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A growing number of experimental and computational approaches are illuminating the
“microbial dark matter” and uncovering the integral role of commensal microbes in
human health. Through this work, it is now clear that the human microbiome presents
great potential as a therapeutic target for a plethora of diseases, including inflammatory
bowel disease, diabetes and obesity. The development of more efficacious and targeted
treatments relies on identification of causal links between the microbiome and disease;
with future progress dependent on effective links between state-of-the-art sequencing
approaches, computational analyses and experimental assays. We argue determining
causation is essential, which can be attained by generating hypotheses using multi-
omic functional analyses and validating these hypotheses in complex, biologically
relevant experimental models. In this review we discuss existing analysis and validation
methods, and propose best-practice approaches required to enable the next phase of
microbiome research.

Keywords: microbiome, faecal transplant, gastrointestinal disorder, 16S rRNA sequencing, metagenomic
sequencing, microbial genomics, bacteriotherapy, live biotherapeutics

INTRODUCTION

The human microbiome has now been implicated in several pathologies, including inflammatory
bowel disease (IBD; Ott et al., 2004), diabetes (Vatanen et al., 2018), and obesity (Cox et al., 2014; de
la Cuesta-Zuluaga et al., 2018) and therefore represents a broad-range potential therapeutic target.
Evidence suggests microbiome-based interventions such as probiotics, may reduce symptoms of
irritable bowel syndrome (IBS; Ford et al., 2014), antibiotic- associated diarrhea (Evans et al., 2016;
Blaabjerg et al., 2017), preterm infant mortality rates and necrotizing enterocolitis (Sekhon et al.,
2019; Underwood, 2019; Liu D. et al., 2020). Proposed mechanisms of action include: increases in
intestinal barrier function (Burger-van Paassen et al., 2009), production of antimicrobials (Jones
and Versalovic, 2009), and interaction with the immune system (Veckman et al., 2004; Smits et al.,
2005; Kwon et al., 2010). Hence, further studies provide the opportunity to determine mechanistic
links between the current generation probiotics and disease, and can inform the production of more
targeted therapeutics for a wider range of conditions.

Sequencing and experimental analyses of the microbiome continue to advance substantially.
Coupling multi-omics technologies, statistical and computational analyses, and more advanced
disease models, these approaches promisingly provide the opportunity to establish disease causality
and subsequently inform therapeutic development. We propose a workflow constituent of stages:

Frontiers in Microbiology | www.frontiersin.org 1 June 2021 | Volume 12 | Article 685935

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/440348114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.685935
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.685935
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.685935&domain=pdf&date_stamp=2021-06-22
https://www.frontiersin.org/articles/10.3389/fmicb.2021.685935/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-685935 June 16, 2021 Time: 15:58 # 2

Young et al. Key Technologies for Microbiome Research

(i) compositional and functional characterization of the
microbiome, (ii) data-driven hypotheses generation, and (iii)
experimental validation of hypotheses (Figure 1).

COMPOSITIONAL AND FUNCTIONAL
CHARACTERIZATION OF THE
MICROBIOME (STAGE I)

Taxonomic Composition
As we emerge from the “unculturable” era of microbiome
research, it is clear that the application of culture-independent
sequencing methods has delivered substantial understandings
of the taxonomic composition within bacterial communities.
Studies involve experimentally extracting genomic DNA from
samples of interest and grouping strains and species based on
their genetic similarity in small genomic regions. Reads may be
binned based on similarity thresholds, as operational taxonomic
units (Westcott and Schloss, 2015), or biological sequences may
be statistically distinguished from sequencing errors, as amplicon
sequence variants (Eren et al., 2013; Tikhonov et al., 2015;
Callahan et al., 2017). The output may be used to describe the
community based on taxonomy or phylogeny. These methods
have focused on correlating disease with microbial community
composition and population structure, allowing the identification
of key microbial groups that may mediate disease, yet all have
inherent advantages and disadvantages (Table 1).

16S rRNA Amplicon Sequencing
Following sample collection, one approach to identify bacterial
and archaeal taxonomy is amplification and sequencing of the 16S
rRNA gene. Culture-independent, high-throughput, short read
sequencing of genetic hypervariable regions, such as with 454
pyrosequencing, Ion Torrent R© and Illumina R© platforms, provide
insight into microbial community composition, and has been
beneficial in many fields, such as soil (Schöler et al., 2017)
and marine (Wilson et al., 2010) environmental microbiology.
The cost-effective nature of 16S rRNA sequencing facilitates
studies with extremely large sample sizes (Minich et al., 2018),
enabling monitoring of large communities over time (Poretsky
et al., 2014), as well as the identification of specific taxa through
targeted amplification (Berry and Gutierrez, 2017), or pathogen
screening (Watanabe et al., 2018; Numberger et al., 2019).
More recently, the application of long-read 16S rRNA gene
sequencing has facilitated greater taxonomic resolution than
available with amplicon-based 16S rRNA profiling (Johnson et al.,
2019; Numberger et al., 2019).

In the gastrointestinal microbiome specifically, 16S rRNA
profiling has also been widely applied (Eckburg et al., 2005;
Turnbaugh et al., 2007; Gomez-Arango et al., 2016; Li
et al., 2020; Ryan et al., 2020). The Human Microbiome
Project (HMP) has applied this technology to characterize
the complexity of the microbiome at different body sites in
over 300 individuals (Turnbaugh et al., 2007), while diet and
nutritional associated taxonomic changes to the microbiome
have also been described (Zackular et al., 2016; Raman et al.,
2019). In disease pathogenesis, substantial progress has also

been made in identifying key microbial groups. Escherichia and
Faecalibacterium genera have been associated with IBD disease
phenotypes (Frank et al., 2011; Lopez-Siles et al., 2018), while
a depletion in butyrate-producing Coprococcus spp. has been
associated with depression (Valles-Colomer et al., 2019).

Despite the success of 16S rRNA profiling, it may not capture
sufficient genomic variation to distinguish between closely related
and yet functionally different species (Neville et al., 2018; Johnson
et al., 2019). In addition, the reliance on “universal” primers
for DNA amplification may introduce biases whereby some
species are amplified more than others, with taxonomic coverage
reported from 11% to 93% depending on primer choice (Thomas
et al., 2012). Other sequencing artifacts, such as polymerase errors
(Cline et al., 1996), chimeras (Haas et al., 2011; Eloe-Fadrosh
et al., 2016), 16S rRNA copy number variation (Louca et al.,
2018), and laboratory contamination (de Goffau et al., 2019; Han
et al., 2020) are all exacerbated during PCR amplification.

Shotgun Metagenomic Sequencing
As it does not rely on amplification of specific genetic
markers, metagenomic shotgun sequencing provides a capacity
to measure all genes in the community, thus overcoming many
of the limitations of amplicon sequencing. With appropriate
sequencing depth and analysis, this approach provides the
potential to achieve species and strain level resolution and the
foundations for functional characterization (i.e., the metabolic
capacity of the microbiome).

Where extensive databases of complete genome sequences
exist, reference-based methods of analysis may provide an
ability to achieve high-resolution taxonomic classification
through direct comparison (Lloyd-Price et al., 2017; Forster
et al., 2019). Several programs exist for aligning millions
of sequenced reads (or k-mers) to reference databases for
taxonomic assignment, for example Kraken2 (Wood et al., 2019),
MetaPhlAn2 (Truong et al., 2015), Metacache (Müller et al.,
2017), CCMetagen (Marcelino et al., 2020a), and Centrifuge
(Kim D. et al., 2016). While available metagenomic classifiers
each have advantages and limitations that impact accuracy and
resolution of classification (McIntyre et al., 2017), reference-
guided analysis is also fundamentally limited by availability and
selection of the reference genome database. Recent evidence
suggests that databases with limited taxonomic diversity also
cause misclassification of reads, as they align to evolutionarily
conserved regions (Marcelino et al., 2020b). Large scale efforts,
such as the Genome Taxonomy Database, which currently
contains over 190,000 bacterial reference genomes (Parks et al.,
2020), ensure that a comprehensive mix of references are
available. Not only does this mitigate misassignment of reads,
but it improves taxonomic resolution. In the context of the gut
microbiome, Forster et al., improved taxonomic classification by
61% and achieved a subspecies level resolution for 50% of reads
by adding 737 bacterial genomes into a reference database of
genomes from the HMP collection (Forster et al., 2019).

Where the databases to support reference-based
metagenomics are not available, de novo assembly of
metagenomic sequence reads can be used to obtain metagenome
assembled genomes (MAGs; Hugerth et al., 2015; Kang et al.,

Frontiers in Microbiology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 685935

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-685935 June 16, 2021 Time: 15:58 # 3

Young et al. Key Technologies for Microbiome Research

FIGURE 1 | Overview of microbiome analysis workflow for the purpose of determining causality and enabling therapeutic development. (i) Compositional and
functional characterization of a microbial community through identification of taxa and functions present. (ii) Data-driven hypothesis generation through application of
computational methods including mathematical and statistical modeling. (iii) Experimental validation of hypotheses using in vivo and in vitro models such as animal
models, cell lines, organoids and organ-on-a-chip.

2015). This can be incredibly effective to identify new species
and their phylogenies, as well as to provide catalogs of reference
genomes (Parks et al., 2017; Almeida et al., 2019). However,
this method can encounter difficulty reassembling repetitive
sequence regions (Kingsford et al., 2010) and has problems
with incorrect genome reconstructions in the presence of
high complexity datasets with genetically similar community
members (Sczyrba et al., 2017). Increased sequencing depth
and inclusion of hybrid assemblies containing short and long
reads or using single cell genomics (Zhang et al., 2006; Chijiiwa
et al., 2020) aid in overcoming these issues (Bertrand et al.,
2019; Xie et al., 2020); however, this remains cost prohibitive in
many circumstances.

Accurate taxonomic classification of metagenomic sequences,
relies on quality, diverse and well- populated reference databases.
This calls for coordinated cross-disciplinary efforts to build these
references using large, diverse datasets such as was undertaken
recently for the human gastrointestinal microbiome (Forster
et al., 2019; Almeida et al., 2021).

Functional Characterization
The phenotypic profile of the microbiome community
is determined by the functional gene products from the
microbiome. Microbial gene products perform several essential
processes for human health, including synthesis of vitamins
(Hill, 1997), breakdown of non-digestible carbohydrates (Flint
et al., 2008), and aid in host immune development (Imaoka

et al., 1996; Ivanov et al., 2009). Conversely, microbial gene
products also confer virulence in microorganisms, activate
inflammatory signaling pathways (Schirmer et al., 2016;
Halfvarson et al., 2017) and trigger autoimmune diseases
(Wu et al., 2010; Azad et al., 2013). Hence, deleting, altering
or introducing various functional genes by manipulating
the microbiome may be the key to producing microbiome-
based therapies and managing related diseases. There are
several techniques to perform functional assessment of the
gastrointestinal microbiome, including functional inference
from 16S rRNA sequencing, functional prediction from
metagenomic sequencing and direct measurement through
multi-omics studies (Table 1).

Inference of Functional Capacity Based on 16S rRNA
Sequencing
Functional capacity may be inferred based on known functions
of the closely-related microorganisms identified by 16S rRNA
amplicon sequencing (Langille et al., 2013). For example,
Stevens et al. (2020), used PICRUSt2, a tool to predict
function from 16S sequences (Douglas et al., 2020), to
identify butyrate degradation and Gamma-aminobutyric acid
degradation pathways in the gut microbiome of individuals
with a depression phenotype, contrasted with a prevalence of
butyrate producing species in healthy subjects. Predictions from
16S rRNA have also been successful in identifying metabolic
shifts between microbiome data sets, as Noecker et al. (2016),
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TABLE 1 | Advantages and disadvantages of available taxonomic and functional
characterization technologies.

Technology Advantages Disadvantages

16S rRNA profiling • Higher sensitivity • Low taxonomic
resolution
• PCR amplification
bias
• Functional
characterization
dependent on
extrapolation

Reference-based
metagenomics

• May achieve
species and strain level
taxonomic assignment
for some taxa
• Incorporates
functional information
• No amplification
necessary

• Highly dependent
on quality and diversity
of reference databases
• Cannot determine
difference between
expressed and
non-expressed genes

Metagenome-
assembled
genomes (MAGs)

• No amplification
necessary
• Identifies species
and phylogenies within
a sample
• Can be used to
increase reference
catalogs

• Difficulty with high
complexity datasets
• Difficulty assembling
repeat sequences

Multi-omic analysis • Identifies functional
genes, transcripts,
proteins and
metabolites
• Identifies potential
mechanisms of action

• Difficulty with data
integration
• Temporal and
spatial sampling
concerns

identified that metabolites involved in bacterial vaginosis tended
to be well predicted by their 16S rRNA prediction model.
Functional prediction tools based on marker genes are better
at predicting function in relation to different categories. When
comparing metagenome prediction tools and metagenomic
sequencing results, Sun et al. (2020), highlight that metagenome
prediction tools, PICRUSt (Langille et al., 2013), PICRUSt2
(Douglas et al., 2020), and Tax4Fun (Aßhauer et al., 2015) are
better at inferring function for “housekeeping” genes involved in
translation and transcription, and metabolism-related functions,
than for functions related to signaling molecules and signal
transduction.

Microbes which exhibit identical 16S rRNA genes show
functional similarities, however, there are also important
differences which is a limitation of this approach. For example,
in Escherichia coli approximately 20% of genes are core genes
found in all strains. The remaining 80% are accessory genes
that are not found in every strain and therefore contribute
to the functional diversity within the species (Lukjancenko
et al., 2010). As taxonomic resolution of 16S rRNA amplicon
sequencing is largely limited to the genus level, inferring function
based on taxonomic relatedness at this level is insufficient for
comprehensive assessment of functional capacity. Additionally,
where reference genomes are not available, no functional
inference can be made.

Functional Assessment Based on Metagenomic
Sequencing
Shotgun metagenomic sequencing provides a direct
measurement of all genes present, which can be used to determine
all potential functional gene products in the community. To
assess functional capacity, sequenced shotgun metagenomic
reads are mapped directly to reference gene or genome databases
(Kanehisa and Goto, 2000; Consortium, 2020), or assembled
into MAGs. Functions can be inferred through conventional
gene prediction and annotation workflows such as Prokka
(Seemann, 2014), DRAM (Shaffer et al., 2020), and KoFamScan
(Aramaki et al., 2020).

Several studies highlight the power of functional prediction
in ascertaining the phenotype of a microbial community using
metagenomic sequencing. Perturbations of essential microbial
functions, including short-chain fatty acid production and
L-arginine synthesis, both involved in intestinal barrier function,
have been identified in IBD (Vila et al., 2018; Parada Venegas
et al., 2019). Additionally, Qin et al. (2012), have characterized
microbial functional differences in type 2 diabetes, indicating
enrichment in branched-chain amino acid transport, methane
metabolism, sulfate reduction, and butyrate synthesis. While the
exact roles of these functional changes may be unknown, these
studies allow the postulation of potential disease mechanisms that
now require statistical analyses and experimental validation.

Unfortunately, a substantial part of the functional capacity
within the human microbiome remains unknown. Despite
application of advanced computational approaches (Rifaioglu
et al., 2019), with an increasing number of hypothetical protein
sequences (Nauman et al., 2019), and recent identification
of over 4000 small proteins with unknown function in the
human microbiome, (Sberro et al., 2019) these limitations
remain significant.

Multi-Omic Analysis
The requirement for analysis of functional state is not limited
to assessing complete genomic capacity, as all genes present
within a microbial community may not all be expressed
(Turnbaugh et al., 2010; Franzosa et al., 2014, 2018). Therefore,
attaining a holistic compositional and functional assessment
of the microbiome requires an integrated -omic approach,
with metagenomics, metatranscriptomics, metaproteomics, and
metabolomics. Metatranscriptomics involves sequencing RNA
transcripts from viable microorganisms for insight into gene
expression profiles within the community (Moran, 2009), while
protein profiles can be identified using metaproteomics (Wilmes
and Bond, 2006) and metabolomics can enable the identification
of metabolites (Fiehn, 2002). The multi-omics approach provides
greater accuracy in determining the role of bacterial strains
in disease pathogenesis by capturing the spectrum of genetic
potential to phenotype (Heintz-Buschart and Wilmes, 2018).

As with metagenomic approaches, multi-omic data analysis is
also largely limited by reference catalogs, generating bias toward
previously characterized pathways. Multi-omics datasets generate
a multitude of data types (gene content, expression, and microbial
species, etc.), and this inherent complexity is challenging to
integrate. The different sequencing outputs, such as sequence
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reads and metabolite counts, are not readily comparable (Palsson
and Zengler, 2010; Jiang et al., 2019; Pinu et al., 2019). Differences
in rates of transcription, translation and metabolization between
different species within a sample call for extensive temporal
sampling, which is often not feasible. Additionally, it is important
to note that an increase in the number of samples and data types
results in high data dimensionality as the number of variables
to consider increases (Gloor et al., 2017). Without appropriate
statistical correction, biases are introduced into results and
conclusions can be drawn from false positives (Thorsen et al.,
2016; Gloor et al., 2017). Furthermore, sampling the gut
microbiome incurs additional difficulties, as it contains distinct
communities and spatial heterogeneity between gastrointestinal
regions (Zhang et al., 2014; Lavelle et al., 2015), which are not
represented in fecal sampling. Even with extensive sampling, the
high dimensionality of multi-omics datasets makes it challenging
to determine mechanisms of action. Extensive work is being
done in an attempt to overcome these issues in silico [see
(Meng et al., 2016)].

Despite these challenges, integration of coupled multi-
omic datasets from gastrointestinal microbiome samples
has been successful in identifying potential links between
microbiome functions and disease. Heintz-Buschart et al.
(2016), used metaproteomics and metatranscriptomics to
correlate the presence of human pancreatic enzymes in
type 1 diabetes, with the expression of several microbial
pathways, including glycolysis and thiamine synthesis,
postulating their role in disease pathogenesis. Similarly,
metabolites associated with Subdoligranulum species have
been correlated with IBD (Lloyd-Price et al., 2019). Hence,
the use of multiple dataset types provides the opportunity to
link compositional microbial taxa to disease through potential
mechanisms of interaction.

DATA-DRIVEN HYPOTHESES
GENERATION (STAGE II)

Taxonomic and functional information are the baseline
to derive hypotheses and guide the experiments that can
ultimately elucidate causal links between the microbiome
and disease and inform therapeutic development. Data-
driven hypotheses generation is therefore a key step
to achieve translation of microbiome knowledge. Here
we outline the most common challenges and emerging
approaches in this field.

Data Processing
Measurements of microbiome datasets are frequently
compositional whereby they are proportional and dependent
on the analysis approach and sequencing depth (Gloor et al.,
2017). As compositionality can strongly influence analysis and
conclusions, normalization processes that treat microbiome data
as ratios, such as centered log-ratio transformations, must be
used before applying standard statistical analysis (Gloor et al.,
2016, 2017; Lê Cao et al., 2016).

Statistical and Machine Learning
Methods to Identify
Microbiome-Mediated Mechanisms of
Health and Disease
Multivariate statistics have been widely used to identify specific
bacterial taxa, potentially associated with disease. Discriminatory
methods, such as discriminant analyses, aim to define the taxa
(or functions) that maximize differences between groups, such as
healthy and diseased cohorts. By comparing the gut microbiota
of individuals with atherosclerotic cardiovascular disease and
healthy controls, Jie et al. (2017), reported a depletion in
Bacteroides and Prevotella and an increase in abundance of
Enterobacteriaceae and Streptococcus spp., identifying potential
targets for microbiome modulation. These methods have
also been used to identify potential biomarkers, or non-
invasive early markers of disease, such as for colorectal cancer
including Fusobacterium nucleatum and Parvimonas micra (Yu
et al., 2017), and secondary colorectal metachronous adenoma
including Escherichia and Acinetobacter (Liu Y. et al., 2020).
Statistical algorithms that specifically account for compositional
microbiome data, such as selbal (Rivera-Pinto et al., 2018), can
be used to identify groups of taxa that may explain a variable of
interest or disease phenotype.

Machine learning has been broadly applied in the context of
human microbiome research, in antibiotic resistance prediction
and modeling (Arango-Argoty et al., 2018; Rahman et al.,
2018), taxonomic classification of metagenomic and 16S rRNA
sequences (Vervier et al., 2016; Fiannaca et al., 2018; Desai
et al., 2020), and gene function prediction (Cai et al.,
2020). However, recent use in identifying microbial signatures
and potential therapeutic targets in disease, may inform
experimental validation and focus hypothesis generation for
disease treatments. These methods have been able to predict
incidence of IBD (Hacılar et al., 2018), IBS (Fukui et al.,
2020), and colorectal cancer (Thomas et al., 2019) based on
microbiome signatures. Notably, these methods can also identify
potential mechanisms of disease, for example Thomas et al., have
leveraged taxonomic and functional metagenomic information
from healthy controls and patients with colorectal cancer, using
a random forest classifier to identify reproducible biomarkers.
They also reported a potential mechanism of action for colorectal
cancer pathogenesis, as gene variants involved in synthesis
of trimethylamine from choline in Hungatella hathewayi and
Clostridium asparagiforme were significantly associated with
colorectal cancer samples (Thomas et al., 2019). Similarly, Cai
et al. (2017), identified microbial pathways, or reaction groups,
potentially involved in IBD when analyzing data from Qin
et al. (2010), using Non-Negative Matrix Factorization. Both
ascorbate and aldarate metabolism, and amino sugar, nucleotide
sugar metabolism, fructose and other metabolic pathways were
identified to have a greater contribution to IBD samples. While
machine learning techniques are promising for microbiome
hypothesis generation, there are several challenges including:
interpretability (Ghannam and Techtmann, 2021), incomplete
data labels (Ten Hoopen et al., 2017), and choosing a model
appropriate for the characteristics of the data (Namkung, 2020).

Frontiers in Microbiology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 685935

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-685935 June 16, 2021 Time: 15:58 # 6

Young et al. Key Technologies for Microbiome Research

Collaborative efforts in machine learning for microbiome
analysis, such as that of the European Cooperation in Science and
Technology network “ML4Mirobiome” aim to standardize and
synergize different fields, and combat these challenges.

Metabolic Models Enable Mechanistic
Predictions About Microbiome
Functioning
Genome-scale metabolic reconstructions are based on genomic,
biochemical, multi-omics and published experimental data, and
can be used to model the response of individual microbial
species to changing environmental or dietary conditions and
to infer microbial interactions (Thiele and Palsson, 2010;
Magnúsdóttir and Thiele, 2018). For example, El-Semman et al.
(2014), identified that when Bifidobacterium adolescentis was
present, F. praunitzii changed its metabolism by increasing
butyrate production, a short chain fatty acid associated with
health. Similarly, Steinway et al. (2015), employed metabolic
models to study the ability of different commensal microbes
to decrease the abundance of Clostridioides difficile, finding
that Barnesiella intestihominis was able to impede C. difficile
growth through metabolic interactions. Although experimental
validation is required, this knowledge may be used to develop
B. intestinihominis as a therapeutic target. Metabolic models
can also be used to infer the response of microorganisms
to potential therapeutic strategies. Promising drug targets
for the pathogen Klebsiella pneumoniae have been recently
identified using metabolic modeling (Cesur et al., 2020),
highlighting the potential of computational models to generate
testable hypotheses.

Ecological Interactions and the
Emerging Field of
Pharmacomicrobiomics
Members of the microbiome function as an ecological
community, and leveraging microbial interactions to develop
biotherapeutics is a logically promising avenue. Biological
interactions can be represented through networks, where
systems’ elements, such as microbes and their metabolites, are
represented by nodes, and their interactions depicted as edges.
These networks may be based on simple correlation analyses such
as standard Spearman correlations, or on more sophisticated
alternatives such as Bayesian analyses (Jiang et al., 2019). In the
human gut microbiome, Dai et al. (2018), used a correlation
network analysis to identify the interactions between microbes
enriched in colorectal cancer, whereby Clostridium species had
the highest centralities, or more co-occurrence interactions than
is expected by chance, suggesting that they may play a pivotal role
in the disease. Additionally, Zhang et al. (2014), provide evidence
that F. praunitzii and Bacteroides coprophilus co-occur less than
is expected by chance, suggesting competition between these two
species. Interestingly, competitive exclusion of F. praunitzii is
associated with inflammation in patients with Crohn’s disease,
and therefore B. coprophilus has been identified as a potential
therapeutic candidate to be targeted for removal from the
community (Zhang et al., 2014). Network theory can also be

applied to integrated multi-omic data to identify the functional
mechanisms behind microbial crosstalk (Lloyd-Price et al., 2019),
providing targeted avenues for downstream characterization and
validation in experimental models.

The marked influence of the individual genetic background
on their response to drugs has been well established in
the pharmacogenetics field. More recently, the emerging
pharmacomicrobiomics field addresses the many ways in which
the microbiome can modulate the host metabolic response to
improve the efficacy of therapeutic strategies. For example, it
has been observed that cardiac drugs may be inactivated by
Eggerthella lenta in the gastrointestinal tract (Haiser et al., 2013).
Additionally, in several forms of cancer, studies have shown
that the microbiome can influence patient responsiveness to
chemotherapy and immunotherapy [see (Helmink et al., 2019)
for a review]. The exact mechanisms by which the microbiota
influence therapeutic responses are still poorly characterized, but
we expect that the ecological interactions among members of the
microbiome and their interactions with the host immune system
play a fundamental role in various microenvironments. Microbial
community assembly and metabolism is known to be context-
dependent, with particular pathways switching on and off
depending on their biotic and abiotic surroundings. Therefore,
a systems-biology approach that considers how the diverse
microbiome influences host key pro-inflammatory and anti-
inflammatory mediators is likely to reveal the most promising
personalized therapies.

EXPERIMENTAL VALIDATION OF
HYPOTHESES (STAGE III)

While statistical and computational analyses are critical
in the identification of patterns in microbiome function
and interactions, it is important to test these hypotheses
experimentally in order to demonstrate causation and translate
such findings for clinical application. Research findings that
are both computationally and experimentally supported are
more likely to render positive results at the clinal trial stage.
Various tools and technologies have emerged for experimental
hypotheses validation which encompasses both in vitro and
in vivo approaches.

In vivo Models
Mouse models can provide insights into host-microbial
interactions, including how the microbiota shapes host immunity
(Maier and Hentges, 1972; Bouskra et al., 2008), physiology,
and metabolism (Cash et al., 2006). There are four main mouse
models used in microbiome studies; specific pathogen-free
(SPF) mice, bred for the absence of murine disease-causing
pathogens (e.g., Helicobacter pylori); antibiotic treated (abx)
mice, which are depleted of all or specific microbial groups; germ
free (GF) mice are absent of any microbes; and gnotobiotic mice,
which are selectively recolonized with either single microbes
or defined communities. Germ free and gnotobiotic mice
have the advantage of a controlled microbiome composition;
however, require specific maintenance and breeding strategies
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to ensure appropriate development of lymphoid tissue (Bouskra
et al., 2008) and mediation of immune response (Levy et al.,
2015). In contrast, SPF and abx mice undergo normal immune
development but lack a defined microbial community.

Specific pathogen-free mice have been utilized to elucidate
the potential impact of the microbiome composition on host
immune regulation and disease pathogenesis (Vijay-Kumar et al.,
2007; Letran et al., 2011). In contrast to SPF mice, abx mice are
administered with narrow spectrum antibiotics, hence rendering
them more susceptible to infection due to the absence of the
gut microbiome. Various studies have thus utilized the abx
model to affirm the necessity of the gut microbiome in pathogen
colonization resistance and immune response to infection (Abt
et al., 2012; Deshmukh et al., 2014).

Germ free mice can be crucial to demonstrate the
transmissibility of the microbiome and associated phenotype
through fecal microbiome transplantation from donor to
recipient animals (De Palma et al., 2017; Zhou et al., 2017; Le
Bastard et al., 2018), and this model has led to the development of
humanized gnotobiotic mice (Hazenberg et al., 1981; Turnbaugh
et al., 2009; Chung et al., 2012). Generation of gnotobiotic mice
from “diseased” or “healthy” human samples, with optimized
diet and environmental exposures, may better reflect a human
system (Park and Im, 2020).

Despite these important insights, the highly co-evolved nature
of microbe and host (Ochman et al., 2010; Goodrich et al., 2014)
introduce difficulties for human translation. Microbe species
differ greatly between humans and mice, with many human-
derived microorganisms failing to colonize mice (Kibe et al.,
2005; Chung et al., 2012). For example, Lactobacillus reuteri
has been identified in both human and mouse gastrointestinal
tracts (Frese et al., 2011). However, strains present in rodents
have been found to contain rodent specific genes that impact
the colonization and function of the species in the murine
model (Frese et al., 2011). Additionally, it has been shown
that commensal (Lasaro et al., 2014) and enterohaemorrhagic
strains (Roxas et al., 2010) of human E. coli are unable to
permanently colonize conventionally reared mice. Therefore,
despite the invaluable immunological insights obtained from
animal in vivo models, their lack of congruency with the human
microbial community structure and immune function (Chung
et al., 2012; Eun et al., 2014), suggests the need for human-specific
models in microbiome disease research.

In vitro Models
Immortalized Cell Lines
Human-derived immortalized cell lines are a common tool to
gain a better understanding of host-microbial functions due
to several advantages (Bahrami et al., 2011; Sadabad et al.,
2015). Immortalized cell lines are cost-effective, can continuously
divide and proliferate, providing a means for efficient high-
throughput and reproducible analyses. Human-derived cell lines
widely utilized in the gastrointestinal field include intestinal
epithelial-derived IEC-6 cells and the colonic adenocarcinoma-
derived T84, HT-29, LS513, and Caco2 cell lines, which have been
used to demonstrate the beneficial impact of probiotics, including

strains of Lactobacilli and Bifidobacteria in enteroinvasive E. coli
invasion (Khodaii et al., 2017). However, epithelial cell lines
vary in gene expression compared to the normal intestinal
epithelium within the human body (Bourgine et al., 2012)
and, being comprised of a single cell type, are absent of
endothelial and immune cell populations, which limits the ability
to biologically represent human gut physiology and morphology
(Pearce et al., 2018). Additionally, a monolayer of cells grown
in a flask or petri dish cannot recapitulate the anaerobic
conditions and epithelial structure present in the intestinal
lumen which is the ecological niche of a large proportion of
the microbiota. Therefore, it is difficult to effectively capture
the native state of microbe and host using immortalized cell
lines. While these models provide fundamental information on
host cellular response to microbes, there remains a need for
models capable of capturing the cellular diversity and anaerobic
intestinal environment in order to appropriately assess host-
microbe interactions.

Organoids
In vitro intestinal organoids, referred to as “mini-guts” or
enteroids/colonoids, are derived from intestinal stem cells and
are self-organized into an enclosed, three-dimensional structure
with a heterogeneous array of organ specific cell types (Sato
et al., 2009). Derivation of organoid tissue models and co-
culture methods have been well established and utilized in drug-
screening, investigations of gastrointestinal infections, host-
pathogen and host-microbiome interactions (Finkbeiner et al.,
2012; Forbester et al., 2015; Hou et al., 2018; Driehuis et al.,
2020). Additionally, ex vivo patient-derived organoid cultures
(primary cells from human tissues) may be used as a tool for
personalized therapeutic treatments (van de Wetering et al.,
2015). Microinjection allows the delivery of microbes and
substances into the organoid lumen, which has been particularly
useful for studies of the microbiome (Williamson et al., 2018).
For example, Leslie et al. (2015), used microinjection to
demonstrate the loss of epithelial barrier integrity, through
injection of viable C. difficile, as well as the C. difficile
exotoxin, toxin A (TcdA). Furthermore, human fecal microbiota
can be transplanted and maintained in culture within the
intestinal lumen (Williamson et al., 2018). Although organoids
can offer insight into disease pathogenesis and host-microbial
relationships, organoid systems lack the critical physiological
processes (peristalsis, oxygen gradient) and immune-microbiome
functions (vasculature, intestinal immune cells) that are necessary
to advance our understanding of the microbiome. As these are
important factors when investigating human gut physiology and
function, the limitations of organoid models may reduce the
ability to decipher the complexity of host-microbiome crosstalk.
Thus, it is essential to consider alternative experimental models
that are more biologically accurate.

Organ-on-a-Chip
Organ-on-a-chip technology has revolutionized the ability to
recapitulate organ-level physiology. The lung-on-a-chip was the
pioneering platform that successfully micro-engineered the lung-
alveoli vasculature and function, including controlled breathing
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motions by applying fluid shear stress on the device (Huh et al.,
2010). Similarly, flow-induced motions have been reproduced
in gut-chip systems to mimic intestinal peristalsis (Beaurivage
et al., 2019). The gut-on-a-chip device models the structure,
function, immune capability and other physiological processes
in the human gut, all controlled by microfluidics, which allows
fine-tuning of fluids at microscale levels (Vickerman et al.,
2008; Bhatia and Ingber, 2014). This emerging technology
provides a means of hypotheses validation and demonstration
of causation in microbiome studies. The gut-on-a-chip device
consists of upper and lower microfluidic channels separated
by a polymeric porous membrane which allow continued
perfusion, mimicking the dynamics of the gastrointestinal
system, unlike other existing in vitro model systems (Bhatia and
Ingber, 2014). The upper channel or apical membrane allows
intestinal epithelial cells to be cultured, while media containing
cellular growth factors can be perfused through the channel.
Endothelial and immune cells (e.g., myeloid cells, leukocytes)
can be compartmentalized in the lower channel or basolateral
membrane to mimic the intestinal microvasculature, allowing for
epithelial-endothelial interactions to occur. For comprehensive
analyses of host-microbial pathophysiology, innate and adaptive
immune responses can be selectively modeled by differentiating
patient-derived primary cells into various immune cell subsets
(e.g., macrophages, dendritic cells; Maurer et al., 2019). In
addition, these systems can maintain an oxygen gradient from
the aerobic microvasculature channels to the anaerobic epithelial
layer, allowing for co-culture of a diverse array of aerobic and
anaerobic gastrointestinal microbes (Jalili-Firoozinezhad et al.,
2019). A microbiome can therefore be established at a tissue-
interface, and host-microbe responses can be measured in real-
time.

Proof of concept studies have demonstrated the efficacy of
generating a diverse microbiome in situ (Jalili-Firoozinezhad
et al., 2019). Specifically, Kim H.J. et al. (2016), demonstrated
the role of intestinal probiotic bacterial strains in modulating
inflammation by enhancing intestinal barrier function. Similarly,
this technology has been used to model the attachment,
invasion and propagation of Shigella in the intestinal epithelium
(Grassart et al., 2019) and the involvement of commensal
microbial metabolites in colonic epithelium injury during
enterohemorrhagic E. coli infection (Tovaglieri et al., 2019).
In addition to modeling host-bacterial interactions, organ-on-
a-chip models can also be used for identification and testing
of therapeutic bacterial candidates. To target specific health
and disease states, patient-derived primary cells can be isolated
from biopsies and then cultured in gut-chip devices to fine-
tune analysis of host response toward drugs, probiotics or
pathogens (Kasendra et al., 2018; Van Den Berg et al., 2019).
The organ-on-a-chip is an invaluable tool for studying the role
of the microbiome in health and disease in various tissue types
of the human body. The scalable nature of this technology
provides a means to assemble different organ-chips to produce a
human-chip system for investigations on an inter-systemic level
(Maschmeyer et al., 2015; Picollet-D’hahan et al., 2021). It will
also provide significant insight of the interconnectivity between
the gut microbiome with other tissue or organ systems. While

further research and development is underway, an established
organ-on-a-chip platform could enhance the ability to validate
hypotheses in a high-throughput manner and pave way for
the development of therapeutics toward efficacious personalized
precision medicine.

CONCLUDING REMARKS

Human gastrointestinal microbiome research has the potential
to deliver critical clinical and therapeutic development if it
shifts toward mechanistic studies. We proposed that a suitable
avenue to translate microbiome research is a workflow that
includes (i) compositional and functional characterization of
the microbiome, (ii) data-driven hypotheses generation, and
(iii) experimental validation of hypotheses. By integrating
recent advances in computational, statistical and experimental
methods through this workflow, the ability to identify disease
causation and propose logical microbiome therapeutics in disease
treatment is possible.

The next step toward implementation of microbiome-based
treatments relies on a deeper biological understanding of
how microbial communities respond to the introduction of
new strains or microbial mimetics. As such, research into
ecological interactions and pharmacomicrobiomics will be key
to understand the complex ways in which the microbiome
influence host health and response to drugs. We expect
that a systems-biology approach targeting the microbiome
and host-microbiome interactions will guide the successful
implementation of microbiome therapeutics.

AUTHOR CONTRIBUTIONS

RBY and SCF conceptualized the idea. RBY wrote the manuscript
and made the figure. VRM, MC, ELG, and SCF contributed to
various sections and edited the review. All authors contributed to
the article and approved the submitted version.

FUNDING

This work was supported by the Australian National Health and
Medical Research Council (1141564, 1181105, and 1186371 to
SCF) and the Victorian Government’s Operational Infrastructure
Support Program. RBY is supported by an Australian
Government Research Training Program (RTP) scholarship
and SCF is supported by the Australian National Health and
Medical Research Council (1159239).

ACKNOWLEDGMENTS

The authors acknowledge the support of the Australian National
Research Council, the Victorian Government’s Operational
Infrastructure Support Program, and the Australian Government
Research Training Program (RTP).

Frontiers in Microbiology | www.frontiersin.org 8 June 2021 | Volume 12 | Article 685935

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-685935 June 16, 2021 Time: 15:58 # 9

Young et al. Key Technologies for Microbiome Research

REFERENCES
Abt, M. C., Osborne, L. C., Monticelli, L. A., Doering, T. A., Alenghat, T.,

Sonnenberg, G. F., et al. (2012). Commensal bacteria calibrate the activation
threshold of innate antiviral immunity. Immunity 37, 158–170. doi: 10.1016/j.
immuni.2012.04.011

Almeida, A., Mitchell, A. L., Boland, M., Forster, S. C., Gloor, G. B., Tarkowska, A.,
et al. (2019). A new genomic blueprint of the human gut microbiota. Nature
568, 499–504. doi: 10.1038/s41586-019-0965-1

Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z. J., et al.
(2021). A unified catalog of 204,938 reference genomes from the human gut
microbiome. Nat. Biotechnol. 39, 105–114. doi: 10.1038/s41587-020-0603-3

Aramaki, T., Blanc-Mathieu, R., Endo, H., Ohkubo, K., Kanehisa, M., Goto, S., et al.
(2020). KofamKOALA: KEGG ortholog assignment based on profile HMM
and adaptive score threshold. Bioinformatics 36, 2251–2252. doi: 10.1093/
bioinformatics/btz859

Arango-Argoty, G., Garner, E., Pruden, A., Heath, L. S., Vikesland, P., and
Zhang, L. (2018). DeepARG: a deep learning approach for predicting antibiotic
resistance genes from metagenomic data. Microbiome 6:23.

Azad, M. B., Konya, T., Maughan, H., Guttman, D. S., Field, C. J., Sears, M. R., et al.
(2013). Infant gut microbiota and the hygiene hypothesis of allergic disease:
impact of household pets and siblings on microbiota composition and diversity.
Allergy Asthma Clin. Immunol. 9:15. doi: 10.1186/1710-1492-9-15

Aßhauer, K. P., Wemheuer, B., Daniel, R., and Meinicke, P. (2015). Tax4Fun:
predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics
31, 2882–2884. doi: 10.1093/bioinformatics/btv287

Bahrami, B., Child, M. W., Macfarlane, S., and Macfarlane, G. T. (2011). Adherence
and cytokine induction in Caco-2 cells by bacterial populations from a three-
stage continuous-culture model of the large intestine. Appl. Environ. Microbiol.
77, 2934–2942. doi: 10.1128/aem.02244-10

Beaurivage, C., Naumovska, E., Chang, Y. X., Elstak, E. D., Nicolas, A., Wouters,
H., et al. (2019). Development of a gut-on-a-chip model for high throughput
disease modeling and drug discovery. Int. J. Mol. Sci. 20:5661. doi: 10.3390/
ijms20225661

Berry, D., and Gutierrez, T. (2017). Evaluating the detection of hydrocarbon-
degrading bacteria in 16S rRNA gene sequencing surveys. Front. Microbiol.
8:896. doi: 10.3389/fmicb.2017.00896

Bertrand, D., Shaw, J., Kalathiyappan, M., Ng, A. H. Q., Kumar, M. S., Li, C.,
et al. (2019). Hybrid metagenomic assembly enables high-resolution analysis
of resistance determinants and mobile elements in human microbiomes. Nat.
Biotechnol. 37, 937–944. doi: 10.1038/s41587-019-0191-2

Bhatia, S. N., and Ingber, D. E. (2014). Microfluidic organs-on-chips. Nat.
Biotechnol. 32, 760–772. doi: 10.1038/nbt.2989

Blaabjerg, S., Artzi, D. M., and Aabenhus, R. (2017). Probiotics for the prevention
of antibiotic-associated diarrhea in outpatients—a systematic review and meta-
analysis. Antibiotics 6:21. doi: 10.3390/antibiotics6040021

Bourgine, J., Billaut-Laden, I., Happillon, M., Lo-Guidice, J.-M., Maunoury, V.,
Imbenotte, M., et al. (2012). Gene expression profiling of systems involved in
the metabolism and the disposition of xenobiotics: comparison between human
intestinal biopsy samples and colon cell lines. Drug Metab. Dispos. 40, 694–705.
doi: 10.1124/dmd.111.042465

Bouskra, D., Brézillon, C., Bérard, M., Werts, C., Varona, R., Boneca, I. G.,
et al. (2008). Lymphoid tissue genesis induced by commensals through
NOD1 regulates intestinal homeostasis. Nature 456, 507–510. doi: 10.1038/
nature07450

Burger-van Paassen, N., Vincent, A., Puiman, P. J., Van Der Sluis, M., Bouma, J.,
Boehm, G., et al. (2009). The regulation of intestinal mucin MUC2 expression
by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420,
211–219. doi: 10.1042/bj20082222

Cai, Y., Gu, H., and Kenney, T. (2017). Learning microbial community
structures with supervised and unsupervised non-negative matrix factorization.
Microbiome 5:110.

Cai, Y., Wang, J., and Deng, L. (2020). SDN2GO: an integrated deep learning
model for protein function prediction. Front. Bioeng. Biotechnol. 8:391. doi:
10.3389/fbioe.2020.00391

Callahan, B. J., Mcmurdie, P. J., and Holmes, S. P. (2017). Exact sequence variants
should replace operational taxonomic units in marker-gene data analysis. ISME
J. 11, 2639–2643. doi: 10.1038/ismej.2017.119

Cash, H. L., Whitham, C. V., Behrendt, C. L., and Hooper, L. V. (2006). Symbiotic
bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–
1130. doi: 10.1126/science.1127119

Cesur, M. F., Siraj, B., Uddin, R., Durmuş, S., and Çakır, T. (2020). Network-
based metabolism-centered screening of potential drug targets in Klebsiella
pneumoniae at genome scale. Front. Cell. Infect. Microbiol. 9:447. doi: 10.3389/
fcimb.2019.00447

Chijiiwa, R., Hosokawa, M., Kogawa, M., Nishikawa, Y., Ide, K., Sakanashi, C.,
et al. (2020). Single-cell genomics of uncultured bacteria reveals dietary fiber
responders in the mouse gut microbiota. Microbiome 8:5.

Chung, H., Pamp, S. J., Hill, J. A., Surana, N. K., Edelman, S. M., Troy, E. B., et al.
(2012). Gut immune maturation depends on colonization with a host-specific
microbiota. Cell 149, 1578–1593. doi: 10.1016/j.cell.2012.04.037

Cline, J., Braman, J. C., and Hogrefe, H. H. (1996). PCR fidelity of pfu DNA
polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 24,
3546–3551. doi: 10.1093/nar/24.18.3546

Consortium, T. U. (2020). UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res. 49, D480–D489.

Cox, L. M., Yamanishi, S., Sohn, J., Alekseyenko, A. V., Leung, J. M., Cho, I.,
et al. (2014). Altering the intestinal microbiota during a critical developmental
window has lasting metabolic consequences. Cell 158, 705–721. doi: 10.1016/j.
cell.2014.05.052

Dai, Z., Coker, O. O., Nakatsu, G., Wu, W. K., Zhao, L., Chen, Z., et al. (2018).
Multi-cohort analysis of colorectal cancer metagenome identified altered
bacteria across populations and universal bacterial markers. Microbiome 6:70.

de Goffau, M. C., Lager, S., Sovio, U., Gaccioli, F., Cook, E., Peacock, S. J.,
et al. (2019). Human placenta has no microbiome but can contain potential
pathogens. Nature 572, 329–334. doi: 10.1038/s41586-019-1451-5

de la Cuesta-Zuluaga, J., Corrales-Agudelo, V., Velásquez-Mejía, E. P., Carmona,
J. A., Abad, J. M., and Escobar, J. S. (2018). Gut microbiota is associated
with obesity and cardiometabolic disease in a population in the midst of
Westernization. Sci. Rep. 8:11356.

De Palma, G., Lynch, M. D., Lu, J., Dang, V. T., Deng, Y., Jury, J., et al.
(2017). Transplantation of fecal microbiota from patients with irritable bowel
syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med.
9:eaaf6397.

Desai, H. P., Parameshwaran, A. P., Sunderraman, R., and Weeks, M.
(2020). Comparative study using neural networks for 16S ribosomal
gene classification. J. Comput. Biol. 27, 248–258. doi: 10.1089/cmb.2019
.0436

Deshmukh, H. S., Liu, Y., Menkiti, O. R., Mei, J., Dai, N., O’leary, C. E., et al.
(2014). The microbiota regulates neutrophil homeostasis and host resistance
to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 20, 524–530. doi:
10.1038/nm.3542

Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor,
C. M., et al. (2020). PICRUSt2 for prediction of metagenome functions. Nat.
Biotechnol. 38, 685–688. doi: 10.1038/s41587-020-0548-6

Driehuis, E., Kretzschmar, K., and Clevers, H. (2020). Establishment of patient-
derived cancer organoids for drug-screening applications. Nat. Protoc. 15,
3380–3409. doi: 10.1038/s41596-020-0379-4

Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent,
M., et al. (2005). Diversity of the human intestinal microbial flora. Science 308,
1635–1638. doi: 10.1126/science.1110591

Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T., and Kyrpides, N. C. (2016).
Metagenomics uncovers gaps in amplicon-based detection of microbial
diversity. Nat. Microbiol. 1:15032.

El-Semman, I. E., Karlsson, F. H., Shoaie, S., Nookaew, I., Soliman, T. H., and
Nielsen, J. (2014). Genome-scale metabolic reconstructions of Bifidobacterium
adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their
interaction. BMC Syst. Biol. 8:41. doi: 10.1186/1752-0509-8-41

Eren, A. M., Maignien, L., Sul, W. J., Murphy, L. G., Grim, S. L., Morrison, H. G.,
et al. (2013). Oligotyping: differentiating between closely related microbial taxa
using 16S rRNA gene data. Methods Ecol. Evol. 4, 1111–1119. doi: 10.1111/
2041-210x.12114

Eun, C. S., Mishima, Y., Wohlgemuth, S., Liu, B., Bower, M., Carroll, I. M., et al.
(2014). Induction of bacterial antigen-specific colitis by a simplified human
microbiota consortium in gnotobiotic interleukin-10–/− mice. Infect. Immun.
82, 2239–2246. doi: 10.1128/iai.01513-13

Frontiers in Microbiology | www.frontiersin.org 9 June 2021 | Volume 12 | Article 685935

https://doi.org/10.1016/j.immuni.2012.04.011
https://doi.org/10.1016/j.immuni.2012.04.011
https://doi.org/10.1038/s41586-019-0965-1
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1093/bioinformatics/btz859
https://doi.org/10.1093/bioinformatics/btz859
https://doi.org/10.1186/1710-1492-9-15
https://doi.org/10.1093/bioinformatics/btv287
https://doi.org/10.1128/aem.02244-10
https://doi.org/10.3390/ijms20225661
https://doi.org/10.3390/ijms20225661
https://doi.org/10.3389/fmicb.2017.00896
https://doi.org/10.1038/s41587-019-0191-2
https://doi.org/10.1038/nbt.2989
https://doi.org/10.3390/antibiotics6040021
https://doi.org/10.1124/dmd.111.042465
https://doi.org/10.1038/nature07450
https://doi.org/10.1038/nature07450
https://doi.org/10.1042/bj20082222
https://doi.org/10.3389/fbioe.2020.00391
https://doi.org/10.3389/fbioe.2020.00391
https://doi.org/10.1038/ismej.2017.119
https://doi.org/10.1126/science.1127119
https://doi.org/10.3389/fcimb.2019.00447
https://doi.org/10.3389/fcimb.2019.00447
https://doi.org/10.1016/j.cell.2012.04.037
https://doi.org/10.1093/nar/24.18.3546
https://doi.org/10.1016/j.cell.2014.05.052
https://doi.org/10.1016/j.cell.2014.05.052
https://doi.org/10.1038/s41586-019-1451-5
https://doi.org/10.1089/cmb.2019.0436
https://doi.org/10.1089/cmb.2019.0436
https://doi.org/10.1038/nm.3542
https://doi.org/10.1038/nm.3542
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1038/s41596-020-0379-4
https://doi.org/10.1126/science.1110591
https://doi.org/10.1186/1752-0509-8-41
https://doi.org/10.1111/2041-210x.12114
https://doi.org/10.1111/2041-210x.12114
https://doi.org/10.1128/iai.01513-13
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-685935 June 16, 2021 Time: 15:58 # 10

Young et al. Key Technologies for Microbiome Research

Evans, M., Salewski, R. P., Christman, M. C., Girard, S.-A., and Tompkins, T. A.
(2016). Effectiveness of Lactobacillus helveticus and Lactobacillus rhamnosus
for the management of antibiotic-associated diarrhoea in healthy adults: a
randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 116, 94–103.
doi: 10.1017/s0007114516001665

Fiannaca, A., La Paglia, L., La Rosa, M., Renda, G., Rizzo, R., Gaglio, S., et al. (2018).
Deep learning models for bacteria taxonomic classification of metagenomic
data. BMC Bioinformatics 19(Suppl. 7):198.

Fiehn, O. (2002). Metabolomics–the link between genotypes and phenotypes. Plant
Mol. Biol. 48, 155–171. doi: 10.1007/978-94-010-0448-0_11

Finkbeiner, S. R., Zeng, X.-L., Utama, B., Atmar, R. L., Shroyer, N. F., and Estes,
M. K. (2012). Stem cell-derived human intestinal organoids as an infection
model for rotaviruses. mBio 3:e00159-12.

Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R., and White, B. A. (2008).
Polysaccharide utilization by gut bacteria: potential for new insights from
genomic analysis. Nat. Rev. Microbiol. 6, 121–131. doi: 10.1038/nrmicro1817

Forbester, J. L., Goulding, D., Vallier, L., Hannan, N., Hale, C., Pickard, D., et al.
(2015). Interaction of Salmonella enterica serovar Typhimurium with intestinal
organoids derived from human induced pluripotent stem cells. Infect. Immun.
83, 2926–2934. doi: 10.1128/iai.00161-15

Ford, A. C., Quigley, E. M., Lacy, B. E., Lembo, A. J., Saito, Y. A., Schiller,
L. R., et al. (2014). Efficacy of prebiotics, probiotics, and synbiotics in irritable
bowel syndrome and chronic idiopathic constipation: systematic review and
meta-analysis. Am. J. Gastroenterol. 109, 1547–1561. doi: 10.1038/ajg.2014.202

Forster, S. C., Kumar, N., Anonye, B. O., Almeida, A., Viciani, E., Stares, M. D.,
et al. (2019). A human gut bacterial genome and culture collection for improved
metagenomic analyses. Nat. Biotechnol. 37, 186–192. doi: 10.1038/s41587-018-
0009-7

Frank, D. N., Robertson, C. E., Hamm, C. M., Kpadeh, Z., Zhang, T., Chen, H., et al.
(2011). Disease phenotype and genotype are associated with shifts in intestinal-
associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17,
179–184. doi: 10.1002/ibd.21339

Franzosa, E. A., Mciver, L. J., Rahnavard, G., Thompson, L. R., Schirmer, M.,
Weingart, G., et al. (2018). Species-level functional profiling of metagenomes
and metatranscriptomes. Nat. Methods 15, 962–968. doi: 10.1038/s41592-018-
0176-y

Franzosa, E. A., Morgan, X. C., Segata, N., Waldron, L., Reyes, J., Earl, A. M., et al.
(2014). Relating the metatranscriptome and metagenome of the human gut.
Proc. Natl. Acad. Sci. U.S.A. 111, E2329–E2338.

Frese, S. A., Benson, A. K., Tannock, G. W., Loach, D. M., Kim, J., Zhang,
M., et al. (2011). The evolution of host specialization in the vertebrate gut
symbiont Lactobacillus reuteri. PLoS Genet. 7:e1001314. doi: 10.1371/journal.
pgen.1001314

Fukui, H., Nishida, A., Matsuda, S., Kira, F., Watanabe, S., Kuriyama, M., et al.
(2020). Usefulness of machine learning-based gut microbiome analysis for
identifying patients with irritable bowels syndrome. J. Clin. Med. 9:2403. doi:
10.3390/jcm9082403

Ghannam, R. B., and Techtmann, S. M. (2021). Machine learning applications in
microbial ecology, human microbiome studies, and environmental monitoring.
Comput. Struct. Biotechnol. J. 19, 1092–1107. doi: 10.1016/j.csbj.2021.01.028

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J. (2017).
Microbiome datasets are compositional: and this is not optional. Front.
Microbiol. 8:2224. doi: 10.3389/fmicb.2017.02224

Gloor, G. B., Wu, J. R., Pawlowsky-Glahn, V., and Egozcue, J. J. (2016). It’s
all relative: analyzing microbiome data as compositions. Ann. Epidemiol. 26,
322–329. doi: 10.1016/j.annepidem.2016.03.003

Gomez-Arango, L. F., Barrett, H. L., Mcintyre, H. D., Callaway, L. K., Morrison, M.,
and Dekker Nitert, M. (2016). Increased systolic and diastolic blood pressure is
associated with altered gut microbiota composition and butyrate production in
early pregnancy. Hypertension 68, 974–981. doi: 10.1161/hypertensionaha.116.
07910

Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R.,
et al. (2014). Human genetics shape the gut microbiome. Cell 159, 789–799.

Grassart, A., Malardé, V., Gobaa, S., Sartori-Rupp, A., Kerns, J., Karalis,
K., et al. (2019). Bioengineered human organ-on-chip reveals intestinal
microenvironment and mechanical forces impacting Shigella infection. Cell
Host Microbe 26, 435–444.e4.

Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos,
G., et al. (2011). Chimeric 16S rRNA sequence formation and detection in
Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504.
doi: 10.1101/gr.112730.110
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