element (ICE) was excised from the chromosome
and circularized. Since no attL site was identified in TL1285, we
designed two primers (P2 and P3) located beside the integrase
genes as the forward primers. PCR amplification was carried out
under the following conditions: an initial denaturation of 10 min
at 94°C; 33 cycles of denaturation (94°C for 30 s), annealing
(62°C for 30 s), and extension (72°C for 90 s); and a final
extension step at 72°C for 10 min.

GenBank Accession Number
The complete chromosome sequence of the P. aeruginosa
TL1285 (CP053390) has been submitted to NCBI GenBank.

Ethics Approval
This study uses strains obtained from a teaching hospital of
Wenzhou Medical University. It did not require the study to be
reviewed or approved by an ethics committee because individual
patient data was not involved, and only anonymous clinical
residual samples during routine hospital laboratory procedures
were used in this study.
RESULTS

Florfenicol and Chloramphenicol MICs of
the Strains
The MICs of florfenicol and chloramphenicol were determined
for the 430 clinical P. aeruginosa isolates. It showed that 21
TABLE 1 | PCR primers used in this study.

Primers Purposes Sequences Product size (bp)

s-floR-F screening of floR GCGCAACGGCTTTCGTCATT 270
s-floR-R GCATCGCCAGTATAGCCAAA
s-floR-T1-F screening of floR-T1 GCGCAACGGCTTTCGTTGCT 262
s-floR-T1-R GCGAAGCCAGTGCAGCCAGT
s-floR-T2-F screening of floR-T2 GGGCCATACTTTTCATCGTC 278
s-floR-T2-R TCAACGCCAGCACAGCAAGC
c-floR-T1-F cloning of floR-T1 GGGATTCGGTGAGAAATGGCTACG 1600
c-floR-T1-R AATGAGCGGTATCTTGCCAGACAG
c-floR-T2-F cloning of floR-T2 AATCCCATGAGTTCACCCTCGTTCC 1500
c-floR-T2-R AATGAGCGGTATTCTGCCGGACAG
q-floR-T1-F floR-T1 qRT-PCR GCGACGTATATGCCAATCGT 184
q-floR-T1-R CTGAAACTGGCGTTTAAGAG
q-floR-T2-F floR-T2 qRT-PCR ATCTTCGCGAGTCCAGCCTT 200
q-floR-T2-F TCTGGCGACAAAGGACTTCG
PA16S -F P. aeruginosa 16S rRNA qRT-PCR AACGCGAAGAACCTTACC 149
PA16S-R AAGGGTTGCGCTCGTTAC
EC16S-F E. coli 16S rRNA qRT-PCR AATGCCACGGTGAATACG 153
EC16S-R CTACGGTTACCTTGTTACGA
Tn4371-P1 circular forms and insertion sites of Tn4371 CGAGAGCGTCAAGCTGACCT
Tn4371-P2 GAGCGTGGGACAGCTGCTT
Tn4371-P3 CAAGGATCGGGCCTTGATGT
June 2021 | Volume 1
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(4.88%) and 23 (5.35%) of the strains exhibited much higher
resistance levels to florfenicol and chloramphenicol with the
sameMICs of ≥512 mg/mL for them (Figure 1). A total of 94.65%
(407/430) of the strains were resistant to either florfenicol or
chloramphenicol (or both), and only 5.35% (23/430) isolates
were susceptible to both florfenicol and chloramphenicol with
MIC ≤16 mg/mL.

Identification of the floR Variants
To investigate the prevalence of the floR gene among clinical P.
aeruginosa isolates, twomixed DNA collections TL0809 (containing
200 P. aeruginosa strains isolated from 2008-2009) and TL151617
(containing 230 P. aeruginosa strains isolated from 2015-2017) were
sequenced. Using the floR gene (AF231986) as a reference, three
types offloR variants (the reference floR, floR-T1 and floR-T2 in this
study) were identified in the two mixed genomes, of which TL0809
contained all three and TL151617 contained only two floR variants
(the reference floR and floR-T1) (Table 2). Other antimicrobial
resistance genes (ARGs) identified in TL0809 and TL151617 were
listed in Table S1.

The result of PCR amplification of the reference floR, floR-T1
and floR-T2 genes showed that the most prevalent variant was floR-
T1, while floR-T2 was only identified in the isolates collected from
2008-2009 (Table 2). The positive rates were consistent with the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
abundance [expressed as ‘copy of ARG per copy of 16S-rRNA gene’
(Li et al., 2015)] of the corresponding genes in the pooled genomic
DNA sequencing libraries. The positive rate of the floR-T1 gene in
the strains collected from 2015-2017 (7.39%, 17/230) was higher
compared with that from 2008-2009 (3.00%, 6/200).

Antimicrobial Susceptibility of P.
aeruginosa TL1285 and the Recombinants
With the Cloned floR Variants
Among all P. aeruginosa strains, only one strain named TL1285,
isolated from a sputum sample in 2008, carried both floR-T1 and
floR-T2. P. aeruginosa TL1285 was resistant to chloramphenicol,
florfenicol and many other antibacterial agents (Table 3). The
fragment containing floR-T1 or floR-T2 gene and its putative
promoter region was amplified from TL1285 genomic DNA and
subsequently cloned into pUCP24, and then transformed into E.
coli DH5a and P. aeruginosa DPAO1 (P. aeruginosa PAO1
deleted of ampG), respectively. As a result, compared with the
recipients (E. coli DH5a and P. aeruginosa DPAO1), the
recombinants with the cloned floR-T1 (DH5a/pUCP24-floR-T1
and DPAO1/pUCP24-floR-T1) increased ≥4 folds of MIC levels
to both chloramphenicol and florfenicol and the recombinants
with the cloned floR-T2 (DH5a/pUCP24-floR-T2 and DPAO1/
pUCP24-floR-T2) increased ≥8 folds of MIC levels to both
FIGURE 1 | MIC results of the 430 clinical P. aeruginosa isolates against florfenicol and chloramphenicol.
TABLE 2 | The abundance and PCR positive rates of the floR variants.

floR variants Identity Match length (aa) Abundance PCR positive rate

TL0809 floRa 99.3% 404 0.68 2/200 (1.00%)
floR-T1 91.3% 404 1.18 6/200 (3.00%)
floR-T2 87.6% 404 0.32 1/200 (0.50%)

TL151617 floR 99.3% 404 0.56 3/230 (1.30%)
floR-T1 91.3% 404 4.95 17/230 (7.39%)
June 2021 | Volume
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chloramphenicol and florfenicol, respectively. The results
indicated that the floR-T1 and floR-T2 genes of P. aeruginosa
TL1285 were functionally active.

Expression of the floR Variants
The expression of the two floR variants with or without
florfenicol (or chloramphenicol) induction were detected
(Figure 2). It revealed that the mRNA levels of floR-T2 in P.
aeruginosa TL1285 and the corresponding transformants
(DH5a/pUCP24-floR-T2 and DPAO1/pUCP24-floR-T2) were
significantly increased, while the mRNA levels of floR-T1 in P.
aeruginosa TL1285 and the transformants (DH5a/pUCP24-
floR-T1 and DPAO1/pUCP24-floR-T1) were only slightly
increased in the presence of florfenicol or chloramphenicol.

Characterization of the floR Variants
Using phylogenetic analysis, the amino acid identities of FloR-T1
and FloR-T2 with the known FloR proteins ranged from 90.80%
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
to 100% and 86.10% to 88.90%, respectively (Figure S1). FloR-
T1 was identical to the FloR protein (YP_001715371.1) identified
in Acinetobacter baumannii, while FloR-T2 showed the highest
identity (88.90%) with the FloR protein (YP_005351917.1)
identified in Klebsiella pneumoniae.

The translational attenuator that consisted of a single pair
inverted repeat (IR) sequence, and a short reading frame of 6-9
aa peptide was identified upstream of the floR variants (Figure 3).
IR1 and IR2 can form a stable stem-loop structure blocking the
resistance gene-associated ribosome binding site (RBS). The short
peptides of floR-T1 and floR-T2 differ in three amino acids. The
attenuator sequences of floR-T2 and floRv encode an identical
peptide, although one synonymous variation (A>T) in their
nucleotide sequences. The attenuators’ IR resulted also differently,
and the stem-loop structures formed in distinct stable states. Among
these variants, floR-T2 and floRv showed the most stable structure.
However, the stable stem-loop structure of the attenuator sequence
did not overlap with the RBS site of the floR gene.
FIGURE 2 | Expression of the floR variants in TL1285 and corresponding transformants with or without florfenicol or chloramphenicol induction. **** (P-value <
0.0001).
TABLE 3 | MIC results of P. aeruginosa TL1285 and recombinants to 17 antibiotics (mg/mL).

Antibiotics TL1285 DH5a DH5a/pUCP24-floR-T1 DH5a/pUCP24-floR-T2 DPAO1 DPAO1/pUCP24-floR-T1 DPAO1/pUCP24-floR-T2

Ampicillin 1024 – – – – – –

Ceftazidime <1 – – – – – –

Levofloxacin <0.5 – – – – – –

Cefpyridine 4 – – – – –

Minocycline 64 – – – – –

Chloramphenicol 128 4 64 64 32 128 512
Florfenicol 256 4 64 128 32 256 >1024
Ciprofloxacin 2 – – – – –

Azithromycin 32 – – – – –

Fosfomycin 256 – – – – –

Tigecycline 4 – – – – –

Colistin <1 – – – – – –

Erythromycin 256 – – – – – –

Nalidixic acid >1024 – – – – – –

Gentamicin >1024 – – – – –

Kanamycin 64 – – – – –

Streptomycin >1024 – – – – – –
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floR-T2 Encoded in a Tn4371-Like ICE
Whole genome sequencing (WGS) was performed for P.
aeruginosa TL1285 carrying both floR-T1 and floR-T2, and
only produced a circular 6,609,407 bp chromosome with an
average GC content of 66.06% encoding 5,611 ORFs. Multiple
ARGs, including resistance genes for b-lactams (blaOXA-50 and
blaPDC-3) , aminoglycosides (aadA5 and aac(3)-IIa) ,
sulfonamides (sul1), tetracycline (tetG), chloramphenicol
(catB7, floR-T1 and floR-T2) and fosfomycin (fosA), were
identified in the P. aeruginosa TL1285 genome. The
florfenicol-resistant genes floR-T1 and floR-T2 were embedded
in an 86-kb Tn4371-like integrative and conjugative element
(ICE) (Figure 4).

To track the epidemiological correlation between floR-T2 and
genome islands, a BLASTN search was performed against the
GenBank database using floR-T2 as a query. A total of five P.
aeruginosa chromosomes, WPB099 (CP031878), WPB100
(CP031877) , WPB101 (CP031876) , PASGNDM345
(CP020703) and PASGNDM699 (CP020704), and one E.
cloacae chromosome, AR_038 (CP030347), were found
carrying floR-T2. Through MLST analysis, the five P.
aeruginosa belonged to ST308, while TL1285 to ST316.
Interestingly, these floR-T2-carrying strains came from
different sources. WPB099, WPB100 and WPB101 were
i so la ted from hospi ta l was tewater s in S ingapore ,
PASGNDM345 and PASGNDM699 from patient sputum in
Singapore, while E. cloacae AR_038 and TL1285 were from
patient sputum collected in United States and China,
respectively. Whole genome alignment of the six P. aeruginosa
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
strains revealed high identity, and their differences were mainly
in some genomic islands (Figure 4). The Tn4371-like ICE
carrying floR-T2 in TL1285 was also partially present in these
five P. aeruginosa strains. Nevertheless, it should be noted that
WPB099, WPB100 and WPB101 were not fully sequenced, and
the floR-T2 gene was located on an approximately 10 kb separate
segment, which means the precise genetic environments around
floR-T2 could not be described.

Comparative analysis of the Tn4371-like ICE regions of six P.
aeruginosa strains revealed that the plasmid maintenance system
(repA, parA and parB) and conjugational transfer systems were
conserved (Figure 5). The variable region between the traF and
traR genes, which encoded a biphenyl catabolic bph gene cluster
in Tn4371 (AJ536756), was different in these six P. aeruginosa
isolates. The variable regions of WPB099, WPB100 and WPB101
were a 20-kb fragment encoding the oqxB32 gene, which confers
resistance to quinolone. The variable regions of PASGNDM345
and PASGNDM699 shared high identity with those of WPB099,
WPB100 and WPB101. The only difference was that in
PASGNDM345 and PASGNDM699, a 13.7-kb fragment
flanked by 695 bp direct repeats was inserted between czcD
and lysR, which encode blaNDM-1, msr(E) and floR-T2 genes. The
variable region of TL1285 was similar to those of PASGNDM345
and PASGNDM699, except that the blaNDM-1-hp-msr(E) genes of
PASGNDM345 and PASGNDM699 were replaced by floR-T1-
tetR-tetA-lysR in TL1285.

The integrase genes (int) of PASGNDM345, PASGNDM699,
WPB99, WPB100 and WPB101 were identical and shared 78%
identity with that of Tn4371. However, no homologue of
A

B

FIGURE 3 | Comparison of sequences upstream of the floR variants. (A) The stable mRNA secondary structure of the floR variants formed by inverted repeat
sequences boxed in (B). (B) The attenuator of the floR variants consists of a peptide-encoding region (underlined) and stem-loop region (boxed). The start codons
and ribosome binding sites (RBS) of the short peptide and floR are labeled and displayed in bold type letters.
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intTn4371 was found in TL1285 (Figure 5). Tn4371 family ICEs
could be integrated into the genome through an 8-bp attB site,
generating direct repeat attL and attR element chromosomal
junctions (Merl in et al . , 1999). In PASGNDM345,
PASGNDM699, WPB99, WPB100 and WPB101, 8-bp repeats
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(5′-TTTTTTGT-3′) were identified in both extremities of the
ICE region. However, in TL1285, only attR was found (Figure 5).
The noc gene upstream of repA in TL1285 was truncated by a
novel Tn402 family transposon. The transposon is formed by
ISCfr1 and In2 carrying a single aadA5 cassette embedded
FIGURE 4 | Sequence conservation among P. aeruginosa TL1285 and 6 other genomes carrying floR-T2. From innermost to outermost: Circle 1 shows the scale in
kb; Circles 2 and 3 represent the GC content and GC skew maps of TL1285, respectively; Circle 4 represents the genome of TL1285; Circles 5-10 represent the
homologous regions of PASGNDM345, PASGNDM699, WPB099, WPB100, WPB101 and AR_038 compared to those of TL1285, while the regions without similar
hits between them were left blank; Circle 11 displays the genomic islands in TL1285; Circle 12 displays the antibiotic resistance genes in TL1285.
FIGURE 5 | Comparative genomic analysis of the ICE region of TL1285 and 5 other floR-T2-carrying P. aeruginosa isolates. Genes with different functions are
shown in different colors: red, transposable elements; yellow, drug resistance; orange, conjugational transfer; blue, plasmid maintenance; purple, replication; brown,
genes with other functions; white, hypothetical proteins.
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downstream of the tnpR gene of Tn1013, and this Tn402 family
transposon was surrounded by 37-bp imperfect inverted repeats
(Figure S2).

Inverse PCR using primers P1, P2 and P3 (Figure 5) was
performed to detect whether the ICE in TL1285 could generate a
circular extrachromosomal form, but no positive result was
observed. Taken together, we speculate that the ICE in TL1285
is an incomplete member of the Tn4371 family and may have lost
the excising or integrating ability. The insertion of the Tn402
family transposon leads to the loss of the upstream sequence of
the nucleoid occlusion protein coding gene noc, including the
integrase gene int of ICE.
DISCUSSION

In this work, we found that among the 430 clinical P. aeruginosa
isolates detected, most (94.65%, 407/430) of them were resistant
to florfenicol or/and chloramphenicol. In fact, P. aeruginosa was
intrinsically resistant to amphenicols, and the MICs to florfenicol
and chloramphenicol for P. aeruginosa ATCC27853 were both
64 mg/mL (Fass and Barnishan, 1979). Active efflux and
chloramphenicol acetyltransferase (CAT) encoded on P.
aeruginosa chromosome are two major mechanisms of
amphenicol resistance (Nitzan and Rushansky, 1981; Li et al.,
1994), and different types of CAT determinant also contribute to
amphenicol resistance (White et al., 1999). However, there were
still 5.35% (23/430) isolates susceptible to amphenicol. The
mutation and deletion of multidrug efflux system (such as
MexA-MexB-OprK) and other resistance mechanisms might
play a role in the loss of resistance to florfenicol or/and
chloramphenicol of these bacteria.

Three floR variants (floR, floR-T1 and floR-T2) were identified
in a number of clinical P. aeruginosa isolates, in which floR-T1
was the most prevalent variant and floR-T2 was a novel variant
identified in this study. The positive rate of the floR-T1 gene in
the strains collected from 2015-2017 (7.39%, 17/230) was similar
to that of the clinical K. pneumoniae isolates collected from the
same district during 2010-2014 (7.01%, 23/328) (Lu et al., 2018).
The protein showing the highest identity (88.90%) with FloR-T2
was a FloR protein (YP_005351917.1) identified in Klebsiella
pneumoniae. Currently, FloRv was the FloR variant with the
lowest identity (88.40%-91.80%) to other previously reported
FloR proteins (He et al., 2015). FloR-T2 exhibited less identity
with other FloR proteins than FloRv. Furthermore, FloR-T2 was
shown to be one of the most divergent members of the FloR
family, followed by FloRv (Figure S1).

It was interesting to find that the expression levels of floR-T2
increased much more significantly in the host TL1285 or the
recombinant than those of floR-T1 when induced by the
amphenicols. Using transcriptome sequencing, Lang et al.
found that the expression of the floR gene of the E. coli
plasmid pAR060302 increased 8-fold under the induction of
florfenicol (Lang et al., 2012). Yinghui et al. also reported that the
mRNA levels of the floR gene encoded by ICEApl2 on
chromosomes increased in the presence of chloramphenicol (Li
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
et al., 2018). However, the modulation mechanisms of mRNA
expression of floR variants remain unclear. As reported by
Yinghui et al. (Li et al., 2018), we also identified the
translational attenuator region upstream of the floR variants.
In addition, we found that the peptide encoding region offloR-T1
was identical to those of pA060302 and ICEApl2 reported by
Yinghui (Li et al., 2018) (Figure 3). It is known that the
expression of chloramphenicol resistance genes, including
catA, cmlA and fexA, could be induced by chloramphenicol,
and this induction is mediated by translational attenuator
structure at the post-transcriptional level (Stokes and Hall,
1991; Kehrenberg and Schwarz, 2004; Schwarz et al., 2004).
However, considering that the stem-loop structure is distant to
the RBS site of the floR gene, it is not clear whether this structure
participates in the induced expression of the floR gene.

WGS result revealed that floR-T1 and floR-T2 of P. aeruginosa
TL1285 were related with a novel Tn4371-like ICE. Tn4371 is a
55-kb ICE that can be integrated into the attB site (5’-
TTTTCAT-3’) through a site-specific recombination process
since the ends of the element can be detected covalently as a
transfer intermediate (Merlin et al., 1999; Toussaint et al., 2003).
The Tn4371-like ICEs are mosaic in structure and consist of Ti-
RP4-like transfer systems, an integrase region, plasmid
maintenance genes and accessory genes (Toussaint et al.,
2003). Any ICE that encodes an integrase gene closely related
to intTn4371 (>70% protein homology) and has similar
maintenance and transfer genes could be considered as a
member of the Tn4371 family (Ryan et al., 2009). The Tn4371-
like ICEs carrying floR variants have been identified in the P.
aeruginosa strains of different MLST types (such as ST308 and
ST316) isolated from different samples of different countries. P.
aeruginosa ST308 is a high-risk clone that can locally acquire
resistance determinants from water-distribution system and was
involved in a five-year outbreak in a French hospital between
2005 and 2010 (Jeanvoine et al., 2019). The variable region of
these Tn4371-like ICEs also carried other ARGs like blaNDM-1,
tetA and msr(E). These findings indicate that the Tn4371-like
ICEs might have emerged as a potential vehicle to mediate the
spread of drug resistance genes in P. aeruginosa isolates.
CONCLUSION

In this study, we determined the prevalence of floR among 430
clinical isolates of P. aeruginosa and characterized two floR
variants, floR-T1 and floR-T2, in a P. aeruginosa strain TL1285.
The floR-T1 gene was the most prevalent variant in clinical P.
aeruginosa strains. The floR-T2 is a novel floR variant that
showed less identities with the other FloR proteins than FloRv.
The mRNA levels of the two floR variants could be induced by
florfenicol and chloramphenicol and the expression level of floR-
T2 was significantly higher than that of floR-T1. Inverted repeat
sequences as well as stem-loop regions of the translational
attenuators differed among the floR variants. The floR-T1 and
floR-T2 of TL1285 were located on an incomplete novel Tn4371
family ICE, while floR-T2-carrying ICEs were also identified in
June 2021 | Volume 11 | Article 685068
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other five P. aeruginosa genomes. These results indicate that
Tn4371 family ICEs might be related with the dissemination of
floR-T2 among P. aeruginosa strains.
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