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Abstract

Velocity measurements of an axisymmetric turbulent jet were made using a hot-wire
anemometer. The jet was a round free gas jet with a nozzle of D. = 3.18 mm
diameter. The non-dimensional axial mean velocity distribution was obtained for
jets with Reynolds numbers from 10,000 to 26,540. The non-dimensional axial rms
velocity distribution and the relative turbulence intensities were obtained for Reynolds
numbers from 10,000 to 27,900. The power spectra of the jet at a Reynolds number
of 20,000 were obtained by performing fast Fourier transforms on the square of the
turbulent velocity signal.

The velocity measurements were compared to those obtained by Simo (1991) and
to the theoretical predictions of Hinze (1975). The axial mean and rms velocity distri-
butions showed good qualitative agreement to Simo's results and Hinze's prediction
for all Reynolds numbers downstream distances of x/Do > 15, although the results
were quantitatively between 10% and 50% lower than the earlier results. The turbu-
lence intensities varied widely from Hinze's theoretical prediction and Simo's results,
due to white noise in the velocity measurement sytem. The power spectra of the jet
at Reynolds number 20,000 show the expected decrease in density as the frequency
increases. The white noise present in the turbulent velocity signal can be observed in
the power spectra as they fall off at high frequecies.

The best correlation between the experimental and theoretical results for the axial
velocity distributions was for Reynolds numbers of 20,000 or more, suggesting that
there may be a lower bound for which Hinze's prediction for centerline velocity is
applicable.

Thesis Supervisor: John H. Lienhard V
Title: Assistant Professor of Mechanical Engineering
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Chapter 1

Introduction

A jet may be generally defined as a high-velocity stream of fluid which emanates

under pressure from a small-diameter opening or nozzle. The term turbulent implies

that the flow within the jet is characterized by random fluctuations in fluid velocity.

The study of the fluid motion of turbulent jets has many real-world applications,

among which are the fuel injectors of automobile engines, and the particle dispersion

of aerosols.

My purpose is to confirm, using a hot-wire anemometer, various velocity measure-

ments of an axisymmetric turbulent jet made by Simo (1991), using a laser doppler

velocity measurement system. Of particular interest are the axial mean and rms

velocity distributions and the relative intensity of the turbulent velocity fluctuations.

A turbulent flow is an irregular flow characterized by random fluctuations in fluid

velocity with time and space coordinates, and intense mixing of the fluid on the

macroscopic level. For a steady turbulent flow, a statistical time-average velocity

may be discerned. The turbulent flow of a round free jet is axisymmetrical in nature;

that is, the turbulence is statistically symmetric about the axis of the flow direction.

For this reason, it is primarily of interest to consider the fluid velocity at various

points along the centerline of the jet. In order to define the downstream distance

for which turbulent velocity measurements are of interest, the axial mean velocity

distribution was determined for various Reynolds numbers and compared to Hinze's

theoretical prediction.



The relative intensity of the fluctuations in velocity due to the effect of turbulence

was also examined. In order to do this, the hot-wire anemometer was AC-coupled

in order that the root-mean square (rms) value of the velocity fluctuation about the

average value could be determined. The axial distribution of the rms velocity was

determined, as for the mean velocity. The relative intensity of the fluctuation as

compared to the average velocity of the jet was then plotted against the relative

downstream distance.

Finally, it is of interest to obtain the power spectra of the turbulent velocity

fluctuations, in order to find which frequencies of the turbulent velocity signal carry

the most energy. This was accomplished by performing a Fourier transform on the

square of the turbulent velocity signal at various downstream distances for a particular

Reynolds number.

Chapter 2 outlines the theoretical predictions for turbulent jet velocities. Chapter

3 provides a description of the equipment used in the experiments and the calibration

procedure for the hot-wire anemometer, as well as the procedure for the velocity mea-

surements. Chapter 4 contains the results of the experiments for various Reynolds

numbers ranging from 10,000 to 27,900. The remaining chapters compare the exper-

imental results to those predicted by theory and to those experimentally obtained by

Simo.



Chapter 2

Theoretical Analysis

For a round free jet, the Reynolds number R, is defined as:

UoDoR, = U (2.1)

where U, is the exit velocity of the jet, Do is the diameter of the jet nozzle, and v

is the kinematic viscosity of the fluid. Physically, this dimensionless parameter is an

estimate of the inertia force of the flow over the viscous force.1 In general, a flow will

be turbulent for a large Reynolds number of 104 or greater. Since in this case the

kinematic viscosity of air is constant, and the exit diameter of the nozzle was also

constant, the Reynolds number of the flow can be varied by changing the exit velocity

of the jet.

The axial velocity of a turbulent jet is a function of the Reynolds number as well

as the downstream distance. A typical axisymmetric turbulent jet is shown in Figure

2-1 in order to define the quantities which are relevant in velocity measurements. The

jet has a nozzle diameter of D0 , an exit velocity of U,, and is statistically symmetric

about the x axis.

In making measurements of the velocity of a turbulent jet, consideration is first

given to the axial mean velocity distribution. Hinze (1975) gave a relation for the

centerline mean velocity in a round free gas-phase jet:

1 Gerhart 379.
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U 5.9
v· =(2.2)

After the mean velocity distribution has been determined, the turbulent velocity

fluctuations should be considered. Of particular interest is the relative intensity of

the fluctuations compared to the mean velocity.

At any given time t, the momentary value of the velocity of the fluid in the

turbulent jet, U, may be expressed as:

U =U+ u (2.3)

where U represents the average value of the velocity, and u is the value of the fluc-

tuation. Because the mean value of the fluctuations will be zero, the intensity of the

turbulence fluctuations is usually expressed by the root mean square (rms) value

' = (2.4)

The relative intensity of the fluctuations is then given by the ratio u'/U. The

average velocity U is the time-average of the velocity at a point along the axis of the

jet.

Along the centerline of a round free jet, the rms velocity fluctuations are related

to the mean velocity as:

u' = 0.25U (2.5)

Substituting this expression into Equation 2.2, we obtain the following relation

for the axial rms velocity distribution:

u' 1.5
U 1 •1.5 (2.6)

S Do-O.5

In order to obtain the power spectra of the jet, a Fourier transform must be

performed on the square of the turbulent velocity waveform. Fourier analysis is

dependent on the fact that a periodic or aperiodic function may be expressed as the



sum of waveforms of different frequencies. An aperiodic function such as the turbulent

velocity waveform may be expressed as

x(t) = E Cnei2want/T (2.7)

The frequency spectrum of such a function can be found by a discrete Fourier

transform,

Xk = (r)e-i2Xnt/T (2.8)

A fast Fourier transform chooses N as a power of 2 in order to reduce the number

of mathematical operations necessary to obtain the frequency spectrum.

The correlation u(t)u(t + r) is called the autocorrelation between the values of u

at two different times. The power spectrum S,,(f) is the Fourier transform of this

correlation:

SU(f) = f u()u(t + r)e 2 rfdr (2.9)

The power spectrum represents the mean-square amplitude of the turbulent veloc-

ity signal. It may be thought of as the energy in u(t) at a particular frequency.2 By

plotting the power spectra of the jet at various downstream distances, it is possible

to discern which frequencies carry the most energy.

2Tennekes 210-215.



Chapter 3

Experimental Apparatus and

Procedure

3.1 Overview of Apparatus

The apparatus used for the velocity measurements is shown in Figure 3-1. This

apparatus consisted of a house compressed air supply with a pressure regulator, a

nozzle to produce the jet, the hot-wire anemometer, a TSI bridge, a dual-track voltage

supply, an oscilloscope, a digital multimeter, and a voltmeter and personal computer

for data acquisition. A Pitot tube and a manometer were also used, in order to

calibrate the hot-wire anemometer. The only physical dimension of the experimental

apparatus which is of consequence in analysis is the diameter Do of the jet nozzle,

which was 3.18 mm.

The pressure regulator was used to control the exit velocity of the turbulent air jet.

The hot-wire anemometer was placed downstream at various points along the axis of

the jet. The probe was connected to the TSI bridge, which was powered by the dual

track voltage supply. The output voltage from the bridge was sent to the oscilloscope

and digital multimeter so that it could be recorded. The scope was AC-coupled for

the rms velocity measurements. For the power spectra measurements, the output

voltage of the probe was filtered to remove its DC component. Then the waveform

of the turbulent velocity fluctuation was captured and a fast Fourier transform was
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performed using the computer.

3.2 The Hot-Wire Anemometer

The hot-wire anemometer was used in the velocity measurements because it is an

excellent instrument for measuring turbulent flow. Its small size causes only a minimal

disturbance of the flow pattern, and its high frequency response and sensitivity allow

the hot-wire probe to capture the turbulent velocity fluctuations which are of interest.

The hot-wire anemometer uses a very fine, short metal wire as the detecting el-

ement. The wire is cooled by the flowing fluid through heat conduction, free and

forced convection, and radiation. The drop in the wire's temperature causes the elec-

trical resistance of the wire to decrease. By using the hot-wire probe in a Wheatstone

bridge circuit with feedback, the electrical resistance of the wire can be held constant.

Consequently, the temperature of the wire will also be held constant. The fluctuating

electric current which is required to hold the wire temperature constant is read as a

voltage. From the output voltage, the velocity of the flow is determined.

In high Reynolds number flow, the heat transfer effects of conduction, free convec-

tion and radiation are negligible compared to those of forced convection. For forced

convection, the heat loss Q is given as:

Vu2
Q = hA,(T, - Tf) = (3.1)

Rw

where h is the heat transfer coefficient, Aw is the cross-sectional area of the wire, Tw

is the temperature of the wire and Tf is that of the fluid.' The quantity Vw/R, is

the electric power generated in the wire, which is equivalent to the heat loss of the

system.

From heat transfer theory, the heat transfer coefficient h is related to the velocity

of the fluid as:

1Lienhard 16.



h = A + BU'/ 2  (3.2)

From the voltage divider of the hot-wire bridge, the voltage across the hot-wire

anemometer can be expressed as

V, = VO( Rw (3.3)R. + R,
where V. is the output voltage from the bridge.

Rewriting Equation 3.1, we find that

A BU/2 = V2)A+ BU/ 2 =V• (0R, + R1)2A,(T, - T) (3.4)

Since the right side of the equation is constant except for V., we obtain the ex-

pression

Vo0 = C + DU/12  (3.5)

The coefficients C and D are not accurately predictable; therefore it is necessary to

calibrate the hot-wire anemometer using known values for the velocity U in order to

determine the coefficients.

3.3 Calibration Procedure

In order to calibrate the hot-film anemometer, it is necessary to know the average

velocity of the jet. The velocity of the jet can be determined by using a Pitot tube

and a manometer. The Pitot tube operates on Bernoulli's principle, which states that

in steady flow of incompressible fluid the change in kinetic energy between any two

positions in space is equal to the work done by pressure and gravity forces. Bernoulli's

equation may be expressed as:

v2 P1 2v P2
S+ - + gh= -+ +gh 2  (3.6)

2 p, 2 p,



where vi and v2 are the fluid velocities at points 1 and 2 in the flow, P1 and P2 are the

fluid pressures, hi and h2 are the fluid heights, p, is the density of the fluid, which is

air, and g is the acceleration of gravity.2

This equation may be solved for the fluid velocity at point 1. We assume that

point 2 is the stagnation point of the fluid, where v2 = 0. Since there is no difference

in height between point 1 and point 2, the gravity terms of the Bernoulli equation

cancel. Thus, we can obtain an expression for the fluid velocity in terms of the pressure

difference between the point at which the velocity is measured and the stagnation

point, where P2 is equal to atmospheric pressure. Using a reclining manometer, we can

measure this pressure difference. The expression for the fluid velocity then becomes:

S= U= 2pgh sin (3.7)
Pg

where h, is the difference of water column heights in the manometer measured in

the inclined plane, and 0 is the angle from the horizontal at which the manometer is

inclined. The quantity p, is the density of water.

From this equation it can be seen that the fluid velocity is proportional to V/'W.

Since the velocity is also proportional to the output voltage of the hot-wire anemome-

ter, as vA occ V,2, it follows that V,2 is directly proportional to h'l/ 4 . Thus, to calibrate

the hot-wire anemometer, the Pitot probe and manometer are used to determine the

fluid velocity at points downstream of the nozzle. Then the hot-wire output voltage

at these same points is recorded, and the coefficients C and D of Equation 3.5 are

determined by linear regression. As a check that the calibration has been properly

performed, a plot of V,2 versus h1/ 4 is made for the downstream fluid velocities. Since

these quantities are directly proportional, a good calibration should produce a linear

plot of output voltage versus manometer height.

2 Gerhart 184-186.



3.4 Experimental Procedure

After the hot-wire probe was calibrated, the velocity measurements were performed.

First, the average velocity of the flow was measured at various points along the axis

of the jet for a range of relative downstream distances from x/Do = 0 to x/Do = 70.

These measurements were repeated for several Reynolds numbers of the jet.

Next, the hot-wire anemometer was AC-coupled so that the turbulent velocity

fluctuations could be measured. The axial rms velocity distribution was obtained, and

then the relative intensity of the rms value of the fluctuations was plotted against the

relative downstream distance to determine where the turbulence was most prominent

in the flow.

Finally, the turbulent velocity waveform was captured using the data acquisition

system for eight downstream distances at a Reynolds number of 20,000. Fast Fourier

transforms were performed on the square of the turbulent signal in order to obtain

the power spectra.



Chapter 4

Results

4.1 Axial Velocity Distributions

The axial mean velocity distribution of the jet for Reynolds numbers of 10,000, 15,000,

20,000, and 26,540 is given in Figure 4-1. The distribution is plotted as nondimen-

sional centerline mean velocity U/Uo versus nondimensional downstream distance

z/Do. For comparative purposes, the theoretical mean velocity distribution given by

Hinze in Equation 2.2 is also shown on the graph.

The axial rms velocity distribution of the jet is given in Figure 4-2 for Reynolds

numbers of 10,000, 15,000, 20,000, and 27,900. This distribution is plotted as non-

dimensional axial rms velocity u'/Uo versus nondimensional downstream distance

z/Do. The theoretical rms velocity distribution predicted by Hinze (Equation 2.6) is

given for comparison.

4.2 Relative Turbulent Intensity

The relative intensity of the turbulent velocity fluctuations is shown in Figure 4-

3. This distribution is given as the relative intensity u'/U versus the nondimen-

sional downstream distance z/Do. The theoretical prediction given in Equation 2.5

is u'/U = 0.25; this is plotted on the graph for comparison.
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4.3 Power Spectra

The turbulent velocity waveform was captured using the data acquisition system for

eight downstream distances from x/Do = 0 to x/Do = 70, at a Reynolds number of

20,000. After the waveform was captured, a fast Fourier transform was performed on

the square of the data in order to obtain the power spectra of the jet at the various

downstream velocities. The power spectra of the jet for x/Do = 0 to x/Do = 70 at

Re = 20,000 are shown in Figures 4-4 through 4-11.
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Chapter 5

Discussion

5.1 Axial Velocity Distributions

The axial mean velocity distribution shown in Figure 4-1 shows good qualitative

agreement with the theoretical prediction given by Hinze, especially for downstream

distances of az/D. > 15. The shape of the experimental curve for each of the four

Reynolds numbers is close to that of the theoretical curve given by Equation 2.2.

Quantitatively, the results are almost all lower than the theoretical curve, usually by

0.03 or 0.04 Uo, and have a percentage deviation of between 20% and 50% depending

on the downstream distance.

The qualitative agreement between the results and Simo's experimental results is

also quite good for most downstream distances, since Simo's results are quite close

to the theoretical prediction of Hinze. Since Simo's results lie above the theoretical

curve, however, the quantitative disparity is slightly greater. The axial rms velocity

distribution shown in Figure 4-2 also displays a good qualitative agreement with

Hinze's theoretical prediction. Quantitatively, the results lower than the theoretical

curve, but are closer in general to the theoretical results than the mean velocity results

are. The results for z/Do > 20 are within 0.02 U0 of the theoretical curve, with a

maximum percentage difference of 60%.

Simo's results for the axial rms velocity distribution are extremely close to Hinze's

theoretical curve, so there is excellent quantitative agreement between those earlier



results and the experimental results. In particular, the results which Simo obtained

for R, = 26,000 and the experimental results for R, = 27,900 are very close, which is

not surprising because the Reynolds numbers are so close.

Both of the axial velocity distributions which were obtained in the experiments

serve to confirm the results which Simo obtained using the laser doppler system,

and Hinze's theoretical predictions for the centerline velocity distributions in a round

free gas jet. The excellent qualitative agreement suggests that Hinze's theoretical

prediction is a good mathematical model of downstream jet velocities. The agreement

between the experimental results and the theory is better for the higher Reynolds

numbers of 20,000 and 26,540 or 27,900. This suggests that the validity of the theory

decreases as the Reynolds number is decreased and the jet becomes less turbulent in

nature.

5.2 Relative Turbulence Intensities

The relative turbulence intensities do not correlate well with Hinze's theoretical pre-

diction. According to theory, the turbulence intensities should be constant at a level

of u'/U = 0.25. Simo's turbulence intensities, while displaying a good deal of scatter,

are between values of u'/U from 0.22 to 0.33. The experimental turbulence intensi-

ties rise in a nearly linear fashion for all Reynolds numbers, so there is no apparent

correlation with the theory.

Because the theoretical prediction for turbulence intensity has been confirmed

by a multitude of experiments, it appears that there is some degree of error in the

experimental turbulence intensities which were obtained. During the experiment, the

rms voltages which were obtained were nearly constant for all downstream distances,

particularly for the lower Reynolds numbers of 10,000 and 15,000. In fact, these rms

voltages should have been steadily decreasing, since the downstream rms velocities

should be smaller in order to maintain the ratio of 0.25 for u'/U. This observation

leads to the hypothesis that there was some degree of white noise present in the

electronics of the measurement system which affected the hot-wire anemometer output



voltages. This assumption was confirmedf white noise present in the electronics of the

measurement system which affected the hot-wire anemometer output voltages. This

assumption was confirmed by the observation of white noise in the power spectra of

the velocity waveforms at R, = 20,000, which will be discussed in the next section.

The white noise present in the measurement system resulted in inaccurate readings

for the rms voltage, which in turn caused inaccurate rms velocity calculations. Thus,

although the axial velocity profiles are correct, and a good confirmation of Hinze's

theory and Simo's results, the turbulence intensities u'/U. must be disregarded with

respect to the earlier results due to the error present in the measurement system.

5.3 Power Spectra

The power spectra of the jet at R, =20,000 display the expected decrease in density

as the frequency of the turbulent fluctuations increases. For az/D <_ 20, the power

spectra have large peaks all through the frequency spectrum, indicating the presence

of significant high frequency turbulence. For x/Do of 30 or greater, though, the

power spectra fall off at high frequencies, indicating that the majority of the turbulent

velocity fluctuations have low frequencies.

The power spectra exhibit a small white noise level as they fall off at high fre-

quencies, reaching a final average value which is greater than zero. Although the

amount of noise is not excessively large, it did have an effect on the rms velocity mea-

surements. The high frequency noise in the electronics of the measurement system

led to inaccurate rms voltage readings, which in turn caused inaccurate rms velocity

calculations. This led to the large discrepancy between the theoretical prediction and

the experimental results in the turbulence intensities.



Chapter 6

Conclusions

The hot-wire anemometer measurements were successful in confirming the axial mean

and rms velocity profiles for an axisymmetric turbulent jet which were predicted by

Hinze and found experimentally by Simo. There was very good qualitative agreement

between the experimental results and those given by Hinze and Simo for the shape of

the nondimensional axial velocity profile, particularly at higher Reynolds numbers.

The experimental results were lower than Simo's results and Hinze's predictions by

about 20% in most cases.

Due to the degree of white noise in the measurement system, the turbulence

intensities which were found do not correlate well with either Simo's results or Hinze's

theoretical prediction of u'/U = 0.25. The noise caused the rms voltage readings

to be inaccurate, which in turn led to inaccurate values for the rms velocity. The

experimental results demonstrate a nearly linear increase in turbulence intensity with

nondimensional downstream distance. Since numerous previous experiments have

confirmed the validity of Hinze's theoretical prediction, it must be assumed that the

experimental results obtained in this case are inaccurate.

The power spectra of the downstream turbulent velocities for R, = 20,000 exhib-

ited the expected behavior for downstream distances of x/Do of 30 or greater, since

density decreased as the frequency increased. Closer to the nozzle, very significant

high-frequency turbulence was observed. A small degree of white noise was observed

as the power spectra fell off at high frequencies, which explains the discrepancy in



the turbulence intensities.
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