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Epilepsy is a common neurological disorder characterized by recurrent and disabling
seizures. An increasing number of clinical and experimental applications of machine
learning (ML) methods for epilepsy and other neurological and psychiatric disorders are
available. ML methods have the potential to provide a reliable and optimal performance
for clinical diagnoses, prediction, and personalized medicine by using mathematical
algorithms and computational approaches. There are now several applications of ML for
epilepsy, including neuroimaging analyses. For precise and reliable clinical applications
in epilepsy and neuroimaging, the diverse ML methodologies should be examined
and validated. We review the clinical applications of ML models for brain imaging in
epilepsy obtained from a PubMed database search in February 2021. We first present
an overview of typical neuroimaging modalities and ML models used in the epilepsy
studies and then focus on the existing applications of ML models for brain imaging
in epilepsy based on the following clinical aspects: (i) distinguishing individuals with
epilepsy from healthy controls, (ii) lateralization of the temporal lobe epilepsy focus, (iii)
the identification of epileptogenic foci, (iv) the prediction of clinical outcomes, and (v)
brain-age prediction. We address the practical problems and challenges described in
the literature and suggest some future research directions.

Keywords: machine learning (ML), epilepsy, neuroimaging, magnetic resonance imaging, positron emission
tomography (PET)

INTRODUCTION

Machine learning (ML) is an emerging trend in medicine including the fields of neurology and
epileptology. The advantages of ML over conventional methods include accurate, automated, and
fast pattern learning, which can be used to develop and/or optimize clinically useful algorithms for
clinical medicine and basic research.

Epilepsy is a common neurological disease characterized by recurrent seizures associated with
abnormal neuronal activities in the brain. Approximately 50 million people suffer from epilepsy
worldwide, with symptoms that range from recurrent seizures and their physical problems to
various psychosocial and psychiatric comorbidities (Collaborators, 2019). To better treat patients
with epilepsy, appropriate seizure management and therapies for other aspects of epilepsy are
important. However, there is a certain level of heterogeneity in epilepsy, which may prevent the
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best treatment for each individual patient (Pitkanen et al.,
2016). ML methods could potentially outperform conventional
approaches in terms of optimizing clinical diagnoses, prediction,
and personalized medicine.

Recent clinical and experimental applications of ML for
epilepsy include automatic seizure detection from clinical data,
pre-surgical planning, the prediction of medical and surgical
outcomes, and automated neuroimaging analyses (Abbasi and
Goldenholz, 2019). Neuroimaging is one of the clinically essential
exams for epilepsy (Bernasconi et al., 2019). While the main
role of neuroimaging in epilepsy is the detection of the focus
lesion in drug-resistant epilepsy, there is promising evidence of
further usefulness of neuroimaging, such as the prediction of
cognitive functions and postsurgical seizure outcomes in epilepsy
(Bernasconi and Wang, 2021). In addition, ML methods usually
require “big data” from multiple databases to provide reliable
results, and in fact the development of ML has been driven by
improved data collection, storage, and processing (Abbasi and
Goldenholz, 2019). In this regard, neuroimaging may have some
advantages for data sharing, since it has standardized protocols
across various institutes and covers essentially the whole brain.
The neuroimaging modalities MRI and PET are widely used in
clinical practice and have been thoroughly investigated. Given
the rapid development in neuroimaging techniques and ML,
both of these can be expected to continue to further progress
interactively. Thus, to efficiently understand and promote such
development, it is meaningful to thoroughly review the current
literature on ML applications for neuroimaging in epilepsy.

In this review, we have focused mainly on the existing
applications of ML for brain MRI (including structural, diffusion,
and functional MRI) and PET in epilepsy, aiming to provide
an at-a-glance overview of these modalities. We first present a
brief overview of neuroimaging modalities and ML models that
are commonly used in epilepsy, such as data reduction/feature
selection, classification/regression, and validation methods. We
then provide a comprehensive review of the state-of-the-art
ML models for epilepsy in clinical settings. To this end, we
considered the following clinical aspects related to applications
of ML models for brain imaging in the field of epilepsy: (i) the
differentiation of individuals with epilepsy from healthy controls,
(ii) the lateralization of the temporal lobe epilepsy focus, (iii)
identifying the epileptogenic foci, (iv) the prediction of clinical
outcomes, and (v) brain-age estimation. Lastly, we address the
challenges and limitations of the existing studies, and we present
potential future lines of research in this field.

LITERATURE SEARCH AND STUDY
SELECTION

In February 2021, we systematically reviewed the relevant articles
in the PubMed database by first performing a literature search
concentrated on the application of ML models for brain imaging
in epilepsy along with a Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) diagram (Moher et al.,
2009; Figure 1). The search strategy used “Epilepsy” combined
with the following terms: “machine learning,” “deep learning,”

“MRI,” “PET,” and “neuroimaging.” The search yielded 118
studies, of which we excluded 14 reviews and case reports at the
initial screening. Studies not focusing on clinical epileptology,
neuroimaging, or machine learning were also excluded from the
review (n = 20). A final total of 84 studies were reviewed, based
on the study purposes, participants, imaging modalities, feature
extractions, and ML models in epilepsy (Figure 1).

FROM NEUROIMAGING TO PREDICTION
FRAMEWORKS: AN OVERVIEW

Neuroimaging Modalities in Epilepsy
The typical structural brain MRI modalities in epilepsy include
T1-weighted images (T1WI), T2-weighted images (T2WI),
and fluid-attenuated inversion recovery (FLAIR), which are
recommended as standard clinical protocols for epilepsy
(Bernasconi et al., 2019). T1WI is used for evaluations of
brain morphology. The cortical thickness of each gyrus and
the volumes of each brain structure, e.g., hippocampus, can
be calculated using T1WI, which has been frequently used
for ML analyses. T2WI is useful to evaluate hippocampal
internal structures, the amygdala, and parahippocampal cortices,
while the FLAIR image sequence is suitable for the detection
of focal cortical dysplasia type II, which frequently shows
hyperintense FLAIR signals (Bernasconi et al., 2019). Diffusion
MRI is also widely investigated in epilepsy, particularly when
the white matter tract integrity in the brain is examined (Otte
et al., 2012). Diffusion tensor imaging (DTI) metrics, such as
fractional anisotropy (FA) and mean diffusivity (MD), have been
conventionally utilized for white matter evaluations as well as ML
applications. Multi-shell protocols of diffusion MRI including
diffusion kurtosis imaging (DKI) and neurite orientation
dispersion and density imaging (NODDI) have provided further
information on brain microstructures (Jensen et al., 2005; Zhang
et al., 2012). In addition to microstructural evaluations, brain
structural networks can be measured by diffusion MRI.

Functional MRI provides information on hemodynamic brain
activities by measuring blood oxygen level-dependent (BOLD)
signals. Resting-state BOLD signals have recently been used
to evaluate brain functional networks; in addition, metrics
derived from resting-state functional MRI (e.g., functional
connectivity, regional homogeneity, and the amplitude of low-
frequency fluctuation) are sometimes used for ML analyses. 18F-
fluorodeoxyglucose (FDG)-PET is an established examination for
epilepsy, as it shows reduced signals around epileptogenic foci
reflecting abnormal glucose metabolisms (Kumar and Chugani,
2013). FDG-PET signals thus indicate brain regional metabolisms
and are sometimes used for a ML analysis in epilepsy. The
uses of the different neuroimaging modalities described in this
review are depicted in Figure 2. As can be seen in Figure 2,
T1WI measurements have been used the most widely in machine
learning-based epilepsy studies, probably due to the availability
of plentiful T1WI brain scan data.

For the uses of machine learning, we need to extract
features from the imaging modalities, and as described above,
morphological features from T1WI, signal intensity from
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FIGURE 1 | The search and inclusion of research papers in this review along with a PRISMA diagram.

T2WI or FLAIR, diffusion metrics (e.g., FA, MD) from DTI,
connectivity metrics from functional MRI, or glycometabolism
data from FDG-PET are commonly used for feature extraction
in machine learning. The feature extraction technique and
the imaging modality are crucial factors for successful ML
classification as well as easier and wider clinical applications.

Feature Selection and Data Reduction
The raw feature space in neuroimaging data is generally much
greater than the number of samples, particularly for voxel-
based feature extraction strategies. The main objectives of
feature-selection/data-reduction methods are avoiding both the

“curse of dimensionality” and overfitting, and selecting the most
informative feature sets. The aim of feature reduction algorithms
is to represent a lower dimensional space of the high-dimensional
original data. Among the different data reduction methods, the
principal component analysis (PCA) has been widely used in
epilepsy studies (Beheshti et al., 2020c; Sone et al., 2021). It should
be noted that the PCA method is categorized as an unsupervised
technique which only reduces the input space without improving
the prediction accuracy.

The main objectives of feature-selection methods are (i)
exploring the features that are relevant to the specific ML task,
(ii) selecting the most informative features, and (iii) improving
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the prediction accuracy. Various feature-selection methods have
been used in the field of epilepsy, including feature ranking
(Vasta et al., 2018; Beheshti et al., 2020b), analysis of variance
(ANOVA)-based feature selection (Cantor-Rivera et al., 2015),
correlation-based feature selection (Cantor-Rivera et al., 2015),
the F-score, least absolute shrinkage and a selection operator, and
mutual information (Vasta et al., 2018).

ML Models
The aim of a ML model is to explore a pattern between a
dependent variable and corresponding independent variables
in the training dataset (after feature reduction/selection) to
determine a predicted status (or value) on test datasets (i.e.,
unseen data). The following is a brief discussion of ML algorithms

FIGURE 2 | The neuroimaging modalities used in machine learning-based
epilepsy studies.

FIGURE 3 | The ML models used in epilepsy studies. DL, deep learning; LR,
logistic regression; NN, neural network; RF, random forest; SVM, support
vector machine. Other models: XGBoost, LightGBM, CatBoost, decision tree,
quadratic discriminant analysis.

(i.e., classification and regression models) used in existing
epilepsy studies.

Classification Models
The most frequently used classification techniques in epilepsy are
a support vector machine (SVM), neural networks (NN), random
forest, and deep learning. An SVM is the powerful classifier based
on statistical learning principles, and the SVM technique has been
widely used for epilepsy classification tasks. During the training
phase, an SVM finds the best class separating a hyperplane, which
contributes to the maximum margin between classes. An SVM
with a linear kernel can be used for linearly separable data,
whereas non-linear kernel transformations such as quadratic,
polynomial, and radial basis function (RBF) kernels can be used
for non-linearly separable data. For example, Beheshti et al.
(2020a) used an SVM classifier with a linear kernel for the
classification and lateralization of MRI-negative temporal lobe
epilepsy (TLE) based on FLAIR data.

An artificial neural network (ANN) is a compactional model
based on biological neural networks that compose the human
brain. An ANN is formed based on a set of layers (i.e., layer, one
or more hidden layers, and an output layer) that are independent
of each other, plus connected nodes that are called “artificial
neurons.” The number of nodes in each layer is arbitrary. In
an AAN structure, each node is connected to every other node
and each connection has a weight and threshold. Different
ANN structures have been used for brain imaging data in
epilepsy (Kerr et al., 2013a,b; Pedersen et al., 2015). For example,
Kerr et al. (2013b) used a multilayer perceptron (MLP) model
as a classifier for the diagnosis and localization of lateralized
TLE. In that study, the authors compared the SVM algorithm
with a feed-forward multi-layer persectron neural network
(MLPNN) for the lateralization of epileptogenic hippocampus
based on MRI data.

Deep learning is a set of machine-leaning algorithms
(essentially a neural network with three or more layers) that is
able to learn features from the data in order to reach a high
degree of abstraction (Plis et al., 2014). Deep learning embeds
the feature-extraction stage in the learning phase (Shen et al.,
2017). Although deep-learning methods have attracted much
attention in neuroimaging studies (Zhang et al., 2020), it should
be noted that these methods require a large training sample size
in the training phase—which can be viewed as a limitation for
this type of brain study with a limited dataset. There is a large
variety of deep-learning architectures that can be used in brain
imaging data, including a convolutional neural network (CNN),
a recurrent neural network (RNN), and an auto encoder (AE).
Hosseini et al. (2020) used a CNN deep learning structure for the
localization and prediction of epileptogenicity based on EEG and
rs-fMRI data. In an investigation by Si et al. (2020), a CNN-wise
transfer learning technique combined with high angular resolved
diffusion imaging (HARDI) and NODDI data were used for the
detection of juvenile myoclonic epilepsy. A CNN model based
on rs-fMRI data was trained for the classification of pediatric
refractory epilepsy (Nguyen et al., 2021).

A random forest classification model works based on an
ensemble learning method and voting for multiple unpruned
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decision trees. The bootstrap sample of the original dataset
generates a random distribution of the samples for each decision
tree. By eliminating the overfitting problems in decision-making
trees, a random forest model is able to improve the predicting
accuracy. In the context of epilepsy, a random forest algorithm
has been used in various studies (Paldino et al., 2017a,b; Vasta
et al., 2018). For example, Park and Ohn (2019) used a random
forest classifier for estimating the seizure frequency in TLE
through structural MTI features. In addition to classification
tasks, the random forest method has been used for the
determination of feature importance and selection (Fallahi et al.,
2020). Other classification algorithms have also been applied in
epilepsy studies, including XGBoost (Torlay et al., 2017), a naïve

Baysian classifier (Hwang et al., 2019b), Adaboost (Park et al.,
2020), and a quadratic discriminant analysis (Chiang et al., 2015).

Regression Model
Support vector regression (SVR) is known as the most widely
used regression model for the prediction of continuous variables.
SVR is used to find an optimal hyperplane that deviates from the
training data as little as possible, such as linear regression. Unlike
linear regression (in which the algorithm is aimed at minimizing
the observed training errors), an SVR model measures the error
on the basis of data points rather than a “margin of tolerance.”
SVR has shown a very good performance in regression analyses
for neuroimaging (Hwang et al., 2020; Sone et al., 2021).

TABLE 1 | ML applications used for the differentiation of individuals with epilepsy and healthy subjects.

References Subjects Imaging modality Imaging features Classifiers Main outcomes

Pedersen et al. (2015) 9 LGS, 14 HC rs-fMRI EC, ReHO MVPA ACC = 0.957 for LGS vs. HC

Cantor-Rivera et al.
(2015)

17 TLE (8 R, 9 L), 19
HC

T1, T2, DTI T1/T2 signals, FA, MD SVM ACC = 0.889 for TLE vs. HC

Del Gaizo et al. (2017) 32 left TLE, 36 HC DKI FA, MD, MK SVM ACC = 0.82 for TLE vs. HC by
MK

Torlay et al. (2017) 16 FE, 39 HC Task-fMRI BOLD XGBoost AUC = 0.91 for FE vs. HC

Wang et al. (2018a) 14 IGE-GTCS (P), 30
HC

T1, rs-fMRI Morph (GMV), fALFF SVM ACC = 0.74–0.83 for IGE vs.
HC

Vasta et al. (2018) 23 PNES, 21 HC T1 Morph (SBM, GMV) RF ACC = 0.745 on average for
PNES vs. HC

Hwang et al. (2019a) 55 TLE (14 R, 26 L, 2
B, 13 U)

T1, rs-fMRI Morph (SBM, GMV), FC SVM ACC 0.734 for TLE vs. HC.
Association between cognitive
slowing and MRI

Hwang et al. (2019b) 69 TLE, 59 HC rs-fMRI FC, ALFF, fALFF SVM, LDA, naïve
Baysian classifier

ACC ∼0.83, AUC ∼0.90 for
TLE vs. HC

Bharath et al. (2019) 42 TLE-HS (18 R, 19 L,
5 B)

rs-fMRI IC SVM ACC = 0.975 for TLE vs. HC.
Correlation of network with
clinical variables

Park and Ohn (2019) 42 TLE (18 R, 24 L), 45
HC

T1, DTI Morph (GMV, WMV), FA RF ACC = ∼80% for TLE vs. HC,
∼70% to predict seizure
frequency

Huang et al. (2020) 59 TLE (P), 70 HC DKI FA, MD, MK SVM ACC = 0.908 for TLE vs. HC.
CNN was used for feature
extraction.

Park et al. (2020) 66 TLE (35 R, 31 L), 65
HC

T1 Morph (radiomics) SVM, LR, AdaBoost AUC = 0.84 for LTLE vs. HC or
RTLE vs. HC

Si et al. (2020) 15 JME, 15 HC HARDI, NODDI Network measures CNN ACC = 0.752, AUC = 0.839 for
JME vs. HC

Zhou et al. (2020) 74 TLE-HS (37 R, 37
L), 74 HC

T1, rs-fMRI Morph (GMV, WMV,
SBM), ALFF, ReHO

SVM ACC = 84.1 for LTLE vs. HC,
72.9 for RTLE vs. HC (when all
features combined)

Chen et al. (2020) 22 TLE-HS (6 R, 16 L),
15 HC

T1 Morph (VBM) SVM AUC = 0.870 for LHS vs. HC,
0.976 for RHS vs. HC, 0.902
for HS vs. HC

Nguyen et al. (2021) 63 DRE (P), 259 HC rs-fMRI Temporal latency CNN ACC = 0.74, AUC = 0.86 for
DRE vs. HC

ACC, accuracy; AUC, area under the ROC curve; B, bilateral; BOLD, blood-oxygen-level-dependent; CNN, convolutional neural network, DKI, diffusion kurtosis imaging,
DRE, drug-resistant epilepsy, DTI, diffusion tensor imaging, EC, eigenvector centrality, FA, fractional anisotropy, fALFF, fractional amplitude of low-frequency fluctuations,
FC, functional connectivity, FE, focal epilepsy, fMRI, functional MRI, GMV, gray matter volumes, HARDI, high-angular-resolution diffusion imaging, HC, healthy controls,
HS, hippocampal sclerosis, IC, independent components, IGE-GTCS, idiopathic generalized epilepsy with generalized tonic-clonic seizures, L, left, LDA, linear discriminant
analysis, LGS, Lennox-Gastaut Syndrome, LR, logistic regression, MD, mean diffusivity, MK, mean kurtosis, Morph, morphological features, MVPA, multivariate pattern
analysis, NODDI, neurite orientation dispersion and density imaging, (P), pediatric cases, PNES, psychogenic non-epileptic seizures, R, right, ReHO, regional homogeneity,
RF, random forest, rs, resting-state, SBM, surface-based morphometry, SVM, support vector machine, TLE, temporal lobe epilepsy, U, unknown, VBM, voxel-based
morphometry; WMV, white matter volume.
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Gaussian process regression (GPR) is a non-parametric
Bayesian method for regression tasks. GPR works based on
a probability distribution of possible values. Both SVR and
GPR models have been used for estimating the brain age in
epilepsy (Pardoe et al., 2017; Hwang et al., 2020; Sone et al.,
2021). Logistics regression is a statistical model that models
the association between predictor variables and a categorical
response variable. The output of a logistic regression model is a
probability value that falls into a 0–1 range, but with the use of
a classification cut-off (i.e., probability of 0.5), logistic regression
can be used for classification tasks (Pustina et al., 2015; Peter et al.,
2018). Logistic regression has been widely used a binary classifier
in epilepsy studies (Ahmed et al., 2015; Mahmoudi et al., 2018;
Guo et al., 2020).

Figure 3 displays the usage of the machine learning models
described herein. SVM algorithms have been widely applied
in epilepsy studies compared to other ML models. This is

because SVM provides an optimal solution for solving a complex
problem by using different kernels, which is appropriate for
high-dimensional data and limited sample studies.

Validation Strategies
Cross-validation is frequently used to evaluate the performance
of ML models. The aim of cross-validation is to achieve an
unbiased estimate of the classification/regressing performance
and avoid overfitting by dividing the data into a training set and
a test set. Data can be split once (i.e., split into a training set and
a holdout test set) or several times (i.e., k-fold cross-validation).
In the hold-out strategy, the data are randomly divided into a
training set and an independent test set, and a training subset is
used to train a prediction model (i.e., classification or regression)
and optimize the respective parameters, whereas the independent
test set is used to estimate the performance of the trained
prediction model.

TABLE 2 | ML applications used for the lateralization of TLE foci.

References Subjects Imaging modality Imaging features Classifiers Main outcomes

Keihaninejad et al.
(2012)

80 TLE (60 HS, 20 NL),
28 HC

T1 Morph (GMV) SVM ACC = 0.96 for HS vs. HC, 0.91 for NL
vs. HC, 0.94 for lateralization of TLE-NL

Focke et al. (2012) 38 TLE-HS (18 R, 20
L), 22HC

T1, DTI, T2 Morph (GMV, WMV), T2
signal, FA, MD

SVM ACC = 0.88–0.93 for LTLE vs. RTLE vs.
HC

Kerr et al. (2013b) 73 TLE (34 R, 39 L), 32
NES

FDG-PET PET signal MLP ACC = 0.82–0.88 for TLE vs. NES,
0.76 for lateralization of TLE

Kerr et al. (2013a) 73 TLE (34 R, 39 L), 32
NES, 30 HC

FDG-PET PET signal MLP ACC = 0.81 for lateralization of TLE.
No effect of the choice of control group.

Hosseini et al. (2014) 76 TLE T1, FLAIR Morph (GMV), FLAIR
signal

SVM, MLPNN ACC = 0.82 for lateralization of TLE.

An et al. (2014) 32 TLE (15 R, 17 L), 34
HC

DTI FA SVM ACC = 0.918–0.941 for TLE vs. HC,
0.906 for lateralization of TLE

Yang et al. (2015) 12 TLE (5 R, 7 L) rs-fMRI FC, Network measures SVM ACC = 0.83 for lateralization of TLE

Pustina et al. (2015) 58 TLE (30 R, 28 L) T1, DTI, FDG-PET Morph (SBM, GMV),
FA, PET signal

LR ACC > 0.95 for lateralization of TLE by
PET

Chiang et al. (2015) 24 TLE (10 R, 14 L) rs-fMRI Network measures QDA AUC = 0.96 for lateralization of TLE

Kamiya et al. (2016) 44 TLE (15 R, 29 L), 14
HC

DTI Network measures SVM ACC ∼0.80 for TLE vs. HC, LTLE vs.
RTLE

Fang et al. (2017) 43 TLE (21 R, 22 L), 39
HC

DTI SC SVM ACC > 0.90 for TLE vs. HC, < 70% for
LTLE vs. RTLE

Mahmoudi et al. (2018) 68 TLE (54 HS, 14 NL) T1 Morph (GMV) LR, SVM ACC > 0.90 for lateralization in both
TLE-HS and TLE-NL

Peter et al. (2018) 17 TLE (11 R, 6 L), 23
HC

FDG-PET PET signal LR AUC = 0.80 for lateralization of TLE

Bennett et al. (2019) 104 TLE (82 MRI+, 22
NL)

T1, T2, FLAIR Morph (GMV), T2,
FLAIR signals

SVM AUC = 0.981 for MRI+, 0.842 for NL,
for lateralization of TLE.
RFC was used for feature extractions.

Beheshti et al. (2020a) 42 TLE-NL (19 R, 23 L),
34 HC

FLAIR FLAIR signal SVM ACC = 0.75 for 3 groups, 0.762 for
lateralization of TLE

Fallahi et al. (2020) 35 TLE (14 R, 21 L) rs-fMRI Network measures RF, SVM AUC up to 0.91 for LTLE vs. RTLE

Beheshti et al. (2020b) 56 TLE-NL (27 R, 29 L) FDG-PET PET signal SVM ACC = 0.964 for lateralization of TLE

Hosseini et al. (2020) 9 TLE (5 R, 4 L) rs-fMRI FC CNN, SVM Successful lateralization when
combined with fMRI and EEG

ACC, accuracy; AUC, area under the ROC curve; CNN, convolutional neural network; DTI, diffusion tensor imaging; FA, fractional anisotropy; FC, functional connectivity;
GMV, gray matter volumes; HC, healthy controls; HS, hippocampal sclerosis; L, left; LR, logistic regression; MD, mean diffusivity; MLP, multilayer perceptron; MLPNN,
multilayer perceptron neural network; Morph, morphological features; MRI+, MRI-positive; NES, non-epileptic seizure; NL, no lesion; QDA, quadratic discriminant analysis;
R, right; RF, random forest; rs-fMRI, resting-state functional MRI; SBM, surface-based morphometry; SC, structural connectivity; SVM, support vector machine; TLE,
temporal lobe epilepsy; WMV, white matter volume.
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In the k-fold cross-validation strategy, data randomly split into
k number of folds (i.e., k-subsets) and the learning process repeat
k times such that for each iteration, k − 1 folds are used for
training a prediction model, and the rest of the folds are used
for a test. It should be noted that with the k-fold cross-validation
strategy, there might be an overlap among the training subjects in
different iterations (Noirhomme et al., 2014). Permutation tests
can thus be used for assessing the statistical significance of k-fold
cross-validation strategies (Noirhomme et al., 2014). In addition,
fivefold and tenfold cross-validations have been suggested to
provide a trade-off between bias and variance in ML models for
brain imaging studies (Lemm et al., 2011). The leave-one-out
strategy is a subtype of the k-fold cross-validation strategy in
which the number of folds is equal to the number of samples;

it is usually used for a small dataset. The k-fold cross-validation
strategy has been widely used in epilepsy studies (Bharath et al.,
2019; Beheshti et al., 2020a; Zhou et al., 2020; Sone et al., 2021).

THE DIFFERENTIATION OF INDIVIDUALS
WITH EPILEPSY FROM HEALTHY
CONTROLS

A common application of machine learning for brain imaging in
epilepsy is the differentiation between brains with epilepsy and
healthy brains. As summarized in Table 1, various ML classifiers
have achieved over 70–80% accuracy to successfully discriminate
between individuals with epilepsy and healthy controls, using T1

TABLE 3 | ML applications used for the detection of epileptogenic foci, including FCD.

References Subjects Imaging modality Imaging features Classifiers Main outcomes

Hong et al. (2014) 33 FCD, 44 HC, 11 TLE T1 Morph (SBM), signal
intensity

LDA Sens. 71% Spec. 95% to automatically
detect FCD

Rudie et al. (2015) 169 EPI (85 HS, 84 NL) T1 Morph (SBM, VBM) SVM ACC = 0.81 for HS vs. NL

Ahmed et al. (2015) 31 FCD, 62 HC T1 Morph (SBM) LR, IRLS Detection in 6 of 7 MRI positive cases,
14 of 24 MRI-negative

El Azami et al. (2016) 11 FE, 77 HC T1 Texture parameters SVM AUC > 0.90 to detect epileptogenic
lesions

Hong et al. (2016) 41 FCD-FLE, 41 HC T1 Morph (SBM) SVM ACC = 98% for Type I vs. II,
approximately 90% for lateralization,
82–92% to predict seizure outcome

Adler et al. (2017) 22 FCD, 28 HC T1, FLAIR Morph (SBM), FLAIR
signal

NN AUC around 0.7–0.8 using various
feature combinations

Wang et al. (2018b) 12 FCD DTI, T2 FA, MD, VR, T2 signal GPML, SVM AUC = 0.76 to automatically detect
FCD by GPML

Jin et al. (2018) 61 FCDII, 155 HC, 15
HS

T1 Morph (SBM) NN AUC = 0.75 to detect FCD

Tan et al. (2018) 28 FCD, 23 TLE T1, FDG-PET Morph (SBM), GM
intensity, PET signal

SVM Sens. = 0.93 to detect FCD, when
combined MRI and PET

Mo et al. (2019) 80 TLE-HS (39R, 41L),
80 HC

T1 Visual features, Morph SVM, E-net LR AUC around 0.98–0.99 for TLE-HS vs.
HC, 96% detection rate for visually
negative HS

Lee et al. (2020a) 46 FCD, 35 HC T1, FLAIR, rs-fMRI Morph (SBM), FLAIR
signal, Gradient, Ratio,

fALFF

Consensus clustering
(unsupervised)

Four relevant structural profiles (WM,
GM, GM and WM, GM-WM interface)
were identified

Wagstyl et al. (2020) 34 FCD (P), 20HC T1, FLAIR Morph (SBM), FLAIR
signal

NN Sens. = 0.74, Spec = 1.00 to detect
FCD, concordance with SOZ based on
SEEG

Alaverdyan et al. (2020) 21 FE, 75HC T1, FLAIR Signals SVM, RSN Sens. = 0.62 to detect anomaly lesion

Guo et al. (2020) 56 FCD, 40 GNTs T1, T2, FLAIR Visual assessment RF, SVM, DT, LR,
XGBoost, LightGBM,

and CatBoost

AUC = 0.934 for FCD vs. GNTs by
RF-based ML when combined MRI and
clinical info

Snyder et al. (2021) 15 FCD, 30 HC T1, T2, FLAIR Morph (SBM), signal
intensity

Normative model 80% Sens., 70% Spec. to detect FCD

Zhang et al. (2021) 201 TLE (P), 24 Ctrl
(lymphoma)

FDG-PET Radiomics CNN AUC = 0.93, ACC = 0.90 to detect
epileptogenic focus

ACC, accuracy; AUC, area under the ROC curve; CNN, convolutional neural network; DT, decision tree; DTI, diffusion tensor imaging; E-net LR, elastic net logistic
regression; EPI, epilepsy; FA, fractional anisotropy; fALFF, fractional amplitude of low-frequency fluctuations; FCD, focal cortical dysplasia; FE, focal epilepsy; FE, focal
epilepsy; FLE, frontal lobe epilepsy; GBM, gradient boosting algorithm; GM, gray matter; GNTs, glioneuronal tumors; GPML, Gaussian processes for machine learning;
HC, healthy controls; HS, hippocampal sclerosis; IRLS, iterative-reweighted least squares; L, left; LDA, linear discriminant analysis; LR, logistic regression; MD, mean
diffusivity; Morph, morphological features; NL, no lesion; NN, neural network; (P), pediatric cases; R, right; RF, random forest; rs-fMRI, resting-state functional MRI; RSN,
regularized Siamese neural network; SBM, surface-based morphometry; SEEG, stereotactic EEG; SOZ, seizure onset zone; SVM, support vector machine; TLE, temporal
lobe epilepsy; VBM, voxel-based morphometry; VR, volume ratio; WM, white matter.
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TABLE 4 | Machine learning applications used to predict clinical outcomes in epilepsy.

References Subjects Imaging modality Imaging features Classifiers Main outcomes

Paldino et al. (2014) 32 MCD (P) DTI FA, MD RF Sens. = 1.00, Spec. = 0.954 to
predict language impairment

Amarreh et al.
(2014)

20 EPI (P), 29
HC

DTI FA, MD, AD, RD SVM ACC > 90% for EPI vs. HC, > 75%
to discriminate remission

Memarian et al.
(2015)

20 TLE (10 R,
10 L)

sMRI Morph (SBM) SVM ACC = 95% to predict seizure
outcome after surgery, when
combined with other clinical info/EEG

Munsell et al.
(2015)

70 TLE, 43 HC DTI Network measures SVM ACC = 0.80 for TLE vs. HC, 0.70 to
predict seizure outcome after surgery

Bernhardt et al.
(2015)

141 TLE T1 SBM k-means clustering
(unsupervised)

Four data-driven distinct classes of
TLE, associated with histopathology
and seizure outcome

Gazit et al. (2016) 76 EPI Task-fMRI BOLD LR 89% concordance with WADA to
lateralize language hemisphere

Ibrahim et al. (2017) 21 EPI (P) rs-fMRI FC SVM ACC = 0.86–0.88 to predict VNS
response

He et al. (2017) 56 TLE (30 R,
26 L), 28 HC

rs-fMRI Network measures SVM ACC = 0.70 to predict seizure
outcome after surgery

Paldino et al.
(2017b)

45 FE (P) rs-fMRI Network measures RF R = 0.95 to predict epilepsy duration

Paldino et al.
(2017a)

30 FE (P) rs-fMRI Network measures RF ML revealed no effect of motion
parameters or general amnesia
during the scan for IQ prediction

Zhang et al. (2018) 24 FE rs-fMRI FC, Network measures RF 0.49 of fractional variation to predict
IQ

Gleichgerrcht et al.
(2018)

50 TLE DTI Network measures NN PPV = 0.88, NPV = 0.79 to predict
seizure outcome after surgery

Taylor et al. (2018) 53 TLE (30 L,
23 R)

DTI Network measures SVM, E-net LR ACC = 0.792 to retrospectively
predict seizure outcome after surgery

He et al. (2018) 50 TLE (25 R,
25 L), 30 HC

fMRI (task, rs) Network measures RF ∼100% prediction for verbal fluency,
improvement from traditional
methods

Mithani et al. (2019) 56 EPI (P) DTI FA SVM ACC = 0.83–0.89 to predict VNS
responders, when combined with
MEG

Yao et al. (2019) 287 EPI Routine MRI Visual assessment DT, RF, SVM, LR, XGBoost AUC = 0.979 to predict AED
responders, 0.918 for early
responders when combined with
clinical info/EEG.

Paldino et al. (2019) 27 FE (P) rs-fMRI Network measures RF 0.34 fractional variation to predict IQ

Zhang et al. (2019) 117 AVM T2 Location, Radiomics LASSO ACC around 0.800 to predict epilepsy
occurrence

Li et al. (2019) 10 TLE-HS (5
R, 5 L)

T1 Morph (SBM, etc.) RF, LR Accurately predict the optimal
trajectories for LITT

Ernst et al. (2019) 46 GAD, 34
VGKC, 48 HC

T1 Morph (GMV, etc.) DT Spec. = 0.87, Sens. = 0.80 for GAD
vs. VGKC

La Rocca et al.
(2020)

53 TBI T1 Network measures RF AUC = 0.75 to predict seizure
occurrence after TBI

Gleichgerrcht et al.
(2020)

168 TLE T1, DTI Network measures NN AUC = 0.88 to predict seizure
outcome after surgery by BC

Höller et al. (2020) 9 TLE, 19 MCI,
4 SCI, 18 HC

T1 Morph (GMV, etc.) SVM Sens/Spec = 0.70–0.90 to predict
cognitive decline over time, when
combined with MRI, EEG,
Neuropsychology.

Larivière et al.
(2020)

30 TLE-HS (R
19, L 11), 57

HC

T1, DTI, rs-fMRI Connectivity distance LR ACC = 0.76 to predict seizure
outcome after surgery

Mazrooyisebdani
et al. (2020)

27 TLE (R9,
L18), 85 HC

rs-fMRI FC SVM, SVR ACC = 0.81 for TLE vs. HC.
R = 0.61–0.75 to predict
neuropsychology

(Continued)
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TABLE 4 | Continued

References Subjects Imaging modality Imaging features Classifiers Main outcomes

Akeret et al. (2020) 923 brain
tumors

T1, FLAIR Anatomical features DT, GLM, RF, GBM, NN, SVM,
GAM

AUC = 0.79, ACC = 0.72 to predict
seizure occurrence when combined
with clinical info

Lee et al. (2020b) 89 FE (P) DTI WM tract CNN ACC = 0.92 to predict functional
deficit after surgery

Wang et al. (2020) 205
LGG-related

EPI

T2WI Signal, shape, etc. Novel radiomic nomogram AUC = 0.863 to predict epilepsy type

Sinha et al. (2021) 51 TLE, 29 HC T1, DTI Network measures SVM AUC = 0.84 to predict seizure
outcome after surgery

Kini et al. (2021) 89 TLE FDG-PET PET signal RF ACC = 0.71 to predict seizure
outcome after surgery

ACC, accuracy; AD, axial diffusivity; AUC, area under the ROC curve; AVM, arteriovenous malformation; BC, betweeness centrality; BOLD, blood-oxygen-level-dependent;
CNN, convolutional neural network; DT, decision tree; DTI, diffusion tensor imaging; E-net LR,; EPI, epilepsy; FA, fractional anisotropy; FC, functional connectivity; FC,
functional connectivity; FE, focal epilepsy; fMRI, functional MRI; GAD, anti-GAD-related encephalitis; GAM, generalized additive model; GBM, gradient boosting algorithm;
GLM, generalized linear model; GMV, gray matter volumes; HC, healthy controls; L, left; LASSO, least absolute shrinkage and selection operator; LGG, low-grade gliomas;
LITT, laser interstitial thermal therapy; LR, logistic regression; MCD, malformation of cortical development; MCI, mild cognitive impairment; MD, mean diffusivity; Morph,
morphological features; NN, neural network; (P), pediatric cases; R, right; RD, radial diffusivity; RF, random forest; rs, resting-state; SBM, surface-based morphometry;
SCI, subjective cognitive impairment; sMRI, structural MRI; SVM, support vector machine; SVR, support vector regression; TBI, traumatic brain injury; TLE, temporal lobe
epilepsy; VGKC, anti-VGKC-related encephalitis.

TABLE 5 | ML applications for brain-age prediction in epilepsy.

References Subjects Imaging modality Imaging features Classifiers Main outcomes

Pardoe et al. (2017) 136 FE (94 DR, 42 ND),
74 HC, (2001 HC for
model)

T1 VBM GPR +4.5 years in DR-FE, but
non-significance in ND-FE.

Chen et al. (2019) 35 TLE (17 R, 18 L), 37
HC (300 HC for model)

DSI GFA, AD, RD, MD, NG,
NGO, NGP

GPR +10.9 years in RTLE, +2.2
years in LTLE
Correlation with onset age,
duration, seizure frequency

Hwang et al. (2020) 104 TLE, 151 HC T1, rs-fMRI SBM, FC SVR +6.6 years in structural MRI,
+8.3 years in functional MRI

Sone et al. (2021) 318 EPI, 1192 HC T1 VBM SVR >+4 years in almost all forms
of epilepsies
+10.9 years in TLE with
psychosis

AD, axial diffusivity; DR, drug-resistant; DSI, diffusion spectrum imaging; EPI, epilepsy; FC, functional connectivity; FE, focal epilepsy; GFA, generalized fractional anisotropy;
GPR, Gaussian process regression; HC, healthy controls; L, left; MD, mean diffusivity; ND, newly diagnosed; NG, non-Gaussianity; NGO, NG orthogonal; NGP, NG parallel;
R, right; RD, radial diffusivity; rs-fMRI, resting-state functional MRI; SBM, surface-based morphometry; SVR, support vector regression; TLE, temporal lobe epilepsy; VBM,
voxel-based morphometry.

images (Vasta et al., 2018; Chen et al., 2020; Park et al., 2020),
diffusion MRI (Cantor-Rivera et al., 2015; Del Gaizo et al., 2017;
Park and Ohn, 2019; Huang et al., 2020; Si et al., 2020), and
functional MRI (Pedersen et al., 2015; Torlay et al., 2017; Wang
et al., 2018a; Bharath et al., 2019; Hwang et al., 2019a,b; Zhou
et al., 2020; Nguyen et al., 2021). Studies targeting TLE achieved
∼90% accuracy (Cantor-Rivera et al., 2015; Bharath et al., 2019;
Chen et al., 2020; Huang et al., 2020), but it has been more
challenging to identify idiopathic generalized epilepsy (IGE), and
only∼75% accuracy has been obtained for this task (Wang et al.,
2018a; Si et al., 2020). Though these impressive investigations
yielded evidence of the potential of machine learning in epilepsy,
the clinical usefulness of the findings might be limited, since
a differentiation between individuals with epilepsy and healthy
subjects is not a major role of neuroimaging.

LATERALIZATION OF TLE FOCI

TLE is the most prevalent form of adult epilepsy and often causes
drug-resistant seizures (Engel, 1996). There is clear evidence
that surgical resection is more effective for refractory TLE than
a continued use of anti-epilepsy drugs (Wiebe et al., 2001),
and the accurate lateralization of the focus side in TLE is thus
clinically important and one of the main targets of neuroimaging
research in epilepsy.

As listed in Table 2, there have been various ML approaches
to the lateralization of TLE foci, using T1-weighted images,
diffusion MRI, FLAIR images, 18F-FDG-PET, or a combination
of these (Focke et al., 2012; Keihaninejad et al., 2012; Kerr et al.,
2013a,b; An et al., 2014; Hosseini et al., 2014; Chiang et al.,
2015; Pustina et al., 2015; Yang et al., 2015; Kamiya et al., 2016;
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Fang et al., 2017; Mahmoudi et al., 2018; Peter et al., 2018;
Bennett et al., 2019; Beheshti et al., 2020a,c; Fallahi et al., 2020;
Hosseini et al., 2020). The applications of these approaches to
cases without visually detectable lesions, i.e., so-called MRI-
negative TLE, would be particularly beneficial in clinical settings
by providing further clues to the focus beyond the conventional
approaches. Although the current accuracy of ML lateralization
for MRI-negative TLE seems not as high as that for MRI-
positive cases (> 98%) (Bennett et al., 2019), this approach
has achieved > 75% accuracy, which would be acceptable in
clinical practice (Keihaninejad et al., 2012; Bennett et al., 2019;
Beheshti et al., 2020a,c).

IDENTIFICATION OF EPILEPTOGENIC
FOCI, PARTICULARLY IN FOCAL
CORTICAL DYSPLASIA (FCD)

The accurate localization of the epileptogenic focus is
highly relevant for successful epilepsy surgery (Rathore and
Radhakrishnan, 2015), which may remediate drug-resistant focal
epilepsy. Structural MRI in particular plays a major role in the
visual detection of focus lesions, and it has been widely used in
clinical practice for epilepsy (Bernasconi et al., 2019). As seen
in Table 3, there have been various applications of machine
learning for lesion identification to improve the detection rate
or to develop automated algorithms (Hong et al., 2014; Ahmed
et al., 2015; Rudie et al., 2015; El Azami et al., 2016; Adler et al.,
2017; Jin et al., 2018; Tan et al., 2018; Wang et al., 2018b; Mo et al.,
2019; Alaverdyan et al., 2020; Lee et al., 2020a; Wagstyl et al.,
2020; Snyder et al., 2021; Zhang et al., 2021), which would be
concordant with the seizure onset zone detected by intracranial
EEG (Kanber et al., 2021). Focal cortical dysplasia (FCD), which
is a common cause of intractable epilepsy, is characterized by
abnormal cortical thickness, blurring of the gray-white matter
junction, and T2/FLAIR hyperintensity (Bernasconi et al., 2019).
It is thus reasonable that an accurate ML diagnosis was usually
achieved by structural MRI (such as T1 or FLAIR imaging,
often using surface-based methods) rather than functional
MRI (Table 3). More recent studies tend to use combined data
from multimodal imaging, whereas earlier studies used only
T1WI (Table 3). Differential diagnoses such as FCD type I vs.
II and FCD vs. tumor were also reported (Hong et al., 2016;
Guo et al., 2020).

PREDICTION OF CLINICAL OUTCOMES

There are also various ML applications for more direct
associations with clinical outcomes than lesion/focus detection
(Table 4). A major trend in this section is the prediction of
postsurgical seizure freedom (Bernhardt et al., 2015; Memarian
et al., 2015; Munsell et al., 2015; He et al., 2017; Gleichgerrcht
et al., 2018; Taylor et al., 2018; Gleichgerrcht et al., 2020;
Larivière et al., 2020; Kini et al., 2021; Sinha et al., 2021), in
light of the clinical importance. Most of the studies reported
70–90% accuracy for the prediction of seizure outcomes after

resection surgery. Other studies presented approximately 85%
accuracy for the identification of responders to vagus nerve
stimulation (VNS) (Ibrahim et al., 2017; Mithani et al., 2019).
In terms of surgery, ML methods were also applied and
generated good predictive values for postsurgical functional
deficit (Lee et al., 2020b), lateralization of the language
hemisphere (Gazit et al., 2016), and optimal planning for laser
surgery (Li et al., 2019).

Cognitive dysfunctions in epilepsy were also shown to
be predicted by ML methods (Paldino et al., 2014, 2017a,b,
2019; He et al., 2018; Zhang et al., 2018; Höller et al., 2020;
Mazrooyisebdani et al., 2020). Functional neuroimaging and/or
network measurement are often used for this prediction (Paldino
et al., 2017a,b, 2019; He et al., 2018; Zhang et al., 2018;
Mazrooyisebdani et al., 2020). Other ML applications included
predicting drug responsiveness (Amarreh et al., 2014; Yao et al.,
2019), acquiring epileptogenicity (Zhang et al., 2019; Akeret
et al., 2020; La Rocca et al., 2020; Wang et al., 2020), and the
differentiation of types of autoantibodies (Ernst et al., 2019).

REGRESSION MODELS (BRAIN-AGE
PREDICTION)

Another trend in the field of neuroimaging and machine
learning is regression models, which are often used for the
prediction of brain aging (Cole and Franke, 2017). Human
brains change with aging, and this may also be associated
with various neuropsychiatric diseases. To investigate the
relationships between brain aging and epilepsy, several
research groups have the regression model technique
(Pardoe et al., 2017; Chen et al., 2019; Hwang et al., 2020;
Sone et al., 2021).

In general, an increase in the age of the brain by ∼4–10
years has been reported (Table 5), which is consistent with
recent evidence of disease progression or tau deposition
in epilepsy (Tai et al., 2016; Galovic et al., 2019). The
increased brain age in individuals with epilepsy seems to be
associated with longer disease duration, early onset age, and/or
psychiatric comorbidity (Pardoe et al., 2017; Chen et al., 2019;
Sone et al., 2021).

METHODOLOGICAL ASPECTS AND
FUTURE DIRECTIONS

As described, the current ML applications for epilepsy imaging
are diverse in terms of the targeted epilepsy syndromes,
imaging modalities, feature extractions, and ML strategies.
Multimodal imaging is a recent trend in epilepsy research,
and it may provide comprehensive information (Sidhu et al.,
2018). Accordingly, there has been an increase in the number
of ML studies using multiple imaging modalities, especially in
recent years. However, as shown in Tables 1–5, each study
group seems to have some tendencies regarding the choice of
imaging modalities, which may have led to the diversity of
research in this field.
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Feature extraction is another significant factor in the diversity
of this research. While most studies have used a region-of-
interest (ROI) to extract imaging features, the choice of atlases
for ROIs varies. For example, some investigations used traditional
automated anatomical labeling (AAL) (Fallahi et al., 2020;
Si et al., 2020; Kini et al., 2021), and a different atlas was used
in other studies (Gleichgerrcht et al., 2018, 2020). Zhang et al.
(2019, 2021) used radiomics as a novel method to extract imaging
data, and this might provide greater usefulness than conventional
methods (Gillies et al., 2016). For better clinical applications,
we should develop and validate consistent methodologies, since
these factors may directly affect the prediction of outcomes and
the algorithm itself.

Regarding the ML algorithms, more recent studies have
tended to use deep-learning methods such as a CNN
(Hosseini et al., 2020; Lee et al., 2020b; Si et al., 2020;
Nguyen et al., 2021; Zhang et al., 2021). Another important
point about methodology is the shortage of studies using
unsupervised classification; indeed, only two studies adopted
unsupervised clustering (Bernhardt et al., 2015; Lee et al.,
2020a). Given the potentials of unsupervised clustering
for finding hidden patterns in unlabeled data, further
studies using this method are needed to uncover data-
driven information.

CONCLUSION

Machine learning is an emerging trend in the field of
neuroimaging in epilepsy, and promising results have been
obtained in many studies. The diversity in terms of targeted
epilepsy syndromes, imaging modalities, feature extractions, and
ML algorithms provides an extra challenge. Recent trends include
the use of deep learning, multimodal imaging, and regression
models, and additional investigations using unsupervised
clustering are desired. For better clinical applications, consistent
methodologies must be developed and validated.
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