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Pituitary adenylate cyclase-activating polypeptide (PACAP) is a highly conserved
neuropeptide that regulates neuronal physiology and transcription through Gs/Gq-
coupled receptors. Its actions within hypothalamic, limbic, and mnemonic systems
underlie its roles in stress regulation, affective processing, neuroprotection, and
cognition. Recently, elevated PACAP levels and genetic disruption of PAC1 receptor
signaling in humans has been linked to maladaptive threat learning and pathological
stress and fear in post-traumatic stress disorder (PTSD). PACAP is positioned to
integrate stress and memory in PTSD for which memory of the traumatic experience
is central to the disorder. However, PACAP’s role in memory has received comparatively
less attention than its role in stress. In this review, we consider the evidence for
PACAP-PAC1 receptor signaling in learning and plasticity, discuss emerging data on
sex differences in PACAP signaling, and raise key questions for further study toward
elucidating the contribution of PACAP to adaptive and maladaptive fear learning.
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INTRODUCTION

The salient experiences of our daily life create memories that form the narrative of our self. These
memories enrich our connections with others and guide our decisions and behavior, but if born out
of pain and trauma, can be debilitating. Intrusive, terrifying memories that are difficult to extinguish
or that generalize to non-threatening situations are the hallmark of post-traumatic stress disorder
(PTSD), a complex disorder with a lifetime prevalence of about 8% (Kessler et al., 1995; Kilpatrick
et al., 2013). PTSD is characterized by altered stress reactivity, generalized fear to non-threatening
cues and situations, and is more prevalent in females (Kessler et al., 1995; Kilpatrick et al., 2013).
Recently, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been
linked to PTSD (Ressler et al., 2011; Almli et al., 2013; Uddin et al., 2013). This link has been
attributed to the role that PACAP plays in regulating the somatic and affective components of
chronic stress, discussed in excellent reviews (Hammack and May, 2015; King et al., 2017b; Miles
and Maren, 2019). However, PACAP’s role in memory has received comparatively less attention
yet may also contribute to PTSD for which memory of the traumatic experience is central to the
disorder. Here, we briefly review the literature supporting a role for PACAP in memory formation
and discuss avenues for further investigation.
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PACAP, AN OVERVIEW

Pituitary adenylate cyclase-activating polypeptide is a highly
conserved pleiotropic neuropeptide in the vasoactive intestinal
peptide (VIP)/secretin/glucagon family that modulates several
physiological functions in the periphery and central nervous
system via class B G-protein coupled receptors (Miyata et al.,
1989, 1990; Arimura et al., 1991; Piggins et al., 1996; Arimura,
1998; Vaudry et al., 2009). In the brain, the 38-amino acid
form of PACAP predominates (Arimura, 1998), and PACAP-38
and its receptors are widely expressed in circuits involved in
memory, stress, and affect (Shioda et al., 1997; Hannibal, 2002;
Joo et al., 2004; Condro et al., 2016). PACAP modulates neuronal
function via the PACAP-specific high-affinity receptor PAC1 and
the VPAC1 and VPAC2 receptors, which have similar affinity
for PACAP and VIP. These receptors are coupled to Gαs, but
PAC1 can also signal through Gαq (Spengler et al., 1993; Dickson
and Finlayson, 2009; Vaudry et al., 2009; Harmar et al., 2012).
Thus, PACAP can regulate the neuronal excitability and synaptic
plasticity underlying memory and cognition through a diverse
set of cAMP-mediated intracellular signaling (for a review see
Johnson et al., 2019).

DISTRIBUTED MEMORY SYSTEMS

A role for PACAP in learning and memory was evident
from early examinations of mice lacking the PAC1 receptor
(PAC1R). Genetic deletion of PAC1R either globally or in
the forebrain produced mild to severe impairments in certain
forms of hippocampus-dependent learning (Sauvage et al.,
2000; Otto et al., 2001a,b). Contextual fear conditioning, an
associative paradigm in which subjects learn to associate the
spatial configuration of environmental cues with a footshock,
was impaired, while other hippocampus-dependent learning
tasks, the Morris water maze and social transmission of food
preference were unaffected. Hippocampus-independent cued
fear conditioning was also unaffected by the loss of PAC1R
signaling in the same study. Global knockouts displayed anxiety-
like behavior and altered stress reactivity, which is consistent
with PACAP’s role in HPA axis regulation, but which could affect
the conditional response of freezing used to assess memory in
rodent fear conditioning. Thus, it is important that the forebrain-
specific knockouts, which showed the same memory deficit,
did not differ from wild-type controls in locomotor activity or
anxiety-like activity in the open field or elevated plus maze (Otto
et al., 2001b). Mice lacking the PACAP peptide also showed
impaired contextual fear memory as well as deficits in novel
object recognition (Takuma et al., 2014). However, these mice
exhibit a wide range of altered behavior (reviewed in Hashimoto
et al., 2006). Some of these behaviors could be ameliorated with
environmental enrichment early in life, but not in adulthood,
suggesting that PACAP’s role in neural development may
contribute to abnormal behaviors in PACAP deficient mice
(Ishihama et al., 2010; Takuma et al., 2014). Nonetheless,
exogenous delivery of PACAP intracerebroventricularly into

adult rats enhanced the consolidation of a passive avoidance
memory at low doses (Sacchetti et al., 2001) and temporarily
impaired contextual fear memory at high doses (Meloni et al.,
2016, 2018). These studies demonstrate a role for forebrain
PACAP in contextual fear learning and suggest that PAC1R
signaling may be preferentially engaged by aversive events.

More recently, behavioral pharmacology studies have
identified specific brain regions where PACAP contributes
to aversive memory or its extinction. These include the
hippocampus, amygdala, and prelimbic cortex. In the
hippocampus, the consolidation of contextual fear memory
was enhanced by PACAP and impaired by the PAC1R antagonist
PACAP6-38, when injected immediately after training (Schmidt
et al., 2015). Hippocampal PACAP also contributes to fear
extinction, while amygdala PACAP is needed for contextual
fear memory but not its extinction (Schmidt et al., 2015). The
subregional specificity of PACAP’s effects in the hippocampus
remain to be determined. The hippocampus is functionally
heterogeneous with unique output connectivity along its dorsal-
ventral axis (Dong et al., 2009). These studies targeted dorsal
hippocampus and given the importance of ventral hippocampus
to affective behavior and learning, future work should examine
ventral hippocampal PACAP. PACAP also participates in the
formation of trace fear memory, a form of cued fear learning
dependent on the prelimbic cortex and hippocampus in addition
to the amygdala (Kirry et al., 2018). Trace conditioning requires
the association of a cue and shock separated in time, and
linking these events requires sustained neuronal activity in
prelimbic cortex (Baeg et al., 2001; Gilmartin and McEchron,
2005; Gilmartin et al., 2013b, 2014). Prelimbic injection of
PACAP6-38 prior to training impaired the formation of the
cued memory in females, but not males (Kirry et al., 2018). This
sex difference, discussed below, may provide insight into the
genetic link between PAC1R and PTSD, for which women with
a genetic polymorphism in the PAC1R gene exhibit enhanced
reactivity to threat-predictive cues (Ressler et al., 2011). The
prefrontal cortex is also needed for aspects of contextual fear
learning (Gilmartin and Helmstetter, 2010; Gilmartin et al.,
2013a; Rozeske et al., 2015; Heroux et al., 2017; Twining et al.,
2020), but PAC1R antagonism did not affect the contextual
fear memory formed alongside the cued fear memory in trace
conditioning (Kirry et al., 2018). Nor did the manipulation
affect a non-aversive spatial-working memory T-maze task in
either sex. These data suggest that PAC1R signaling contributes
to prefrontal mechanisms of working memory or sustained
attention required for predicting threat based on available cues.
Together, these studies demonstrate a role for PACAP signaling
in learning and memory and point to site-specific engagement of
PACAP in cued and contextual fear.

CELLULAR AND SYNAPTIC
PHYSIOLOGY

The regulation of synaptic glutamatergic signaling and the
production of new proteins for long-term synaptic stabilization
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are the basis of the cellular consolidation of memory, a process
that generally concludes within a few hours after training
(McGaugh, 2000; Asok et al., 2019). Adenylate cyclase/cAMP-
driven intracellular signaling leading to CREB-mediated gene
transcription is critical for the formation of long-term memories
(Kandel et al., 2014; Asok et al., 2019). PACAP’s namesake
ability to activate these signaling cascades underlies its role in
memory. In hippocampal circuits, PACAP modulates synaptic
and evoked NMDA- and AMPA-mediated currents via PKA
or PLC/PKC (Roberto and Brunelli, 2000; Roberto et al., 2001;
Ciranna and Cavallaro, 2003; Yaka et al., 2003; Macdonald et al.,
2005; Costa et al., 2009; Pecoraro et al., 2017). PACAP-dependent
phosphorylation of NMDA receptor subunits promotes mossy
fiber long-term potentiation (LTP), a cellular correlate of learning
and memory, and LTP is impaired in mice lacking PACAP or
PAC1R (Otto et al., 2001a; Matsuyama et al., 2003). PACAP’s
effects on plasticity are dose-dependent, with higher doses
exerting inhibitory effects on hippocampal synaptic transmission
via VPAC signaling (Costa et al., 2009), which reflects its
dose-dependent effects on hippocampus-dependent fear memory
(Sacchetti et al., 2001; Meloni et al., 2016). It is important to
note that temperature is an important factor in the physiological
investigation of PACAP. While lower temperatures (e.g., 21–
24◦C) are useful for slowing down the fast ion channel kinetics
linked to PAC1R activation (Johnson et al., 2019), they can
alter other measures of excitability and interfere with PAC1R
endosomal signaling (Merriam et al., 2013). Moreover, the
majority of existing hippocampal work has focused on CA1 and
CA3, but PAC1R is expressed also in the dentate gyrus (Jaworski
and Proctor, 2000; Joo et al., 2004). Recent work has shown that
PACAP-PAC1R activation drives CREB-mediated transcription
and promotes excitability of DG granule cells (Johnson et al.,
2019; Johnson R. et al., 2020; Johnson R. L. et al., 2020).

Pituitary adenylate cyclase-activating polypeptide has dose-,
receptor-, and circuit-specific effects on physiology in other
brain areas, which highlights the potential ways in which
PACAP can affect learning within a distributed network.
In the amygdala, PACAP increases AMPA-mediated currents
at BLA-CeA synapses via VPAC1 (Cho et al., 2012) and
increases GABA release via PAC1R (Varodayan et al., 2019),
mechanisms that underlie affective behavioral responses to
chronic stress or pain. In the central nucleus of the amygdala,
fear conditioning drives expression of the plasticity-related
protein Arc and intracerebroventricular infusion of PACAP
enhances this expression (Meloni et al., 2018). Arc, whose
translation is regulated by PKA activity (Bloomer et al., 2008),
is critical to several cellular processes supporting memory and
cognition (e.g., Nikolaienko et al., 2018). PACAP’s contribution
to synaptic plasticity in cortical systems is not clear. Given the
selective role for prelimbic PAC1R signaling in trace cued, but
not contextual, memory (Kirry et al., 2018), PACAP may act
on working-memory or sustained attention mechanisms. One
candidate mechanism is the regulation of GluN2B-containing
NMDARs, which promote recurrent activity in cortical circuits
(Wang et al., 2013) and which are needed for trace cued,
but not contextual fear learning in the prefrontal cortex and

hippocampus (Gao et al., 2010; Gilmartin et al., 2013a). PACAP
has been shown to phosphorylate the GluN2B subunit in
the hippocampus and hypothalamus to regulate glutamatergic
signaling (Yaka et al., 2003; Resch et al., 2014).

Pituitary adenylate cyclase-activating polypeptide can also
influence memory via modulation of intrinsic physiology
(see Open Questions) and via developmental maturation of
memory circuits (reviewed in Shen et al., 2013). For example,
developmental knockout of VPAC2 which is sensitive to both VIP
and PACAP prevented the formation of fear extinction memory
in adulthood (Ago et al., 2017). Importantly, VPAC2-KO mice
had reduced cell size and dendritic branching in the prelimbic
cortex, morphological changes similar to those observed after
chronic corticosterone exposure and chronic stress, conditions
which also produce fear extinction deficits (Wellman, 2001;
Radley et al., 2004, 2006; Moench and Wellman, 2017; reviewed
in Wellman et al., 2020). Whether impaired extinction in VPAC2-
KO mice is a consequence of altered prefrontal morphology
or lack of PACAP/VIP signaling at VPAC2 in the prefrontal-
amygdala circuit during extinction learning remains to be
determined. Nonetheless, these neuropeptides are necessary
for proper neural maturation, and pathological disruptions
in PACAP signaling during critical developmental windows
could thus affect adult cognition by altering the development
of memory-related circuits. Although we are only beginning
to elucidate the diverse mechanisms by which PACAP affects
learning and memory, the significant work on the diversity of
PACAP signaling in stress-related behaviors provides a useful
foundation for rapid progress in this effort (Hammack and May,
2015; Johnson et al., 2019; Ferrara and Gilmartin, 2020).

SEX DIFFERENCES

The work above implicates PACAP and PAC1R in neuroplasticity
and memory and suggests that endogenous PACAP released
during salient, aversive events contributes to memories for
threat-predictive cues and contexts. Therefore, vulnerabilities
in PACAP signaling may contribute to pathological fear in
PTSD through its roles in learning and in mediating traumatic
stress responses. Further investigation of the PACAP-PTSD
link requires inclusion of female subjects, not only because
females have largely been excluded from preclinical study, but
also because of a sex-specific link between PACAP and PTSD.
A single-nucleotide polymorphism (SNP) in the adcyap1r1
gene encoding PAC1R is associated with symptom severity in
women, but not men; altered DNA methylation of the same
gene is associated with PTSD in both sexes (Ressler et al.,
2002; Almli et al., 2013). The risk allele for PTSD is also
associated with symptom severity in GAD females, but not
males (Ross et al., 2020). The SNP is located in an estrogen-
response element (ERE), and the nucleotide change interferes
with estradiol-estrogen receptor alpha binding the ERE, leading
to a decrease in receptor expression (Mercer et al., 2016). This
points to a potential mechanism of vulnerability in women.
Indeed, several labs are actively examining how PACAP in the
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BNST and hypothalamic stress circuits regulates the affective
response to stress in male and female rodents (King et al.,
2017a,b; Ramikie and Ressler, 2018), and additional mechanistic
insight may come from examination of sex differences in
autonomic regulation by PACAP (Nakamachi et al., 2016). This
work complements that of Bangasser, Valentino, and others
detailing sex differences in the corticotropin-releasing factor
(CRF) system and brainstem arousal systems [for excellent
reviews, see Bangasser and Valentino (2014); Valentino and
Bangasser (2016); Bangasser et al. (2019)].

Little is known about sex differences in PACAP’s contribution
to memory. Recent work showed that prelimbic PACAP
participates in trace cued fear learning in females, but not
males, and that mRNA levels for PAC1R are higher in females
than males and further modulated by the estrous cycle (Kirry
et al., 2018). Recently, Rajbhandari et al. (2021) reported
increased fear generalization and impaired extinction in males,
but not females, following viral deletion of PAC1R in the
medial intercalated cells of the amygdala, a region involved
in the suppression of fear following extinction (Duvarci and
Pare, 2014). Females in that study showed a reduced asymptotic
level of fear during acquisition. These behavioral results suggest
that PACAP signaling exerts sex and region-specific modulation
of fear memories. In humans, the PTSD-related PAC1R risk
allele is associated with enhanced startle to threat-related cues,
impaired fear and safety discrimination, and altered hippocampal
and amygdala reactivity in fear conditioning (Ressler et al.,
2011; Jovanovic et al., 2013; Stevens et al., 2014). In children,
females with the risk allele showed enhanced fear responding
to threat-related cues 1 year after conditioning (Jovanovic et al.,
2020). While these clinical studies implicate associative learning
processes in the PAC1R-PTSD link, it is difficult to distinguish the
unique contributions of associative learning vs stress reactivity.
Preclinical investigations are critical in this endeavor.

OPEN QUESTIONS

Pituitary adenylate cyclase-activating polypeptide contributes to
learning and memory under salient, usually aversive conditions.
The diversity of its neural function places this pleiotropic
signaling peptide in the company of several peptide factors,
such as CRF and estradiol, that have a wide range of function
beyond that for which they were initially characterized (Hupalo
et al., 2019; Taxier et al., 2020). This diversity likely underlies
the influence that PACAP dysregulation appears to have in
psychiatric illness, but also makes it challenging to determine the
nature of that relationship. Here, we raise a few open questions to
guide further investigation.

Open Question 1: Is PACAP’s Role in
Learning Selective for Aversive Episodic
Memory?
Disruption of PAC1R signaling affects the formation of
associative fear memories dependent on episodic memory
systems, such as contextual fear or trace fear conditioning, but
leaves standard delay cued conditioning and spatial learning

largely intact. Interestingly, the amnesiac gene in drosophila,
which codes for a putative PACAP homolog, AMN, is necessary
for odor-shock associative memory (Quinn et al., 1979; Feany
and Quinn, 1995; Turrel et al., 2018). While the receptor
target(s) by which AMN mediates memory is unclear, the
parallels in these behavioral observations raise the possibility
that PACAP is selective for aversive learning; however, its role
in appetitive or other non-aversive learning is largely untested.
Thus, to determine PACAP selectivity to certain forms of
memory, its contribution to non-aversive memory needs to
be clarified. Importantly, PACAP and PAC1R manipulations
in the mature circuit are needed to rule out learning deficits
due to aberrant neural development of healthy memory
circuits for which PACAP is implicated. To this point, the
role for AMN in the development of associative memory
systems was recently dissociated from its role in adult learning
(Turrel et al., 2018).

Open Question 2: What Aspect of an
Aversive Experience Recruits PACAP
Signaling?
Pituitary adenylate cyclase-activating polypeptide is mobilized
by repeated or chronic stressors or by persistent neuropathic
pain states (Dickinson and Fleetwood-Walker, 1999; Mustafa,
2013), but release conditions in learning networks during
relatively brief aversive events in fear conditioning are
unknown. PACAP-expressing cells are found throughout
learning circuits (Hannibal, 2002; Condro et al., 2016), many
of which robustly respond to shock delivery. One possibility
is that the aversive shock reinforcer may trigger the co-
release of PACAP at glutamatergic terminals, facilitating
cAMP-mediated signaling in support of robust fear memory.
Alternatively, any sufficiently salient or arousing experience
may mobilize PACAP and promote the consolidation of
memory. The development of tools that allow accurate
measurement of peptide release in vivo provide the circuit-
level resolution needed to determine when and where
PACAP is released during learning (Muller et al., 2014;
Al-Hasani et al., 2018).

Open Question 3: What Are the Unique
Peptide-Receptor Signaling
Contributions to Learning and Memory?
The unique contributions of PACAP and VIP at PAC1
and VPAC1/2 receptors in learning and memory are poorly
understood. For instance, VPAC2 receptors have partially
overlapping distribution patterns in several regions important
for learning and memory (Lee et al., 2010), and developmental
manipulation of VPAC2 affects extinction learning in adulthood
(Ago et al., 2017). Pharmacological dissociation of PACAP
actions at PAC1R and VPAC2 is difficult as both are a target of
the PAC1R antagonist PACAP6-38. Plus, as mentioned earlier,
mechanistic dissection of these peptides in vitro is sensitive
to experimental parameters such as temperature. Thus, new
small molecule antagonists as well as gene-editing tools will
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be invaluable in revealing the rich complexity of mnemonic
regulation by these peptides.

Open Question 4: Does PACAP Bias
Allocation of Specific Circuits Into
Memory?
One intriguing, but speculative, role for PACAP in memory
is to bias the allocation of cells or circuits into memory as
a consequence of psychological stress or aversive experience
(Kondo et al., 1997). Neuronal excitability at the time of
learning determines which neurons are allocated to the memory
trace (Yiu et al., 2014; Cai et al., 2016; Sehgal et al., 2018;
Josselyn and Tonegawa, 2020). In the amygdala, cells with
reduced afterhyperpolarization (AHP) and increased CREB
phosphorylation immediately prior to training are recruited into
a fear memory (Yiu et al., 2014). PACAP reduces the slow AHP
calcium-activated potassium current sIAHP via cAMP/PKA to
increase excitability and action potential firing in hippocampal
CA1 and neocortical neurons (Hu et al., 2011; Taylor et al., 2014).
PACAP-elicited firing and PKA-dependent phosphorylation of
CREB drive CREB-mediated transcription (Baxter et al., 2011).
PACAP affects excitability and firing in a circuit-specific manner
(e.g., Hurley et al., 2019) and intrinsic properties can be modified
by experience (Sehgal et al., 2013; Dunn and Kaczorowski,
2019). Thus, PACAP released during stressful events or elevated
PACAP following chronic stress or pain could influence which
circuits are recruited into a memory trace. Addressing this
possibility will shed light on how altered PACAP-PAC1R
signaling in susceptible individuals corresponds with altered
threat-associated memory in PTSD.

CONCLUDING REMARKS

Pituitary adenylate cyclase-activating polypeptide is a pleiotropic
neuropeptide whose diverse signaling underlies its diversity
of function including neural development, neuroprotection,
stress regulation, autonomic activation, affective behavior, and
memory. This in turn highlights the therapeutic potential of this
peptide and receptor modulations, a potential that is discussed in
this Research Topic and reflected in recent efforts to develop non-
peptide small molecule compounds to selectively target PACAP
receptors (Beebe et al., 2008; Takasaki et al., 2018). The link
between PACAP-PAC1R and pathological fear learning and stress
dysregulation in PTSD suggests another potential therapeutic
use for such treatments. Realization of this potential requires
continued efforts to address the role of PACAP in learning and
in the complex interactions of stress and sex on memory.
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